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A B S T R A C T

Epoxy resins (EPs) have excellent overall properties, but their inherent flammability severely limits their in
dustrial applications. Most existing flame-retardant methods rely on phosphorus-based compounds. However, 
they suffer from bioaccumulation and potential risks to ecosystems and human health. The development of safer 
and more sustainable phosphorus-free flame-retardant EP systems based on biomass is highly promising but 
challenging. Herein, a selenium/Schiff base-containing, bio-based flame retardant (SNC) has been successfully 
synthesized and applied as a multifunctional co-curing agent in EP. The resultant EP containing 15 wt% SNC (EP- 
SNC15) exhibits enhanced mechanical strength. Additionally, EP-SNC15 achieves a high limiting oxygen index 
(LOI) of 31.8 % and a vertical burning (UL-94) V-0 rating, and its peak heat release rate (PHRR) and total heat 
release (THR) decrease by 73.3 % and 56.3 % compared to EP, respectively. Therefore, the excellent flame 
retardancy and mechanical properties of EP-SNC15 make it superior to previously reported phosphorus-free 
flame-retardant epoxy systems. The improvement in flame retardancy is attributed to the synergistic catalytic 
carbonization of selenium-containing and Schiff base groups in SNC in the condensed phase and the free radical 
quenching of organoselenium groups in the gas phase. Therefore, this work provides a novel design strategy for 
the development of next-generation, flame-retardant and bio-based EPs.

1. Introduction

EP is a commonly used thermosetting resin, valued in construction, 
transportation, and aviation for its excellent bonding strength, electrical 
insulation, and thermal stability. However, in common with most 
petroleum-based polymers, its inherent flammability leads to the gen
eration of excessive heat and dense smoke particles during combustion, 
posing serious challenges to evacuation and firefighting efforts [1–5]. 
Hence, reducing flammability and improving smoke suppression are key 
challenges in flame-retardant polymer research.

To address this issue, many strategies have been adopted with 
remarkable results. Incorporating flame retardants has proven to be a 
simple and effective solution [6]. Traditional halogen-based flame re
tardants are inexpensive and effective, but they release toxic and cor
rosive gases during combustion, posing serious threats to human health 

and the environment [7]. Thus, many of these halogen-based flame re
tardants have been strictly regulated or banned. Phosphorus-based 
flame retardants, due to their halogen-free, low toxicity, and signifi
cant flame-retardant effects in both the gas and condensed phases, are 
considered the most promising alternatives to halogen-based flame re
tardants. Based on their application methods, they can be classified into 
additive-type and reactive-type flame retardants. Compared with 
additive-type phosphorus flame retardants, reactive flame retardants 
exhibit superior compatibility with the EP matrix and long-lasting, 
efficient flame-retardant performance, as their flame-retardant groups 
are covalently bonded to the EP backbone through chemical modifica
tion. Wang et al. [8] synthesized a phosphorus-containing epoxy curing 
agent (ADIM). Benefiting from the radical quenching effect and catalytic 
charring ability of ADIM, the EP/ADIM composites exhibited excellent 
flame retardancy, achieving an LOI of 35.0 % and a UL-94 V-0 rating. 
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Chen et al. [9] developed a co-curing agent containing phosphorus, ni
trogen, and boron (TMDB), which was used to construct intrinsically 
flame-retardant epoxy systems. Upon incorporation of 15.1 wt% TMDB, 
the resulting EP composite reached a UL-94 V-0 rating and an LOI value 
of 29.6 %. Liu et al. [10] developed an hyperbranched poly
borophosphate/epoxy resin (HPBP/EP) material. This dual dynamic 
B–O and P–O linkage structure exhibits excellent flame-retardant 
properties, enabling the material to achieve a maximum oxygen index 
of 33 % and an UL-94 V-0 rating. Although reactive phosphorus-based 
flame retardants have been widely used to improve the flame retard
ancy of epoxy resins and have demonstrated excellent comprehensive 
performance, their potential bioaccumulation and aquatic toxicity have 
raised growing environmental and health concerns. Therefore, the 
development of halogen- and phosphorus-free reactive flame-retardant 
systems has emerged as a critical direction toward achieving green 
chemistry and sustainable materials.

