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ARTICLE INFO ABSTRACT

Keywords: Epoxy resins (EPs) have excellent overall properties, but their inherent flammability severely limits their in-
Epoxy resin ) dustrial applications. Most existing flame-retardant methods rely on phosphorus-based compounds. However,
(S)rlff’flf“gselem“m they suffer from bioaccumulation and potential risks to ecosystems and human health. The development of safer
chl ase

and more sustainable phosphorus-free flame-retardant EP systems based on biomass is highly promising but
challenging. Herein, a selenium/Schiff base-containing, bio-based flame retardant (SNC) has been successfully
synthesized and applied as a multifunctional co-curing agent in EP. The resultant EP containing 15 wt% SNC (EP-
SNC15) exhibits enhanced mechanical strength. Additionally, EP-SNC15 achieves a high limiting oxygen index
(LOI) of 31.8 % and a vertical burning (UL-94) V-0 rating, and its peak heat release rate (PHRR) and total heat
release (THR) decrease by 73.3 % and 56.3 % compared to EP, respectively. Therefore, the excellent flame
retardancy and mechanical properties of EP-SNC15 make it superior to previously reported phosphorus-free
flame-retardant epoxy systems. The improvement in flame retardancy is attributed to the synergistic catalytic
carbonization of selenium-containing and Schiff base groups in SNC in the condensed phase and the free radical
quenching of organoselenium groups in the gas phase. Therefore, this work provides a novel design strategy for
the development of next-generation, flame-retardant and bio-based EPs.

Flame retardancy
Mechanical strength

1. Introduction

EP is a commonly used thermosetting resin, valued in construction,
transportation, and aviation for its excellent bonding strength, electrical
insulation, and thermal stability. However, in common with most
petroleum-based polymers, its inherent flammability leads to the gen-
eration of excessive heat and dense smoke particles during combustion,
posing serious challenges to evacuation and firefighting efforts [1-5].
Hence, reducing flammability and improving smoke suppression are key
challenges in flame-retardant polymer research.

To address this issue, many strategies have been adopted with
remarkable results. Incorporating flame retardants has proven to be a
simple and effective solution [6]. Traditional halogen-based flame re-
tardants are inexpensive and effective, but they release toxic and cor-
rosive gases during combustion, posing serious threats to human health
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and the environment [7]. Thus, many of these halogen-based flame re-
tardants have been strictly regulated or banned. Phosphorus-based
flame retardants, due to their halogen-free, low toxicity, and signifi-
cant flame-retardant effects in both the gas and condensed phases, are
considered the most promising alternatives to halogen-based flame re-
tardants. Based on their application methods, they can be classified into
additive-type and reactive-type flame retardants. Compared with
additive-type phosphorus flame retardants, reactive flame retardants
exhibit superior compatibility with the EP matrix and long-lasting,
efficient flame-retardant performance, as their flame-retardant groups
are covalently bonded to the EP backbone through chemical modifica-
tion. Wang et al. [8] synthesized a phosphorus-containing epoxy curing
agent (ADIM). Benefiting from the radical quenching effect and catalytic
charring ability of ADIM, the EP/ADIM composites exhibited excellent
flame retardancy, achieving an LOI of 35.0 % and a UL-94 V-0 rating.
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Chen et al. [9] developed a co-curing agent containing phosphorus, ni-
trogen, and boron (TMDB), which was used to construct intrinsically
flame-retardant epoxy systems. Upon incorporation of 15.1 wt% TMDB,
the resulting EP composite reached a UL-94 V-0 rating and an LOI value
of 29.6 %. Liu et al. [10] developed an hyperbranched poly-
borophosphate/epoxy resin (HPBP/EP) material. This dual dynamic
B—O and P—O linkage structure exhibits excellent flame-retardant
properties, enabling the material to achieve a maximum oxygen index
of 33 % and an UL-94 V-0 rating. Although reactive phosphorus-based
flame retardants have been widely used to improve the flame retard-
ancy of epoxy resins and have demonstrated excellent comprehensive
performance, their potential bioaccumulation and aquatic toxicity have
raised growing environmental and health concerns. Therefore, the
development of halogen- and phosphorus-free reactive flame-retardant
systems has emerged as a critical direction toward achieving green
chemistry and sustainable materials.

