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A B S T R A C T   

Alkali-Silica Reaction (ASR), commonly known as ‘concrete cancer,’ is an expansive reaction occurring over time 
between aggregate constituents and alkaline hydroxides from cement. As a destructive phenomenon, the need to 
detect the onset of ASR in concrete structures to ensure their long-term durability and structural integrity is thus 
evidenced. In the structural health monitoring field, vision-based approaches have been found to be viable, fast, 
and cost-effective in diagnosing numerous types of cracks using physical attributes and surface patterns. How
ever, achieving high accuracy in detecting ASR cracks using traditional visual inspection techniques is chal
lenging and time-consuming. Inspired by artificial intelligence technology, this paper proposes and evaluates a 
two-phase computer vision procedure for detecting and classifying ASR cracks utilizing a collection of ASR 
images recorded from several bridges in Queensland, Australia. In the first phase, the procedure compares 
common pre-trained CNN models to investigate their capability in classifying ASR cracks and to select the best- 
performed model. In the second phase, a novel Feature Enhancement Process (FEP) was first proposed to increase 
the contrast between ASR cracks and the heavily textured backgrounds within the images. Next, to better 
highlight the ASR crack features, the feature-adjusted images are processed further through different texture 
analysis algorithms including: (i) Texture Morphology, (ii) Adaptive thresholding, and (iii) Local range filtering. 
The study shows that the proposed FEP can improve the ASR crack classification accuracy of InceptionV3, which 
is the best CNN model selected from Phase 1, from 90.9% to 92.48%. Furthermore, by combining FEP with 
texture morphology, a robust two-stage tool for assessing ASR cracks can be made with an impressive validation 
accuracy of 94.07%. This research contributes towards the application of novel AI deep learning technology in 
providing cost-effective autonomous ASR crack classification tools to support the owners and managers of civil 
public works assets and other constructed infrastructures.   

1. Introduction 

Concrete is one of the most popular building materials due to its 
affordability, availability, adaptability to any architectural shape, and 
resistance to adverse environmental conditions. Despite these advan
tages, concrete is not immune to deterioration and damage due to a 
combination of factors such as overloading, rebar corrosion, freeze
–thaw deterioration, chemical attack, abrasion/erosion, and restraint to 
volume changes [18]. These visual and structural effects are more 
commonly noted in structures exposed to harsh climatic conditions, 

especially in coastal regions. All these abnormalities could threaten the 
performance and integrity of important concrete structures such as 
buildings, bridges, and dams. Therefore, monitoring and detecting 
abnormal behaviours based on the assessment of physical conditions and 
structural responses are crucial for ensuring structural serviceability and 
durability. Toward this end, Structural Health Monitoring (SHM) tech
nology provides several evaluation frameworks for identifying and 
assessing changes in the material properties and structural geometry, 
which helps determine structural adequacy. 

Visual inspection is a common and initial approach adopted to 
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identify the existence of structural damage. While manual inspection 
requires skilled experts and is expensive and time-consuming, it may 
also be dangerous in situations where inspectors must climb to high 
altitudes to assess structures such as dams and high-rise buildings. 
Furthermore, inspecting an entire area of such large infrastructures in a 
short period of time is unrealistic. 

To overcome these shortcomings, over the last few decades, com
puter vision-based SHM has emerged as a more practical condition 
monitoring technique by providing faster, more accurate, and more 
secure solutions utilizing cameras, image processing techniques, and 
automated algorithms while minimizing human intervention at the site. 
Computer vision is the method of reading and interpreting images in a 
manner analogous to that of the human brain but using pixel readings. 
The method commonly incorporates image processing techniques to 
enable object classification, identification, and tracking [5]. Considering 
the ease of use and low cost of data setup and retrieval, computer vision 
is becoming increasingly popular in the SHM field [14]. These tech
niques have been identified as a critical element for the enhancement of 
the monitoring and inspection in real-world engineering structures, in 
which images provide visual data in the same way that skilled specialists 
do through in-field inspections. Due to this similarity, computer-aided 
structural inspections are predicted to be implemented similarly to 
human visual inspections. Moreover, such assessments benefit from 
rapid analysis facilities that decrease the cost and time of inspection 
through a contactless fashion, thereby alleviating some of the challenges 
associated with monitoring using contact sensors. 

In the realm of structural engineering, significant research has been 
undertaken on the design and modification of computer vision systems 
for inspection and monitoring responsibilities. Moreover, when com
bined with cameras and drones, vision-based technologies provide rapid 
and automated inspection and monitoring of civil infrastructure in a 
safer and more economical way [31]. 

Artificial Intelligence (AI) has permeated practically all engineering 
applications as a result of rapid advances in computer technology. AI is 
the automation of cognition in the sense that it can perform cognitive 
processes that the human brain is capable of, and is constantly evolving 
[1]. This makes decision-making a critical component of AI capabilities. 
With recent advances in knowledge and technology, computational 
processing has become more cost-effective and adaptive, thus increasing 
the use of AI in the SHM industry. Computational procedures, which 

have been established as model-based approaches, are becoming an 
intrinsic aspect of Non-destructive Testing (NDT) within Image Pro
cessing Techniques (IPTs), notably for SHM research [2]. AI reliability 
has a very high potential which can be attributed to two primary sub- 
fields: (i) machine learning and (ii) deep learning (Fig. 1). 

The first subfield of AI, viz., machine learning, is an automated 
technique for data processing based on computer models. It is based on 
structured data that is commonly adjusted by humans through feature 
extraction [9]. Prior to training a model, feature extraction allows for 
the classification of multiple data sets. When a model is adequately 
trained to detect pre-classified categories of intended recognition, it can 
recognize highlighted sample features independently. 

Deep learning is the second branch of AI that incorporates and ex
tends machine learning capabilities in data classification during the pre- 
processing phase [8]. This is possible because of the use of Artificial 
Neural Networks (ANN), which may be updated and trained to evaluate 
and discover the desired object within a dataset for later use [27]. As a 
result, deep learning is hampered by the need to discover essential traits 
within the dataset, necessitating the need for a large training set for 
improved feature detection. As opposed to machine learning, deep 
learning is capable of hierarchical feature learning. 