In the field of flame-retardant thermosetting resins, the advancement 
of phosphorus-free strategies has been primarily driven by the syner
gistic effects of alternative flame-retardant elements (such as silicon, 
nitrogen, boron, and sulfur) and the ongoing exploration of molecular 
flame retardants with unique structural features. Zhang et al. [11] re
ported a phosphorus-free hyperbranched polyborate (HBPB) as a 
multifunctional flame-retardant additive for EP. Compared with EP, the 
EP composite containing 9 wt% HBPB exhibited enhanced fire resis
tance, achieving an LOI of 30.2 % and a UL-94 V-0 rating. It significantly 
reduced fire hazards such as smoke production, heat release, and toxic 
gas emission without the introduction of phosphorus-based components. 
Niu et al. [12] synthesized a Schiff base-containing epoxy monomer 
(triazole-va-EP), which was subsequently cured with 4,4 ‘-diamino- 
diphenylmethane (DDM) to obtain a bio-based EP. The LOI value of this 
EP was 39.5 %, and the UL-94 rating reached V-0. Selenium, a naturally 
occurring non-metallic trace element, shares similar chemical properties 
with sulfur, yet exhibits stronger electron cloud polarizability and 
higher reactivity toward free radicals. Compared with inorganic sele
nium compounds (e.g., SeO₂), which pose concerns related to toxicity 
and bioaccumulation, organoselenium compounds have garnered 
increasing attention in life sciences and materials research due to their 
tunable molecular structures, lower toxicity, and excellent thermal sta
bility. It is worth noting that Se-containing organic compounds can 
effectively quench oxygen-centered radicals (e.g., ⋅OH and ⋅O), thereby 
slowing down the thermal degradation process and suppressing flame 
propagation [13]. Compared with Si- and B-based flame retardants that 
mainly function through condensed-phase barrier formation, selenium- 
containing systems provide dual-phase protection. Organoselenium 
compounds can efficiently quench oxygen-centered radicals in the gas 
phase while catalyzing carbonization in the condensed phase, thereby 
achieving simultaneous suppression of heat release and smoke genera
tion. Therefore, the use of organoselenium groups to design phosphorus- 
free flame retardants with dual flame retardant effects is an effective yet 
challenging strategy for the development of high-performance, envi
ronmentally friendly EPs.

In addition, bio-based materials have the characteristics of being 
environmentally friendly and low in cost [14,15]. The design and 
preparation of green flame retardants with novel molecular structures 
using biomass such as phytic acid [16,17], vanillin [18,19], chitosan 
[20–22], itaconic acid [23], cinnamic acid [24], and lignin [25,26] is 
also a current research hotspot in the discipline of flame retardant 
polymers. For instance, Tang et al. [27] developed a bio-based flame 
retardant (V-Cc-PP) from vanillin and phytic acid (PA) and applied it to 
EP. The addition of 4.0 wt% V-Cc-PP reduced the PHRR by 34.2 %. Yu 
et al. [28] synthesized a novel bio-based intumescent flame retardant 
(TLI) to prepare EP/TLI intumescent coatings. When the amount of TLI 
was 20 wt%, the LOI and UL-94 rating of EP/TLI were 26.5 % and V-0. 
Salicylic acid is a naturally occurring organic acid, which is abundantly 
in various plants, including willow bark and wintergreen leaves. Due to 
the presence of reactive functional groups, salicylic acid can be used as a 

raw material to synthesize various compounds with tunable 
functionalities.

In this work, a selenium/Schiff base-containing bio-based flame 
retardant (SNC) was prepared using 3, 4-diaminotoluene, selenium di
oxide and 5-aminosalicylic acid, which was applied in EPs as a co-curing 
agent. The influence of SNC on the thermal stability, mechanical prop
erties, flame retardancy and smoke suppression of EP were systemati
cally investigated, and the mechanisms of reinforcement and flame 
retardancy were deeply elucidated. This work provides an effective 
approach for the design of phosphorus-free, bio-based flame retardants, 
with promising potential for widespread application in thermosetting 
resins.