In the field of flame-retardant thermosetting resins, the advancement
of phosphorus-free strategies has been primarily driven by the syner-
gistic effects of alternative flame-retardant elements (such as silicon,
nitrogen, boron, and sulfur) and the ongoing exploration of molecular
flame retardants with unique structural features. Zhang et al. [11] re-
ported a phosphorus-free hyperbranched polyborate (HBPB) as a
multifunctional flame-retardant additive for EP. Compared with EP, the
EP composite containing 9 wt% HBPB exhibited enhanced fire resis-
tance, achieving an LOI of 30.2 % and a UL-94 V-0 rating. It significantly
reduced fire hazards such as smoke production, heat release, and toxic
gas emission without the introduction of phosphorus-based components.
Niu et al. [12] synthesized a Schiff base-containing epoxy monomer
(triazole-va-EP), which was subsequently cured with 4,4 ‘-diamino-
diphenylmethane (DDM) to obtain a bio-based EP. The LOI value of this
EP was 39.5 %, and the UL-94 rating reached V-0. Selenium, a naturally
occurring non-metallic trace element, shares similar chemical properties
with sulfur, yet exhibits stronger electron cloud polarizability and
higher reactivity toward free radicals. Compared with inorganic sele-
nium compounds (e.g, SeOz), which pose concerns related to toxicity
and bioaccumulation, organoselenium compounds have garnered
increasing attention in life sciences and materials research due to their
tunable molecular structures, lower toxicity, and excellent thermal sta-
bility. It is worth noting that Se-containing organic compounds can
effectively quench oxygen-centered radicals (e.g., -OH and -O), thereby
slowing down the thermal degradation process and suppressing flame
propagation [13]. Compared with Si- and B-based flame retardants that
mainly function through condensed-phase barrier formation, selenium-
containing systems provide dual-phase protection. Organoselenium
compounds can efficiently quench oxygen-centered radicals in the gas
phase while catalyzing carbonization in the condensed phase, thereby
achieving simultaneous suppression of heat release and smoke genera-
tion. Therefore, the use of organoselenium groups to design phosphorus-
free flame retardants with dual flame retardant effects is an effective yet
challenging strategy for the development of high-performance, envi-
ronmentally friendly EPs.

In addition, bio-based materials have the characteristics of being
environmentally friendly and low in cost [14,15]. The design and
preparation of green flame retardants with novel molecular structures
using biomass such as phytic acid [16,17], vanillin [18,19], chitosan
[20-22], itaconic acid [23], cinnamic acid [24], and lignin [25,26] is
also a current research hotspot in the discipline of flame retardant
polymers. For instance, Tang et al. [27] developed a bio-based flame
retardant (V-Cc-PP) from vanillin and phytic acid (PA) and applied it to
EP. The addition of 4.0 wt% V-Cc-PP reduced the PHRR by 34.2 %. Yu
et al. [28] synthesized a novel bio-based intumescent flame retardant
(TLI) to prepare EP/TLI intumescent coatings. When the amount of TLI
was 20 wt%, the LOI and UL-94 rating of EP/TLI were 26.5 % and V-0.
Salicylic acid is a naturally occurring organic acid, which is abundantly
in various plants, including willow bark and wintergreen leaves. Due to
the presence of reactive functional groups, salicylic acid can be used as a
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raw material to synthesize various compounds with tunable
functionalities.

In this work, a selenium/Schiff base-containing bio-based flame
retardant (SNC) was prepared using 3, 4-diaminotoluene, selenium di-
oxide and 5-aminosalicylic acid, which was applied in EPs as a co-curing
agent. The influence of SNC on the thermal stability, mechanical prop-
erties, flame retardancy and smoke suppression of EP were systemati-
cally investigated, and the mechanisms of reinforcement and flame
retardancy were deeply elucidated. This work provides an effective
approach for the design of phosphorus-free, bio-based flame retardants,
with promising potential for widespread application in thermosetting
resins.

