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ABSTRACT: El Niño–Southern Oscillation (ENSO) is the dominant mode of interannual climate fluctuations with wide-

ranging socioeconomic and environmental impacts. Understanding the eastern Pacific (EP) and central Pacific (CP) ElNiño
response to a warmer climate is paramount, yet the role of internal climate variability in modulating their response is not

clear. Using large ensembles, we find that internal variability generates a spread in the standard deviation and skewness of

these two El Niño types that is similar to the spread of 17 models from phase 5 of the Coupled Model Intercomparison

Project (CMIP5) that realistically simulate ENSO diversity. Based on 40 Community Earth SystemModel Large Ensemble

(CESM-LE) and 99 Max Planck Institute for Meteorology Grand Ensemble (MPI-GE) members, unforced variability can

explain more than 90% of the historical EP and CP El Niño standard deviation and all of the ENSO skewness spread in the

17 CMIP5 models. Both CESM-LE and the selected CMIP5 models show increased EP and CP El Niño variability in a

warmer climate, driven by a stronger mean vertical temperature gradient in the upper ocean and faster surface warming of

the eastern equatorial Pacific. However,MPI-GE shows no agreement in EP or CP standard deviation change. This is due to

weaker sensitivity to the warming signal, such that when the eastern equatorial Pacific surface warming is faster, the change

in upper ocean vertical temperature gradient tends to be weaker. This highlights that individual models produce a different

ENSO response in a warmer climate, and that considerable uncertainty within the CMIP5 ensemble may be caused by

internal climate variability.
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1. Introduction

El Niño–Southern Oscillation (ENSO) is the leading mode

of interannual variability across the globe, generating severe

weather events which impact agriculture and ecosystems

(Aronson et al. 2000; Glynn and deWeerdt 1991; Vincent et al.

2011). As a diverse and dynamic phenomenon, it is widely

accepted that there are at least two types of El Niño events: the

canonical eastern Pacific (EP) and central Pacific (CP) El Niño
(Johnson 2013; Capotondi et al. 2015). EP El Niño tends to be

stronger than CP events, with anomalously warm sea surface

temperatures (SSTs) in the central to eastern Pacific and an

eastward shift of the Walker circulation. This in turn generates

increased rainfall over parts of South America while dry con-

ditions develop over the western Pacific (Chiew et al. 1998;

GrimmandTedeschi 2009; Ropelewski andHalpert 1986). The

extreme 1997/98 EP El Niño event shifted the intertropical

convergence zone equatorward, leading to intense rainfall over

the eastern equatorial Pacific and severe flooding in parts of

Ecuador and Peru (Douglas et al. 2009). Coral bleaching re-

lated to this extreme event was observed in reefs across the

Pacific while Indonesia, eastern Australia, and the Amazon

basin experienced drought and bushfires (Aronson et al. 2000;

Glynn et al. 2001; Siegert et al. 2001).

In contrast to EP El Niño events, CP El Niño, sometimes

called warm-pool El Niño (Kug et al. 2009), El Niño Modoki

(Ashok et al. 2007), or date line El Niño (Larkin and Harrison

2005), exhibits maximum warming in the central Pacific. Due

to the different location of warming, the impacts, evolution,

and predictability of CP El Niño differ from EP El Niño (Kao

and Yu 2009; Yeh et al. 2014; Capotondi et al. 2015). CP El

Niño can cause significant changes in atmospheric circulation

and convection, potentially leading to increased landfall of

Atlantic hurricanes (Kim et al. 2009). The extreme 2015/16 El

Niño was a mixed type of event (Santoso et al. 2017) and had

significant impacts across the globe. Parts of the Amazon ex-

perienced severe drought (Jiménez-Muñoz et al. 2016) while

devastating coral bleaching and declines in seabird colonies

were observed in the central equatorial Pacific (Brainard et al.

2018). Due to these impacts and diversity, understanding the

response of ENSO to a warmer climate is a priority in climate

research.

The two main EP and CP regimes represent ENSO diversity

and the nonlinearity between El Niño and La Niña events

(Dommenget et al. 2013; Takahashi and Dewitte 2016;
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Williams and Patricola 2018). These can be described by the

E-index and C-index, respectively, calculated using empirical

orthogonal function (EOF) analysis of tropical Pacific SSTs

(Takahashi et al. 2011). These two indices are just one of the

many methods to identify ENSO diversity; other approaches

include variables such as sea surface salinity, subsurface tem-

perature, or outgoing longwave radiation (Capotondi et al.

2015). Many of thesemethods use spatially fixed regions, which

may capture the location of maximum variability in some

coupled models but not others. By using EOF analysis, each

model or observational product can express its own variability

and maximum center (Takahashi et al. 2011). Utilizing this

method to identify models that simulate ENSO diversity, Cai

et al. (2018) showed that models from phase 5 of the Coupled

Model Intercomparison Project (CMIP5) project an increase

in the frequency of EP El Niño under increasing green-

house gases.

In many climate model studies (e.g., Cai et al. 2018), one

experiment from a model is often used, and as such, the role

of internal variability within each model in modulating the

response to increasing greenhouse gases is not clear. Here,

internal climate variability represents unforced natural vari-

ability and is one of the three main causes of uncertainty in

climate projections, the other two being the forcings and

model response (Hawkins and Sutton 2009; Deser et al. 2012).

