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Abstract— Biodiesel, produced from renewable feedstock 
represents a more sustainable source of energy and will therefore 
play a significant role in providing the energy requirements for 
transportation in the near future. Chemically, all biodiesels are 
fatty acid methyl esters (FAME), produced from raw vegetable 
oil and animal fat. However, clear differences in chemical 
structure are apparent from one feedstock to the next in terms of 
chain length, degree of unsaturation, number of double bonds 
and double bond configuration-which all determine the fuel 
properties of biodiesel. In this study, prediction models were 
developed to estimate kinematic viscosity of biodiesel using an 
Artificial Neural Network (ANN) modelling technique. While 
developing the model, 27 parameters based on chemical 
composition commonly found in biodiesel were used as the input 
variables and kinematic viscosity of biodiesel was used as output 
variable. Necessary data to develop and simulate the network 
were collected from more than 120 published peer reviewed 
papers. The Neural Networks Toolbox of MatLab R2012a 
software was used to train, validate and simulate the ANN model 
on a personal computer. The network architecture and learning 
algorithm were optimised following a trial and error method to 
obtain the best prediction of the kinematic viscosity. The 
predictive performance of the model was determined by 
calculating the coefficient of determination (R2), root mean 
squared (RMS) and maximum average error percentage (MAEP) 
between predicted and experimental results. This study found 
high predictive accuracy of the ANN in predicting fuel properties 
of biodiesel and has demonstrated the ability of the ANN model 
to find a meaningful relationship between biodiesel chemical 
composition and fuel properties. Therefore the model developed 
in this study can be a useful tool to accurately predict biodiesel 
fuel properties instead of undertaking costly and time consuming 
experimental tests. 

Keywords— Biodiesel; Kinematic viscosity; Artificial Neural 
Network (ANN); Prediction model  

I. INTRODUCTION 
    Vegetable oil methyl or ethyl esters, commonly referred to 
as ‘biodiesel’, are a renewable liquid fuel alternative to 
petroleum diesel. In technical terms, biodiesel is diesel engine 
fuel comprised of mono-alkyle esters of long chain fatty acids 
derived from vegetable oil or animal fats, designated B100 

and meeting the requirements of ASTM D 6751or EN 14214 
[1].  
 

     These mono-alkyl esters are the main chemical species that 
give biodiesel similar or better fuel properties compared with 
petroleum diesel [2]. It is also safer to handle, store and 
transport because it is biodegradable, non-toxic and has a 
higher flash point than diesel. One of the major advantages of 
biodiesel is that it has potential to reduce dependency on 
imported petroleum through the use of domestic feedstock for 
production [1-2]. However, as a fuel, there are currently 
several disadvantages to using biodiesel in diesel engine 
applications. The major disadvantage is its higher viscosity 
compared to conventional diesel fuel especially at lower 
temperatures. These differences mainly result from the 
difference in chemical compositions between petroleum diesel 
and biodiesel. 
 

     Biodiesels are usually made from vegetable oils and animal 
fat feedstock through chemical reaction called 
Transesterification. In this process the pure oil and fat is 
converted from natural oil (three long chain carbon molecules 
struck together by glycerin) into three monoalkyl esters (three 
separated long chain carbon molecules) shown in Fig. 1. 
Triglycerides are allowed to react with an alcohol (mostly 
methanol) under acidic or basic catalyst conditions producing 
fatty acid ester of the respective alcohol and free glycerol. 
After complete reaction, glycerol is removed as a byproduct 
and esters are known as biodiesel. However, biodiesels are not 
pure methyl esters whereas small amount of impurities are 
exist in commercial biodiesel depending on production 
process. The most common impurities are includes, free fatty 
acid, free glycerin, monoglyceride, diglyceride and 
triglyceride which eventually affects the physical properties of 
biodiesel [3].     
          