Within deep learning, a Convolutional Neural Network (CNN) is a 
type of ANN widely used for image/object recognition and classification. 
Deep learning thus recognizes objects in an image by using a CNN. A 
typical CNN architecture starts with convolutional layers that recognize 
low-level source image characteristics. Therefore, pooling layers collect 
this new information for use in the following series of convolutional 
layers that extract higher-level features from the previously examined 
low-level properties. The data is eventually translated to classification 
layers, where labelled output prediction happens after this operation is 
repeated for the depth and breadth of the CNN’s architecture [20]. 
Learning capability is based on the quantity of accessible data for 
extracting various features to improve learning capability in this 
connection. 

Computer vision based SHM is commonly seen as cost-effective, fast, 
and not requiring professional expertise. As a result, vision-based sur
face inspection has been a research focus for decades, particularly for 
concrete structures. Classical image processing techniques based on 
manual threshold and heuristic feature-extraction methods or auto
mated deep learning-based approaches, have been used to handle 

Fig. 1. Artificial Intelligence and Its Subfields.  

A. Nguyen et al.                                                                                                                                                                                                                                 



Structures 50 (2023) 494–507

496

delamination, spalling inspection, and detection of various concrete 
cracks. 

Alkali-Silica Reaction (ASR) is a destructive phenomenon that causes 
concrete to crack and degrade. It occurs when concrete is formed using 
specific alkali-reactive aggregates. ASR in concrete causes internal 
swelling and micro cracking, which leads to concrete expansion and 
degradation. While various SHM solutions have been studied for the 
evaluation of ASR cracks, such as acoustic emission [13,32], micro
scopic methods [36], and Raman microscopy [21], limited studies are 
conducted on the classification of ASR cracks using deep learning. There 
has been no similar research on performance assessment of pre-trained 
deep learning models, which are common in image classification and 
refining for ASR crack detection. 

We have begun a research project using AI computer vision tech
nology to develop the very first affordable method for assessing ASR 
damage. Our method is designed to support the owners of civil public 
works assets through different phases. The present paper focuses on the 
first phase, which is the automated identification of ASR crack presence 
through image classification. The following sections will provide a brief 
history of ASR, including causes, impacts, and visual indicators on 
concrete surfaces. The image dataset generated from several bridges 
damaged by ASR is then shown. From there, classical crack classification 
is used with pre-trained deep-learning models. Next, a novel strategy for 
enhancing deep learning model refinement and crack classification ac
curacy is explored. Following the discussion of the results, the conclu
sion section highlights key findings from this study that can be 
implemented in future research on computer vision-based ASR 
evaluations. 

2. Background on ASR causes and effects 

Alkali-Aggregate Reactivity or AAR, a chemical reaction between 
certain mineral phases in aggregates and alkali hydroxides in the con
crete pore solution, is one of the most damaging distress mechanisms 
affecting the lifespan of concrete structures worldwide. The most com
mon kind of AAR in concrete is ASR, whereas the Alkali-Carbonate 
Reaction (ACR) is a less common type. When structures come into 
direct contact with water and humidity in the air, chemical processes in 
the concrete particles impair their performance over time. ASR is formed 
when reactive siliceous aggregate particles in the pore solution of con
crete structures combine with hydroxyl ions. When exposed to moisture, 
the reaction produces a gelatinous fluid that swells and breaks concrete 
buildings. Minerals with no long-range atomic order, such as acidic 
volcanic glass and chert, as well as minerals that have lost their initial 
hierarchical molecular structure, such as strained quartz, are frequent 
sources of reactive silica. The release of alkali ions (potassium and so
dium) during the hydration of Portland cement causes the high con
centration of hydroxyls (high pH value) present in the pore solution of 
Portland cement concrete. As a result, the gel is frequently amorphous 
and made up of silicon, alkaline water, and calcium. For ASR to be 
dangerous, the following three conditions must be met [28,37]:  

• Reactive siliceous aggregate. 
• High alkali content in Portland cement as a resource of high con

centration of hydroxyl ions in the pore solution of concrete.  
• Existence of moisture (above 75 % relative humidity within the 

concrete). 

This deteriorative chemical reaction is more common in certain areas 
than others [18]. The extent of reactivity and eventual degradation in 
any concrete structure can vary greatly depending on the pore solution 
composition in any given region, specific reactive aggregate particle 
qualities, and the structural design. The composition and quality 
(permeability) of the concrete are the most critical criteria for deter
mining the potential severity of ASR. In addition, exposure conditions 
such as temperature, humidity, drying and wetting, freezing and 

thawing, and structural restrictions are all elements that influence ASR. 
The ASR can severely damage the mechanical properties of concrete, 

therefore, it is important to detect the onset of an ASR occurrence and 
monitor its propagation on the structure [26]. Although ASR is a difficult 
engineering problem, it provides visual cues that aid in diagnosis. The 
most common visual symptoms of ASR consist of concrete cracking, 
expansion (causing deformation, relative movement, and displacement 
of structural members), surface pop-outs, surface discoloration, and gel 
exudations. A comprehensive description of the symptoms can be found 
in Thomas et al. [34] and Thomas et al. [33]. Among these visual in
dicators, concrete cracking is the most common defect, which manifests 
into two different types depending on the nature of the concrete struc
tures. The classic type of ASR crack is map cracking, which takes the 
form of randomly oriented cracks on the surface of concrete elements 
that are relatively free (unrestrained) to expand in all directions (Fig. 2 
(a)). Conversely, when expansion is restrained in one or more directions 
due to internal confinement (rebars or prestressed tendons), or by 
external forces from abutments or adjacent structures, dominant 
expansion occurs in the direction of least confinement, and thus forms 
the second type of ASR crack known as longitudinal or aligned cracking. 
For bridge girders, ASR cracks usually be aligned horizontally due to the 
confinement imposed by rebars and/or prestressing tendons parallel to 
the beam axis (Fig. 2 (b)). Similarly, ASR cracks tend to be aligned 
vertically due to the restraint imposed by primary reinforcement and the 
dead load in reinforced concrete bridge piers and columns (Fig. 2 (c)). 