Therefore, internal climate variability can lead to large in-

tramodel spread in projections due to the chaotic variability

of a model’s climate system. The importance of unforced

natural variability has been highlighted by previous studies

(e.g., Deser et al. 2012; Stevenson 2012) with the suggestion

that ENSO’s strong variability on decadal time scales may be

caused by natural variability (Wittenberg 2009). This raises

the issue as to whether a single experiment is representative

of each model in multimodel ensemble projections. Zheng

et al. (2018) analyzed the influence of internal variability on

the response of ENSO amplitude (using Niño-3 SST) to in-

creasing greenhouse gases utilizing 40 Community Earth

System Model Large Ensemble members (CESM-LE; Kay

et al. 2015). They showed that the uncertainty of the Niño-3
amplitude change in CESM-LE is similar in magnitude to

CMIP5 models, suggesting that unforced natural variability

contributes up to 80% of the CMIP5 uncertainty in the pro-

jected Niño-3 amplitude change.

Another study by Maher et al. (2018) examined the ENSO

response in CESM-LE and the Max Planck Institute Grand

Ensemble (MPI-GE). They found that large ensembles with at

least 30–40 members are required to adequately quantify in-

ternal variability in projections of ENSO. They also noted that

internal climate variability can account for up to 90% of the

CMIP5 diversity, similar to Zheng et al. (2018). When com-

paring the large ensembles with the CMIP5 ensemble, Maher

et al. (2018) and Zheng et al. (2018) only considered the Niño-3
and Niño-4 indices. As these spatially fixed indices were used,

the influence of internal variability on the simulation of the two

EP and CP ENSO regimes and their response to greenhouse

warming remains uncertain. Using CESM-LE and MPI-GE,

we investigate EP (E-index) and CP (C-index) standard devi-

ation and skewness to understand the influence of internal

climate variability on these properties along with its contri-

bution to the CMIP5 ensemble.

2. Data and methodology

The extent to which the EP and CP ENSO regimes

are distinct is reflected in the nonlinear relationship be-

tween the two leading principal components (PCs), described

by a second-order (quadratic) polynomial fit, PC2(t) 5
a[PC1(t)]2 1 bPC1 1 g (Cai et al. 2018; Dommenget et al.

2013), with alpha (a) measuring the strength of nonlinearity.

Stronger (more negative) alpha tends to be associated with

greater positive E-index skewness and more negative C-index

skewness, allowing the contrast in SST anomaly magnitude

between EP and CP ENSO types to be quantified. Cai et al.

(2018) showed that the majority of CMIP5 models have an

alpha value that is weaker than the 1948–2015 observed value

of 20.31. Seventeen out of 34 (50%) CMIP5 models simulate

an alpha value at least half of the observed (20.155).

These 17 CMIP5 models (Table S1 in the online supple-

mental material) have distinct centers for the two ENSO types

andwere examined by Cai et al. (2018) to assess the response of

E-index variability to a warmer climate. The threshold value of

50% was chosen so that as many models as possible could be

analyzed while still retaining meaningful ENSO nonlinearity.

Another method for model selection is to use the two standard

deviation spread from CESM-LE and MPI-GE (60.12 and

60.16, respectively) and examine models that lie within this

spread from the observations. This would give a selection range

from 20.43 to 0.11, which includes 18 CMIP5 models and

would not significantly alter our results. As such, we examine

the same 17 models used by Cai et al. (2018) to provide context

for the CESM-LE and MPI-GE results. Only the first realiza-

tion, initialization, and physics (i.e., r1i1p1) of each CMIP5

model are used. Using all available realizations for the 17 se-

lected models does not appear to alter the strength of the re-

lationships observed in this analysis, but it does increase the

uncertainty and spread of the CMIP5 ensemble for some

properties. However, the relatively low number of CMIP5 re-

alizations (six or fewer in this study) may not be enough as it

has been suggested by Maher et al. (2018) that ensembles of at

least 30 members are required to robustly capture ENSO

variability.

Data from the Twentieth Century Reanalysis v2c (20CRv2c;

Compo et al. 2011), European Centre for Medium-Range

Weather Forecasting (ECMWF) CERA-20C (Laloyaux et al.

2018), ECMWF ERA20C (Poli et al. 2016), Extended

Reconstructed SST version 3b (ERSSTv3b; Smith et al. 2008),

and Hadley Centre Sea Ice and SST version 1.1 (HadISST;

Rayner et al. 2003) are used to represent observations for the

1920–99 historical period. Using these three reanalysis prod-

ucts and two assimilated datasets as our observations, the ob-

served ensemble average alpha value for the 1920–99 period

is 20.27 6 0.02.

