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A B S T R A C T

Significant wave heights (SWH) are important to be predicted accurately for clean wave energy production, and 
beach erosion risks. The existing models lack the ability to analyse the dynamic behaviour of oceanic drivers, as a 
result, they cannot predict SWH at different forecasting horizons. In this paper, an innovative modelling scheme 
(termed as GLG-DL) based on graph deep learning which integrated global and local graph features has been 
designed to predict SWH. The global and local graph leaners enable GLG-DL model to capture the global in
formation, and the local trends from oceanic drivers. The extracted graph representations are then used into the 
gated recurrent unit (GRU) based encoder and decoder to predict multistep ahead SWH for Palm Beach, Glad
stone, and Albatross Bay stations, Australia. The GLG-DL model was compared with Auto-regression model 
(ARM), Auto-regressive multilayer perceptron (AR-MLP), Recurrent neural network (RNN), RNN based attention 
mechanism (RNN-AM), RNN based Long Short-term Memory (RNN-LSM), Spatial-temporal attention mechanism 
(STAM), and improved recurrent neural networks (SNN) models. The results demonstrated that the GLG-DL 
attained higher performance to forecast multistep ahead SWH for all stations. The GLG-DL model is beneficial 
in the application and optimization of clean energy resource generations worldwide.

1. Introduction

Despite significant development of wind power and solar PV in the 
global electricity mix and the persistent efforts to curb emissions to 
retain the global temperature rise to below 2 ◦C, the global power sector 
emissions rose 1.3 % to hit an all-time high in 2022 (REN21, 2023). One 
such renewable energy source, wave energy has the potential to narrow 
the emissions gap as it has higher energy density in comparison to wind 
and solar energy. Many countries are renewing their efforts to increase 
policy, research, and development for wave power. The wave energy 
sector is advancing significantly with various devices either in fabrica
tion or preparing for deployment (OES, 2023). Supporting policy 
frameworks such as Australia’s policy framework called the National 
Offshore Electricity Infrastructure Act-2021 offers a licensing scheme to 
enable the construction, operation and decommissioning of offshore 
renewable energy and offshore electricity infrastructure projects 

(Commonwealth of Australia, 2023). However, unlike solar energy, the 
wave energy does not have a clear day-night pattern, and this variable 
nature is one of the key limitations in wave energy generations.

Harmonization and interoperability is necessary for increased 
incorporation of wave energy and other variable energy into the grid for 
power generations and to overcome the minute scale intermittency, a 
faster response to demand changes needs essential digitization and 
automation (IRENA, 2022). To have dynamic and quick responsive wave 
energy power generation and demand response system to be used with 
conventional synchronous generation technologies, short-term signifi
cant wave height prediction is imperative. Effective prediction tech
niques for variables like significant wave height allow for adequate 
understanding of the distribution pattern, in facilitating synchronous 
wave energy integration. Ocean waves are highly irregular, unsteady 
with inconstant wave heights and lengths establishing inconsistent 
non-uniform data series (Raza Ul Mustafa et al., 2018). Other factors 
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that compounding the complexity of wave predictions are physical in
teractions such as refraction, diffraction, reflection, shoaling and trap
ping, bottom friction (Makarynskyy et al., 2002; Gorrell et al., 2011). In 
addition, the coastal effect and effects of complex bathymetry, propels a 
channelling effect creating additional constraint for physics-based 
models (Ibarra-Berastegi et al., 2016) while the machine learning arti
ficial intelligence based models are data-dependent and does not get 
excessively affected by such local factors.

Scholars have relentlessly been designing and developing accurate 
and operational wave energy models. A time series modelling approach 
via auto-regressive-moving average (ARMA) model was used by Özger 
(2010), while Reikard, Robertson et al. (2015) in forecasting hourly 
power load used autoregressive integrated moving average (ARIMA). 
With time-varying parameters as inputs, the ARIMA model was accurate 
over short forecast horizons (Reikard et al., 2015). In addition, the 
random forest (RF) model was developed by Ibarra-Berastegi et al. 
(2016) to forecast wave energy at 3 and 16 h ahead forecast horizons in 
Portugal. The study found that the RF models outperformed the 
physics-based modelling approaches. It is well established that an arti
ficial neural networks (ANN) model possesses good generalization 
capability that enables it to capture the nonlinear relationships between 
predictors and the objective variable, which has made is one of the most 
widely used ML techniques. Some notable examples of ANN models in 
ocean wave forecasting outside of the present study region includes: 
(Mérigaud et al., 2017); Australia (Adelaide, Tasmania, Sydney and 
Perth) (Burramukku, 2020); off the west coast of US (Özger, 2010) 
showed that these nonlinear ANN forecasting models worked well in 
capturing nonlinear sea states. Other modelling approaches such as 
Non-linear Autoregressive with exogenous input (NARX) (Gopinath and 
Dwarakish, 2015); adaptive-neuro-fuzzy-inference system (ANFIS) 
(Malekmohamadi et al., 2011); support vector machine (SVM) 
(Malekmohamadi et al., 2011); regressive-SVM (Mahjoobi and Adeli 
Mosabbeb, 2009); ensemble-extreme learning machine (ELM) (Kumar 
et al., 2018); grouping genetic algorithm-ELM (Cornejo-Bueno et al., 
2016); hybrid-ELM (Ali and Prasad, 2019); C5 Tree-based forecasting 
model (Mahjoobi and Etemad-Shahidi, 2008) and multiple linear 
regression (MLR) model optimized by covariance-Weighted Least 
Squares (CWLS) MLR-CWLS model (Ali et al., 2020) has been applied for 
significant wave height forecasting. With evolution of big data analytics, 
computational capacity and the demand for short-term precise point 
forecasting, advanced competitive multivariate models are necessary for 
automation and quick demand response.

To improve the predictive accuracy of SWH, decomposition tech
niques such as Wavelet Transform WT, Empirical Model Decomposition 
(EMD) have been adopted in recent studies for example, Altunkaynak 
et al. (2024) designed a hybrid approach integrating WT, maximum 
overlap wavelet, and a fuzzy model. Their proposed model was tested 
using data collected from three stations located in the Atlantic Ocean. 
Chen et al. (2025) predicted SWH using variational mode decomposition 
based on LSTM, and temporal convolutional network. In that study, 
different prediction intervals including 24-h, 36-h, 48-h and 60-h were 
considered to evaluate the proposed model. Altunkaynak et al. (2023)
applied Fuzzy logic approach based Singular Spectrum Analysis (SSA). 
The results obtained from Fuzzy logic based SSA were compared with 
WT based fuzzy logic model, and fuzzy logic model. Domala and Kim, 
2023 examined the ability of combining Hodrick Prescot filter (HPF) 
with EMD to predict SWH. A LSTM was employed as a predictor, and it 
was integrated into EMD-HPF model. Guo et al., (2025) adopted 
Ensemble Empirical Mode Decomposition (EEMD) to predict SWH. The 
times series data was passed through EEMD, and the outputs of EEMD 
were sent into LSTM, SVR, and CNN.

The work of Zheng et al. (2023), Wang et al. (2024), Zhao et al. 
(2024) and other existing studies considered fixed relationships among 
oceanic time series data. However, the oceanic variables such as MwH, 
ZCW, PEW, DRiC, SST, and SWH impact each other dynamically 
non-linearly over the time. Therefore, it is required to develop a model 

which can reflect and capture the complex relationships among these 
variables. In this paper, we design a graph deep learning model (i.e., 
GLG-DL), considering both global and local features in graph represen
tations. Each input variable was mapped as a node within the graph 
while the edges among nodes were constructed based on the statistical 
dependencies among the variables using correlation coefficient. This 
approach allows to capture the functional relationships and interactions 
among variables, and provide contextual learning compared to classical 
decomposition models. The global features depict the immediate de
pendencies among variables, while the local representations capture 
high-level long-term patterns. These graph representations are good for 
complex and noisy time series such as oceanic data. In addition, the 
global and local graph representations were combined using k-hop 
feature fusion which involves graph diffusion convolution on global 
graph, and linear weighed aggregation strategy via local graph.