2. Material and methods

2.1. Materials

Diglycidyl ether of bisphenol-A (DGEBA, CYD-127, epoxide equiva
lent weight: ~185 g/equiv) was provided by Yueyang Baling Petro
chemical Co., Ltd. (Hunan, China). 3,4-diaminotoluene, 5- 
aminosalicylic acid (5-ASA) and 4,4 ‘-diamino-diphenylmethane (DDM) 
were purchased from Energy Chemical Co., Ltd. (Shanghai, China). Se
lenium dioxide was supplied by Macklin Biochemical Technology Co., 
Ltd. (Shanghai, China). Xylene and absolute ethanol were provided by 
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Synthesis of Se-derived intermediate (S-2 N)

The schematic diagram of the synthetic route for SNC is shown in 
Fig. 1a. 3,4-diaminotoluene (2.0 g, 16.37 mmol) and selenium dioxide 
(4.54 g, 40.93 mmol) were dissolved in 50 mL of xylene, then condensed 
and refluxed for 24 h. The reaction mixture was filtered while hot to 
obtain the liquid phase, and xylene was removed by rotary distillation at 
125 ◦C. The resulting brown solid product, S-2N, was dried in a vacuum 
oven at 120 ◦C overnight.

2.3. Synthesis of flame retardants containing Se (SNC)

5-Aminosalicylic acid (2.00 g, 13.06 mmol) and S-2N (2.7 g, 12.80 
mmol) were added to a flask with 50 mL of anhydrous ethanol as the 
solvent. The mixture was stirred under a nitrogen atmosphere at 80 ◦C 
for 6 h. After the reaction, the mixture was filtered while hot, and the 
solid product was washed 2–3 times with anhydrous ethanol and 
vacuum-dried at 80 ◦C overnight to yield the final product (SNC).

2.4. Preparation of EP samples

The proportions of each component in the EP samples are listed in 
Table S1. The preparation procedure is as follows: the epoxy resin and 
SNC were mixed thoroughly by mechanical stirring at 50 ◦C, after which 
DDM was added and stirred rapidly for 7 min. The mixture was then 
degassed under vacuum for 3 min and poured into a preheated mold at 
80 ◦C. The curing process was carried out in stages: 80 ◦C for 0.5 h, 
100 ◦C for 2 h, 120 ◦C for 2 h, and finally 150 ◦C for 4 h. Based on the 
SNC content (5, 10, and 15 wt%), the samples were designated as EP- 
SNC5, EP-SNC10, and EP-SNC15, respectively. For comparison, the EP 
sample was prepared using the same method without the addition of 
SNC.

2.5. Characterizations

This is provided in the Supporting information.
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3. Results and discussion

3.1. Preparation and characterization of SNC

The schematic diagram of SNC synthesis is shown in Fig. 1a. The 
chemical structure characterization of SNC was carried out by 1H 

nuclear magnetic resonance (NMR) and Fourier transform infrared 
spectroscopy (FTIR). In Fig. 1b, the aldehyde proton signal appeared at 
10.17 ppm for S-2N. After the reaction of S-2N with 5-aminosalicylic 
acid, the aldehyde proton signal at 10.17 ppm disappeared, followed 
by the appearance of the -CH=N- signal at 8.9 ppm, indicating the 
successful synthesis of SNC [6,29]. As shown in Fig. 1c, the FTIR spectra 

Fig. 1. (a) Schematic diagram of SNC synthesis; (b) 1H NMR spectra of S-2 N and SNC; (c) FTIR spectra of 5-ASA, S-2 N, and SNC; and (d) TG curve of SNC.

Fig. 2. (a) TG curves and (b) DTG curves of EP samples under N2 atmosphere; (c) TG curves and (b) DTG curves of EP samples under air atmosphere; (e) Digital 
photos of EP-SNC samples after being immersed in different solvents for 240 h.
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reveal that 5-ASA, S-2N, and SNC exhibit an -OH absorption band in the 
range of 3300–3500 cm− 1 [30]. 5-ASA displays an N–H stretching vi
bration peak at 1578 cm− 1 [31], which disappears in the FTIR spectrum 
of SNC, indicating that the N–H groups have been fully reacted. In 
addition, SNC shows characteristic peaks at 1680 and 622 cm− 1, cor
responding to C––N and Se–N bonds, respectively, further confirming 
the successful synthesis of SNC [32,33]. Additionally, thermogravi
metric analysis (TGA) was conducted to study the thermal stability of 
SNC under nitrogen and air conditions, with the relevant curves and 
characteristic data shown in Fig. 1d, S1 and Table S2. SNC exhibits 
initial decomposition temperature (T5%, temperature at 5 wt% weight 
loss) values of 262 ◦C in air and 261 ◦C in nitrogen, both of which are 
higher than the curing reaction temperature of the EP-SNC samples, 
indicating that SNC maintains good thermal stability during curing and 
does not undergo premature degradation. Meanwhile, the char yields at 
800 ◦C of SNC are 0.2 % in air and 37.1 % in nitrogen, suggesting that it 
possesses a great char-forming capability.