2. Material and methods
2.1. Materials

Diglycidyl ether of bisphenol-A (DGEBA, CYD-127, epoxide equiva-
lent weight: ~185 g/equiv) was provided by Yueyang Baling Petro-
chemical Co., Ltd. (Hunan, China). 3,4-diaminotoluene, 5-
aminosalicylic acid (5-ASA) and 4,4 ‘-diamino-diphenylmethane (DDM)
were purchased from Energy Chemical Co., Ltd. (Shanghai, China). Se-
lenium dioxide was supplied by Macklin Biochemical Technology Co.,
Ltd. (Shanghai, China). Xylene and absolute ethanol were provided by
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Synthesis of Se-derived intermediate (S-2 N)

The schematic diagram of the synthetic route for SNC is shown in
Fig. la. 3,4-diaminotoluene (2.0 g, 16.37 mmol) and selenium dioxide
(4.54 g, 40.93 mmol) were dissolved in 50 mL of xylene, then condensed
and refluxed for 24 h. The reaction mixture was filtered while hot to
obtain the liquid phase, and xylene was removed by rotary distillation at
125 °C. The resulting brown solid product, S-2N, was dried in a vacuum
oven at 120 °C overnight.

2.3. Synthesis of flame retardants containing Se (SNC)

5-Aminosalicylic acid (2.00 g, 13.06 mmol) and S-2N (2.7 g, 12.80
mmol) were added to a flask with 50 mL of anhydrous ethanol as the
solvent. The mixture was stirred under a nitrogen atmosphere at 80 °C
for 6 h. After the reaction, the mixture was filtered while hot, and the
solid product was washed 2-3 times with anhydrous ethanol and
vacuum-dried at 80 °C overnight to yield the final product (SNC).

2.4. Preparation of EP samples

The proportions of each component in the EP samples are listed in
Table S1. The preparation procedure is as follows: the epoxy resin and
SNC were mixed thoroughly by mechanical stirring at 50 °C, after which
DDM was added and stirred rapidly for 7 min. The mixture was then
degassed under vacuum for 3 min and poured into a preheated mold at
80 °C. The curing process was carried out in stages: 80 °C for 0.5 h,
100 °C for 2 h, 120 °C for 2 h, and finally 150 °C for 4 h. Based on the
SNC content (5, 10, and 15 wt%), the samples were designated as EP-
SNC5, EP-SNC10, and EP-SNC15, respectively. For comparison, the EP
sample was prepared using the same method without the addition of
SNC.

2.5. Characterizations

This is provided in the Supporting information.
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Fig. 1. (a) Schematic diagram of SNC synthesis; (b) H NMR spectra of S-2 N and SNC; (c) FTIR spectra of 5-ASA, S-2 N, and SNC; and (d) TG curve of SNC.

3. Results and discussion

3.1. Preparation and characterization of SNC

The schematic diagram of SNC synthesis is shown in Fig. la. The
chemical structure characterization of SNC was carried out by H
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nuclear magnetic resonance (NMR) and Fourier transform infrared
spectroscopy (FTIR). In Fig. 1b, the aldehyde proton signal appeared at
10.17 ppm for S-2N. After the reaction of S-2N with 5-aminosalicylic
acid, the aldehyde proton signal at 10.17 ppm disappeared, followed
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by the appearance of the -CH=N- signal at 8.9 ppm, indicating the
successful synthesis of SNC [6,29]. As shown in Fig. 1c, the FTIR spectra

