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Abstract 

Chronic groundwater decline is a concern in many of the world’s major agricultural areas. However, a 

general lack of accurate long-term in situ measurement of groundwater depth and analysis of trends 

prevents understanding of the dynamics of these systems at landscape scales. This is particularly 

worrying in the context of future climate uncertainties. This study examines long‐term groundwater 

responses to climate variability in a major agricultural production landscape in southern Queensland, 

Australia. Based on records for 381 groundwater bores, we used a modified Mann-Kendall non-

parametric test and Sen’s slope estimator to determine groundwater trends across a 26-year period 

(1989–2015) and in distinct wet and dry climatic phases. Comparison of trends between climatic 

phases showed groundwater level recovery during wet phases was insufficient to offset the decline in 

groundwater level from the previous dry phase. Across the entire 26-year sampling period, 

groundwater bore levels (all bores) showed an overall significant declining trend (p<0.05) of an 

average 0.06 metres year
-1

. Fifty-one bores (20%) exhibited significant declining groundwater levels 

(p<0.05), 25 bores (10%) exhibited significant rising groundwater levels (p<0.05), and 175 bores 

(70%) exhibited no significant change in groundwater levels (p>0.05). Spatially, both declining and 

rising bores were highly clustered. We conclude that over 1989–2015 there is a significant net decline 

in groundwater levels driven by a smaller subset of highly responsive bores in high irrigation areas 

within the catchment. Despite a number of targeted policy interventions, chronic groundwater decline 

remains evident in the catchment. We argue that this is likely to continue and to occur more widely 

under potential climate change and that policy makers, groundwater users and managers need to 

engage in planning to ensure the sustainability of this vital resource.  

 

Key Words:  groundwater decline; groundwater extraction; temporal trend; drought; aquifer 

recharge/depletion; climate extremes 
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1. Introduction 

Chronic groundwater decline from unsustainable extraction is a significant issue in many agricultural 

landscapes (Gleeson et al., 2012; Konikow, 2014; Cheema et al., 2014). Groundwater is often seen as 

a reliable water source during drought and periods of reduced surface water availability (Kath and 

Dyer, 2017). While extraction rates under such conditions may exceed recharge, these are borne as a 

temporary deficit (Vaux, 2011), which assumes adequate recharge to restore groundwater levels 

during periods of higher rainfall. While this may be a reasonable assumption under a stable climate 

model and sustainable rates of extraction, there is increasing concern that under climate change, or 

unsustainable rates of extraction, this may not be the case for many regions across the globe (e.g. Döll, 

2009; Taylor et al., 2013) and in Australia (Crosbie et al., 2010; Crosbie et al., 2013).  

There is a growing body of research suggesting groundwater recharge at landscape scales is vulnerable 

to land use and climate change (Barron et al., 2012; Flint et al., 2012; Mair et al., 2013; Kuss & 

Gurdak, 2014; Russo and Lall, 2017). Under even moderate future climate change scenarios, inland 

eastern Australia is expected to experience increased average temperatures, increased occurrence and 

severity of heatwaves, decreased average winter rainfall, increased intensity of extreme rainfall events, 

increased potential evapotranspiration, and importantly, increased duration and severity of drought 

(CSIRO and Bureau of Meteorology, 2015). As water resources decline, the interplay between climate 

and groundwater dynamics could be particularly important for groundwater-linked ecological systems 

(Kath et al., 2014). In addition, groundwater provides more than 30% of Australia's total water 

consumption (Simmons, 2016) and the potential increased dependency on groundwater, particularly 

for agriculture (irrigated cropping and livestock production systems), places increased importance on 

understanding trends in groundwater decline and recharge in relation to climate.  

Although limited, a number of recent studies have examined the relationships between trends in 

climate and groundwater decline and recharge. Correlations between climate and long term 

groundwater levels have been observed for agricultural areas in Manitoba, Canada (Chen et al., 2004), 

southwestern United States (Zektser et al., 2005), Central Taiwan (Jan et al., 2007), Orissa region, 
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India (Panda et al., 2007), Daegu, Korea (Lee et al., 2007), Bangladesh (Shahid and Hazarika, 2010; 

Shamsudduha et al., 2009), northern Iran (Tabari et al., 2012; Daneshvar Vousough et al., 2013), New 

England region, United States (Weider and Boutt, 2010), Canning Basin, Western Australia (Richey et 

al., 2015) and the southern Murray-Darling Basin, Victoria, Australia (Chen et al., 2016) and broader 

Murray-Darling Basin, southeast Australia (Leblanc et al., 2009). While some of these studies showed 

sufficient groundwater recharge during high rainfall periods, some studies (e.g. Panda et al., 2007; 

Shahid and Hazarika, 2010; Daneshvar Vousough et al., 2013; Richey et al., 2015) showed a lack of 

adequate recharge and hence, chronic groundwater decline.   

There have been recent attempts to model climate-groundwater relationships at regional and national 

scales largely using indirect methods, such as satellite gravity (e.g. GRACE) and hydrological and 

water resources modelling approaches, to estimate groundwater pumping and recharge fluxes (e.g. 