In this study, local and global graph based deep learning model 
(GLG-DL) is designed that integrates local global graph features and 
local graph features to predict significant wave height. To represent the 
complex relationship among different variables of SWH time series data, 
complex network-based methods that employ graphs could be pivotal 
(Niepert et al., 2016; Sen et al., 2019; Rathore et al., 2021; Park et al., 
2022; Sun et al., 2022; Tao et al., 2022). The key benefit is that GLG-DL 
model can combine deep learning methods with transformation tech
niques in predicting future values. In addition, in this GLG-DL model 
extracts the pertinent features using global graph learner and local 
graph learners, whereby the global graph leaner extracts the global in
formation within the significant wave height time series, while the local 
graph learners capture to the local trends within the series. Successful 
application of graph-based DL models has been conducted in forecasting 
variables such as stock price (Tao et al., 2022), power systems (Sun 
et al., 2022), and wind speed (Rathore et al., 2021). The evaluation of 
their preciseness in forecasting significant wave height has not been 
studied with graph-based modelling and this study designs and evalu
ated the GLG-DL model.

2. Overview of the time series forecasting using graph domain 
approaches

Complex network-based methods employ graphs to represent the 
relationship among different variables of time series data (Niepert et al., 
2016; Sen et al., 2019; Rathore et al., 2021; Park et al., 2022; Sun et al., 
2022; Tao et al., 2022). Recently, several developed methods combined 
deep learning methods with transformation techniques to predict the 
future values of energy, electrical demand, stock price from time series 
data. The traditional deep learning model extract the local patterns; 
however, they can only be employed for the standard grid time series. 
Graph based deep learning generalized the traditional deep learning 
models to analyse the data of complex structures. Graph deep learning 
are usually employed the spectral or spatial domains (Liang et al., 2018; 
Zhang et al., 2019). In spatial domain, graph deep learning approaches 
are utilised Euclidean data of (time series) to form graphs to predict 
future values while the spectral domain is based on eigenvectors and 
eigenvalues to find the relationship for prediction.

Graph based approaches for time series prediction use adjacency 
matrix in spectral domain. Initially, the adjacency matrix is computed 
with a predefined threshold for training based on similarity among 
variables using Euclidean or Jaccard metric. However, calculating an 
adjacency matrix of graph requires prior knowledge which is not 
available for all-time series. In addition, static graphs are not suitable to 
reflect the dynamic characteristics of multivariate data. As a result, 
many methods based on graph have been designed to address this issue 
for example, Zhang, et al. (2019) designed graph model based on fixed 
Laplacian matrix during inference. Guo et al. (2019) combined adja
cency and learned matrices to modify wight among nodes, however, a 
masked matrix was also employed as a Laplacian matrix. Graph struc
tured learning, and adaptive graph-based models have also been 
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proposed to learn hidden graph structure from the data using adjacency 
and laten graph to extract features. However, the use of adaptively 
learned adjacency matrices cannot reflect the dynamic relationships of 
the time series. To tackle this problem, model based on adjacency 
matrices in a recurrent manner has been suggested in (Li et al., 2017; 
Guo et al., 2019; Sen et al., 2019) to design a model that captures the 
hidden characteristics of oceanic time series by integrating global and 
local graph learning models.

Physically, oceanic systems produce complex, and nonlinear be
haviours that change over time. Traditional approaches often fail to 
extract the complex interdependencies among multivariate time series 
variables, as these models consider the static and non-Euclidean rela
tionship, limiting their capability to extract dynamic interactions of 
oceanic parameters. For instance, changes in SST could affect wave 
height several hours later. The proposed model transferred the multi
variate time series into a graph, where node is represented by one var
iable, and edges represent their functional dependencies. The core 
innovation of the proposed GLG-DL model lies by integration of global 
and local graph representations via GRU to improve the prediction of 
SWH. The global representations capture the shared trends and slow 
changing while the locals are employed to extract short-term de
pendencies and local fluctuations. The proposed model overcomes the 
limitations to handle nonlinear interactions and extract shared global 
trends. This leads to a better generalisation across different oceanic 
stations and improves prediction accuracy compared to traditional 
models.

3. Data description

3.1. Study locations

Australia is the world’s largest island-continent, with a massive and 
diverse coastline. According to State of environment report 2021, about 
87 % of Australia’s population resides within 50 km of these shores. This 
possesses significant potential for the country to derive wave energy 
from coastal waves. This paper specifically focuses on three carefully 

chosen coastal stations in Queensland, Australia, i.e., Gladstone, Alba
tross Bay, and Palm Beach. These stations represent the varied 
geophysical and underwater (bathymetric) conditions across Australia’s 
coast. Data at each site is collected using anchored oceanographic buoys 
specifically designed to measure wave characteristics. The timeframe 
considered is five years from 1 January 2018 to 31 December 2022. The 
station located in Gladstone, the monitoring instrument is Waverider 
Buoy Datawell 0.7m and the water depth of 16 m. The highest wave 
recorded here was of 4.39 m in May 2018 at 6am. The second station 
Albatross Bay is situated on the eastern shores of the Gulf of Carpentaria, 
Queensland recorded the highest wave of 6.603 m in March 2018 at 
3pm. The water depth of 10 m at this site with AXYS TRIAXYS Direc
tional Wave and current buoy as the monitoring instrument. The Palm 
Beach station located in Gold Coast; Queensland has Datawell MK4 
Directional Waverider Buoy and the water depth of 23 m, recorded the 
highest wave of 10.131 m in December 2020 at 7:30am. A map depicting 
these coastal stations is provided in Fig. 1.

Although the water depths at the three stations are relatively close in 
magnitude, the bathymetric and geophysical settings are different in 
several important factors. For example, Palm Beach is placed on an open 
coast, and it is exposed to long-fetch wave energy from the South Pacific 
Ocean, with a relatively sandy seabed and steep continental shelf. While 
Gladstone station is positioned within a sheltered bay affected by in
dustrial port activities, tidal estuarine dynamics, and muddy seabed 
conditions. However, Albatross Bay station is in a tropical, semi- 
enclosed coastal region with irregular bathymetry, including river in
flows, and shallow bars which can pointedly chang energy dissipation. 
Despite these stations have similar depth range, the environmental dif
ferences produce diverse meteorological forcing, wave patterns, and 
spectral shapes at each station. These differences in wave behaviour 
across the three stations favours to validate the proposed GLG-DL model 
under different geophysical conditions.

3.2. Data collection and preparation

Coastal waves are characterised by the interaction with the coastline, 

Fig. 1. Map of the coastal stations.
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exhibit several key aspects of their nature. Their periodic nature arises 
from wind blowing over long stretches of open water, transferring en
ergy to water surface, creating waves. These waves consist of crests 
(highest points) and troughs (lowest points) that alternates as the wave 
propagates. The data consist of the input variables which are recorded at 
a 30-min time interval. SWH is an average of the highest one-third of the 
waves in a record. This provides a more realistic picture of the typical 
wave size experienced visually. It is a more representative measure of 
the overall wave conditions and relates to the total wave energy avail
able at the specific position. The energy carried by the ocean waves is 
proportional to the square of the wave height. SWH is one of the 
important predictor variables and has the largest statistical relationship 
with the objective variable. The maximum height (MwH) is the single 
tallest wave encountered in the recording period. Zero Up-Crossing 
Wave Period (ZCW) is the average time between consecutive instances 
where the wave surface crosses the mean water level in an upward di
rection (going from trough to crest). (ZCW) is another predictor that 
provides insights to the wave and reasonably affects SWH.

Peak energy wave period (PEW) is the wave period associated with 
the most energetic wave within the entire wave spectrum at a specific 
location. Direction (DRiC) is the direction from which the wave with the 
most energy is coming at a specific location and has a reasonable in
fluence on SWH. Sea surface temperature (SST) is the temperature of the 
water at the ocean’s surface and is measured in degrees Celsius by the 
wave monitoring buoys. Table 1 presents a summary, and some 
descriptive analysis of the data used in this paper whereas Fig. 2 shows 
the correlation in terms of heatmap of each variable with SWH. Fig. 3
reports the obtained CC values demonstrated that the variable MwH 
showed a consistent result with all three stations.

4. Methodology

4.1. Problem formulation

The purpose of forecasting model is to predict the future values of 
time series using historical data. The past data of ocean time series is 
defined as XnXmXf where n is the length of the data, m the number of 
variables, and f features of each variable. We assume that the input for 
the proposed model is XnXmXf =

{
XnXmXf1 ,XnXmXf2 ,…..,XnXmXfn

}
where 

the first column refers to the target value. We used several different 
variables such as MwH, ZCW, DRiC, SST, and PEW to predict the SWH 
for multistep ahead in three regions. The primary feature of input time 

series is represented by XnXmXf . It can be represented as weighted graph 
G(v,E,A), where v is a set of nodes represent the input data, E is a set of 
edges, and A is adjacency matrix. We considered undirected graph to 
represent the time series data. Fig. 4 depicts time series from three 
station are being transferred into graphs. 