Fig. 2. (a) TG curves and (b) DTG curves of EP samples under N, atmosphere; (c) TG curves and (b) DTG curves of EP samples under air atmosphere; (e) Digital
photos of EP-SNC samples after being immersed in different solvents for 240 h.
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reveal that 5-ASA, S-2N, and SNC exhibit an -OH absorption band in the
range of 3300-3500 cm! [30]. 5-ASA displays an N—H stretching vi-
bration peak at 1578 cm ™ [31], which disappears in the FTIR spectrum
of SNC, indicating that the N—H groups have been fully reacted. In
addition, SNC shows characteristic peaks at 1680 and 622 cm™ L, cor-
responding to C=N and Se—N bonds, respectively, further confirming
the successful synthesis of SNC [32,33]. Additionally, thermogravi-
metric analysis (TGA) was conducted to study the thermal stability of
SNC under nitrogen and air conditions, with the relevant curves and
characteristic data shown in Fig. 1d, S1 and Table S2. SNC exhibits
initial decomposition temperature (Tsy, temperature at 5 wt% weight
loss) values of 262 °C in air and 261 °C in nitrogen, both of which are
higher than the curing reaction temperature of the EP-SNC samples,
indicating that SNC maintains good thermal stability during curing and
does not undergo premature degradation. Meanwhile, the char yields at
800 °C of SNC are 0.2 % in air and 37.1 % in nitrogen, suggesting that it
possesses a great char-forming capability.

3.2. Thermal stability and solvent resistance of EP-SNC

The thermal stability of EP and EP-SNC samples was studied by
thermogravimetric analysis under N, and air atmospheres. The relevant
data are shown in Fig. 2a-d and Table S2. As shown in Fig. 2a and b, all
EP samples exhibit the same degradation trend under N3 and air atmo-
spheres. Under N atmosphere, both EP and EP-SNC are degraded in one
stage within the range of 300 to 500 °C, which is due to the decompo-
sition of the polymer framework [34]. The incorporation of SNC leads to
a decrease in the Ts, of the EP samples, which may be attributed to the
catalytic effect of the organoselenium component, promoting early
degradation of the polymer matrix [13]. Further, the EP-SNC samples
exhibit a stronger charring capacity than EP because of the introduction
of organoselenium group (see Table S2). For example, EP-SNC15 shows
a char yield of 16.9 %, which is 16.6 % higher than that of EP (14.5 %).
Such enhanced char formation ability indicates the flame-retardant ef-
fect of EP-SNC in the condensed phase to a certain extent. In addition,
the degradation of EP and EP-SNC includes two stages under an air at-
mosphere (see Fig. 2c and d). The first stage is mainly the thermal
decomposition of polymer backbone, and the second stage is the thermal
oxidation decomposition of residual char [7]. The Tsy, of the EP-SNC
sample is significantly increased, indicating that organic selenium can
improve the thermal stability in air atmosphere [13]. Furthermore, the
char yield of the EP-SNC samples is higher than that of EP and they are
increased with the increase of SNC content, further confirming the
promoting carbonization effect of organic selenium.

Since SNC is introduced into the epoxy resin system as a co-curing
agent, the selenodiazole groups contained in its structure can provide
strong intermolecular forces and are prone to form a cross-linked
network structure. However, this structure is susceptible to the influ-
ence of solvents [35]. The solvent resistance experiment was conducted
on the EP-SNC15 spline, and the results are shown in Fig. 2e. This spline
can effectively maintain its structural integrity for more than 240 h in
various polar and non-polar solvents such as water, methanol (MeOH),
acetone (ACE), tetrahydrofuran (THF), ethyl acetate (EA), chloroform
(CHCly), toluene (TOL), petroleum ether (PE), 1 M NaOH solution and 1
M HCI solution. This indicates that EP-SNC15 exhibits good solvent
resistance.

3.3. Mechanical properties of EP-SNC

The curing behavior of EP and EP-SNC15 systems were systemati-
cally analyzed via differential scanning calorimetry (DSC), and the
relevant data showed in Fig. S2 and Table S3. Both mixtures exhibit a
single curing exothermic peak. And the peak curing temperature (Tp) of
EP-SNC15 is significantly lower than that of EP, which may be attributed
to the early ring opening of the epoxy groups catalyzed by the phenolic
hydroxyl and carboxyl groups in SNC. Moreover, the Kissinger, Crane,
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and Flynn-Wall-Ozawa (FWO) methods were employed to investigate
the curing kinetics, and the corresponding linear fittings of ln(B/TS) Vs.
1/Tp and In(p) vs. 1/T,, are presented in Fig. S2c and d. The reaction
model was first established using the Kissinger method and further
validated by the FWO approach. The calculated kinetic parameters and
the obtained E, are listed Table S3. The E, is a commonly used indicator
for evaluating the curing activity of resins. Compared to EP, EP-SNC15
sample exhibit higher E, values. This mainly originates from the fact
that SNC acts as a co-curing agent to consume part of the epoxy groups,
which reduces the effective reaction site of the epoxy-amine curing re-
action and introduces a spatial site resistance, thus increasing the energy
barrier of the curing reaction.