3.2. Thermal stability and solvent resistance of EP-SNC

The thermal stability of EP and EP-SNC samples was studied by 
thermogravimetric analysis under N2 and air atmospheres. The relevant 
data are shown in Fig. 2a-d and Table S2. As shown in Fig. 2a and b, all 
EP samples exhibit the same degradation trend under N2 and air atmo
spheres. Under N2 atmosphere, both EP and EP-SNC are degraded in one 
stage within the range of 300 to 500 ◦C, which is due to the decompo
sition of the polymer framework [34]. The incorporation of SNC leads to 
a decrease in the T5% of the EP samples, which may be attributed to the 
catalytic effect of the organoselenium component, promoting early 
degradation of the polymer matrix [13]. Further, the EP-SNC samples 
exhibit a stronger charring capacity than EP because of the introduction 
of organoselenium group (see Table S2). For example, EP-SNC15 shows 
a char yield of 16.9 %, which is 16.6 % higher than that of EP (14.5 %). 
Such enhanced char formation ability indicates the flame-retardant ef
fect of EP-SNC in the condensed phase to a certain extent. In addition, 
the degradation of EP and EP-SNC includes two stages under an air at
mosphere (see Fig. 2c and d). The first stage is mainly the thermal 
decomposition of polymer backbone, and the second stage is the thermal 
oxidation decomposition of residual char [7]. The T5% of the EP-SNC 
sample is significantly increased, indicating that organic selenium can 
improve the thermal stability in air atmosphere [13]. Furthermore, the 
char yield of the EP-SNC samples is higher than that of EP and they are 
increased with the increase of SNC content, further confirming the 
promoting carbonization effect of organic selenium.

Since SNC is introduced into the epoxy resin system as a co-curing 
agent, the selenodiazole groups contained in its structure can provide 
strong intermolecular forces and are prone to form a cross-linked 
network structure. However, this structure is susceptible to the influ
ence of solvents [35]. The solvent resistance experiment was conducted 
on the EP-SNC15 spline, and the results are shown in Fig. 2e. This spline 
can effectively maintain its structural integrity for more than 240 h in 
various polar and non-polar solvents such as water, methanol (MeOH), 
acetone (ACE), tetrahydrofuran (THF), ethyl acetate (EA), chloroform 
(CHCl3), toluene (TOL), petroleum ether (PE), 1 M NaOH solution and 1 
M HCl solution. This indicates that EP-SNC15 exhibits good solvent 
resistance.

3.3. Mechanical properties of EP-SNC

The curing behavior of EP and EP-SNC15 systems were systemati
cally analyzed via differential scanning calorimetry (DSC), and the 
relevant data showed in Fig. S2 and Table S3. Both mixtures exhibit a 
single curing exothermic peak. And the peak curing temperature (Tp) of 
EP-SNC15 is significantly lower than that of EP, which may be attributed 
to the early ring opening of the epoxy groups catalyzed by the phenolic 
hydroxyl and carboxyl groups in SNC. Moreover, the Kissinger, Crane, 

and Flynn-Wall-Ozawa (FWO) methods were employed to investigate 
the curing kinetics, and the corresponding linear fittings of ln(β/Tp

2) vs. 
1/Tp and ln(β) vs. 1/Tp are presented in Fig. S2c and d. The reaction 
model was first established using the Kissinger method and further 
validated by the FWO approach. The calculated kinetic parameters and 
the obtained Ea are listed Table S3. The Ea is a commonly used indicator 
for evaluating the curing activity of resins. Compared to EP, EP-SNC15 
sample exhibit higher Ea values. This mainly originates from the fact 
that SNC acts as a co-curing agent to consume part of the epoxy groups, 
which reduces the effective reaction site of the epoxy-amine curing re
action and introduces a spatial site resistance, thus increasing the energy 
barrier of the curing reaction.