Forty members from CESM-LE are examined in this study,

with all simulations from CESM version 1. CESM is composed

of four different models that each represent a component of

the climate system. The Community Atmosphere Model
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version 5 (CAM5), the Parallel Ocean Program version 2

(POP2), the Community Land Model version 4 (CLM4), and

the Los Alamos Sea Ice Model (CICE) are coupled using the

CESM coupler version 7 (CPL7). The first member of CESM-

LE begins at 1850 using initial conditions from a randomly

selected date of the preindustrial control run (1 January, year

402). Subsequent ensemble members begin from 1 January

1920 of ensemble member 1. To simulate internal climate

variability, the initial condition of member 2 uses 1-day lagged

ocean temperatures from member 1 and for members 3–40,

small differences in the initial condition are created by small

round-off differences in air temperature. Each member then

evolves freely through stochastic processes and any difference

between runs is therefore due to internal variability. All

members of CESM-LE have the same external forcings, which

follow the CMIP5 design protocol (Taylor et al. 2012); histor-

ical forcings are applied from 1850/1920 to 2005 and repre-

sentative concentration pathway 8.5 (RCP8.5) forcings from

2006 to 2100. Further information about CESM-LE and its

experiment design can be found in Kay et al. (2015).

Ninety-nine MPI-GE members (Maher et al. 2019) are also

analyzed. MPI-GE uses the MPI Earth System Model (MPI-

ESM) version 1.1.00p2 in a low-resolution setup consisting of

the following components: MPI Ocean Model (MPIOM) on a

GR15L40 grid, Hamburg Ocean Carbon Cycle model version

5.2 (HAMOCC5.2) for ocean biogeochemistry, ECHAM

version 6.3.01p3 for the atmospheric component, and JSBACH

version 3.00 for the land model. Each member of MPI-GE

begins on 1 January 1850 but is initialized from the state of

1 January using different years of the control simulation. This

leads to each member representing a different state of the 1850

climate system. Additional details about MPI-GE, its experi-

ment design, and data availability can be found in Maher et al.

(2019). While all 99 MPI-GE members are used in this analysis,

not all of them simulate ENSO nonlinearity with only 47

members simulating an alpha value at least half of the observed.

CESM-LE and MPI-GE were the only publicly available large

ensembles at the time of analysis; however, more large ensem-

bles have been released recently due to greater awareness of the

uncertainty caused by internal variability (Deser et al. 2020).

Historical (1920–99) and future (2020–99) SSTs and ocean

temperatures from CESM-LE, MPI-GE, and CMIP5 are re-

gridded to a 18 3 18 grid. The future data for all three ensem-

bles follow the high-emissions RCP8.5 trajectory. When

examining future minus historical changes, the results are

scaled by the global mean SST warming (defined as the future

global mean SST averageminus the historical global mean SST

average) to account for differences in the warming rate be-

tween models and runs. Linear correlation and regression are

used to identify relationships between variables. For each

member of CESM-LE and MPI-GE, and each CMIP5 model,

EOF analysis is conducted on quadratically detrendedmonthly

SST anomalies over the tropical Pacific (158S–158N, 1408E–
808W) from 1920 to 2099. The SST anomalies used in the EOF

analysis are referenced to the historical (1920–99) climatology.

Another method to remove the forced signal is to remove the

ensemble mean (e.g., Frankcombe et al. 2015); however, as we

are also examining the CMIP5 ensemble where each model

has a different forced signal, we apply the same methodology

to all three ensembles.

In both CESM-LE and MPI-GE, the leading EOF (en-

semble mean) pattern represents strong warming across

the equatorial Pacific and the second EOF pattern is a

dipole with cold anomalies in the EP and warming in the

western Pacific (Fig. S1). The associated PC time series are

normalized by their respective standard deviations and then

used to calculate theE(PC12PC2/
ffiffiffi
2

p
) and C(PC11PC2/

ffiffiffi
2

p
)

indices, representing EP and CP El Niño events,

respectively (Takahashi et al. 2011). We examine E-index

and C-index standard deviation (s) and skewness—defined

as the third central moment (m3), where skewness 5

(m3/s
3)5 (1/n)�n

i51(xi 2 x)3/
n
[1/(n2 1)]�n

i51(xi 2 x)2
o3/2

—in

the three ensembles and their relationship with alpha in the

following section.

3. Results

a. The role of internal variability in simulating properties of

two ENSO regimes

The historical CESM-LE mean SST standard deviation

(Fig. 1b) is considerably stronger than observed (Fig. 1a) but

the structure is comparable. The MPI-GE ensemble has a

similar magnitude to observations but exhibits a double peak

with warming centers in both the eastern and western equa-

torial Pacific (Fig. 1d). Both ensembles exhibit a westward bias

that likely arises from the cold tongue bias that is common in

models (Kug et al. 2012; Bellenger et al. 2014). Figures 1c and

1e show the intermember regression between historical alpha

and grid point SST standard deviation for CESM-LE andMPI-

GE, respectively. Both models display a basinwide negative rela-

tionship between alpha and SST standard deviation with a mini-

mum in the central Pacific, indicating that when an ensemble

member has a stronger (i.e., more negative) alpha amplitude, SST

standard deviation in the central Pacific tends to be larger.

However, the CESM-LE regression pattern is notably stronger and

has a wider longitudinal extent compared to MPI-GE.

The intermember/intermodel relationship between alpha

and E-index standard deviation is shown in Fig. 1f. CESM-LE

and MPI-GE show a significant correlation (at the 95% con-

fidence level) although the correlation for MPI-GE is weak

(R 5 20.23). The selected CMIP5 models also have a strong

intermodel relationship that is significant at the 90% confi-

dence level. For alpha and C-index standard deviation

(Fig. 1g), only CESM-LE shows a significant relationship.