Where (A>0,when (v1, v2) ∈ E,otherwise A=0 (1) 

Given historical data X of n variable, each variable is considered a 
node in graph G(v,E,A), the objective is to learn function f to predict the 
target SWH for multistep ahead using the following equation. 

Xtarget = f
(

X,G(v,E,A )
)

(2) 

Predicting SWH is challenging because variables in ocean wave time 
series are chaotic and exhibit irregular patterns. So, developing a model 
that can capture the hidden pattern of complex time series is essential to 
obtain a high prediction accuracy. This model can process the oceanic 
data directly on using graph-based deep learning and it can effectively 
acquire the global and local features.

4.2. General model architecture

Fig. 5 depicts the proposed model local and global graph features 
based on deep learning (GLG-DL) for significant wave height prediction. 
First, the global graph structure learning module is employed to extract 
the global relationships among the graph nodes. Second, in the local 
graph structure learning module is adopted used to capture the local 
features of graph. Third, the Gated Recurrent Units module is used for 
feature fusion to integrate the global and local features embedded in the 
graphs. Finally, the final fused feature set is sent to a Gated Recurrent 
Units based encoder, predictor for one ahead significant wave height 
forecasting. Algorithms 1, and 2 demonstrate graph learners with local 
and global graph representation.

4.2.1. Graph learning with Global feature representation
In this stage, we aimed to extract the global features of graphs. The 

global similarity is calculated among oceanic time series. The model 
consists of sample component, link predictor, feature extractor. A shared 
convolution kernel is employed to extract the global features of graph 
(Yu et al., 2016; Yu et al., 2017; Huang et al., 2019). In this paper, the 
input ocean time series XnXmXf is fed into two layers of graph convolution 
networks CNN2. A fully connected layers FCL is used to reduce the data 
dimensionality of features in the feature extractor. A feature vector vi is 

Table 1 
Descriptive statistics and geographic coordinates of the stations.

Statistical index MwH ZCW PEW DRiC SST SWH

Gladstone 
Latitude = 23.53◦ S, Longitude = 151.30◦ E

Minimum 0.19 2.26 1.66 0.51 11.65 0.10
Maximum 4.39 10.45 17.96 359.62 30.35 2.32
Range 4.20 8.18 16.30 359.11 18.70 2.21
Mean 1.23 4.16 6.77 89.54 22.74 0.71
Std. Deviation 0.55 0.72 2.55 65.54 4.04 0.32
Skewness 0.82 0.82 0.72 3.22 − 0.54 0.74
Kurtosis 0.55 2.21 0.328 10.45 − 0.24 0.17

Albatross Bay 
Latitude = 12.41◦ S, Longitude = 141.41◦ E

Minimum 0.07 1.10 1.57 0.00 5.00 0.03
Maximum 6.60 8.73 29.87 358.00 34.00 4.31
Range 6.53 7.63 28.30 358.00 29.00 4.27
Mean 0.74 3.19 4.09 189.63 28.39 0.41
Std. Deviation 0.54 0.96 1.98 78.93 1.95 0.33
Skewness 2.83 1.01 0.95 − 0.30 − 0.14 3.04
Kurtosis 12.31 1.22 0.77 − 1.35 − 1.01 14.18

Palm Beach 
Latitude = 28.05◦ S, Longitude = 153.29◦ E

Minimum 0.40 2.40 2.56 0.00 17.82 0.23
Maximum 10.13 18.18 20.00 359.30 29.22 53.00
Range 9.72 15.77 17.43 359.30 11.40 52.76
Mean 1.80 5.93 8.52 79.15 22.90 2.54
Std. Deviation 0.80 2.09 2.74 21.57 2.36 8.66
Skewness 1.51 1.46 0.19 1.65 0.05 5.63
Kurtosis 4.05 2.40 − 0.61 22.99 − 1.28 29.88
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generated to denote the characteristics of ith node and is calculated from 
the following equation. 

vi = FCL
(
CNN2

(
XnXmXf

))
(3) 

Then, we concatenated a couple of victors (vi, vj
)

and we used a fully 
connected layer to produce edge in the link predictor. 

EI,J = FCL
(
vi, vj

)
(4) 

To identify the parameters of adjacency matrix of global graph AGLO,

we employed Gumbel reparameterization trick model. The AGLO is 
generated using the following equation: 

AGLO = sigmoid
[
log EI,J

/ (
i − EI,J

))
+
(

G1
i,j − G2

i,j

)
(5) 

Where G1
i,j, and G2

i,j are gumball for all i, j.

4.2.2. Graph learning with local feature representation (LFR)
In this phase, the local feature representation is extracted from each 

graph. At each time stamp, time series data XnXmXf is used an input to the 
proposed model which involves a series of local graph learners. We 
aggregated the features of each node. As a result, a sequence of features 

{
f1, f1,…., fm

}
is generated as follows: 

f i =AVG
(
X(m− 1)β+1:mβ) ∈ RNxF (6) 

Where m is the total number of datapoint, β is the size of data, AVG refers 
to an average aggregator. According to the Eq. (5), we required data of 
one day ahead to predict the significant wave height. Then, we used 
feature f i to perform graph convolution on predefined graph Gpre, and 
global graph Gglob as follows: 

Pi =Gconn
(

f i,Gpre
)

(7) 

Gi =Gconn
(

f i,Gglob
)

(8) 

Where Gconn is the graph convolution with learnable parameters. Based 
on the output of Eq. (7), the dynamic embedding Nodm

i for each node is 
calculated using the element wise multiplication between Gpre, and Gglob. 

Nodm
i = tanh

(
δp
(
Piω vec

)
+ δG

(
Giω vec

))
(9) 

where vec is the static node embedding, δp and δG are parameters to 
control the weights, ω refers to the wise multiplication. The adjacency 

Fig. 2. Correlation Heatmap of each variable and significant wave height (SWH).
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matrix of local graph is computed using the similarity between pair 
variables. The element of adjacency matrix is calculated as follows: 

Alm
i,j =RELU

(
τNodm

i ,Nodm
j

)
(10) 

Where τ is control parameters to adjust the capacity rate of activation 
function. 

Algorithm 1. local feature representation
Input: node feature matrix, adjacency matrix, graph. 

Output: graph local features F =
{

f1, f1,…., fm
}

For each t→ T do  

• f i = AVG
(
X(m− 1)β+1:mβ)

• Pi = Gconn
(

f i,Gpre
)

• Gi = Gconn
(

f i,Gglob
)

• Nodm
i = tanh

(
δp
(
Piω vec

)
+ δG

(
Giω vec

))

End 
Alm

i,j = RELU
(

τNodm
i ,Nodm

j

)

Algorithm 2. Global feature representation
Input: Node feature matrix, temporal graph. 

Output: Graph global representation F =
{

f1, f1,…., fm
}

For each t→ T do  

• vi = FCL
(
CNN2

(
XnXmXf

))

• EI,J = FCL
(
vi, vj

)

(continued on next column)

(continued )

• AGLO = sigmoid
[
log EI,J/

(
i − EI,J

))
+
(

G1
i,j − G2

i,j

)
(4)

End

4.2.3. Features integration based hierarchical learning model
We integrated the global and local graph features using k-hop feature 

fusion based on gated recurrent Unite. This phase involves three steps 
including graph diffusion convolution on global graph, and on local 
graph, and linear weighed aggregation. For global graph, bidirectional 
random graph walk is used to perform convolution graph. The bidirec
tional transition matrix which represents inflows and outflows graph 
walk, is calculated using diffusion convolution. Graph diffusion convo
lution on global graph is defined as 

H(r− 1)*Aglob =
[
ωo +ω1

(
D− 1

0 Aglob)+ω2

(
D− 1

1
(
Aglob)t

)]
H(r− 1) (11) 

Where H(r− 1) is the output of previous feature fusion layer, * denotes to 
the graph diffusion convolution, D0, D1 are in degree and out degree 
matrixes of Aglob, ω1,ω2 are hyperparameters of the model.