    Viscosity is defined as the resistance to shear or flow which 
describes the behavior of a liquid in motion near a solid 
boundary such as the walls of a pipe. It is one of the most 
critical features of a fuel which plays a dominant role in fuel 
spray, fuel-air mixture formation and the combustion process 
[4-6]. In a diesel engine, fuel is sprayed into combustion 
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chamber and then atomized into small drops near the nozzle 
exit. The liquid fuel forms a cone-shaped spray at the nozzle 
exit and its viscosity has significant effects on the size of fuel 
drop and penetration. Therefore, fuel viscosity influences 
engine combustion, performance and emissions, especially 
carbon monoxide (CO) and unburnt hydrocarbon (UHC) [7]. 
However, very low fuel viscosity is not desirable because the 
fuel then doesn’t provide sufficient lubrication for the 
precision fit of fuel injection pumps, resulting in leakage or 
increased wear. Therefore, all biodiesel standards specify the 
upper and lower limits of kinematic viscosity for biodiesel.  
 

 
 

Fig 1.  Transeterification reaction [3] 

      The viscosity of biodiesel is dependent on its complex 
chemical composition and impurities. A recent study showed 
that viscosity increases with increasing length of both the fatty 
acid chain and alcohol group [8].  As the lengths of the acid 
and alcohol segments in the ester molecules increased, so did 
the degree of random intermolecular interactions and 
consequently viscosity. Refaat [9] reported that shorter fatty 
acid chains with longer alcohol moieties display lower 
viscosity than ester with longer fatty acid chains and shorter 
alcohol moieties. Other factors that influence biodiesel 
viscosity include: number and position of double bonds, 
degree of saturation, molecular weight, branching hydroxyl 
groups and the amount of impurities, such as unreacted 
glycerides or glycerol etc [3]. 
 

     In recent years, ANN modelling techniques have gained in 
popularity due to their ability to accurately predict from small 
data sets (examples) rather than from larger data sets requiring 
costly and time-consuming studies and experiments. The most 
important feature of artificial neural networks is their ability to 
solve problems through learning by example, rather than by 
becoming involved in the detailed characteristics of the 
systems. This feature of makes them very useful because they 
works like a ‘black box’ model and do not require detail or 
complete information about the problem, and when there are 
only sets of data inputs and outputs of the system. Therefore it 
has been successfully applied in various disciplines, including 
neuroscience [10], mathematical and computational analysis 
[11], learning systems [12] and engineering design and 
application [13-15]. In this paper, the potential of ANN 
modelling techniques in identifying sustainable future 

generation biodiesel feedstock are identified based on the most 
recent literature. ANN also applied to predict important fuel 
properties of biodiesel. Baroutian et al. [16] predicted density 
from fatty acid profile for palm oil biodiesel. Ramadas et. al. 
[17] used ANN to predict the cetane number of biodiesel 
based on fatty acid profile. ANN also has been used to predict 
viscosity, flash point, fire point based on diesel-biodiesel 
blend ratio [18]. However these prediction models are limited 
for a specific biodiesel and experiment condition. No 
investigation was to develop ANN model to predict kinematic 
viscosity of biodiesel for a wide ranges of biodiesel feedstock 
and consider the impurities generally contained in biodiesel. 
Such an ANN prediction model has been developed in this 
study. The developed ANN model has been simulated with 
new input data and prediction ability was presented 
graphically. 

II. ARTIFICIAL NEURAL NETWORKS (ANN) 
     The foundation of artificial neural networks (ANN) in a 
scientific sense begins with a biological neuron. In the brain, 
there is a flow of coded information (using electrochemical 
media, the so-called neurotransmitters) from the synapses 
towards the axon. The axon of each neuron transmits 
information to a number of other neurons. Groups of neurons 
are organized into sub-systems and the integration of these 
sub-systems forms the brain. On the other hand, an ANN is 
composed of a large number of simple processing units called 
neurons which are fully connected to each other through 
adoptable synaptic weight.  This resembles a brain in two 
aspects.  Knowledge can be acquired through training and 
knowledge can be stored. 
  