The mechanical properties of EP and EP-SNC samples were studied, 
with detailed results presented in Fig. 3, S3 and Table S4, S5. The storage 
modulus (E′) and tan δ plots were obtained by dynamic mechanical 
analysis (DMA), and the results are shown in Fig. 3a-c and Table S4. 
According to the classical theory of rubber elasticity, the crosslinking 
density (υ) is calculated according to the formula: υ = E/3RT, where R is 
the gas constant and E is the E’ corresponding to the temperature being 
30 ◦C higher than Tg [36,37]. Due to the introduction of SNC, the glass 
transition temperature (Tg) of EP-SNC samples decreases, mainly 
because of the decrease in υ (see Fig. 3c and Table S4). During the curing 
process, the carboxyl and phenolic hydroxyl groups in SNC react with 
the epoxy groups of EP, resulting in covalent bonding between SNC and 
the EP/DDM cross-linked network. This may interfere with the complete 
curing of the epoxy system, thereby reducing the υ. Moreover, the static 
mechanical property test results of EP and EP-SNC samples are shown in 
Fig. 3d-f and Table S5. The addition of SNC can effectively enhance the 
mechanical performance of EP-SNC samples. In detail, the tensile 
strength and Young’s modulus (75.3 MPa and 2792.3 MPa) of EP-SNC15 
are higher than those of EP (50.9 MPa and 1302.4 MPa). The impact 
strength and toughness of EP-SNC15 are 3.2 kJ/m2 and 1.44 MJ/m3, 
which are slightly higher than those of pure EP (3.1 kJ/m2 and 1.41 MJ/ 
m3), further demonstrating enhanced mechanical strength and tough
ness. The improvement in mechanical performance is attributable to the 
increased spatial site resistance of the rigid benzene structure and the 
supramolecular bonding interactions formed between the selenadiazole 
structure in SNC [35]. Such reinforcement and toughening effects have 
also been reported in previous studies [7].

To evaluate the action mechanism of SNC, the fracture surfaces of EP 
and EP-SNC samples after Izod impact testing were examined by scan
ning electron microscopy (SEM) and energy dispersive X-ray spec
trometry (EDS) techniques, with the results shown in Fig. S3. The cross- 
section of the EP sample is smooth, reflecting the characteristics of 
brittle fracture. The fracture surfaces of EP/SNC10 and EP/SNC15 
become rougher, with numerous folds and crack structures (Fig. S3b and 
c), which significantly increase the fracture area and lengthen the crack 
extension paths, thus effectively dissipating more fracture energy and 
improving the impact toughness of the materials. The Se-element 
mapping on the surface of EP/SNC10 and EP/SNC15 samples reveals 
that SNC acts as a co-curing agent to form covalent bonds with the cross- 
linked network of EP, which is uniformly distributed inside the matrix, 
thus enhancing the mechanical properties of the samples.

3.4. Flame-retardant performance of EP-SNC

The fire safety of EP and EP-SNC samples was tested by LOI, UL-94 
and cone calorimeter test (CCT), with the specific test results shown in 
Fig. 4 and Table S6–7. The LOI values and UL-94 rating of the samples 
are listed in Table S6. The LOI value of EP is 26.8 % and it fails the UL-94 
rating, indicating that EP is a highly flammable material [38]. With the 
introduction of SNC, the LOI value and UL-94 rating of EP-SNC signifi
cantly increase. Meanwhile, the flame retardant properties are gradually 
enhanced with the increase of SNC addition. In detail, when the addition 
amount of SNC is 15 wt%, EP-SNC15 exhibits an LOI value of 31.8 % and 
passes a UL-94 V-0 rating, thus it is a self-extinguishing material. The 
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results show that the introduction of SNC can significantly improve the 
flame retardancy of EP-SNC samples.

To quantitatively characterize the flame retardancy of EP samples, 
CCT was performed on EP samples. The results are shown in Fig. 4 and 
Table S7. The PHRR and THR of the EP sample are 1326.2 kW/m2 and 
77.8 MJ/m2, respectively. The PHRR and THR of EP-SNC samples are 
greatly lower than those of EP. For instance, the PHRR and THR of EP- 
SNC15 are 354 kW/m2 and 33.9 MJ/m2, respectively, with 73.3 % and 
56.3 % decreases compared with those of EP (see Fig. 4a and b). 
Therefore, SNC can effectively inhibit the heat release of EP during the 
combustion process. The fire growth rate (FIGRA) and fire performance 
index (FPI) are used to evaluate the fire safety of materials, with specific 
values are shown in Fig. 4c and f. A higher FPI and a lower FIGRA 
indicate improved fire safety performance of the material [39]. The FPI 
of EP-SNC15 (0.17 m2⋅s/kW) is significantly higher than that of EP 
(0.06 m2⋅s/kW), while its FIGRA (8.3 kW/m2/s) is markedly lower than 
that of EP (2.4 kW/m2/s), indicating a substantial enhancement in fire 
safety performance.