We defined the information propagation based on Eq. (11) above as 

H(o) =Et‖Ht− 1 (12) 

H(k) = α
(
H(r− 1)*Aglob)+ β

(
AloH(r− 1))+ γ(Et‖Ht− 1) (13) 

Fig. 3. Correlation coefficients of the proposed model based on different variables from (a) Albatross Bay, (b) Gladstone, and (c) Palm Beach stations.
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Where * denotes to the multiplication, α, γ, β are hyperparameters that 
control the weights of model. To update gated recurrent unit, different 
integrated features representation is learned using the following equa
tion. 

∅p =
∑k

j=0
Hkωi

p (14) 

Where p is the integrated feature representation which is used to update 
gate p, ∅ the selected information, ωi

p is the leaner parameter, and k is 
depth of information propagation.

4.2.4. Prediction model based on gated recurrent unit
The gated recurrent Unit is updated using the following equation to 

integrate features repreparation. 

Ht =N∅Ht− 1 + (1 − N)*Ct (15) 

Ct = tanh (∅ [Et‖(RtΦHt− 1)] + dc (16) 

The rest gate Ut and the updated gate are represented as 

Rt = ξ(ϕr, [Et‖Ht− 1] + dr) (17) 

Ut = ξ(ϕt , [Et‖Ht− 1] + du) (18) 

Where ϕr, ϕt are fusion feature layers, and ξ is activation function. The 

model passes through a sequence of encoder and decoder (prediction) to 
produce a prediction. The final hidden state of encoder to unitise the 
decoder. The decoder is trained by teacher forcing model using previous 
truth observation. During the testing, the prediction by the model is used 
for the prediction next observation.

5. Experimental results

We conducted extensive simulations to evaluate the proposed model 
for significant sea wave height prediction. We compared the proposed 
model with benchmarks and all results were recorded and discussed. The 
experiments were conducted on a personal computer powered with 
Windows 10 pro, Intel(R) core (TM) i7-7700HQ CPU @3 GHz and 8.00 
GB memory. The MATLAB R2020b software was used to implement the 
proposed model.

5.1. Evaluation metrics

We employed several metrics to evaluate the proposed model. The 
evaluation metrics are chosen carefully, including relative square error 
(RSE), root mean square error (RMSE), empirical correlation coefficient 
(ECC), mean absolute error (MAE). With RMSE and RSE and MAE, lower 
values refer to high performance, Willmott’s index agreement (WIA), 
correlation coefficient (CC), and high ECC values indicate that the 
proposed model perform very well (Che and Wang, 2010, Lafta et al., 
2018; Abdulla et al., 2023). 

Fig. 4. A time series data from different stations are being mapped into an undirected graph.
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RSE (x, y)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(i, j) ∈ φtest
(

xi,j − yi,j

)2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(i, j) ∈ φtest
(
xi,j − mean(xi)

)2
√ (19) 

ECC(x, y)=
1
n
∑n

i=1

∑

j

(
xi,j − mean(xi)

)(
yi,j − mean(yi)

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i,j

(
xi,j − mean(xi)

)2
(

yi,j − mean(yi)
)2

√ (20) 

RMSE=(x, y)=
̅̅̅
1
n

√
∑n

i=1
(xi − yi) (21) 

MAE(x, y)=
1
n
∑n

i=1
|xi − yi| (22) 

WIA=1 −

∑n
i=1(xi − yi)

2

∑n

i=1
(|xi − xi|+|xi − xi|)

2
(23) 

CC=

∑n

i=1
(x − x)(y − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(x − x)2

√
∑n

i=1(y − y)2

(24) 

Where x is the actual value, y is the predicted value, and y is the average 
value.

In addition, we employed Q-Q plot and regression to evaluate the 
proposed model. The quantiles of the actual values are plotted against 
the predicted values. According to the hypothesis of the Q-Q metric, a 
total of 30 % of the datapoints must lay below the reference value. 
However, the rest datapoints should be above the reference value. A line 
reference with A 45-degree is plotted. When the actual and predicted 
values have the same behaviours and distribution, all points are laid 
approximately along the reference line. With regression, the output 
value is between 0 and 1. The value 1 refers that the proposed model has 
a strong relationship with the truth ground model, and vice versa.

5.2. Training, evaluation strategy and parameters setting

To evaluate the proposed model, the mean absolute error (MAE) is 
calculated between the actual XnXmXf and prediction results Xt:(t+s− 1). 
The base training loss is defined as 

losen
base

(

X́n:(t+s− 1),Xt:(t+s− 1) + =
1
s
∑t+s− 1

n=1

⃒
⃒X́nXmXf |

⃒
⃒
⃒
⃒
⃒

(25) 

The time series data is obtained from different cities in Queensland, 
Australia was used to evaluate the proposed model. the proposed model 
analysed the seasonality of significant sea wave height and trends, ac
tivities, as well as other parameters such as including MwH, ZCW, DRiC, 
SST and PEW to predict the significant wave height (SWH) for one day 
ahead. The pre-defined adjacency matrix is produced using a Gaussian 
threshold kernel to the Euclidean distance between any two points. A 
grid search was utilised to optimise with a batch size of 64. The learning 
rate of the proposed model was set to 0.1, 0.01, and 0.001. The dropout 
rate was set to 0.1, 0.2, and 0.3. We adopted a variable number of hidden 
units from (Rathore et al., 2021). since the dimension of the gated 
recurrent unit hidden state can significantly impact the accuracy of its 
forecasting. The values of the hyper-parameters ω1,ω2 were setup based 
on experimental results. The dataset was not randomly divided, but 
instead it was partitioned directly to preserve the temporal sequencing 
of the data. We used a 60 %, 20 %, 20 % split for training, validation, and 
testing, respectively, while maintaining the natural temporal order of 
time series. The model was trained on 60 %, then independently vali
dated and testing on 20 % separately. This methodology was employed 
in this study to prevent data leakage and to protect temporal de
pendencies, which are vital for guaranteeing realistic and operationally 
evaluation in prediction tasks.

We investigated the influence of hyper-parameters on the perfor
mance of the proposed model. Each simulation was conducted 10 times, 
and we considered the MSE as a marker to identify the optimal pa
rameters. First the model was configuring for Albatross Bay station, once 
the parameters were fixed, then the selected parameters of the proposed 
model were tested on Gladstone and Palm Beach stations. At each 
experiment, one parameter was tested, and the other were kept constant. 

Fig. 5. Pipeline of the proposed model for multistep ahead significant wave height prediction.
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Fig. 6(a–d) reports the results obtained of the hyper-parameters on the 
ocean dataset. The hyper-parameters ω1 and ω2 range were empirically 
chosen. From the obtained results, we found that decreasing ω2 and 
increasing ω1 improve the prediction accuracy.

The node embedding dimensions was set to 30 as shown in Fig. 6 (c). 
In addition, the hidden dimensions (HD)were set from 45 as shown in 
Fig. 6 (d). Fig. 6(a–d) showed that the performance proposed GLG-DP 
model was strengthened when the node embedding dimension was set 
to 30, and the hidden dimension was wet to 48. The proposed model 
GLG-DL parameters were fixed when the model recorded the lowest 
MAE.

5.3. Benchmarks

The proposed graph-based model was compared with several models 
to evaluate its performance against recent designed and standards 
model. Table 2 gives a brief summery about all baseline models used for 
the comparisons with the proposed graph-based model. The parameters 
of all models in Table 2 were selected carefully based on the simulation 
results.

Fig. 6. Parameter’s investigation of the proposed model GLG-DL (a), and (b) The effect of hyper parameter ω1 and ω2, (c) The node embedding dimension, and (d) 
The effect of hidden dimension.

Table 2 
Baseline models for comparison with the proposed graph-based model.

Model Parameters Abbreviation

1 Auto- regression based model (Che 
and Wang, 2010)

τ = 1, m = 3 ARM

2 Auto-regressive based on 
multilayer perceptron (Zhao et al., 
2020)

RBF kernel, λ = 2− 10 AR-MLP

3 Recurrent neural network model 
coupled with attention mechanism 
(Shih et al., 2019)

Hu = {25,75}, learning 
rate = 0.09.

RNN-AM

3 Recurrent neural networks based 
on fully connected Long Short-term 
Memory (Zhao et al., 2019)

One input gate, one 
forget gate, and one 
output gat

RNN-LSM

5 Recurrent neural networks (Smith 
and Jin, 2014)

population size set to 
100

RNN

6 Spatial-temporal attention 
mechanism (Guo et al., 2019)

Chebyshev polynomial 
K = 3

STAM

7 Improved recurrent neural 
networks (Zhang et al., 2023)

Q = 0:01 and the 
number of Halton 
Points = 50

SNN

Where τ = time scale,m = dimension, λ = regression coefficient, Hu = number of 
hidden layers.
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5.4. Main results

The results showed that the underlying properties of different ocean 
timeseries variables were easier to obtain through graph based deep 
learning model than other time series methods. The proposed graph 
based deep learning model was designed to predict to one-day ahead 
significant wave height (SWH) for three station Palm beach, Gladstone 
and Albatross stations in Queensland, Australia.