      A widely used ANN model called the multi-layer 
perception (MLP) neural network, which consist of one input 
layer, one or more hidden layer (s) (middle) in between input 
and output layers and one output layer. Each layer employs 
several neurons (nodes), and each neuron in a layer is 
connected to the neurons in the adjacent layer with different 
weights. Signals flow into the input layer, pass through the 
hidden layer(s), and arrive at the output layer. With the 
exception of the input layer, each neuron receives signals from 
the neurons of the previous layer. The incoming signals or 
input (xij) are multiplied by the weights (vij) and summed up 
with the bias (bj) contribution. Mathematically it can be 
expressed as: 

jij

n

i
i bVX +=∑

=1
jnet       (1) 

      The output of a neuron is determined by applying an 
activation function to the total input and calculated using 
equation 1. If the computed outputs do not match the known 
(i.e. target) values, NN model is in error. Then, a portion of 
this error is propagated backward through the network. This 
error is used to adjust the weight and bias of each neuron 
throughout the network so the next iteration error will be less 
for the same units. The procedure is applied continuously and 
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repetitively for each set of inputs until there are no measurable 
errors, or the total error is smaller than a specified value.    
    The most important feature of artificial neural networks is 
their ability to solve problems through learning by example, 
rather than by fully understanding the detailed characteristics 
of the systems. This feature makes it very useful because it 
works like a ‘black box’ model, and does not require detail or 
complete information about the problem, and can be utilized 
when all that is available are sets of data inputs and outputs of 
the system. It has a natural propensity to store experiential 
knowledge and to make it available for use (Fig.  2). 
Therefore, this nonlinear computer algorithm can model large 
and complex systems with many interrelated parameters. 

  
Fig. 2. Working principle of an ANN [3] 

 
        Fig. 3 shows several stages are involved in ANN 
prediction model developing process. An important stage of a 
neural network is the training step, in which an input is 
introduced to the network together with the desired output: the 
weights and bias values are initially chosen randomly and the 
weights adjusted so that the network produces the desired 
output. After training, the weights contain meaningful 
information, contrary to the initial stage where they are 
random and meaningless. When a satisfactory level of 
performance is reached, the training stops, and the network 
uses the weights to make decisions. 

III. DATA COLLECTION  
    Necessary data to train an ANN for kinematic viscosity 
prediction of biodiesel were collected from papers published 
in recognized international Journals, conferences and report 
of renowned research centers around the world. The popular 
scientific and electronic databases including Elsevier, Taylor 
and Francis, DieselNet, Scopus, Springer, Wiley international, 
American chemical society, IEEE, SAGA Publication, MDPI 
etc. were searched for relevant papers for this study. More 
than 120 papers were collected mostly published in last 
decade which contain experimental results of chemical 
composition and kinematic viscosity of biodiesels at 40 °C. 
Fig. 1 shows the absolute number and the percentage of the 
various biodiesel datasets included in the current 
investigation. The collected data comprises biodiesels (fatty 
acid methyl esters) from 55 different feedstock, 5 biodiesel-

biodiesel blends and 59 pure methyl esters. From the Fig. 1 it 
can be seen a large number of feedstock were investigated 
worldwide for biodiesel production, those includes edible  

 
 

Fig.  3.  Proposed flow chart of an ANN prediction model development 
 
non-edible vegetable oils, west cooking oils, beef tallow, 
chicken fats, fish oils, algae etc. It is also interesting to see 
that, as a representative of actual biodiesel, many 
investigations have used pure methyl esters which are mostly 
artificially trough chemical process. The most popular 
feedstock of biodiesel investigated worldwide is soybean 
(11.36%) followed by palm (6.25%), sunflower (6.25%), 
canola (5.11%), rapeseed (4.83%) as edible oil feedstocks. 
Among the non-edible oil, most investigated feedstock is 
Jathropa found in 15 papers. During data collection stage, 
care have been taken  to only include data from those 
researchers who actually measured themselves the values 
reported, following the internationally accepted experimental 
standards.  
 