With ASR defects, it is highly unlikely to have all the above visual 
symptoms in one place, yet an individual symptom does not necessarily 
indicate ASR defects in many cases [33]. For instance, map cracking can 
also be caused by drying shrinkage and freeze/thaw cycles, creating a 
pattern of cracks with random orientation. In addition, longitudinal 
cracks can be caused by reinforcement corrosion. However, research by 
Fanijo et al. [12] shown that, for structures located in an environment 
with a renewable source of moisture, clear visual evidence of gel exu
dations and surface discoloration on map or longitudinal cracks in
dicates a high probability of ASR presence. This provides an important 
indicator for visual identification of ASR presence in suspected struc
tures during routine inspection programs. 

Visual inspection by specialists is a common way of assessing ASR in 
such inspection programs. The Lake Lynn project, for example, is a 305- 
meter-long and 38-meter-tall concrete gravity dam. Nobody had ever 
heard of AAR before 2004. During a visual inspection in 2007, cracks 
and spalls were discovered in the deck’s expansion joints. Because the 
expansion joints were filled with dirt, they had no capability for AAR or 
thermal expansions. However, visual inspection is not cost-effective 
because it necessitates the training of a large number of professionals 
to conduct inspections on complex and large structures such as bridges 
and dams [26]. 

With the advances in machine learning, researchers have provided 
new approaches for the prediction of ASR. Oey et al. [24] found that 
using an “extra trees” type random forest algorithm, an accuracy of 78 % 
could be achieved when classifying concrete by AAR gel abundance. 
This accuracy was improved to 82 % when applied to the simpler clas
sification of the existence (or not) of AAR gel in the concretes and to 90 
% when factoring in the relatively lower “cost” of falsely predicting the 
occurrence of AAR. Allahyari et al. [4] used ANN and chemo-mechanical 
and kinetics-based approaches to develop a time-and-temperature- 
dependent model of ASR. A comparison between the developed model 
and a chemo-mechanical one showed higher accuracy for the developed 
model. 

Deep learning algorithms have been applied for the evaluation of 
ASR defects by researchers. For example, Ai et al. [3] used Acoustic 
Emission (AE) to validate the performance of two deep learning models 
in the ASR detection of a concrete specimen. To that purpose, AE signals 
were employed to record stress from concrete surfaces in the presence of 
ASR. The expansions were measured on a regular basis with strain- 
mounted gages. Two deep learning algorithms, a CNN and a stacked 
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autoencoder, were utilized to classify structural conditions into two 
classes using AE data and to determine ASR volumetric using recorded 
strains. The results demonstrated that CNN outperformed the autoen
coder network in terms of accuracy. 

ASR-affected reinforced concrete slabs were subjected to moving 
wheel loading in a study by Adel et al. (2021). Image analysis was used 
to capture images and assess deflection. They developed the U-Net 
model to identify pit formation along ASR cracks. 

In research by Uwanuakwa et al. [35], a deep learning algorithm was 
used to classify ASR concrete images from the public repository. The 
images were analysed using the visual geometry group (Vgg19), neural 
search architecture (Nasnetlarge), and residual inception block (vin
ceptionresnetv2) algorithms. The overall performance results indicate 
that the Vgg19 algorithm outperformed the Nasnetlarge and Incep
tionresnetv2 algorithms in identifying and classifying concrete cracks. 

Bezerra [7] developed a CNN-based method for predicting the 
Damage Rating Index (DRI) to automate the DRI test methodology for 
measuring the degree of concrete damage caused by ASR. This proced
ure consisted of two steps: crack recognition utilizing sliding windows 
and enhanced pixel recognition. The DRI number estimation was then 
applied to the CNN model with an accuracy of 74.4 %. 

With the above literature review, there is a need for an automated 
ASR evaluation tool that can monitor huge structures while remaining 
cost-effective, fast enough, and accessible to all engineers. The answer is 

provided by computer vision, which employs automated algorithms 
based on deep learning and monitors large areas using drones and other 
digital cameras. The following section illustrates the details of the image 
dataset used in this paper. 

3. Creation of an image dataset for ASR crack identification 

To create an ASR image dataset, some real bridges affected by ASR 
were investigated as case studies. Since ASR normally takes time to form 
and the focus of acquired images is on ASR damaged bridges, this dataset 
is valuable for future computer vision-based investigations in the realm 
of SHM. A total of 35 original images of areas subject to ASR used in this 
study were taken as part of periodic inspections from several bridges in 
Queensland, Australia over the course of many years. The images 
creating the dataset for this research were retrieved with permission 
from the Bridge Information System (BIS) at Queensland’s Department 
of Transport and Main Roads (TMR). Some of the image samples are 
presented in Fig. 3. 

All the examined bridges are in the locations subjected to renewable 
source of moisture. Visual inspections conducted by TMR identified 
longitudinal cracks along the girders, clearly visible with gel exudations 
and surface discoloration (Fig. 3 and Fig. 4). These indicators have 
helped to detect the presence of ASR defects in the bridges according to 
the common visual symptoms of ASR presented in Section 2. 

Fig. 2. (a) ASR map cracking, (b) ASR longitudinal cracks in bridge girder, (c) ASR longitudinal cracks in bridge columns [34].  

Fig. 3. Image Samples from Queensland Bridges.  

A. Nguyen et al.                                                                                                                                                                                                                                 



Structures 50 (2023) 494–507

498

The batch of images extracted from the BIS at TMR contained various 
resolutions and dimensions. All of the image dimensions indicated in 
this dataset were much greater than the CNN input dimension re
quirements, which can degrade image resolution. In order to preserve 
image resolution, image cropping must occur, similar to the pre- 
processing method developed by Silva and Lucena [29]. In addition, 
previous studies indicate that a large training dataset is necessary for 
effective CNN training [8]; hence this cropping approach preserves 
image resolution while providing a substantially larger training dataset. 