EP materials usually release a large amount of smoke when burning, 
which seriously affects their application [40]. The peak smoke produc
tion rate (PSPR) and total smoke production (TSP) of EP are up to 0.32 
m2/s and 28.4 m2, respectively, indicating considerable smoke toxicity, 
which poses significant challenges for fire evacuation and suppression 
(see Fig. 4e, S4 and Table S7). In contrast, the incorporation of SNC 
endows the EP samples with improved smoke suppression performance, 
as evidenced by reduced PSPR and TSP values. Specifically, the PSPR of 
EP-SNC5 decreases by 25.0 % compared to that of neat EP, while the TSP 
of EP-SNC15 reduces by 19.4 %. These results demonstrate that the 
incorporation of SNC effectively suppresses smoke generation and con
tributes to enhanced fire safety of the material. The average effective 
heat of combustion (AEHC) and residual char (RC) after combustion for 
the EP and EP/SNC samples are presented in Fig. 4d, g, and Table S7. 
The AEHC is an important parameter for evaluating the combustion 
degree of gaseous volatile substances [41]. The AEHC of EP-SNC sam
ples decreases significantly with increasing SNC content. At a SNC 
addition of 15 wt%, the AEHC reduces from 22.9 MJ/kg of neat EP to 

12.0 MJ/kg, exhibiting a decrease of 47.6 %. Such a change is mainly 
attributed to the free radical quenching effect of the active fragments 
derived from SNC, inhibiting the complete progress of the combustion 
reaction. In addition, the RC values of EP-SNC thermosets are all higher 
than that of EP, which is consistent with the results of thermogravi
metric analysis, further demonstrating the catalytic carbonization of 
SNC.

According to previous studies [42], the flame-retardant mechanisms 
of flame retardants primarily involve three pathways: flame inhibition 
in the gas phase (FIE), and barrier protection (BPE) as well as catalytic 
char formation (CE) in the condensed phase. All EP-SNC samples exhibit 
higher FIE, BPE and CE values, indicating their combined gas-phase 
flame inhibition and condensed-phase barrier/protective effects dur
ing combustion (see Fig. 4h, i and S5). With increasing SNC content, 
both FIE and CE values increase concurrently, further confirming the 
progressive enhancement of radical scavenging in the gas phase and 
catalytic char formation in the condensed phase. Therefore, SNC acts 
synergistically in both the gas and condensed phases to suppress heat 
release and smoke generation effectively, thereby significantly 
improving the overall flame-retardant performance of EP.

3.5. Property comparison

The comprehensive performance of EP-SNC samples is compared 
with that of unmodified EP and previously reported phosphorus-free 
flame-retardant epoxy systems (Fig. 5 and Table S8) [11,43–51]. The 
results indicate that the chemically incorporation of Se/Schiff base- 
containing groups into the cross-linked network significantly enhances 
the flame retardancy, smoke suppression, and mechanical properties of 
the EP-SNC system (Fig. 5a). Notably, EP-SNC15 exhibits a higher LOI 
value than neat EP, and its PHRR and THR reductions are more obvious 
than those of most phosphorus-free flame-retardant EPs reported in 
previous works, which can be attributed to the radical-scavenging effect 
of Se groups in the gas phase and catalytic charring function of Se- 
containing and Schiff base groups in the condensed phase (Fig. 5b). In 
addition, the rigid benzene rings and noncovalent interactions 

Fig. 3. (a) Storage modulus plots, (b) tan delta curves, (c) glass transition temperature, (d) tensile stress-strain plots, (e) tensile strength, and (f) Young’s modulus of 
the EP samples.
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associated with Se-containing groups in SNC contributed to improved 
mechanical properties, resulting in superior strength compared to other 
phosphorus-free flame-retardant system. In summary, the EP-SNC15 
sample demonstrates outstanding overall performance in terms of 

flame retardancy, smoke suppression, and mechanical strength, high
lighting the great potential of Se-containing flame retardants for the 
development of high-performance phosphorus-free flame-retardant 
epoxy systems.