     Altogether, 352 data sets of biodiesel chemical 
compositions and corresponding kinematic viscosity were 
selected to use in this study. The main chemical compositions 
in biodiesels are mono-alkyle esters of fatty acids which are 
feedstock dependent and vary significantly from to the next. 
Therefore a wide range of fatty acid profiles found in the 
collected data that are tabulated in Table I with their structure 
and name. These fatty acids are straight-chain compounds 
ranging in size from 8−24 carbons and are mainly the three 
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types, saturated, mono-unsaturated and poly-unsaturated. In 
the saturated acid, no hydrogen can be added chemically and 
they contain only single bonds, whereas in mono-unsaturated 
fatty acids, one hydrogen can be added and contain one 
double bond. Similarly, in poly-unsaturated fatty acids, more 
than one hydrogen can be added and contain multiple double 
bonds. In general, fatty acids are designated by two numbers: 
the first number denotes the total number of carbon atoms in 
the fatty acid and the second is the number of double bonds. 
For example, 14:1 designates Myristoleic acid which has 14 
carbon atoms and one double bond. The most common fatty 
acid found in biodiesel samples are Oleic (C18:1) followed by 
Stearic (18:0), Linoleic (C18:2), Palmitic (C16:0) and 
Linolenic (C18:3) acid esters. Fig. 5 shows that these fatty 
acid esters are found in almost every biodiesel samples. It is 
interesting to see in Fig. 5 that the Oleic (C18:1) and Linoleic 
(C18:2) not only represented in most of the biodiesel samples, 
but are also highest in average weight percentage in the 
biodiesel samples which are about 40% and 32% respectively. 
On the contrary, an average about of 7.5% and 6.5% of 
Linolenic (C18:3) and Stearic (18:0) acids methyl esters 
presents in the samples. This is also reflected in the average 
values of chain length, saturated fatty acid esters, mono-
unsaturated esters and poly-unsaturated methyl esters show in 
Table II. Apart from fatty acid methyl esters, other chemical 
compositions usually found in the biodiesel are mainly 
unreacted triglyceride, monoglyceride, diglyceride, 
triglyceride and free fatty acid represented as acid value. 
Although the amounts of these impurities are small as shown 
in Table II, these are important factors in determining 
biodiesel physical properties. Therefore all international 
biodiesel standards specify the upper limit of these impurities 
in order to ensure the quality of biodiesels.   

 
Fig.  4. Number and percentage of biodiesel datasets investigated in this study 
 

 
Fig.  5: Number and average amount of each fatty acid methyl ester found in 

the samples.   
  

TABLE I.      STRUCTURAL FORMULAE FOR FATTY ACIDS METHYL 
ESTER FOUND IN BIODIESEL SAMPLES 

Acid chain C:Na Typeb CLc Chemical structure 

Caprilic  C8:0 SFA 8 CH3(CH2)6COOH 
Capric  C10:0 SFA 10 CH3(CH2)8COOH 
Lauric  C12:0 SFA 12 CH3(CH2)10COOH 
Myristic  C14:0 SFA 14 CH3(CH2)12COOH 
Myristoleic  C14:1 MUFA 14 CH3(CH2)5 CH=CH (CH2)5 COOH 
Pentadecenoic  C15:0 SFA 15 CH3(CH2)13COOH 
Palmitic  C16:0 SFA 16 CH3(CH2)14COOH 
Palmitoilic  C16:1 MUFA 16 CH3(CH2)6 CH=CH (CH2)6 COOH 
Meptadecenoic  C17:0 SFA 17 CH3(CH2)15COOH 
Stearic  C18:0 SFA 18 CH3(CH2)16COOH 
Oleic C18:1 MUFA 18 CH3(CH2)7 CH=CH (CH2)7 COOH 
Linoleic  C18:2 PUFA 18 CH3(CH2)4 CH= CHCH2CH =CH 

(CH2)7 COOH 
Linolenic  C18:3 PUFA 18 CH3(CH2)2CH=CHCH2CH= 

CHCH2CH=CH(CH2)7 COOH 
Arachidic  C20:0 SFA 20 CH3(CH2)18COOH 
Gondonic C20:1 MUFA 20 CH3(CH2)7 CH=CH (CH2)9 COOH 
Behenic  C22:0 SFA 22 CH3(CH2)20COOH 
Erucic  C22:1 MUFA 22 CH3(CH2)7 CH=CH (CH2)11 COOH 
Lignoceric  C24:0 SFA 24 CH3(CH2)22COOH 
aC: the number of carbon atoms and N: the number of double bonds of carbon 
atoms in the fatty acid chain. 
bSAF: saturated fatty acids, MUAF: Mono unsaturated fatty acids and PUFA: 
Poly unsaturated fatty acid. 
cCL: Chain length of hydrocarbon of respective methyl ester    
 