Silva and Lucena [29] and Cha et al. [10] adopt 256 × 256 image 
pixels for training, which creates a small enough patch size to have a 
negligible impact on resolution quality when automatic resizing occurs 
during input [22]. By adopting a 256 × 256-sized image patch, an 
automated image cropping script has been created for this study. The 
256 × 256 image patches obtained through this process shall thus form 
the image dataset. 

CNN training for this project required a subset of images that con
tained cracks and an additional subset containing no cracks. Images 
containing no features representing a crack adopted a naming conven
tion of the base. Thus, this research observed a binary format. This en
ables the CNN to detect ASR defects using the cracked dataset as well as 
non-crack images from the base dataset. To create these two subsets, 
manual identification and selection of each image patch are generated 
by the cropping process and afterward transferred to the respective 
subset category folder. 

In conclusion, from the image pre-processing phase, the dataset 
contained 1097 base images and 609 ASR defect images from Queens
land bridges at 256 × 256 patch size, summing to 1706 images in total 
for the dataset hereafter called original, or raw dataset. Fig. 4 shows 

some of the image samples from the dataset created after cropping. 

4. Phase 1 of ASR crack Identification: Sole use of Pre-trained 
models 

4.1. Selection of Pre-Trained deep learning models 

As previously mentioned, pre-trained deep learning models are very 
popular for image classification in numerous engineering and medical 
applications due to their rapid performance, simple training, and 
straightforward deployment with the new datasets. Thus, in the first 
phase of this study, we employ some traditional pre-trained models to 
investigate their capability in classifying ASR cracks. This phase aims to 
determine which pre-trained models perform best with the ASR defect 
dataset. The most suitable models for consideration are selected 
following recommendations from Nguyen et al. [23], who conducted a 
comprehensive analysis of the performance of eight common deep 
neural networks in the context of automated crack identification under 
normal and unfavourable environmental circumstances by investigating 
variety of criteria, including batch size, model size, and the number of 
runs. Consequently, three models, namely ResNet-18, InceptionV3, and 
AlexNet, are selected in this study. The first model (ResNet-18) is 
selected due to its excellent performance in the trade-off between clas
sification accuracy and computational cost, while the second model 
(InceptionV3) is selected owing to its robustness against image noises, 
such as motion blurs and Salt and Pepper noise, which are commonly 
induced in images taken from real structures. The last model (AlexNet), 
which is reportedly less robust than the other two counterparts [23], is 
selected herein owing to its advantage in computational cost since it 

Fig. 4. Samples of ASR Cropped Images from The Original Dataset.  
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processes through only eight layers (compared to 18 and 48 layers for 
the Resnet18 and InceptionV3, respectively). The CNN architectural 
details of the three selected networks are provided in Table 1 below. 

Using knowledge gained from the literature, each pre-trained CNN 
should be adapted for transfer learning [16]. When each CNN was 
modified for transfer learning, the generic pre-trained architecture was 
imported. To enable transfer learning, the last layer in the network, i.e., 
the classification layer, was deleted and replaced by a new classification 
layer with the output size set to ’auto’. Similarly, the final fully con
nected layer in the network was deleted and replaced by a new fully 
connected layer with the output size set to 2, meaning one output for 
base classification and another output for ASR defect. 

4.2. Pre-Trained CNN performance evaluation criteria 

In order to evaluate the efficiency of the pre-trained models in 
classifying ASR cracks, the following common performance indices for 
CNN are employed in this study: (1) F1-score, (2) Model overfitting, and 
(3) Validation accuracy. 

In statistical analysis of binary classification, the F1-score, which 
ranges from 0 (unable to classify) to 1 (perfect classification), is a 
measure of accuracy within a model which combines other performance 
indices, namely “precision” and “recall” as depicted in the following 
equation: 

F1 score =
2 × Precision × Recall

Precision + Recall
(1) 

Where, Precision (also called positive predictive value) is the fraction 
of relevant instances among the retrieved instances, while Recall (also 
known as sensitivity) is the fraction of relevant instances that were 
retrieved, which can be expressed as follows: 

Precision =
No.True positives

No.True positives + No.False positives
(2)  

Recall =
No.True Positives

No.True positives + No. False degatives
(3) 

It is evidenced from Eq. (1) that F1-score harmonizes precision and 
recall indices and provides a convenient performance measure for 
network comparison, and hence is employed in this study as a unique 
criterion for comparing the performance of the deep learning models. 

Model overfitting is another indicator that commonly used to eval
uate the accuracy of CNN models. Overfitting occurs when model 
generalization does not transfer from training data to unseen data, i.e., 
the training data is learned well, however, the model does not generalize 
this information well for use on new information. Overfitting is apparent 
when training accuracy and validation accuracy are not cohesive. 

4.3. Pre-trained CNN performance evaluation results 

Testing of the selected networks occurred firstly with controlled (or 
default) training parameters, followed by a second run incorporating 
data augmentation, reduced initial learning rate, and reduced mini- 
batch size to demonstrate improvement in CNN performance. It should 
be noted that throughout this research, the training–testing trials for 
each investigation were carried out at least 10 to 15 times to exclude the 
outliers and derive an average validation accuracy rate within a 

maximum standard deviation of 1 %. 
The image classification results are shown for each deep learning 

model. First, the models were tuned in terms of hyperparameters to 
reach the highest accuracy. Hyperparameters are the initial settings that 
control the behaviour of the model and adjust the learning process. 
Choosing fitting parameters plays a crucial role in achieving the accu
racy and convergence of a deep learning network. The learning rate, 
number of epochs, and batch size are among the most common hyper
parameters. Although optimizing the hyperparameters is an onerous 
task, several researchers have investigated the effects of these parame
ters on different networks. Based on previous research by Nguyen et al. 
[23], the hyperparameters provided in Table 2 were used as the first trial 
for the training of the three models. RandRotation in the table denotes 
the degree of rotation applied to the input image. RandScale rotates 
images at random angles in the [0, 360] degree range and resizes images 
at random scale factors in the [0.5, 1] range. In all models, 70 % of the 
input images were used for training, and 30 % of the data was taken for 
evaluating the performance of the models. As shown in Fig. 5, the first 
epochs of the model training were troubled by overfitting issues since 
the training accuracy and validation accuracy were not cohesive. 