The mechanical properties of EP and EP-SNC samples were studied,
with detailed results presented in Fig. 3, S3 and Table S4, S5. The storage
modulus (E) and tan & plots were obtained by dynamic mechanical
analysis (DMA), and the results are shown in Fig. 3a-c and Table S4.
According to the classical theory of rubber elasticity, the crosslinking
density (v) is calculated according to the formula: v = E/3RT, where R is
the gas constant and E is the E’ corresponding to the temperature being
30 °C higher than Ty [36,37]. Due to the introduction of SNC, the glass
transition temperature (Tg) of EP-SNC samples decreases, mainly
because of the decrease in v (see Fig. 3c and Table S4). During the curing
process, the carboxyl and phenolic hydroxyl groups in SNC react with
the epoxy groups of EP, resulting in covalent bonding between SNC and
the EP/DDM cross-linked network. This may interfere with the complete
curing of the epoxy system, thereby reducing the v. Moreover, the static
mechanical property test results of EP and EP-SNC samples are shown in
Fig. 3d-f and Table S5. The addition of SNC can effectively enhance the
mechanical performance of EP-SNC samples. In detail, the tensile
strength and Young’s modulus (75.3 MPa and 2792.3 MPa) of EP-SNC15
are higher than those of EP (50.9 MPa and 1302.4 MPa). The impact
strength and toughness of EP-SNC15 are 3.2 kJ/m? and 1.44 MJ/m?,
which are slightly higher than those of pure EP (3.1 kJ/m? and 1.41 MJ/
m>), further demonstrating enhanced mechanical strength and tough-
ness. The improvement in mechanical performance is attributable to the
increased spatial site resistance of the rigid benzene structure and the
supramolecular bonding interactions formed between the selenadiazole
structure in SNC [35]. Such reinforcement and toughening effects have
also been reported in previous studies [7].

To evaluate the action mechanism of SNC, the fracture surfaces of EP
and EP-SNC samples after Izod impact testing were examined by scan-
ning electron microscopy (SEM) and energy dispersive X-ray spec-
trometry (EDS) techniques, with the results shown in Fig. S3. The cross-
section of the EP sample is smooth, reflecting the characteristics of
brittle fracture. The fracture surfaces of EP/SNC10 and EP/SNC15
become rougher, with numerous folds and crack structures (Fig. S3b and
c), which significantly increase the fracture area and lengthen the crack
extension paths, thus effectively dissipating more fracture energy and
improving the impact toughness of the materials. The Se-element
mapping on the surface of EP/SNC10 and EP/SNC15 samples reveals
that SNC acts as a co-curing agent to form covalent bonds with the cross-
linked network of EP, which is uniformly distributed inside the matrix,
thus enhancing the mechanical properties of the samples.

3.4. Flame-retardant performance of EP-SNC

The fire safety of EP and EP-SNC samples was tested by LOI, UL-94
and cone calorimeter test (CCT), with the specific test results shown in
Fig. 4 and Table S6-7. The LOI values and UL-94 rating of the samples
are listed in Table S6. The LOI value of EP is 26.8 % and it fails the UL-94
rating, indicating that EP is a highly flammable material [38]. With the
introduction of SNC, the LOI value and UL-94 rating of EP-SNC signifi-
cantly increase. Meanwhile, the flame retardant properties are gradually
enhanced with the increase of SNC addition. In detail, when the addition
amount of SNC is 15 wt%, EP-SNC15 exhibits an LOI value of 31.8 % and
passes a UL-94 V-0 rating, thus it is a self-extinguishing material. The
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Fig. 3. (a) Storage modulus plots, (b) tan delta curves, (c) glass transition temperature, (d) tensile stress-strain plots, (e) tensile strength, and (f) Young’s modulus of

the EP samples.

results show that the introduction of SNC can significantly improve the
flame retardancy of EP-SNC samples.