The all five variables including MwH, ZCW, DRiC, SST and PEW to 
predict the significant wave height (SWH) were tested to figure out the 
relation between these five variables and SWH. The SWH is nonsta
tionary and irregular and inconsistent due to its nature. In this paper all 
five variables were sent to the proposed GLG-DL model to investigate the 
relationship and behaviour of each variable against SWH. Thorough 
simulations were conducted, at each experiment, one variable was 
removed and other sent to the proposed GLG-DL model. Our findings 
showed that not all variables have a strong relationship with SWH. For 
example, we found that the variable MwH was highly influenced the 
prediction results, and it showed a high correlation with SWH. In 
addition, we noticed that ZCW and DRiC had a good correlation with 
SWH. However, SST variable recorded the lowest correlation among all 
the variables.

5.4.1. The effect of fussing local and global graph features
Firstly, we examined the effects of using global and local graph 

features separately on the prediction rate and how the features fusion 
can improve the performance of the proposed model. Fig. 7 reports the 
prediction results in terms of MAE and correlation coefficient for three 
stations to investigate the effects of graph feature fusion. From the re
sults, we can notice that the proposed model with global graph features 
achieved good prediction rates with all three stations, however, the 
performances was deteriorated dramatically with local graph features. 
By fusion the global and local graph characteristics, the prediction ac
curacy was noticeably increased. It can be noticed that the MAE and CC 
were improved over three stations after combining and fusing the global 
and local graph features. Form results in Fig. 7, its worthy to notice that 
the proposed GLG-DL model recorded high prediction rate with Alba
tross Bay station, while the lower results were scored with Palm Beach 
station over three experiments.

5.4.2. Performance comparisons with benchmarks
The proposed model was benchmarked with some well-known 

models from the literature. The oceanic time series was used as inputs 

to the proposed model as well as to the benchmarked models. Table 3 list 
the prediction results of the proposed GLG-DL model as well as ARM, 
AR-MLP, RNN-AM, RNN-LSM, RNN, STAM, and SNN for three stations 
named Albatross Bay, Palm Beach, and Gladstone stations. The com
parisons were made in terms of relative square error (RSE), root mean 
square error (RMSE), empirical correlation coefficient (ECC), mean ab
solute error (MAE), and Willmott’s index agreement (WIA). Table 3
reports the obtained results for Albatross Bay station. It can be notice 
that the proposed GLG-DL model recorded the highest prediction rate 
with RMSE = 2.310, MAE = 3.71, RSE = 0.164, ECC = 0.981, WIA =
0.98, CC = 0.99. However, the STAM model recorded the worst per
formance compared with other models. It recorded RMSE = 5.342, MAE 
= 7.89, RSE = 0.328, ECC = 0.652, WIA = 0.59, CC = 0.58. The RNN- 
LSM showed an acceptable performance and ranked the second highest 
prediction rate than ARM, AR-MLP, RNN-AM, RNN, STAM, and SNN 

Fig. 7. Prediction results using local and global graphs features for all three stations.

Table 3 
Performance evaluation of the proposed model for Albatross Bay, Palm Beach, 
and Gladstone stations to predict SWH at the same time-step.

Model RMSE MAE RSE ECC WIA CC

Albatross Bay station
ARM 3.186 5.95 0.365 0.840 0.80 0.80
AR-MLP 2.993 4.93 0.177 0.898 0.88 0.87
RNN-AM 3.928 4.91 0.182 0.891 0.77 0.76
RNN-LSM 2.894 4.87 0.157 0.854 0.85 0.88
RNN 5.964 6.94 0.391 0.704 0.62 0.61
STAM 5.342 7.89 0.328 0.652 0.59 0.58
SNN 6.216 6.94 0.289 0.676 0.64 0.65
Proposed GLG-DL 2.310 3.71 0.164 0.981 0.98 0.99
Palm Beach station
ARM 3.7806 6.305 0.497 0.743 0.79 0.78
AR-MLP 3.001 5.103 0.207 0.808 0.84 0.83
RNN-AM 4.105 5.430 0.199 0.791 0.73 0.77
RNN-LSM 2.987 4.107 0.294 0.889 0.82 0.81
RNN 6.821 7.104 0.451 0.587 0.60 0.59
STAM 6.310 7.909 0.350 0.697 0.55 0.52
SNN 7.510 7.766 0.301 0.699 0.62 0.66
Proposed GLG-DL 2.410 3.88 0.197 0.941 0.95 0.95
Gladstone station
ARM 3.513 6.10 0.398 0.874 0.82 0.82
AR-MLP 3.010 4.98 0.172 0.881 0.89 0.88
RNN-AM 4.100 4.97 0.192 0.773 0.78 0.71
RNN-LSM 3.175 4.80 0.199 0.801 0.86 0.87
RNN 6.543 7.21 0.421 0.604 0.59 0.63
STAM 6.102 7.90 0.395 0.627 0.61 0.60
SNN 6.979 7.12 0.299 0.631 0.62 0.62
Proposed GLG-DL 2.677 3.73 0.164 0.961 0.96 0.97
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models.
To investigate the performance of the proposed GLG-DL model for 

SWH prediction, A new experiment was conducted to explore for the 
benefit of fusing global and local graph features via GRU. The data from 
Palm beach was used in this experiment. Table 3 compares the perfor
mance all methods a long with the proposed model. The parameters of 
all models were empirically selected. We highlighted the best results in 
bold for all measures. For Palm Beach station in Table 3, we can notice 
that the performance of all models was slightly decreased. The mean 
reasons for that all models suffered from the irregularity behaviour of 
Palm station data. However, the GLG-DL model recorded the best pre
diction comparing to other models. It achieved RMSE = 2.410, MAE =
3.88, RSE = 0.197, ECC = 0.941, WIA = 0.95, CC = 0.95. The STAM 
model again recorded the worst performance compared with other 
models while the AR-MLP ranked the second highest precision rate.

In addition, SWH was also predicted for Gladstone station to examine 
the generalisation and validity of the proposed model and other previous 
models. Table 4 reports the results of all models using Gladstone station. 
The proposed GLG-DL was very promising because it obtained the best 
values of RMSE, MAE, RSE, ECC, WIA, and CC among all the state of art 
methods. Moreover, the proposed GLG-DL significantly outperformed all 
the alternatives method. It was worth mentioning that our graph based 
deep learning (i.e., proposed GLG-DL) model had the best performance 
over all stations and it was the ability to reveal all hidden features of 
oceanic data that exhibit non-stationary and unstable behaviour. We 
also can observe that the better performance from our proposed 
frameworks compared with all other models justify the reason behind 
establishing the more advanced framework that can deal with complex 
data such as oceanic data.

The proposed GLG-DL model along with other comparing models 
were evaluated on multistep ahead SWH forecasting. with different time 
intervals in Tables 4–6. The GLG-DL model achieved highest accuracy in 

terms of Albatross Bay station [RMSE = 2.032, MAE = 3.71, RSE =
0.164, ECC = 0.961, WIA = 0.98, CC = 0.99]; Palm Beach station 
[RMSE = 2.798, MAE = 3.77, RSE = 0.176, ECC = 0.954, WIA = 0.94, 
CC = 0.95]; Gladstone station [RMSE = 2.010, MAE = 3.01, RSE =
0.121, ECC = 0.969, WIA = 0.98, CC = 0.96] to forecast 30-min ahead 
SWH as compared to ARM, AR-MLP, RNN-AM, RNN-LSM, RNN, STAM, 
and SNN models (see; Table 4). Similarly, the proposed GLG-DL model 
outperformed against all comparing models to forecast 1-h (Table 5), 
and one-day (Table 6) ahead SWH prediction for Albatross Bay, Palm 
Beach, and Gladstone stations.