Due to the overfitting issues, the second run reduced the initial learn 
rate and mini-batch size, as well as incorporating data augmentation in 
terms of random rescaling and random rotation. Training details and 
training graphs are presented below in Table 3 and Fig. 6, respectively. 
As depicted, the overfitting problem was solved significantly in the 
refined model. 

A similar procedure was conducted for the two other models to find 
the best hyperparameters with the least viable verifiable issues. The best 
hyperparameters for each model, post-tuning, are summarized in 
Table 4. As can be seen from the table, the best MiniBathSize for all 
models is 16, and they all have the same InitialLearnRate of 0.001. 

Using the tuning parameters in Table 4, the classification results are 
derived for the three pre-trained models as shown in Fig. 7. It can be 
observed from the figure that AlexNet is the lowest-performance model 
with the least accuracy of 85.5 %. This can be explained by the fact that 
the model has much smaller number of layers (Table 1) and is a simpler 
network architecture compared to the other two counterparts. This has 
made it difficult for AlexNet to extract low-level features related to tiny 
cracks. RestNet18 offers better performance than the AlexNet, with an 
accuracy rate of nearly 88.0 %. However, the best-performed model is 
InceptionV3, with a classification accuracy of over 90.0 %. InceptionV3 
is therefore selected to incorporate with image processing techniques to 
improve the classification accuracy for the ASR crack dataset in the 
second phase of this study. 

5. Phase 2 of ASR crack Identification: Refinement using IPTs 

In this phase, a novel image enhancement method is introduced to 
improve the accuracy of ASR crack classification using the InceptionV3 
model selected from Phase 1. The proposed algorithm comprises of two 
components. First, an innovative feature enhancement method is 
developed to adjust the images, which were taken from real bridge 
without any surface treatment, to make ASR cracking more apparent by 
creating greater contrast between the crack and the background of the 
image. In the second component, the feature adjusted images will then 

Table 1 
Architecture of Pre-Trained Models Used in This Study.  

Network Number of 
layers 

Size of 
Model (MB) 

Parameters 
(Millions) 

Image 
Input Size 

InceptionV3 48 89  23.9 299-by-299 
Resnet18 18 44  11.7 224-by-224 
AlexNet 8 227  61.0 227-by-227  

Table 2 
Training Parameters and Validation Results ResNet-18 Control.  

Training Parameters InitialLearnRate 0.01 
MiniBatchSize 32 

Data Augmentation RandRotation [0, 0] 
RandScale [1,1] 

Performance Assessment Validation accuracy 89.84 % 
F1-score 0.8882 
Overfitting Significant  
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be processed through different texture analysis techniques to further 
highlight and emphasize ARS cracks from the background existed on the 
bridge surface. This process will result in new image data subsets for 
training the InceptionV3 model and for testing its improvement in 
classifying ASR cracks. The whole process of the proposed method is 
illustrated in the flowchart in Fig. 8. A detailed description of each step 
is provided in the following sub-sections. 

5.1. Feature enhancement 

5.1.1. The proposed feature enhancement process 
The first component of the Phase 2 algorithm is a feature enhance

ment process (FEP) proposed in this study to adjust the original (raw) 
images (created in section 3). Analysis in this application is carried out 
through a testing decision tree that evaluates pixel intensities. Since 
many of the original images were subjected to heavily textured 

backgrounds, distinctive adjustments, and refinements to create greater 
contrast of desired ASR crack features from the background are advan
tageous in reducing CNN evaluation confusion. Rather than working on 
grayscale images with a single Gray layer as normally seen in existing 
researches on ASR crack classification, such as in Bajcsy et al. [6], this 
paper will process through all three RGB layers (Red, Green, and Blue) of 
the original images. The purpose of this operation is to maintain the 
colour information of the adjusted images for later texture analysis. A 
procedure chart for the proposed FEP is presented in Fig. 9. 

In the first step of the proposed FEP, all the Base and ASR defect 
images are scanned to extract the RGB layers. From this extraction, the 
mean pixel values for each of the three arrays are determined and 
combined to obtain an average image colour. The three mean pixel 
values, which represent the average colours of the source image, are 
then compared to a pre-determined pixel value threshold set at [130 130 
130] as approximately a midpoint between true black (i.e., dark) at 

Fig. 5. Training and Validation Plot Examining Overfitting for ResNet-18 Control.  

Table 3 
Training Parameters and Validation Results ResNet-18 Refined.  

Training Parameters InitialLearnRate 0.001 
MiniBatchSize 16 

Data Augmentation RandRotation [0, 60]; [0, 180]; [0, 240]; [0, 
300] 

RandScale [1, 1.5] 
Performance 

Assessment 
Validation 
accuracy 

87.90 % 

F1-score 0.880 
Overfitting Negligible  

Fig. 6. Training and Validation Plot Examining Overfitting for ResNet-18 Refined.  

Table 4 
Tuned Hyperparameters for Pre-Trained Models.  

Training 
Parameters 

InitialLearnRate RestNet18 AlexNet InceptionV3 
0.001 0.001 0.001 

MiniBatchSize 16 16 16 

Data 
Augmentation 

RandRotation [0,60]; [0,180]; [0,240]; [0,300] 
RandScale 1,1.5 1,1.5 1,1.5 

Performance 
Assessment 

Validation 
accuracy 

87.90 % 85.50 % 90.90 % 

F1-score 0.880 0.854 0.904 
Overfitting Negligible Negligible Negligible  
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[000] and true white (i.e., white) at [255 255 255]. If the average value 
of pixels within the image was less than the threshold, it is generally 
deemed to be a darker image, whereas, if the average value of pixels is 
greater than the threshold, the image will be deemed to be a lighter 
image. 