To quantitatively characterize the flame retardancy of EP samples,
CCT was performed on EP samples. The results are shown in Fig. 4 and
Table S7. The PHRR and THR of the EP sample are 1326.2 kW/m? and
77.8 MJ/m?, respectively. The PHRR and THR of EP-SNC samples are
greatly lower than those of EP. For instance, the PHRR and THR of EP-
SNC15 are 354 kW/m? and 33.9 MJ/m? respectively, with 73.3 % and
56.3 % decreases compared with those of EP (see Fig. 4a and b).
Therefore, SNC can effectively inhibit the heat release of EP during the
combustion process. The fire growth rate (FIGRA) and fire performance
index (FPI) are used to evaluate the fire safety of materials, with specific
values are shown in Fig. 4c and f. A higher FPI and a lower FIGRA
indicate improved fire safety performance of the material [39]. The FPI
of EP-SNC15 (0.17 mZ%s/kW) is significantly higher than that of EP
(0.06 mz-s/kW), while its FIGRA (8.3 kW/m?/ s) is markedly lower than
that of EP (2.4 kW/mz/s), indicating a substantial enhancement in fire
safety performance.

EP materials usually release a large amount of smoke when burning,
which seriously affects their application [40]. The peak smoke produc-
tion rate (PSPR) and total smoke production (TSP) of EP are up to 0.32
m?/s and 28.4 m?, respectively, indicating considerable smoke toxicity,
which poses significant challenges for fire evacuation and suppression
(see Fig. 4e, S4 and Table S7). In contrast, the incorporation of SNC
endows the EP samples with improved smoke suppression performance,
as evidenced by reduced PSPR and TSP values. Specifically, the PSPR of
EP-SNC5 decreases by 25.0 % compared to that of neat EP, while the TSP
of EP-SNC15 reduces by 19.4 %. These results demonstrate that the
incorporation of SNC effectively suppresses smoke generation and con-
tributes to enhanced fire safety of the material. The average effective
heat of combustion (AEHC) and residual char (RC) after combustion for
the EP and EP/SNC samples are presented in Fig. 4d, g, and Table S7.
The AEHC is an important parameter for evaluating the combustion
degree of gaseous volatile substances [41]. The AEHC of EP-SNC sam-
ples decreases significantly with increasing SNC content. At a SNC
addition of 15 wt%, the AEHC reduces from 22.9 MJ/kg of neat EP to

12.0 MJ/kg, exhibiting a decrease of 47.6 %. Such a change is mainly
attributed to the free radical quenching effect of the active fragments
derived from SNC, inhibiting the complete progress of the combustion
reaction. In addition, the RC values of EP-SNC thermosets are all higher
than that of EP, which is consistent with the results of thermogravi-
metric analysis, further demonstrating the catalytic carbonization of
SNC.

According to previous studies [42], the flame-retardant mechanisms
of flame retardants primarily involve three pathways: flame inhibition
in the gas phase (FIE), and barrier protection (BPE) as well as catalytic
char formation (CE) in the condensed phase. All EP-SNC samples exhibit
higher FIE, BPE and CE values, indicating their combined gas-phase
flame inhibition and condensed-phase barrier/protective effects dur-
ing combustion (see Fig. 4h, i and S5). With increasing SNC content,
both FIE and CE values increase concurrently, further confirming the
progressive enhancement of radical scavenging in the gas phase and
catalytic char formation in the condensed phase. Therefore, SNC acts
synergistically in both the gas and condensed phases to suppress heat
release and smoke generation -effectively, thereby significantly
improving the overall flame-retardant performance of EP.