According to the results in Tables 4–6, the prediction accuracy was 
good for all timesteps, but the proposed GLG-DL attained highest pre
cision at 30-mintes ahead, following by 1-h, and one-day ahead to 
predict SWH for these three stations. It is also noticed that RNN, SNN 
and RNN-AM improved in the short time interval (30-min) while lower 
prediction accuracy for one-day ahead. The proposed GDG-DL model 
achieved a stable and satisfactory performance over these different 
timesteps. The proposed GLG-DL model employed more effective graph 
of features to predict SWH by learning the global and local properties. 
This is because graph based deep learning model proved to be an effi
cient way to analyse time series that produce instable patterns and 
behaviour over different places and intervals.

The performance of the proposed GLG-DL model along with other 
benchmark comparing models were also assessed using the absolute 
forecasting error (FE). Fig. 8 report FE for all models in different stamp 
times. FE is one of the popular assessing metrics to examine how the 
prediction model is close to the actual SWH. Fig. 8 report the FE values 
(30-min, one day, 1 h ahead) of different models to predict SWH for 
Albatross Bay, Palm Beach and Gladstone stations. From Fig. 8, it can be 
observed that the proposed GLG-DL model acquired the lowest fore
casting error FE for all three stations to predict SWH as compared to the 
benchmarking models. The best performance of the GLG-DL model was 
obtained in Albatross Bay, followed by Gladstone, and Palm Beach 

Table 4 
Performance evaluation of the proposed GLG-DL against comparing models to 
forecast 30-min ahead SWH for Albatross Bay, Palm Beach, and Gladstone 
stations.

Albatross Bay station

Model RMSE MAE RSE ECC WIA CC

ARM 3.186 5.35 0.365 0.840 0.80 0.82
AR-MLP 2.993 3.93 0.177 0.898 0.88 0.88
RNN-AM 3.948 3.91 0.182 0.791 0.79 0.80
RNN-LSM 2.102 4.10 0.152 0.904 0.89 0.90
RNN 5.964 6.94 0.391 0.604 0.62 0.61
STAM 5.342 7.89 0.328 0.612 0.59 0.58
SNN 6.216 6.94 0.289 0.676 0.64 0.65
The proposed GLG-DL 2.032 3.71 0.164 0.961 0.98 0.99

Palm Beach station

Model RMSE MAE RSE ECC WIA CC

ARM 3.204 5.28 0.301 0.892 0.80 0.81
AR-MLP 3.731 5.46 0.210 0.798 0.78 0.79
RNN-AM 4.001 5.91 0.201 0.799 0.71 0.77
RNN-LSM 2.210 4.11 0.291 0.820 0.84 0.84
RNN 5.312 6.76 0.367 0.621 0.59 0.60
STAM 6.21 6.54 0.313 0.651 0.66 0.63
SNN 6.290 6.99 0.299 0.620 0.64 0.65
The proposed GLG-DL 2.798 3.77 0.176 0.954 0.94 0.95

Gladstone station

Model RMSE MAE RSE ECC WIA CC

ARM 3.754 5.54 0.254 0.838 0.81 0.83
AR-MLP 2.290 3.99 0.153 0.871 0.88 0.89
RNN-AM 2.991 3.97 0.198 0.884 0.79 0.80
RNN-LSM 2.791 4.10 0.159 0.851 0.89 0.89
RNN 4.931 6.01 0.323 0.621 0.64 0.64
STAM 4.989 6.85 0.302 0.622 0.59 0.66
SNN 5.32 5.93 0.311 0.792 0.69 0.70
The proposed GLG-DL 2.010 3.01 0.121 0.969 0.98 0.96

Table 5 
Performance evaluation of the proposed GLG-DL against comparing models to 
forecast 1 h ahead SWH for Albatross Bay, Palm Beach, and Gladstone stations.

Albatross Bay station

Model RMSE MAE RSE ECC WIA CC

ARM 3.101 5.01 0.231 0.829 0.83 0.83
AR-MLP 2.210 4.10 0.161 0.862 0.88 0.88
RNN-AM 3.103 4.02 0.192 0.785 0.78 0.79
RNN-LSM 2.897 4.91 0.160 0.866 0.86 0.86
RNN 5.321 6.16 0.382 0.652 0.62 0.62
STAM 5.132 6.98 0.342 0.520 0.57 0.58
SNN 6.121 6.43 0.273 0.602 0.65 0.67
The proposed GLG-DL 2.021 3.21 0.132 0.953 0.96 0.95

Palm Beach station

Model RMSE MAE RSE ECC WIA CC

ARM 3.204 5.28 0.301 0.892 0.80 0.81
AR-MLP 3.731 5.46 0.210 0.798 0.78 0.79
RNN-AM 4.001 5.91 0.201 0.799 0.71 0.72
RNN-LSM 2.210 4.11 0.291 0.820 0.84 0.84
RNN 5.312 6.76 0.367 0.621 0.59 0.60
STAM 6.21 6.54 0.313 0.651 0.66 0.63
SNN 6.290 6.99 0.299 0.620 0.64 0.65
The proposed GLG-DL 2.798 3.57 0.176 0.924 0.92 0.93

Gladstone station

Model RMSE MAE RSE ECC WIA CC

ARM 3.754 5.54 0.254 0.898 0.81 0.83
AR-MLP 2.290 3.99 0.153 0.871 0.88 0.89
RNN-AM 2.991 3.97 0.198 0.884 0.79 0.80
RNN-LSM 2.791 4.10 0.159 0.851 0.89 0.89
RNN 4.931 6.01 0.323 0.921 0.64 0.64
STAM 4.989 6.85 0.302 0.922 0.59 0.60
SNN 5.99 6.93 0.391 0.942 0.68 0.69
The proposed GLG-DL 2.010 3.01 0.121 0.799 0.98 0.96
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stations. However, most of the benchmark comparing models showed a 
lower prediction performance with higher FE values.

Another metric was considered to assess the generalisation of the 
proposed model. In this experiment, Nash-Sutcliffe Efficiency (NSE) was 
adopted to test the performance of the proposed GLG-DL model. Fig. 9
illustrate the performances of the proposed GLG-DL model against the 
ARM, AR-MLP, RNN-AM, RNN-LSM, RNN, STAM, and SNN models in 
term of NSE with different time intervals. In this experiment, 30 min, I 
hour and one day time interval were considered to evaluate the pro
posed model. The results support our findings in Tables 4–6 Fig. 9
authenticate that the proposed GLG-DL model shows strong prediction 
accuracy for all three stations to forecast multistep (i.e., 30-min, 1-h, and 
one-day) ahead SWH. The results demonstrated that the comparing 
models showed low performance for 30 min ahead SWH prediction. 
However, the proposed GLG-DL model approved the ability of graphs in 
dealing with different intervals times.

The results in Fig. 10 confirms the superiority of the proposed GLG- 
DL over the benchmark comparing models based on Legates and Mac
Cabe’s (LM). The results confirm that GLG-DL was effective tool to 
capture and analyse the complex pattern of oceanic data. The use of 
graph to model the oceanic data has shown that the mapping of oceanic 
data into graph improved the prediction accuracy of SWH by capturing 
the hidden patterns and features. Fig. 10, it can be noticed that all 
models showed a lower performance except GLG-DL when applied to 
predict multistep ahead SWH for all three stations.

5.4.3. Performance evaluation using regression plots
The regression plot was used to examine the behaviour of the pro

posed GLG-DL mode towards the observation in Fig. 11(a–c) for 
different time steps. From the results obtained, the proposed GLG-DL 
model shows a high relationship with the actual SWH for 30-min, 1-h, 
and one-day forecast horizon in Albatross Bay station. The proposed 

GLG-DL recorded a high forecasting rate R = 0.97 to predict SWH, 
compared with ARM, SNN, STAM, RNN, RNN-LSM, RNN-AM, AR-LMP 
and ARM. Although the AR-PML model recorded the second highest 
forecasting rate with R = 0.88, but it was lower than the proposed GLG- 
DL model (Fig. 11 (a)).

Fig. 11 (b) shows the regression plots of the proposed GLG-DL model 
against comparing counterpart models for 1 h prediction ahead. The 
results in Fig. 11 (b) demonstrates the ability of the proposed model in 
SWH prediction SWH. The GLG-DL did not show a high fluctuation 
compared to the results of Albatross station. It recorded a regression of R 
= 0.9770 which was the highest forecasting rate compared to ARM, 
SNN, STAM, RNN, RNN-LSM, RNN-AM, AR-LMP and ARM. The RNN- 
LSM showed a good agreement with the observation. The RNN-LSM 
recorded R = 0.883, while the SNN exhibited a negative agreement 
with the actual SWH, and the SNN scored the lowest R = 0.68.