In the second step of the proposed FEP, each image will be targeted 
once more for each pixel that is darker than a condition dark threshold. 
Targeting the darker areas of the images aimed to make the ASR 
cracking more apparent and to create greater contrast between the crack 
and the background of the image. To create specific measures of light 

Fig. 7. CNN Validation Accuracy and F1-score Comparison.  

Fig. 8. Research Methodology.  
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and dark pixels, two condition dark values for darker images and lighter 
images are labelled as follows: 

Condition dark (darker images) = Threshold − x (4)  

Condition dark (lighter images) = Threshold − x+ 50 (5) 

where, Threshold = 130 is the pre-determined pixel value threshold, 
x is the feature adjustment value varying from 160 to 60 to ensure that 
the condition dark value is in the range of [0, 120]. If the image 
generally reads as darker in nature and a pixel within an array of this 
image is less than the condition dark, the pixel value will be set to the 
mean pixel value of that array minus 100. In contrast, if the image is 
generally lighter in nature and a pixel within an array is less than the 
condition dark, the pixel value will be set to the mean pixel value of that 
array minus 50. This process is repeated for all three arrays (R, G, and B). 
Once completed, the three edited arrays are concatenated to recreate an 
enhanced version of the original input image. 

5.1.2. Finding the best condition dark values 
To find the best condition dark values that would yield the highest 

validation accuracy of ASR image classification, a parametric study is 
carried out among six feature adjustment values ranging from 160 to 60. 
Subsequently, six feature enhancement (FE) scenarios were created, and 
the corresponding condition dark values (for darker images and lighter 
images) are presented in Table 5. It should be noted that negative con
dition dark values for FE_160 and FE_150 were set to 0. The table also 

shows the percentage of images adjusted by the FEP, which reveals that 
as × decreases, the condition dark increases and, therefore, more images 
are adjusted by the FEP. For the cases FE_160 (x = 160), 17.1 % of Crack 
images and 5.3 % Base images were adjusted. For the case FE_60 (x =
60), nearly 99 % of Crack images and 89.5 % of Base images were 
adjusted by the proposed FEP. 

Fig. 10 illustrates how the proposed FEP modified the images by 
comparing the original image with the ones created under the FE_150, 
FE_100, and FE_60 scenarios. The row (C1) shows an example of a clear 
ASR crack images without significant dark concentrated background, 
which resulted in unnecessary or almost unrecognizable adjustments for 
all FE scenarios. By contrast, in the row (C2), a typical crack image with 
bold painting on the background would need to be treated. It shows that 
FE_150 partly reduced the darkness of the mark at pixels with relatively 
high dark intensity, while FE_100 adjusted almost the whole area of the 
mark, and at the same time, slightly increase the darkness of the pixels 
on the left edge of the image. For FE_60, the darkness of whole painted 
mark was also reduced, but a large number of pixels on the left edge 
were made darker, which adversely added more background noise to the 
image, hence can reduce the validation accuracy. (B1) and (B2) are 
examples of the Base images with darker pixels arranging at different 
regions of the image. Depending on the average pixel number of each 
image, some relatively dark pixels were made lighter in (B1) or darker in 
(B2). Also, the adjusted regions were larger in FE_60 than in FE_100 and 
FE_150.Fig. 11. 

To evaluate the effectiveness of the six feature enhancement sce
narios in improving the classification accuracy, the selected InceptionV3 
model from Phase 1 is used in this parametric study. As a result, the 
validation accuracy values for the six scenarios along with the previ
ously obtained results for original image from Table 4 (without feature 
enhancement) are summarized in Table 5 and plotted in Fig. 9 for 
comparison. It is evident that FE_150 presents the best enhancement 
option with the highest validation accuracy rate of 92.48 %, which is a 
1.58 % improvement from the original result of 90.9 %. The FE_160 
scenario also performs well with a slightly lower rate of 92.01 % 
compared to the FE_150 option. In contrast, the feature enhancement 
scenarios with adjustment values × ranging from 120 to 60 appear to 
have less improvement, or even deterioration, in the validation accuracy 
in comparison to the original result. This result is relevant to the level of 
image adjustment shown in Table 6, with explanation presented in 
previous paragraph. 

From the above parametric investigation, the feature adjustment 
value × = 150 is selected hereafter for use with the proposed FEP to 
adjust the images before they are processed further with texture analysis 
techniques presented in the next section for a better ASR crack 

Fig. 9. Feature Enhancement Flow Chart.  

Table 5 
Feature Enhancement Scenarios and Results with Different Adjustment Values.  

Feature 
enhancement 
scenarios 

FE_160 FE_150 FE_120 FE_100 FE_80 FE_60 

Feature 
adjustment 
value (x) 

160 150 120 100 80 60 

Condition dark 
(darker images) 

0 0 10 30 50 70 

Condition dark 
(lighter 
images) 

20 30 60 80 100 120 

Percentage of 
Crack image 
adjusted 

17.1 % 23.7 % 58.4 % 77.8 % 92.7 
% 

98.9 
% 

Percentage of 
Base image 
adjusted 

5.3 % 7.5 % 28.6 % 53.8 % 74.4 
% 

89.5 
% 

Validation 
accuracy with 
InceptionV3 

92.01 
% 

92.48 
% 

91.31 
% 

91.21 
% 

90.07 
% 

88.84 
%  
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Fig. 10. Effect of FEP on Crack Images (C1, C2) and Base Images (B1, B2).  

Fig. 11. Performance of Feature Enhancement Scenarios with InceptionV3.  

Table 6 
Comparison of Texture Analysis Results for InceptionV3.  