3.5. Property comparison

The comprehensive performance of EP-SNC samples is compared
with that of unmodified EP and previously reported phosphorus-free
flame-retardant epoxy systems (Fig. 5 and Table S8) [11,43-51]. The
results indicate that the chemically incorporation of Se/Schiff base-
containing groups into the cross-linked network significantly enhances
the flame retardancy, smoke suppression, and mechanical properties of
the EP-SNC system (Fig. 5a). Notably, EP-SNC15 exhibits a higher LOIL
value than neat EP, and its PHRR and THR reductions are more obvious
than those of most phosphorus-free flame-retardant EPs reported in
previous works, which can be attributed to the radical-scavenging effect
of Se groups in the gas phase and catalytic charring function of Se-
containing and Schiff base groups in the condensed phase (Fig. 5b). In
addition, the rigid benzene rings and noncovalent interactions
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associated with Se-containing groups in SNC contributed to improved
mechanical properties, resulting in superior strength compared to other
phosphorus-free flame-retardant system. In summary, the EP-SNC15
sample demonstrates outstanding overall performance in terms of

flame retardancy, smoke suppression, and mechanical strength, high-
lighting the great potential of Se-containing flame retardants for the
development of high-performance phosphorus-free flame-retardant
epoxy systems.
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3.6. Flame-retardant action of SNC

3.6.1. Condensed phase

To investigate the condensed-phase flame-retardant mechanism of
SNC, the macro- and micro-morphologies of the char residues after cone
calorimetry tests were examined using a digital camera and SEM (see
Fig. S6). After combustion, the neat EP sample shows only a small
amount of fragmented char with a thickness of approximately 10 mm
(Fig. S6a and b). Meanwhile, the EP char surface exhibits numerous
cracks and pores, indicating poor flame-retardant and smoke-
suppression performance. In contrast, the EP-SNC10 and EP-SNC15
samples form denser and more intumescent char layers, and the thick-
ness of EP-SNC15 char is up to 23 mm, representing an increase of
approximately 130 %. This enhancement effect may be attributed to the
synergistic catalytic charring function of selenium-containing and Schiff
base groups in SNC, which helps to inhibit heat transfer and smoke
emission, thereby significantly enhancing flame-retardant and smoke-
suppression performance.

To further explore the action mode of SNC in the condensed phase,
Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were
employed. The relevant results are shown in Fig. 6 and Table S9. In
Fig. 6a, the D peak and G peak of the residual char at 1354 cm ™! and
1586 cm™! belong to the vibrations of amorphous C atoms and
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graphitized C atoms, respectively. The area ratio of peak D to peak G (Ip/
Ig) is negatively correlated with the graphitization degree of the char
layer [52,53]. The Ip/I value of EP-SNC15 (2.78) is significantly lower
than that of pure EP (3.07), indicating a higher degree of graphitization
and increased char layer density. This suggests that SNC effectively
promotes char formation and enhances the graphitization degree of the
residual char, thereby reducing heat and oxygen transfer. These findings
are consistent with the morphological features observed in the SEM
images of the residual char.

The XPS spectra and elemental contents of EP and EP-SNC15 chars
are presented in Fig. 6. Both EP and EP-SNC15 chars contain carbon,
nitrogen, and oxygen. Additionally, selenium is also present in EP-
SNC15 char, further confirming the condensed-phase flame-retardant
effect of SNC (see Fig. 6b and Table S9). In detail, compared with EP char
(5.15), the C/O atomic ratio of the EP-SNC15 char increases to 5.34,
indicating that the introduction of SNC as a co-curing agent promotes
the carbonization process and reduces the oxygen content in the residual
char. The higher C/O ratio implies the formation of a denser and ther-
mally stable char layer, which helps to inhibit heat transfer and the
release of combustible materials during the combustion process, thus
enhancing the overall flame retardant and smoke suppressant
properties.

In addition, the high-resolution XPS C1s, N1s, and O1s spectra of EP-
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SNC15 char; and high-resolution (g) O1s, (h) N1s, and (i) Cl1s spectra of EP char.
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SNC15 char are similar to those of EP char (see Fig. 6d-i). Two decon-
volution peaks at 532.7 and 531.5 eV are detected in the Ols spectra,
corresponding to the O—C and O—C carbon oxide structures, respec-
tively (Fig. 6d and g) [54]. The peak at 398.8 eV in the N1s spectra
belongs to the pyridine-N- structure (Fig. 6e and h) [55]. The peaks at
284.2, 285.6 and 288.2 eV in the Cls spectra correspond to the C—C,
C—O and C—=0O structures, respectively (Fig. 6f and i) [56]. Moreover,
the high-resolution Se3d spectrum of EP-SNC15 char shows a charac-
teristic peak of Se—C bonding at 55.2 eV, indicating that Se participates
in the construction of stable char layers during the carbonization process
(Fig. 6¢) [13]. These results indicate that, during combustion, the cat-
alytic carbonization effect of the Se-containing groups and Schiff base
structures in EP-SNC15 enhances the graphitization degree of the re-
sidual char, protects the underlying matrix, and provides physical
isolation, thereby contributing to its flame-retardant performance [57].