Fig. 4. (a) Heat release rate curves, (b) total heat release curve, (c) fire growth rate (FIGRA), (d) mass loss, (e) total smoke production curves, (f) fire performance 
index (FPI), (g) average effective heat of combustion (AEHC), (h) flame inhibition effect, (i) charring effect of EP samples.

Fig. 5. (a) Property comparison of the flame-retardant properties and mechanical properties of EP with different SNC contents; and (b) the LOI and PHRR and THR 
reductions of the previously reported phosphorus-free flame-retardant epoxy systems and EP-SNC15.
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3.6. Flame-retardant action of SNC

3.6.1. Condensed phase
To investigate the condensed-phase flame-retardant mechanism of 

SNC, the macro- and micro-morphologies of the char residues after cone 
calorimetry tests were examined using a digital camera and SEM (see 
Fig. S6). After combustion, the neat EP sample shows only a small 
amount of fragmented char with a thickness of approximately 10 mm 
(Fig. S6a and b). Meanwhile, the EP char surface exhibits numerous 
cracks and pores, indicating poor flame-retardant and smoke- 
suppression performance. In contrast, the EP-SNC10 and EP-SNC15 
samples form denser and more intumescent char layers, and the thick
ness of EP-SNC15 char is up to 23 mm, representing an increase of 
approximately 130 %. This enhancement effect may be attributed to the 
synergistic catalytic charring function of selenium-containing and Schiff 
base groups in SNC, which helps to inhibit heat transfer and smoke 
emission, thereby significantly enhancing flame-retardant and smoke- 
suppression performance.

To further explore the action mode of SNC in the condensed phase, 
Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were 
employed. The relevant results are shown in Fig. 6 and Table S9. In 
Fig. 6a, the D peak and G peak of the residual char at 1354 cm− 1 and 
1586 cm− 1 belong to the vibrations of amorphous C atoms and 

graphitized C atoms, respectively. The area ratio of peak D to peak G (ID/ 
IG) is negatively correlated with the graphitization degree of the char 
layer [52,53]. The ID/IG value of EP-SNC15 (2.78) is significantly lower 
than that of pure EP (3.07), indicating a higher degree of graphitization 
and increased char layer density. This suggests that SNC effectively 
promotes char formation and enhances the graphitization degree of the 
residual char, thereby reducing heat and oxygen transfer. These findings 
are consistent with the morphological features observed in the SEM 
images of the residual char.

The XPS spectra and elemental contents of EP and EP-SNC15 chars 
are presented in Fig. 6. Both EP and EP-SNC15 chars contain carbon, 
nitrogen, and oxygen. Additionally, selenium is also present in EP- 
SNC15 char, further confirming the condensed-phase flame-retardant 
effect of SNC (see Fig. 6b and Table S9). In detail, compared with EP char 
(5.15), the C/O atomic ratio of the EP-SNC15 char increases to 5.34, 
indicating that the introduction of SNC as a co-curing agent promotes 
the carbonization process and reduces the oxygen content in the residual 
char. The higher C/O ratio implies the formation of a denser and ther
mally stable char layer, which helps to inhibit heat transfer and the 
release of combustible materials during the combustion process, thus 
enhancing the overall flame retardant and smoke suppressant 
properties.

In addition, the high-resolution XPS C1s, N1s, and O1s spectra of EP- 

Fig. 6. (a) Raman spectra of residual chars; (b) XPS full-scan spectra of EP and EP-SNC15 chars; high-resolution (c) Se3d, (d) O1s, (e) N1s, and (f) C1s spectra of EP- 
SNC15 char; and high-resolution (g) O1s, (h) N1s, and (i) C1s spectra of EP char.

Q. Zhong et al.                                                                                                                                                                                                                                  Chemical Engineering Journal 523 (2025) 168756 

7 



SNC15 char are similar to those of EP char (see Fig. 6d-i). Two decon
volution peaks at 532.7 and 531.5 eV are detected in the O1s spectra, 
corresponding to the O––C and O–C carbon oxide structures, respec
tively (Fig. 6d and g) [54]. The peak at 398.8 eV in the N1s spectra 
belongs to the pyridine-N- structure (Fig. 6e and h) [55]. The peaks at 
284.2, 285.6 and 288.2 eV in the C1s spectra correspond to the C–C, 
C–O and C––O structures, respectively (Fig. 6f and i) [56]. Moreover, 
the high-resolution Se3d spectrum of EP-SNC15 char shows a charac
teristic peak of Se–C bonding at 55.2 eV, indicating that Se participates 
in the construction of stable char layers during the carbonization process 
(Fig. 6c) [13]. These results indicate that, during combustion, the cat
alytic carbonization effect of the Se-containing groups and Schiff base 
structures in EP-SNC15 enhances the graphitization degree of the re
sidual char, protects the underlying matrix, and provides physical 
isolation, thereby contributing to its flame-retardant performance [57].