Performance Assessment criteria Original FE_150 FE & Texture Morphology FE & Local Range Filtering FE & Adaptive Thresholding 

Validation accuracy 90.90 % 92.48 94.07 % 91.23 % 90.37 % 
Compared to Original 0 % 1.58 % 3.17 % 0.33 % − 0.53 % 
Compared to FE_150 – 0 % 1.59 % − 1.25 % − 2.11 % 
F1-score 0.904 0.921 0.937 0.906 0.901 
Overfitting Negligible Negligible Negligible Negligible Negligible  
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classification solution. 

5.2. Further enhancement with texture analysis 

Once the above FEP is completed, the adjusted images will be pro
cessed further with texture analysis techniques to find the best solution 
in Phase 2 of the research methodology highlighted in Fig. 8. Texture 
analysis can be referred to as the characterization of regions in an image 
based on their texture content. The technique aims to quantify percep
tual qualities such as roughness, smoothness, silkiness, and bumpiness 
as a function of spatial variation in pixel intensities. In this sense, 
roughness and bumpiness are the two terms used to describe differences 
in the intensity values, or pixel values. Numerous texture analysis 
techniques have been used for image enhancement to make it easier to 
identify flaws in a visual inspection process. However, it has been evi
denced that the use of deep CNN models is superior to traditional image 
enhancement methods [10,11]. Dorafshan et al. [11] reported that edge 
detection methods could detect coarse concrete cracks with an accuracy 
level of 53 % to 79 %, which is relatively low compared to 86 % accuracy 
when an AlexNet deep CNN model was used. In addition, the crack 
images used in this study were relatively clear without significant 
background noise. For heavily textured backgrounds images, such as the 
ASR defect images in this study, more rigorous texture analyses are 
required. In this study, three approaches of texture classification tech
niques, namely Texture Morphology, Local Range Filtering, and Adap
tive Thresholding are selected and applied to better highlight the ASR 
cracks within the images. Details of the three texture analysis methods 
are briefly outlined in section 5.2.1 below, while the resultant enhanced 
image subsets are described in section 5.2.2. Finally, the crack identi
fication results from new image subsets using InceptionV3 model are 
presented and discussed in section 5.2.3. 

5.2.1. Texture analysis techniques 
a. Texture Morphology. 
In mathematical morphology, two-dimensional grayscale images are 

transformed into different sets by assigning each pixel an elevation that 
is proportional to its intensity level [17]. It is then used to examine the 
morphology of the input set, which is referred to as the ’structure 
element’. Moving the origin of the structural element to every 
conceivable point in the space and assessing whether the structure is 
contained inside the studied set or if it has a non-empty intersection 
within it, is the method used here. For example, by maintaining the 
inclusion-tested points, one can minimize the input set, whereas the 
non-empty intersection test causes us to increase it. The two trans
formations, dilation and erosion, are the fundamentals of morphological 
operations because all other transformations depend on them. Struc
turing elements should be chosen according to the morphology of the 
image structures they intend to target. Line segments, for example, are 
ideal for evaluating long, elongated systems like fission tracks or fibrous 
materials, while disks and diamonds are better for analysing small, 
granular structures [30]. Through preliminary testing, the texture 
erosion transformation using diamond structuring element are found 
suitable for making cracks clearer, and hence are selected to use in this 
study. 

b. Local Range Filtering. 
The second texture categorization approach used in this study is the 

local range filtering, which is a common image processing technique 
dealing with texture background images. Range filtering occurs by 
taking the minimum pixel value from the maximum pixel value within a 
set of 3-by-3 neighbourhood around the corresponding pixel in the input 
image. This technique is helpful in detecting regions of texture in an 
image and hence can be potential for emphasizing cracks’ edges in the 
ASR images. 

c. Adaptive Thresholding. 
The third texture classification technique used in this study is 

adaptive thresholding. The technique divides a digital image according 

to a specific pixel property (for example, intensity value). Conventional 
thresholding has been determined to be inferior to adaptive thresh
olding. Some regions of an image are darker than others, and illumi
nations can have a considerable impact on the overall appearance of the 
image. In conventional thresholding, the mean value is derived from a 
global or standard threshold. If the threshold value is exceeded in an 
image’s darker section, that part will become prominent [25]. If a pixel 
or pixel fragment goes below this threshold, it is concealed. Adaptive 
thresholding generates a binary diagram depicting the distinction be
tween threshold levels [19]. Therefore, this technique can be used to 
highlight cracks from the background of the image. 

5.2.2. New image subsets 
Fig. 12 illustrates the image processing results for six typical sample 

patches of the ASR Crack images. The first row of the figure (row (i)) 
presents the original images. The next three rows present images from 
three new subsets created by incorporating the FEP with the three 
texture analysis techniques, which are Texture Morphology in row (ii), 
Local Range Filtering in row (iii), and Adaptive Thresholding in row (iv). 
The prefix “FE”, which stands for feature enhancement, is added before 
each texture analysis technique to indicate the combination. 

It can be observed from Fig. 12 that the combination of FE & Texture 
morphology (row (ii)) tends to make the cracks wider and clearer due to 
the erosion operation. Another advantage of Texture morphology is that 
it does not change the intensity of background textures (such as painted 
marks and numbers), which were suitably adjusted earlier through the 
FEP (3rd and 4th images). Moving on to FE & Local range filter tech
nique, as expected, it helps to emphasize the crack boundaries by 
increasing their pixel values, while it reduces the pixel values of smooth 
background, which make the boundaries more obvious. Unfortunately, 
it also emphasizes the boundary of painted marks, texts, and structural 
edges. The FE & Adaptive thresholding is also successful in highlighting 
the cracks, but it also highlights other texture backgrounds, and some
what make them as clear as the cracks regarding pixel intensity. 

Similarly, Fig. 13 illustrates how the three IPTs create three new 
subsets for Base images in row (ii), (iii) and (iv) from the original image 
in row (i). The figure shows that FE & Texture morphology tends to 
slightly enlarge darker regions while keeping the pixel intensity adjusted 
by FEP. By contrast, the other two IPTs are advantageous in highlighting 
the textures’ boundary where there are significant changes in pixel in
tensity. However, many of these highlighted texture boundaries (3rd, 
4th, and 5th images in Fig. 13) somewhat look like the cracks that they 
were highlighted in Fig. 12. This can affect the classification results 
using the two last image subsets. 