These relationships suggest that CESM-LE members with

more negative alpha tend to have stronger EP and CP El Niño
events and variability, as represented by the larger E-index and

C-index standard deviations. Therefore, in CESM-LE, it in-

dicates that EP and CP ENSO amplitude is related to the

strength of ENSO nonlinearity which arises from unforced

natural variability.When the system ismore nonlinear, El Niño
events tend to be stronger in CESM-LE. Using all available

realizations from the 17 CMIP5 models does not appear to alter

the results (Figs. S2a,b) and a similar relationship is seen when
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comparing historical alpha with Niño-3 and Niño-4 standard devia-

tion (Figs. S3a,b). This shows that SST variability over the Niño-3
and Niño-4 regions is significantly related to alpha in the three en-

sembles, as can be seen in Figs. 1c and 1e.

The alpha ensemble mean values can be compared to ob-

servations (Figs. 1f,g). CESM-LE simulates an ensemble mean

alpha value (20.37) that is stronger than observed (20.27 for

the 1920–99 period) while MPI-GE has a relatively weak en-

semble mean alpha (20.13). The selected CMIP5 mean alpha

(20.26) is close to the observations. These alpha values show

that CESM-LE simulates both strong ENSO nonlinearity and

the two distinct EP and CP ENSO regimes.
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FIG. 1. (a) 1920–99 historical observedmean SST standard deviation over the tropical Pacific from five reanalysis

datasets. (b) Historical CESM-LE mean SST standard deviation from 40 members. (c) CESM-LE intermember

regression of grid point historical SST standard deviation onto historical alpha. (d),(e) As in (b) and (c), respec-

tively, but for 99 MPI-GE members. (f) Relationship between historical alpha and E-index standard deviation.

(g) As in (f), but for alpha and C-index standard deviation. Stippling in (c) and (e) represents regions where the

intermember correlation is significant at the 95%confidence level, based on a two-tailed Student’s t test. Open pink,

orange, and blue circles with crosses in (f) and (g) represent CESM-LE members, MPI-GE runs, and CMIP5

models, respectively. Solid circles in (f) and (g) represent their respective ensemble means. The red plus sign in

(f) and (g) represents the ensemble mean from the three reanalysis and two observational datasets.
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To quantify the role of internal variability, Fig. 2a shows the his-

torical alpha ensemblemean alongwith the full range, 5th–95th, and

10th–90th percentiles for the selected CMIP5 models, CESM-LE,

and MPI-GE. Following the method of Maher et al. (2018), this

shows that internal climate variability may explain up to 90%of the

diversity in the selected CMIP5 ensemble as the spread of CESM-

LE and MPI-GE is as large as the 5th–95th percentiles of the se-

lected CMIP5 ensemble. The intermember spread of CESM-LE

and MPI-GE can explain up to 90% of the E-index uncertainty in

the selectedCMIP5 ensemble (Fig. 2b). Similar results also occur for

the C-index with unforced natural variability accounting for 90%–

100% of the C-index standard deviation diversity in the selected

CMIP5 ensemble (Fig. 2d). The inclusion of all available realizations

for the 17 selected CMIP5 models does not considerably affect our

results (Fig. S4). This may be because of the low number of reali-

zations available for each of the CMIP5 models.

Amplitude and spatial nonlinearity are dominant characteristics

of ENSO and this leads to strong positive SST skewness over the

central and eastern Pacific, while large negative SST skewness is

located in the western Pacific (Capotondi et al. 2015). The positive

SST skewness indicates thatwarmSST anomalies associatedwithEl

Niño events, tend to be stronger than cool SST anomalies in the

eastern Pacific. Similarly, negative SST skewness in the western

Pacific implies that cold SST anomalies during El Niño tend to be

stronger than warm SST anomalies during LaNiña. CESM-LE and

MPI-GE simulate positiveEPSST skewness as seen in the historical

ensemble mean (Figs. 3b,d) but the magnitudes are considerably

weaker than observed (Fig. 3a) and also contain a westward bias.

The linear regression pattern of grid-point SST skewness onto alpha

is shown inFigs. 3c and 3e forCESM-LEandMPI-GE, respectively.

Bothmodels exhibit a negative relationship between alpha and SST

skewness in the central to eastern Pacific, indicating that more

negative alpha values are associated with a more positive SST

skewness. A positive relationship is observed in the western Pacific

where SST skewness is negative due to theElNiño–induced cooling
in the region. Therefore, when alpha amplitude is larger (i.e., more

negative), SST skewness also tends to be more negative and a sig-

nificant positive relationship is exhibited.

As alpha is a measure of ENSO nonlinearity, all three en-

sembles display strong and significant negative correlations

between historical alpha values and E-index skewness (Fig. 3f).