3.6.2. Gaseous phase
The mode action of SNC in the gas phase was analyzed via ther

mogravimetric infrared (TG-IR) and pyrolysis gas chromatography/ 
mass spectrometry (Py-GC/MS) tests. As shown in Fig. 7a-c, EP and EP- 
SNC15 release similar decomposition products upon heating, including 
water (3724 cm− 1), hydrocarbons (2971 cm− 1), carbon dioxide (2360 

cm− 1), carbonyl compounds (1713 cm− 1), aromatic compounds (1515 
cm− 1 and 823 cm− 1), and ethers (1178 cm− 1) [41,42]. The peaks cor
responding to ether derivatives, aromatic compounds, and hydrocar
bons of the gaseous decomposition products for EP-SNC15 are lower 
than those for EP (see Fig. 7d-f), which further indicates that the 
degradation products of SNC inhibit pyrolysis by facilitating the 
carbonization of the substrate, thus protecting the substrate. Further
more, the pyrolysis products of SNC were analyzed by Py-GC/MS, with 
the total ion chromatogram and major pyrolysis products shown in 
Fig. 7g and h. The main pyrolysis products of SNC are aliphatic amines, 
aromatic organic compounds and selenium-containing compounds. The 
N-containing derivatives released by SNC during combustion can dilute 
the concentration of flammable gases [58]. Furthermore, during the 
combustion process, the weak bond Se–N in SNC breaks to generate free 
radicals (Se⋅), which capture active free radicals from the EP matrix, 
thereby interrupting the chain reaction of combustion and thus inhib
iting the combustion reaction [59].

The possible roles of SNC in the combustion process are shown in 
Fig. 8: (i) during pyrolysis, the Se- and N-containing fragments are 
released from the decomposition of SNC to dilute the concentration of 
combustible gases and trap the high-energy free radicals (⋅OH and ⋅H) 
from epoxy matrix, thus inhibiting the combustion chain reaction in the 

Fig. 7. TG-IR plots of the gaseous decomposition products of (a) EP and (b) EP-SNC15; (c) FTIR curves of EP and EP-SNC15 samples at temperature at maximum 
weight loss rate (Tmax); absorbance and temperature curves of the gaseous decomposition products of EP and EP-SNC15 at (d) 1178, (e) 1515, and (f) 2971 cm− 1; (g) 
total ion chromatogram of SNC; and (h) pyrolysis products of SNC detected by Py-GC/MS.
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gas phase; (ii) In the condensed phase, the organic selenium group de
grades into selenium-containing acids that catalyze the carbonization of 
the substrate, and the Schiff base groups enhance the densification and 
adiabatic properties of the char layer via their self-cross-linking reaction, 
thereby effectively hindering the transfer of heat and oxygen. Therefore, 
SNC acts in both the gas and condensed phases to suppress the heat 
release and smoke emission, thus improving fire safety of EP.

4. Conclusions

In this work, a selenium/Schiff base-containing bio-based co-curing 
agent was successfully synthesized using 3, 4-diaminotoluene, sele
nium dioxide and 5-aminosalicylic acid as raw materials and applied it 
to flame-retardant EPs. With the increase of SNC content, the flame 
retardancy and mechanical properties of EP-SNC significantly improve, 
and high thermal stability and good solvent resistance are effectively 
maintained. EP-SNC15 exhibits excellent mechanical robustness (tensile 
strength: 75.3 MPa) and flame-retardant performance (a UL-94 V-0 rat
ing and an LOI of 31.8 %). Its PHRR and THR are reduced by 73.3 % and 
56.3 %, respectively, compared to neat EP, outperforming previously 
reported phosphorus-free flame-retardant EPs. During combustion, the 
selenium-containing and Schiff-base groups in SNC promotes the for
mation of dense char layers, and the Se-containing fragments quench the 
active radicals in the gas phase, thereby suppressing combustion. This 
study provides a simple and effective approach for creating next- 
generation reactive flame retardants for epoxy systems, promoting the 
development of bio-based flame retardants.
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