5.2.3. Performance of feature enhancement incorporating texture analysis 
Next, the three enhanced image subsets (each includes a Crack subset 

and a Base subset) are used separately for training the InceptionV3 
model and for testing its improvement in classifying the ASR crack im
ages. Again, the three assessment criteria “validation accuracy”, “F1- 
score”, and “Overfitting” are employed to evaluate the performance of 
IceptionV3. 

The subsequent InceptionV3 testing results in conjunction with the 
three IPTs are presented in Table 6 and Fig. 14 below. Previous results 
using original images (section 4.3) and feature enhanced images with 
FE_150 (section 5.1.2) are also included in Table 6 and Fig. 14 for 
comparison. It is demonstrated that the training processes using all the 
three image datasets were well-controlled with negligible overfitting. 
The FE & Texture Morphology solution resulted in a high validation 
accuracy rate of 94.07 %, which outperforms FE & Local Range Filtering 
of 91.23 % and FE & Adaptive Thresholding of 90.37 %. The corre
sponding F1-score also observes a similar trend, which is highest at 
0.937 for texture morphology, and much lower at 0.906 for Local Range 
Filter and 0.901 for Adaptive Thresholding. 

In comparison with the original result using raw images, FE & Local 
Range Filtering indicates a negligible improvement of 0.33 %, while FE 
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& Adaptive Thresholding experiences a decrease of 0.53 % in the vali
dation accuracy. By contrast, FE & Texture Morphology presents an 
increase of 3.17 % in the classification accuracy compared to original 
result. While this improvement appears small, in the nature of already 
high results utilising raw data of 90.9 %, there was a significant success 
in the improvement of ASR crack identification utilising feature 
enhancement combined with texture morphology. 

In addition, it can be seen from Table 6 that Texture morphology, 
when combined with feature enhancement, can further increase the 
FE_150 validation accuracy by 1.59 %, from 92.48 % to 94.07 %. Un
fortunately, this is not the case for Local Range Filtering and Adaptive 

Thresholding since these techniques reduce the FE_150 result by 1.25 % 
and 2.11 %, respectively. This is relevant to what has been discussed on 
the way the two techniques processed the images in section 5.2.2. 

5.3. Finding best solution 

From the above investigations, it is evidenced that the best approach 
for the improvement of ASR image classification is by utilising Incep
tionV3 in conjunction with Feature enhancement combined with 
Texture morphology. This novel IPT combination approach has proven 
to be successful in enhancing and sifting out important information of 

Fig. 12. Examples of Original and New Crack Image Subsets using IPTs: (i) Original, (ii) FE & Texture Morphology, (iii) FE & Local Range Filtering, (iv) FE & 
Adaptive Thresholding. 

Fig. 13. Examples of Original and New Base Image Subsets using IPTs: (i) Original, (ii) FE & Texture Morphology, (iii) FE & Local Range Filtering, (iv) FE & Adaptive 
Thresholding. 
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ASR cracks, which has then significantly boosted the performance of the 
InceptionV3 pre-trained model from 90.9 % to over 94 %. The approach 
is therefore recommended as the successful two-stage procedure for 
evaluating ASR cracking powered by AI deep learning technology in this 
study. 

6. Conclusion 

This paper developed and presented a novel computer vision-based 
approach for detecting ASR cracks. The dataset for this research was 
generated from 35 ASR defect images retrieved from several bridges in 
Queensland that were impacted by ASR. Cropping raw images resulted 
in a dataset of 1097 base images (without cracks) and 609 ASR defects 
images with a 256 by 256 patch size; for a total of 1706 raw images. 

Once the benchmark dataset for the ASR crack identification prob
lem is established, a two-stage development is implemented. First, a 
comprehensive evaluation was carried out to assess the performance of 
the three common pre-trained CNNs, namely ResNet-18, AlexNet, and 
InceptionV3, with respect to their training parameters: initial learning 
rate, mini-batch size, and image data augmentation. It was found that 
using an initial learning rate of 0.001, a mini-batch size of 16, and the 
picture data augmentation in the form of random rotation and scaling, 
the InceptionV3 model responded best with an impressive validation 
accuracy of 90.90 % in classifying raw ASR defect images. 

In the second phase, an enhancement algorithm was proposed to 
improve the accuracy of the Inception V3 model in detecting ASR cracks 
using feature enhancement processing incorporating several texture 
analysis techniques applied to the raw images. To this end, a novel 
Feature Enhancement Process (FEP) was first proposed to distinctively 
adjust and refine the images by creating greater contrast of desired ASR 
crack features from the heavily textured background. Through a 
comprehensive parametric study, a suitable condition dark adjustment 
level applied to all three RBG layers of the images was obtained. It was 
evident that the proposed FEP successfully reduced CNN evaluation 
confusion and increased the classification accuracy from 90.90 % to 
92.48 %. Next, the feature-adjusted images were further processed 
through three selected texture analysis algorithms, which aimed to 
further highlight and emphasise the ASR cracks. The investigated 
texture analysis techniques include morphology in the form of image 
erosion, local range filtering, and adaptive thresholding. Accordingly, it 
was demonstrated that the performance of the InceptionV3 model has 
been successfully boosted to an impressive validation accuracy of 94.07 

% simply by integrating texture morphology with the developed FEP. 
In summary, through the use of InceptionV3 and suitable feature 

adjustment incorporating texture morphology techniques, a successful 
two-stage procedure for evaluating ASR cracking has been established 
and powered by AI deep learning technology. One notable merit of the 
developed method is its ability in performing the assessment from the 
images without any requirement of surface treatment on the structures. 
This will open a new era of developing quick, smart, and cost-effective 
condition assessment tools to support the owners and managers of 
civil public works assets and other constructed infrastructures. 
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