The results for one day head forecasting were presented in Fig. 11 (c). 
The performance of the proposed GLG-DL again showed a high predic
tion rate, and it did not affect when it was tested with different stations 
and different time steps. It was noticed that our graph learning modules 
proved to be an effective tool in terms of improving oceanic data pre
diction. The combination of local and graph features increased the 
precision of model compared with the traditional and previous models 
ARM, SNN, STAM, RNN, RNN-LSM, RNN-AM, AR-LMP and ARM. The 
AR-MLP model recorded the second highest prediction rate with R =
0.878, however, the SNN ranked the worst model with performance 
with R = 0.67. From the results in Fig. 10, the only model that showed 
better prediction rate was the proposed GLG-DL model. The proposed 
model scored the highest R = 0.99, R = 0.97, R = 0.96 with Albatross 
Bay, Gladstone, and Palm Beach stations respectively.

5.4.4. Performance evaluation using Taylor diagram
In this experiment, Taylor diagrams was utilised to evaluate the 

proposed model accuracy. It’s a graphical metric that summarizes how 
closely a set of models matches the actual SWH. The similarity between 
the proposed model and the truth base is measured in terms of corre
lation, root-mean-square difference, and standard deviations. It has been 
used widely to assess the behaviour of complex models. The centred root 
mean squares difference between the predicted and observed samples 
refers to the distance to the point on the x-axis that is identified as 
observed/actual/reference (ref). While ethe standard deviation in
dicates to the proportional to the radial distance from the origin. Fig. 12 
(a, b, c) shows the Taylor diagram of the proposed GLG-DL model 
compared with other models for three stations. With Albatross Bay, and 
Gladstone stations, the proposed GLG-DL model shows a high agreement 
with the observation/ref SWH compared with other models. In addition, 
AR-MLP, and RNN-LSM exhibit a good correlation with the actual 
observation/red. However, RNN, and STAM showed a poor perfor
mance, and they were negatively correlated with the main observation.

The best performance of the proposed GLG-DL model was recorded 
with Albatross Bay station, followed with Gladstone, and Beach stations. 
Our finding showed that oceanic data exhibit a complex behaviour, 
using the traditional deep learning-based model cannot reflect the re
lationships and hidden patterns of this type of data. So, it requires more 
sophisticated approach to analyse the data to find the main attributes 
among the variables that are highly correlated with the observation.

6. Discussion

A novel graph based deep learning (i.e., GLG-DL) model has been 
designed which integrate global and local graph features to predict 
multistep ahead significant wave height (SWH). The oceanic time series 
input predictors are mapped as networks where the global graph learner 
and local graph learner are adopted to extract the features. The global 
graph leaner captures the global information across oceanic timeseries, 
and local graphs learner is used to extract the local trends. The extracted 
features are then passed into the unit-based encoder and decode i.e., 

Table 6 
Performance evaluation of the proposed GLG-DL against comparing models to 
forecast one-day ahead SWH for Albatross Bay, Palm Beach, and Gladstone 
stations.

Albatross Bay station

Model RMSE MAE RSE ECC WIA CC

ARM 3.210 5.98 0.371 0.789 0.76 0.77
AR-MLP 3.999 4.95 0.276 0.796 0.77 0.79
RNN-AM 3.980 4.96 0.287 0.704 0.69 0.70
RNN-LSM 3.897 4.91 0.260 0.806 0.80 0.80
RNN 5.970 6.96 0.399 0.607 0.54 0.57
STAM 5.452 7.2 0.401 0.572 0.50 0.52
SNN 6.298 6.949 0.394 0.586 0.53 0.57
The proposed GLG-DL 3.01 4.21 0.2011 0.921 0.92 0.93

Palm Beach station

Model RMSE MAE RSE ECC WIA CC

ARM 3.751 6.18 0.392 0.710 0.73 0.75
AR-MLP 4.321 5.11 0.288 0.700 0.72 0.74
RNN-AM 4.760 5.02 0.312 0.680 0.65 0.69
RNN-LSM 3.985 4.99 0.299 0.770 0.78 0.76
RNN 6.440 7.06 0.421 0.517 0.51 0.52
STAM 5.9583 7.71 0.434 0.501 0.50 0.50
SNN 6.982 7.21 0.471 0.511 0.51 0.53
The proposed GLG-DL 3.35 4.84 0.299 0.897 0.90 0.91

Gladstone station

Model RMSE MAE RSE ECC WIA CC

ARM 3.754 6.75 0.399 0.877 0.80 0.81
AR-MLP 3.211 4.99 0.180 0.890 0.87 0.87
RNN-AM 4.768 4.99 0.199 0.780 0.72 0.70
RNN-LSM 3.190 4.87 0.198 0.886 0.85 0.86
RNN 6.751 7.64 0.476 0.621 0.58 0.62
STAM 6.001 7.87 0.389 0.610 0.62 0.61
SNN 6.954 7.01 0.297 0.621 0.62 0.61
The proposed GLG-DL 2.757 3.77 0.166 0.953 0.95 0.94
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Fig. 8. 30-minutes, 1-h and one day ahead absolute prediction error |FE| of models in each station.
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recurrent gate unit (RGU) to predict multistep ahead SWH in Albatross 
Bay, Palm Beach and Gladstone stations. For comparison, the SNN, 
STAM, RNN, RNN-LSTM, RNN-AM, AR-MLP, and ARM models are also 
utilised to predict multistep ahead SWH. The GLG-DL model attained 
higher performance in terms of accuracy against the benchmark 
comparing models for all Albatross Bay, Palm Beach and Gladstone 
stations to predict multistep ahead SWH. The key findings of this 
research work are described as following. 

• The simulation results showed that combining the global and local 
graph characteristics of ocean data provided a higher prediction 
accuracy \sed GLG-DL model allows to understand the relationships 
among different variables of time series data through the topology 
structure of graph features. The obtained results showed that the 
graph-based dep learning model outperforms classic deep learning 
approaches such as LSTM.

• The proposed model GLG-DL achieves the best results MwH. Ac
cording to Fig. 4, the prediction accuracy varies with the variables 
used as inputs for the proposed model. In addition, experiments 
demonstrated that the proposed model GLG-DL performance did not 
show a high fluctuation over the three stations with MwH. The 
performance of GLG-DL was consistent with the three stations while 
it showed some fluctuation with other variables such as ZCW, DRiC, 
SST and PEW.

• The complexity of the proposed GLG-DL model was assessed in terms 
of complexity time as shown in Fig. 13. The floating-point operation 
(FLOP) was selected as an indicator to measure the complexity of the 
system. From the obtain results, it was evidenced that the GLG-DL 
model scored high FLOP counts than other models due to graph 
learning process consumed more time in feature analysis and 
extraction, while the RNN scored the lower FLOP counts compared to 

other models. In addition, we tested the prediction models in terms 
of memory usage. Based on the results in Fig. 13 it was observed that 
the proposed PDGDL recorded the highest memory usage as it 
involved several computations and matrixes for features extraction 
and fusing. However, The RNN, ARM and STAM models utilised less 
memory usage (3.86 GB, 3.8 GB, 4.0 GB respectively) as they were 
not hybridised with other models. Based on our observation, it was 
found that the complexity of models would increase when number of 
the employed parameters were increased. However, even though the 
proposed model required more computational resources, it obtained 
significantly higher predictive accuracy compared with the bench
mark models. In future work, we will reduce the time complexity of 
the proposed model through applying parallelised strategies without 
compromising predictive accuracy.

• To shed more lights on the performance evaluation of the proposed 
GLG-DL model against the benchmark models, we expanded our 
experiment by including intermediate predictions including fore
casting 3h, 6h, and 12h ahead SWH. Table 7 reports the prediction 
results of all models. In this experiment, the performance of the 
proposed GLG-DL model was evaluated in terms of RMSE, MSE, CC, 
and WIA against the benchmark models. The proposed model 
showed outstanding predictive stability across all three multistep 
predictions. For 3h prediction ahead of SWH, our findings showed 
that the proposed GLG-DL model retained accurate prediction results 
across the three stations Palm Beach, Albatross Bay, Gladstone, 
demonstrating its robust generalisability. With 6h prediction ahead 
of SWH, the proposed GLG-DL model demonstrated strong stability, 
and showed low fluctuations in RMSE, MSE. However, the RNN 
recorded the lowest prediction rate cross three station for 3h, and 6h 
prediction ahead of SWH. Table 7 also lists the results of 12h pre
diction ahead. It can observe that the proposed GLG-DL model 

Fig. 9. Performance evaluation of each model using Nash-Sutcliffe efficiency (NSE) for 30 min, 1 h and one day ahead SWH forecasting.
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attained the highest CC, and WIA values compared to the ARM, AR- 
MLP, RNN-AM, RNN-LSM, RNN, STAM, and SNN. Another obser
vation, it was noticed that the AR-MLP scored the second highest CC, 

and WIA, and lowest RMSE, MSE cross the three stations Beach, 
Albatross Bay, Gladstone respectively. The obtained results in Ta
bles 5 and 6 support our findings in Table 7, and proved that the 

Fig. 10. Legates and MacCabe’s (LM) agreement of the models in each station for 30 min, 1 h and one day ahead SWH forecasting.