3.6.2. Gaseous phase

The mode action of SNC in the gas phase was analyzed via ther-
mogravimetric infrared (TG-IR) and pyrolysis gas chromatography/
mass spectrometry (Py-GC/MS) tests. As shown in Fig. 7a-c, EP and EP-
SNC15 release similar decomposition products upon heating, including
water (3724 cm’l), hydrocarbons (2971 cm’l), carbon dioxide (2360
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crn’l), carbonyl compounds (1713 cm’l), aromatic compounds (1515
cm~! and 823 crn_l), and ethers (1178 cm_l) [41,42]. The peaks cor-
responding to ether derivatives, aromatic compounds, and hydrocar-
bons of the gaseous decomposition products for EP-SNC15 are lower
than those for EP (see Fig. 7d-f), which further indicates that the
degradation products of SNC inhibit pyrolysis by facilitating the
carbonization of the substrate, thus protecting the substrate. Further-
more, the pyrolysis products of SNC were analyzed by Py-GC/MS, with
the total ion chromatogram and major pyrolysis products shown in
Fig. 7g and h. The main pyrolysis products of SNC are aliphatic amines,
aromatic organic compounds and selenium-containing compounds. The
N-containing derivatives released by SNC during combustion can dilute
the concentration of flammable gases [58]. Furthermore, during the
combustion process, the weak bond Se—N in SNC breaks to generate free
radicals (Se-), which capture active free radicals from the EP matrix,
thereby interrupting the chain reaction of combustion and thus inhib-
iting the combustion reaction [59].

The possible roles of SNC in the combustion process are shown in
Fig. 8: (i) during pyrolysis, the Se- and N-containing fragments are
released from the decomposition of SNC to dilute the concentration of
combustible gases and trap the high-energy free radicals (-OH and -H)
from epoxy matrix, thus inhibiting the combustion chain reaction in the
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Fig. 8. The possible flame-retardant mechanism of SNC.

gas phase; (ii) In the condensed phase, the organic selenium group de-
grades into selenium-containing acids that catalyze the carbonization of
the substrate, and the Schiff base groups enhance the densification and
adiabatic properties of the char layer via their self-cross-linking reaction,
thereby effectively hindering the transfer of heat and oxygen. Therefore,
SNC acts in both the gas and condensed phases to suppress the heat
release and smoke emission, thus improving fire safety of EP.

4. Conclusions

In this work, a selenium/Schiff base-containing bio-based co-curing
agent was successfully synthesized using 3, 4-diaminotoluene, sele-
nium dioxide and 5-aminosalicylic acid as raw materials and applied it
to flame-retardant EPs. With the increase of SNC content, the flame
retardancy and mechanical properties of EP-SNC significantly improve,
and high thermal stability and good solvent resistance are effectively
maintained. EP-SNC15 exhibits excellent mechanical robustness (tensile
strength: 75.3 MPa) and flame-retardant performance (a UL-94 V-0 rat-
ing and an LOI of 31.8 %). Its PHRR and THR are reduced by 73.3 % and
56.3 %, respectively, compared to neat EP, outperforming previously
reported phosphorus-free flame-retardant EPs. During combustion, the
selenium-containing and Schiff-base groups in SNC promotes the for-
mation of dense char layers, and the Se-containing fragments quench the
active radicals in the gas phase, thereby suppressing combustion. This
study provides a simple and effective approach for creating next-
generation reactive flame retardants for epoxy systems, promoting the
development of bio-based flame retardants.
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