When alpha is more negative, the E-index skewness tends to be

more positive, with EP El Niño events generally larger in

amplitude. The opposite occurs between alpha and C-index

skewness where stronger alpha is associated with more nega-

tive skewness (Fig. 3g). This positive relationship occurs as the
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FIG. 2. (a) Historical alpha ensemblemean and percentiles for the 17 selected CMIP5models, 40 CESM-LE, and

99MPI-GE simulations. (b)–(e) As in (a), but for E-index standard deviation, E-index skewness, C-index standard

deviation, and C-index skewness, respectively.
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C-index is dominated by La Niña events, which are usually

stronger than CP El Niño, causing the C-index to be negatively

skewed. Figures 3f and 3g clearly show that members and

models with weak alpha tend to display no skewness and

therefore ENSO nonlinearity in these models and members is

weak. For both E-index and C-index skewness (Figs. 2c,e),

CESM-LE and MPI-GE exhibit a spread that is larger than

that of the selected CMIP5 model ensemble. Therefore, un-

forced natural variability may account for almost all of the

diversity, highlighting the importance of internal variability in
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FIG. 3. (a) 1920–99 historical observed mean SST skewness over the tropical Pacific from five reanalysis datasets.

(b) Historical CESM-LE mean SST skewness from 40 members. (c) CESM-LE intermember regression of grid

point historical SST skewness onto historical alpha. (d),(e) As in (b) and (c), respectively, but for 99 MPI-GE

members. (f) Relationship between historical alpha and E-index skewness. (g) As in (f), but for alpha and C-index

skewness. Stippling in (c) and (e) represents regions where the intermember correlation is significant at the 95%

confidence level, based on a two-tailed Student’s t test. Open pink, orange, and blue circles with crosses in (f) and

(g) represent CESM-LE members, MPI-GE runs, and CMIP5 models, respectively. Solid circles in (f) and

(g) represent their respective ensemble means. The red plus sign in (f) and (g) represents the ensemble mean from

the three reanalysis and two observational datasets.

2210 JOURNAL OF CL IMATE VOLUME 34

Brought to you by Bureau of Meteorology | Unauthenticated | Downloaded 02/23/21 03:42 AM UTC



modulating the nonlinear processes responsible for E-index

and C-index skewness. The robustness of the alpha and skewness

relationships are highlighted by the similar correlations when

all available realizations from the 17 CMIP5 models are uti-

lized (Figs. S2c,d). Interestingly, Niño-3 and Niño-4 skewness

is not as strongly related to alpha (Figs. S3c,d) and therefore

the two Niño regions may not appropriately represent ENSO

nonlinearity and diversity.

b. The role of internal variability in the ENSO regimes’

response to greenhouse warming

The changes (future minus historical) in alpha, E-index, and

C-index statistics, and their relationships, are examined in

Fig. 4. There is a significant correlation between the changes in

alpha with the changes in E-index standard deviation that oc-

curs for all three ensembles (Fig. 4a). When alpha becomes

stronger (more negative), E-index standard deviation tends to

increase, suggesting that EP El Niño variability increases. The

selected CMIP5 ensemble relationship is stronger than for

CESM-LE and MPI-GE (e.g., compare the slope values in

Fig. 4a), which suggests that while internal climate variability

contributes to this relationship, there are other external forc-

ings and model differences that may also play a role. A similar

response is observed for C-index standard deviation (Fig. 4b),

indicating that enhanced CP El Niño and La Niña variability

are also associated with strengthened alpha.
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The robustness of the projected changes in EP and CP

ENSO standard deviation can be assessed by examining the

consensus among models and runs. We define consensus as

when 75% of an ensemble agree on the sign of the change.

BothCESM-LE andCMIP5 show strong agreement in E-index

standard deviation change, with 38 (95%) CESM-LEmembers

and 14 (82%) CMIP5 models exhibiting an increase, with the

latter consistent with the results of Cai et al. (2018). However,

for MPI-GE only 33 (33%) members project an increase while

66 (67%) runs show a decrease in E-index standard deviation.

For C-index standard deviation (Fig. 4b), 35 (88%) CESM-LE

runs display an increase but only 11 (65%) CMIP5 models and

53 (54%) MPI-GE members show an increase, indicating a

lack of consensus for these two ensembles.

Changes in alpha are also related to changes in E-index

skewness (Fig. 4c), with a strong negative correlation for all

three ensembles. Future strengthening of alpha tends to be

associated with increased E-index skewness, suggesting that

EP El Niño events are becoming stronger and/or occurring

more frequently in the future period. The relationship between

changes in alpha and C-index skewness is less clear (Fig. 4d).

Only MPI-GE shows a significant relationship (at the 95%

confidence level) whereas for CESM-LE and the selected

CMIP5models the correlations are weaker and only significant

at the 90% confidence level.

There is no agreement on the sign of the change in alpha.

Nineteen (48%) CESM-LE runs, 9 (53%) CMIP5 models, and

38 (38%) MPI-GE members project a future strengthening of

alpha (Fig. 4a). As alpha, E-index skewness, and C-index

skewness are linked, there is also no consensus on the sign of

E-index skewness change or C-index skewness change.