 
TABLE II.    MAXIMUM, MINIMUM AND AVERAGE VALUES OF 
VARIABLES OTHER THAN INDIVIDUAL FATTY ACID METHYL 

ESTERS   

Variables Maximum Minimum Average 

Average chain length (ACL) 22 8 17.390 
Saturation (SFA, wt.%) 100 0 27.490 
Mono-unsaturation (MUFA, wt.%) 100 0 36.540 
Poly-unsaturation (PUFA, wt.%) 100 0 35.200 
Free glycerin (wt.%) 0.148 0 0.014 
Monoglyceride (wt.%) 0.969 0 0.267 
Diglyceride (wt.%) 0.500 0 0.101 
Triglyceride (wt.%) 0.354 0 0.054 
Acid value (AV) 1.170 0 0.220 
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Fig.  6.  Kinematic viscosities of the samples with biodiesel standards 
 
       Due to the variation in chemical composition, the 
kinematic viscosities of biodiesels differ significantly which is 
evident in Fig. 6. The kinematic viscosity of biodiesels 
collected in this study ranges from 1.4 to 7.2 cSt with the 
mean value of 4.39 cSt. Most of the viscosity data are within 
the acceptable range of USA (ASTM 67) biodiesel standard 
which is from 1.9 to 6 cSt. However, the European biodiesel 
standard (EN 14214) impose more strict kinematic viscosity 
regulation for biodiesel which a ranges from 3.5 to 5 cSt and 
many biodiesels shown in Fig. 6 fail to meet this standard  

IV. PREDICTION MODEL DEVELOPMENT 
 

The kinematic viscosity prediction model was developed 
for biodiesel using an ANN which represents a mathematical 
relationship between input and output parameters of a system 
as such a black box model. The selection of input parameters 
which contribute to the output is therefore a crucial task. It is 
also desirable to minimize the number of input parameters for 
an ANN system in order to reduce the computational time. In 
general, the best input parameters are being selected based on 
an understanding of the physics of a problem. Published 
literature suggested that the kinematic viscosity of biodiesel is 
a function of chemical composition- the fatty acid profile of 
methyl ester and impurities. In the present study, 27 variables 
are used as input parameters in developing the ANN for 
viscosity prediction. These parameters include: mass 
percentage of 18 fatty acid methyl ester that is commonly 
found in the biodiesel and 9 parameters listed in Table 2. 
Among 352 data sets that have been collected from literature, 
327 sets are used in the ANN model training process whereas 
other 25 data sets are randomly selected for simulation.     
 

The three data sets needed to develop ANNs: for training, 
validation and testing the network. The usual approach is to 
prepare a single data-set, and differentiate it by a random 
selection. The learning algorithm called the feed-forward 
back-propagation was applied for the single hidden layer 
shown in the Fig.  7.  The Neural Network was optimized 
using the MATLAB Version R2012a Neural Network 

Toolbox. In the training stage, to define the output accurately, 
the number of neurons in hidden layer and learning algorithm 
has been optimized using trial and error methods. In the 
optimisation process, networks were trained with 12 
algorithms available in the software. These are, Bayesian 
Regularization (BR), Quasi-Newton (QN), Resilient 
Backpropagation (RB), Scaled Conjugate Gradient (SCG), 
Levenberg-Marquardt (LM), Conjugate Gradient with Powell 
Restarts (CGPR), Fletcher-Powell Conjugate Gradient 
(FPCG), Polak-Ribiére Conjugate Gradient (PRCG), One Step 
Secant (OSS), Variable Learning Rate Gradient Descent 
(VLRGD), Gradient Descent with Momentum (GDM) and 
Gradient Descent (GD). For each algorithm, the prediction 
accuracy of the model was observed for 10 to 60 neurons in 
the single hidden layer with 5 intervals. It was found that 
prediction accuracy improved with the number neurons in the 
hidden layer. Fig. 8 shows the results of the network 
optimisation process. The best results was found   using LM 
learning algorithm with 45 neuron in the hidden layer. 
Moreover, among the 12 algorithm use in this study, LM 
learning algorithms showed better results followed by GD, 
OSS and CGPR. With a very high number of neurons in 
hidden layer, the computational time increased significantly 
along with the over fitting problems which eventually reduced 
the models effectiveness.  Neurons in the input layer have no 
transfer function. Logistic sigmoid (logsig) transfer function 
has been used in the hidden layer while a purelinear (purelin) 
transfer function has been used in output layer. The optimized 
ANN structure is shown in Fig.  9. The training was stopped 
after 53 iterations as shown in Fig. 10 to avoid over fitting of 
the network. After stopping the training the software has 
identified the best ANN network at 47 iterations.  