Fig. 11. Regression plots to predict (a) 30 min, (b) 1 h and (c) one day ahead SWH prediction for Albatross Bay, Gladstone, and Palm Beach stations.
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proposed model was an effective approach in terms of improving 
long-term, and short term SWH prediction.

• On of the limitations of the current study is that the proposed model 
was tested using data from only three sites located in Australia: Al
batross Bay, Palm Beach, and Gladstone stations. While these sta
tions provide varied coastal conditions, the geographical range 
remains regionally constrained. The limited geographical coverage 
could affect the generalisability of the proposed model, therefore, 
additional validation using datasets from other regions in Australia is 
important to fully evaluate the robustness of the proposed model in a 
generalized context. Another limitation of the study is that a limited 
set of oceanographic variables were used in this paper. Incorporating 
additional influential factors such as wave direction spectrum, wind 

speed, and atmospheric pressure can be included to further improve 
the predictive accuracy of the proposed model. In addition, dynamic 
graph architecture-based construction learning will also be adopted 
to fully capture the complex and dynamic relationships among var
iables to better understand the nature of SWH and its relationships 
with oceanic variables.

• The proposed GLG-DL model shows better prediction capability, but 
further recommendations and suggestions can be considered in the 
future. A possible integration of the proposed GLG-DL model with 
signal decomposition methods such as multivariate variational mode 
decomposition (ur Rehman and Aftab, 2019) and multivariate 
empirical mode decomposition (Rehman and Mandic, 2010) to 
handle the non-stationarity and non-linearity issues. Another 

Fig. 12. Taylor diagram of GLG-DL, SNN, STAM, RNN, RNN-LSTM, RNN-AM, AR-MLP, and ARM models to predict (a) 30 min, (b) 1 h and (c) one day ahead 
SWH prediction.

Fig. 13. Comparisons in term of model complexity using FLOP.
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direction of the future research can be the hybridization of the 
explainable AI models (i.e., Local Interpretable Model-Agnostic Ex
planations (LIME)) (Mishra et al., 2017) and Shapley Additive ex
planations (SHAP) (García and Aznarte, 2020) to provide model’s 
prediction explainability and interpretability. Additionally, 
physics-based models can also be incorporated with GLD-DL to 
illustrate the physical aspects. To understand the underlying uncer
tainty of the model, the Bayesian Model Averaging (Fragoso et al., 
2018) and bootstrapping/ensemble (Hassan et al., 2013) strategies 
can be adopted. The scope of the current research can be spread in 
other areas of interest such as hydrology, climate change, and agri
cultural sectors.

7. Conclusion

In this paper, a novel graph based deep learning (GLG-DL) model has 
been proposed and successfully applied to predict multistep ahead sig
nificant wave hight (SWH) for three coastal regions Albatross Bay, Palm 
Beach and Gladstone of Queensland State, Australia. The modelling 
framework of the proposed GLG-DL model combines the local and global 
graph features to capture the main characteristics of oceanic data. The 
RGU was used to fuse the graph features for encoding and decoding to 
predict SWH. Experiment showed that the prediction accuracy of the 
proposed GLG-DL model was superior to the comparing models by 
means of numerous goodness-of-fit metrics and diagnostic plots. The 
proposed GLG-DL model permits to comprehend the relationships 
among different variables and features through the topological structure 
of the graph. The outcomes are expected to advance the understanding 
of the relationship among oceanic drivers. The research work could 
potentially empower the construction of a more precise and established 

prediction model for renewable and sustainable wave energy. The scope 
can be further expanded to other real applications such as climate 
change adaptation, water, and agriculture research areas for better 
understanding.
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Table 7 
SWH prediction results for 3h, 6h, and 12h ahead, the proposed GLG-DL against comparing models for Albatross Bay, Palm Beach, and Gladstone stations.

Albatross Bay station

Prediction 3h ahead SWH Prediction 6h ahead SWH Prediction 12h ahead SWH

Model RMSE MAE WIA CC RMSE MAE WIA CC RMSE MAE WIA CC
ARM 3.188 5.38 0.801 0.812 3.189 5.39 0.799 0.809 3.192 5.41 0.789 0.778
AR-MLP 2.996 3.96 0.881 0.879 2.998 3.97 0.879 0.869 2.999 3.99 0.868 0.860
RNN-AM 3.949 3.95 0.792 0.799 3.957 3.96 0.788 0.788 3.989 3.99 0.778 0.781
RNN-LSM 2.103 4.13 0.895 0.893 2.107 4.16 0.889 0.889 2.118 4.18 0.879 0.881
RNN 5.966 6.96 0.625 0.608 5.967 6.97 0.618 0.597 5.977 6.99 0.602 0.590
STAM 5.346 7.91 0.595 0.578 5.347 7.95 0.588 0.569 5.357 7.99 0.577 0.560
SNN 6.217 6.97 0.645 0.648 6.219 6.99 0.638 0.639 6.221 7.11 0.627 0.632
GLG-DL 2.036 3.75 0.951 0.951 2.037 3.77 0.949 0.948 2.041 3.79 0.940 0.941

Model Palm Beach station

Prediction 3h ahead SWH Prediction 6h ahead SWH Prediction 12h ahead SWH

RMSE MAE WIA CC RMSE MAE WIA CC RMSE MAE WIA CC

ARM 3.206 5.291 0.899 0.809 3.217 5.310 0.891 0.802 3.221 5.420 0.881 0.799
AR-MLP 3.733 5.481 0.779 0.789 3.742 5.490 0.770 0.781 3.752 5.520 0.769 0.778
RNN-AM 4.023 5.970 0.709 0.767 4.057 5.990 0.700 0.763 4.063 6.120 0.699 0.759
RNN-LSM 2.213 4.130 0.838 0.836 2.245 4.190 0.835 0.833 2.252 4.270 0.821 0.829
RNN 5.314 6.780 0.588 0.598 5.356 6.810 0.582 0.591 5.356 6.940 0.574 0.579
STAM 6.251 6.560 0.656 0.628 6.263 6.590 0.651 0.622 6.272 6.620 0.644 0.619
SNN 6.293 7.110 0.638 0.648 6.299 7.400 0.633 0.641 6.321 7.490 0.629 0.639
GLG-DL 2.799 3.780 0.938 0.948 2.811 3.790 0.934 0.940 2.833 3.80 0.927 0.939

Model Gladstone station

Prediction 3h ahead SWH Prediction 6h ahead SWH Prediction 12h ahead SWH

RMSE MAE WIA CC RMSE MAE WIA CC RMSE MAE WIA CC

ARM 3.766 5.61 0.809 0.829 3.768 5.65 0.803 0.823 3.772 5.77 0.799 0.818
AR-MLP 2.311 4.13 0.879 0.883 2.317 4.16 0.872 0.881 2.323 4.23 0.866 0.876
RNN-AM 3.121 4.13 0.768 0.793 3.126 4.17 0.761 0.791 3.131 4.34 0.754 0.787
RNN-LSM 2.812 4.37 0.888 0.886 2.818 4.38 0.884 0.880 2.823 4.45 0.875 0.877
RNN 4.945 6.23 0.638 0.634 4.948 6.28 0.633 0.630 4.954 6.36 0.628 0.625
STAM 4.994 6.91 0.577 0.656 4.997 6.96 0.572 0.651 5.11 7.00 0.565 0.647
SNN 5.322 5.99 0.687 0.697 5.327 6.11 0.681 0.692 5.345 6.28 0.678 0.688
GLG-DL 2.021 3.11 0.976 0.957 2.025 3.16 0.973 0.951 2.035 3.23 0.967 0.948
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