Eighteen (45%) CESM-LE members and 7 (41%) CMIP5

models exhibit an increase while 70 (70%) MPI-GE runs

show a decrease in future E-index skewness. For C-index

skewness, 18 (45%) CESM-LE runs, 56 (56%) MPI-GE

members, and 10 (59%) CMIP5 models simulate a future

(more negative) increase. This lack of consensus in alpha,

E-index skewness, and C-index skewness shows that the re-

sponse of ENSO nonlinearity to a warmer climate is uncertain

and internal variability may contribute considerably to the

spread in CMIP5 models. It may also suggest that somemodels

project a decrease in alpha and ENSO skewness, meaning that

intermodel physics may play a role in addition to internal

variability.
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Figure 5 examines the contribution of internal climate var-

iability to the projected model changes in alpha and E-index

and C-index properties. Both CESM-LE and MPI-GE

exhibit a larger spread in alpha change than the selected

CMIP5 models (Fig. 5a). This shows that internal climate

variability can explain all of the diversity in projected alpha

changes in CMIP5. For E-index and C-index standard devia-

tion, internal variability can explain approximately 90% and

100% of the spread, respectively (Figs. 5b,d). Similar to

changes in alpha, internal variability may also explain all of the

projected changes in E-index and C-index skewness (Figs. 5c,e).

Therefore, the contributionof internal variability to changes inEP

andCPENSOproperties is substantial and this may contribute to

the uncertainty of CMIP5 projections.

c. Mechanisms of increased eastern Pacific El Niño
variability and the role of internal variability

When aggregated across CMIP5 models that simulate ENSO

nonlinearity, there are two main mechanisms that contribute to

the increase in EP El Niño standard deviation (Cai et al. 2018).

One mechanism is the faster SST warming in the equatorial

eastern Pacific than the surrounding regions and in CMIP5

models; this faster warming facilitates more frequent convection,

enabling the development of EP El Niño events (Cai et al. 2014).

This is measured by calculating the ‘‘SST warming pattern in-

tensity’’ for each member where the equatorial Pacific (58S–58N,

1408E–808W) warming pattern from each member is linearly re-

gressed onto the ensemble mean warming pattern. A larger re-

gression coefficient (i.e., stronger SST warming pattern intensity)

implies that an ensemble member has a stronger SST warming

than the ensemble mean or that the warming pattern closely re-

sembles the ensemble mean (Fig. 6a; see also Figs. S5a,c,e). The

change in mean SST between the top and bottom 25% of mem-

bers and models with strong/weak SST warming pattern intensity

is compared in Fig. S6. The top and bottom CESM-LE members

generally have spatially similar patterns, with stronger or weaker

warming relative to their ensemble mean and similar behavior is

seen for MPI-GE (Figs. S6a–f). For CMIP5, the four models with

the weakest change in mean SST (Fig. S6g) have both weaker

warming and a spatial structure (e.g., a double warming peak across

the equatorial Pacific) that does not resemble theCMIP5 ensemble

mean (Fig. S6i). Other studies (e.g., Zheng et al. 2016; Zheng 2019)

have usedNiño-3 SST relative to the tropicalmean to represent the

SST warming pattern. This also displays a similar relationship with

E-index and C-index standard deviation changes (not shown).

As shown in Cai et al. (2018), the second and primary cause

of increased EP El Niño standard deviation in CMIP5 models

is increased vertical stratification of the upper ocean (Fig. 6c;

Figs. S5b,d,f). Increased vertical stratification of the upper ocean

allows for stronger atmosphere–ocean coupling at the wind

anomaly center (Dewitte et al. 1999, 2009; An and Jin 2001; Cai

et al. 2018). This in turn increases the likelihoodof stochastic forcing

suchaswesterlywindbursts triggering anEPElNiñoevent (Levine
et al. 2016). These two mechanisms, increased stratification and

relative SST warming in the eastern equatorial Pacific, are exam-

ined in CESM-LE and MPI-GE to assess whether internal vari-

ability affects the relationship of these two processes with respect to

the change in E-index and C-index standard deviation.

In a warmer climate, CMIP5 models with a stronger SST

warming pattern intensity (Fig. S6h) tend to project a larger

increase in E-index standard deviation (Figs. 6a,b), in agree-

ment with Cai et al. (2018). A similar response is also observed

for CESM-LE; however, there is no correlation among MPI-GE

members. This lack of agreement between the two large ensem-

bles increases uncertainty about the relationship between SST

warming pattern intensity and the change in E-index standard

deviation. However, as more large ensembles from different

models become available, an intermodel relationship may be-

come clearer.

Selected CMIP5 models and MPI-GE runs show no rela-

tionship between SST warming pattern intensity and the

change in C-index standard deviation (Fig. 6b). This indicates

that the sensitivity of CP El Niño or La Niña to eastern

equatorial Pacific warming may be weaker in these two en-

sembles. Other compensating factors may also be at play; for

example, the different warming patterns between CMIP5

models suggest that some members have a warming maximum

in the eastern Pacific whereas othermodels have a double-peak

warming pattern (Figs. S6g–i). MPI-GE’s SST variability also

features a double-peak pattern (Fig. 1d) and an SST warming

pattern intensity that is relatively weaker (Figs. S5h and S6d–f).

These differences may act to offset or weaken the intermodel/

intermember relationship. CESM-LE, however, exhibits a

significant correlation, which may arise because of the signifi-

cant positive correlation between E-index standard deviation

and C-index standard deviation (Fig. S7) and E-index standard

deviation and SST warming pattern intensity (Fig. 6a). When a

CESM-LE member has large EP El Niño variability, CP El

Niño variability also tends to be large and a La Niña event

tends to follow a strong El Niño (Figs. S7 and S8; Cai et al.