 
 

 
Fig  7.  Structure of ANN 
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Fig.  8.  Optimisation of ANN model 

 

 
Fig.  9. Optimised ANN for kinematic viscosity prediction 

 

 
 

Fig. 10. Training performance of ANN model 

V. SIMULATION 
The ability of the ANN model to predict kinematic 

viscosity has been verified by simulating it with unknown 
input variables. For this purpose, 25 sets of data selected 
randomly from collected data sets which was not used during 
the training of ANN model.  After simulation, the predicted 
kinematic viscosity of biodiesel was compared with the 
corresponding experimental values and shown in Fig. 6. Using 
the results produced by the network, statistical methods have 
been used to investigate the prediction performance of NN 
results. To judge the prediction performance of a network, 
several performance measures are used. Those include 

statistical analysis in terms of absolute fraction of variance 
(R2), root mean squared (RMS) and maximum average error 
percentage (MAEP). Formulas to calculate the error 
parameters are shown in Equation 2 to 4.  
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where 
Ea-Actual result 
Ep-Predicted result 
Em-Mean value 
N-Number of pattern 

 
Actual and predicted data shown in Fig. 11 indicates the 

good prediction ability of the developed ANN for predicting 
kinematic viscosity of biodiesel for wide ranges of biodiesel 
feedstocks. In statistical analysis it was found that the absolute 
fraction of variance (R2) was close to unity 0.93, Root-Mean-
Squared (RMS) error was 0.18 cSt and maximum average 
error percentage (MAEP) was 4.65%. This is a good 
correlation between the measured and predicted kinematic 
viscosity. The network has been trained well and can be used 
to simulate biodiesel kinematic viscosity over a wide range of 
feedstock. However, the prediction accuracy of the model 
should be further improved by increasing the number and 
ranges of training data set. 

 

 
 

Fig. 11.  Experimental and predicted kinematic  
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VI.  CONCLUSION 
The aim of this paper was to investigate the suitability of using 
artificial neural networks (ANN) for the prediction of 
biodiesel kinetic viscosity from its chemical composition. To 
train the network, experimental data was collected from more 
than 120 peer reviewed paper published in recognized journal, 
conferences and reports. Altogether, 352 data sets which 
included biodiesel chemical compositions and corresponding 
kinematic viscosity at 40 °C of biodiesel were collected. The 
collected data comprises biodiesels (fatty acid methyl esters) 
from 55 different feedstocks, 5 biodiesel-biodiesel blends and 
59 pure methyl esters. In the training stage, to define the 
output accurately, the number of neurons in hidden layer and 
learning algorithm was optimized using trial and error 
methods. The best network for this study was a standard back 
propagation (BP) neural network model with LM algorithms 
and 45 neurons in hidden layer. The performance of the 
developed ANN prediction model was evaluated by prediction 
with the 25 data sets which were not used in the training 
process. The network produced the predicted results in good 
argument to the experimental ones. The overall results show 
that the networks can be used as an alternative way for 
predicting kinematic viscosity of biodiesel at different 
temperature conditions. The absolute fraction of variance 
(R2), Root-Mean-Squared (RMS) and maximum average error 
percentage (MAEP) was values were found 0.93, 0.18 cSt and 
4.65% respectively which is within an acceptable range of 
accuracy.  The results of this study also show that an ANN has 
the ability to learn and generalize a wide range of 
experimental conditions. Therefore, the usage of ANNs may 
be recommended to optimize the chemical composition of 
biodiesels to optimize fuel quality for internal combustion 
engine application. However the network should be further 
improved by including additional robust data set during the 
training process. 
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