2015). Although MPI-GE also displays a significant historical

relationship between C-index standard deviation and E-index

standard deviation (Fig. S7a), the correlation is not very strong

(R 5 0.37) and there is large uncertainty.

The change in mean vertical temperature gradient of the

upper ocean, defined as the difference between the mean

temperature over the upper 75m and the temperature at 100m

averaged over 58S–58N, 1508E–1408W, shows significant cor-

relations with E-index standard deviation change for all three

ensembles (Fig. 6c). As in Cai et al. (2018), changes in themean

vertical temperature gradient can explain approximately 55%

(R25 0.55) of the change in E-index standard deviation for the

selected CMIP5 models. This contribution from mean vertical

temperature gradient changes is stronger than that from SST

warming pattern intensity (R2 5 0.40) and similar behavior

occurs for MPI-GE [i.e., compare the CMIP5 and MPI-GE

correlation coefficients in Figs. 6a and 6c; see also Cai et al.

(2018), their Fig. 3]. These stronger correlations in MPI-GE

and the selected CMIP5 models suggest that changes in the

mean vertical temperature gradient play a larger role in the

response of EP ENSO standard deviation to a warmer climate.

In contrast, SST warming pattern intensity and faster warming

of the eastern equatorial Pacific appears to play a larger role

in E-index standard deviation changes of CESM-LE as the

relationship between the mean vertical temperature gradi-

ent and E-index standard deviation is relatively weaker (i.e.,
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comparison of the correlation coefficients in Figs. 6a and 6c).

Both MPI-GE and CESM-LE show a significant relationship

between E-index and C-index standard deviation (Fig. S7) and

thus both ensembles display significant correlations between

the change in C-index standard deviation and mean vertical

temperature gradient (Fig. 6d).

The contribution of internal climate variability to SST

warming pattern intensity spread in CMIP5 is at most 80%,
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with the diversity of CESM-LE and MPI-GE being consider-

ably smaller than the selected CMIP5 spread (Fig. 6e). A

similar response is also seen for changes in the mean vertical

temperature gradient (Fig. 6f). Diversity in CMIP5 is larger

because the external forcings and the model response to these

external forcings differ among CMIP5 models. Additional

uncertainties are also caused by model biases, physics, and

parameterizations (Kay et al. 2015; Maher et al. 2018). In

contrast, both large ensembles have the same external forcing

between members and the biases, physics, and parameteriza-

tions are the same in every run.

4. Discussion

It is clear that internal variability influences the response of

ENSO to a warmer climate with many studies examining this

relationship (e.g., Wittenberg 2009; Deser et al. 2012; Vega-

Westhoff and Sriver 2017; Zheng 2019). Previous studies

utilizing large ensembles have examined ENSO and internal

variability using the Niño-3 and Niño-4 indices to represent

ENSO (i.e., Maher et al. 2018; Zheng et al. 2018). However,

the use of the E-index and C-index to capture ENSO diversity

and alpha to measure nonlinearity is relatively new. As such,

this study aims to build on the results of Cai et al. (2018), who

showed that CMIP5 models that realistically simulate ENSO

diversity project an increase in EPEl Niño standard deviation
in response to a warmer climate. The same CMIP5 models

analyzed in Cai et al. (2018) are examined here to put the

large ensemble results into context. However, in light of the

recent release of CMIP6 models, it is possible that the re-

sponse of this newer generation of models may be different.

Climate sensitivity in CMIP6 appears to be considerably

higher than that of CMIP5 (Zelinka et al. 2020). Therefore,

CMIP6 models are simulating a stronger warming in response

to increasing greenhouse gases, which leads to greater

warming across the equatorial Pacific (Grose et al. 2020, their

Fig. 8). If the results presented here were to hold, the stronger

warming in CMIP6 may lead to an even larger change in

E-index standard deviation but further research is needed to

confirm this.

Alpha is used to measure ENSO diversity and the nonline-

arity between the two leading principal components of EOF

analysis over the equatorial Pacific. The relationship between

alpha and ENSO nonlinearity can be seen in the strong cor-

relation between alpha and E-index and C-index skewness

(Figs. 3f,g). It is important to note, however, that alpha (and

ENSO skewness) varies with respect to the period analyzed as

ENSO is a dynamic and evolving phenomenon. It is clear for

MPI-GE that some members exhibit an alpha value that is less

than half of the observed but the cause of this is not yet un-

derstood. One possible explanation may be MPI-GE’s unre-

alistic double peak in SST variability in the eastern andwestern

Pacific (Fig. 1d). Nevertheless, the results presented here show

that large diversity arises from internal variability, even in

models that have the physics to simulate realistic alpha (e.g.,

CESM-LE). This diversity can influence ENSO’s own response

to a warmer climate, increasing our uncertainty of its projected

changes (Cai et al. 2020).

There is large uncertainty as to whether ENSO skewness, as

represented by the E-index, C-index, and alpha will change in a

warmer climate (Figs. 4c,d). All three ensembles show no

consensus despite E-index and C-index standard deviation

generally increasing. Generally, an increase in standard devi-

ation can lead to stronger skewness but the results show that

larger standard deviation changes tend to be associated with

larger changes in themean state (i.e., upper ocean stratification

and eastern equatorial Pacific SST warming; Fig. 6). Therefore,

the lack of agreement may be caused by how skewness is cal-

culated, where it is referenced to a changing mean, potentially

leading to a two-way interaction between mean state change

and ENSO skewness.

As mentioned in section 3b, there is no agreement between

MPI-GE members on how EP or CP El Niño variability re-

sponds to a warmer climate (Figs. 4–6). This may be caused

by the comparatively weaker warming along the equatorial

Pacific in MPI-GE (Fig. S5c) than in CESM-LE or CMIP5

(Figs. S5a,e). This relatively weaker warming is clear when the

SST warming pattern is referenced to the ensemble mean us-

ing all 17 CMIP5, 99 MPI-GE, and 40 CESM-LE members

(Fig. S5h). Similarly, MPI-GE’s change in ocean tempera-

ture and upper-ocean stratification along the equator is also

relatively weaker than CESM-LE and CMIP5 (Figs. 6c,d;

Figs. S5b,d,f). The relationship between the SST warming

pattern intensity (relative to each ensemble’s own mean) and

the change inmean vertical temperature gradient inMPI-GE is

opposite to CESM-LE and CMIP5 (Fig. S5g). This weaker

upper-ocean stratification change, combined with the opposite

relationship between the two processes, suggests that MPI-

GE’s ocean–atmosphere coupling may be relatively weaker.

Further examination of this is required but a weaker coupling

between the atmosphere and ocean could explain the uncertain

response of E-index and C-index standard deviation to in-

creasing greenhouse gases in MPI-GE. This highlights that

individual models have a different response of ENSO to a

warmer climate which may be influenced by biases and pa-

rameterizations unique to each model.

5. Conclusions

The influence of internal climate variability on EP (E-index)

and CP (C-index) El Niño standard deviation and skewness are
examined using two large model ensembles, CESM-LE and

MPI-GE. Seventeen selected CMIP5 models that simulate

ENSO nonlinearity were also analyzed to approximate the

contribution of natural variability to the CMIP5 ensemble. In

the historical (1920–99) period, internal variability may ac-

count for between 90% and 100% of E-index standard devia-

tion and skewness diversity among the 17 selected CMIP5

models. A similar proportion (90%–100%) of C-index stan-

dard deviation and skewness spread is also explained by in-

ternal variability. This shows that unforced natural variability

of the climate system is a large source of uncertainty in CMIP5

EP andCPElNiño properties. Although different indices (e.g.,

Niño-3 and Niño-4) were utilized by Maher et al. (2018) and

Zheng et al. (2018), the general agreement between studies

highlights that there is a consistent contribution of internal
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variability to ENSO uncertainty. Future (2020–99) minus his-

torical changes in E-index and C-index standard deviation and

skewness are also examined. Although CESM-LE and CMIP5

models agree that E-index standard deviation will increase in a

warmer climate, MPI-GE shows no consensus. The differing

response between the two large ensembles shows that each

model has its own unique response of ENSO to increasing

greenhouse gases. For all four ENSO properties, the contri-

bution of unforced natural variability to the CMIP5 ensemble

is more than 90% and this increases the uncertainty of pro-

jections for these ENSO properties.

Finally, the two main mechanisms responsible for increasing

EP El Niño standard deviation were examined. These mech-

anisms are 1) faster warming of the eastern equatorial Pacific

than the surrounding regions and 2) increased stratification of

the upper ocean mean vertical temperature gradient (Cai et al.

2018). These two processes are driven by increasing green-

house gases and therefore the spread in the two large ensem-

bles is relatively small when compared to CMIP5. As each

CMIP5 model has different physics, parameterizations, and

biases, their response to a warmer climate can differ vastly

whereas each large ensemble member has the same

configuration.

For both processes, the CMIP5 spread appears to be largely

caused by differences between models and this may dominate

or mask the contribution of unforced natural variability.

Climate sensitivity, parameterizations, and aerosol schemes

differ between CMIP5 models whereas they are the same

among the large ensemblemembers. Another possibility is that

internal variability in the CMIP5 ensemble is undersampled

due to the lack of large ensembles for each model. The dif-

ference between the two large ensembles suggests that CESM-

LE is more sensitive to the warming signal than MPI-GE. In

CESM-LE, stronger eastern equatorial Pacific warming than

the surrounding area leads to the significant relationship be-

tween the SST warming pattern intensity and the change in

E-index and C-index standard deviation. In contrast, both the

mean vertical temperature gradient change and SST warming

pattern are relatively weaker in MPI-GE. The relationship

between these two processes is weak in MPI-GE, causing the

two processes to offset each other. This may explain the lack of

consensus for changes in E-index and C-index standard devi-

ation in MPI-GE.

The results presented here show that unforced natural cli-

mate variability contributes to a large proportion of the spread

in ENSO properties in the CMIP5 ensemble. Therefore, future

studies of ENSO projections should utilize large ensembles

wherever possible to reduce the uncertainty associated with

internal variability. This would lead to increased confidence in

future projections.
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