Leblanc et al., 2009; Crosby et al., 2010; Crosbie et al., 2013; Döll et al., 2014; Richey et al., 2015; 

Chen et al., 2016; Wada, 2016). Such approaches may be advantageous where there are limited or 

missing data (Wada, 2016). However, recent reviews warn of the potential of overestimating 

groundwater decline by indirect approaches (e.g. Wada, 2016; Long et al., 2016), while Sahoo et al, 

(2016) report significant underestimation of groundwater depletion by indirect techniques such as 

GRACE and suggest that they do not explicitly account for irrigation and water stored in the 

unsaturated zone. Döll et al. (2014) also note that the low spatial resolution of such approaches is a 

concern given the often highly localised nature of groundwater decline. Despite increased 

understanding of climate-groundwater dynamics in some regions, a lack of reliable in situ data and 

consistent measurement at landscape scales over long periods means that, for many agricultural 

systems, there is little understanding of the combined effects of groundwater extraction and potential 

climate change (although see Gurdak et al., 2007; Weider and Boutt, 2010; Daneshvar Vousough et 

al., 2013; Russo and Lall, 2017). Furthermore, Fekete et al. (2015) claim that, for effective 

management of groundwater resources, in situ observations are needed to provide continuous, long-

term, high-frequency and accurate data. 
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In recent years, groundwater trend analysis has become an effective approach to investigating the 

patterns and trends of groundwater dynamics at multiple temporal and spatial scales. Daneshvar 

Vousoughi et al. (2013) recently reviewed the use of non-parametric methods for examining 

groundwater trends. One of the most frequently used procedures is the Mann-Kendell (MK) trend test 

statistic (Sen, 2017) that measures the significance of monotonic trends in time series data. This rank-

based approach has been effectively used to analyse trends in the time series of hydrogeological 

parameters (e.g. Jan et al., 2007; Tabari et al., 2012; Daneshvar Vousoughi et al., 2013; Abdullahi et 

al., 2015; see Dinopashoh et al., 2011, 2014 for reviews of MK variants and procedures). Tabari et al. 

(2012) found similar trends in groundwater levels in northern Iran when comparing across annual and 

seasonal time periods; however, the magnitude of trends was more pronounced in summer and spring. 

Abdullahi et al. (2015) identified both significant positive and negative trends for the north-eastern 

region of Peninsula Malaysia for different time periods, suggesting overall trends across an entire 

sampling period may mask significant trends within distinct climatic phases. Similarly, Tirogo et al. 

(2016) found different significant MK groundwater trends in multi-year climatic phases in West 

Africa.  These studies suggest that an approach that includes overall trend analysis and trend analysis 

within distinct climatic phases may provide more insightful information about potentially stressed 

groundwater systems. 

The Murray-Darling Basin in south-eastern Australia covers an area of 1.06 million km
2
, 14% of 

Australia’s total surface area, and accounts for about 40% of Australia’s agricultural production value 

(Swirepik et al., 2016). The region has recently experienced one of the most severe and prolonged 

droughts on record (Leblanc et al., 2011). The Condamine catchment, in the northern headwaters of 

the Murray-Darling Basin, provides an ideal model system for investigating groundwater decline, 

having a development trajectory of substantial land use change and intensification of water extraction 

for irrigation that began in the late 1950s comparable to that in many other agricultural landscapes 

throughout the world. The region also has reliable continuous groundwater monitoring data dating 

from the 1960s (Queensland Government, 2015). 
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It has been estimated that between 1.26 and 2.09 m
3
 s

-1
 of groundwater is extracted from the shallow 

Condamine alluvial and sub-artesian aquifers for irrigation (Dafny and Silburn, 2014; Office of 

Groundwater Impact Assessment, 2016). Current groundwater extraction exceeds water recharge over 

much of the Central Condamine Alluvium (White et al., 2010), with extraction often being up to five 

times the average potential rainfall recharge (CSIRO, 2008). Kelly and Merrick (2007) report 

groundwater depth declines of up to 15 to 25 m in Central Condamine Alluvium groundwater levels 

over a longer period (1967–2007). The Queensland Department of Natural Resources and Mines 

report groundwater declines of more than 20 m across much of the Condamine alluvium from 1940 to 

2010 (Office of Groundwater Impact Assessment, 2016). 

Evidence of chronic groundwater decline in the Central Condamine Alluvium has driven changes in 

groundwater policy and management. In 1978, the metering of production bores (for irrigation) was 

introduced and reductions in existing entitlements (currently 50% of entitlements for production bores 

in the Central Condamine Alluvium) was instigated in 1995 (Tan et al., 2012). In 2008, a moratorium 

on new groundwater production bore licences was also established (Queensland Government, 2012) 

and extensive modelling of groundwater flows, sustainable yields and condition reports have since 

been conducted.  

In this study, we investigate groundwater responses to climatic variability from 1989 to 2015 in the 

agricultural landscape associated with the Condamine floodplain alluvium and associated tributaries 

alluvium in southern Queensland where there are high rates of groundwater extraction (White et al., 

2010), and a history of climatic extremes (prolonged drought and intense flooding). The study period 

(1989−2015) includes a prolonged and severe drought, the ‘Millennium Drought’ (2001–2009), as 

well as significant widespread flooding (1990, 1996, 2010–2011). This model region provides an 

opportunity to investigate groundwater responses during periods of extreme drought and following 

intense rainfall, as indicative of possible responses to future climatic extremes under climate change 

(e.g. Vos et al., 2008; Aghakouchak et al., 2014). Specifically, our aim was to determine the direction 

and magnitude of trends in groundwater levels over the 26-year period and in wet and dry climatic 

phases. Under sustainable levels of groundwater extraction, it would be expected that groundwater 
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would be responsive to climatic phases (i.e. groundwater levels decline during drought and recover 

during wet phases). Groundwater levels showing recovery in wet phases over longer term climatic 

cycles would suggest some resilience of the system to extreme climate variability. This research will 

inform the future management of groundwater resources in the region and will provide a basis for the 

modelling of the effects of climate extremes on agricultural production and biodiversity (for example, 

groundwater dependent ecosystems). 

 

2. Materials and Methods 

2.1. Study area  

The Condamine catchment, southern Queensland, covers an area of approximately 25000 km
2
 at the 

headwaters of the Murray-Darling Basin (Fig. 1). The Condamine catchment has undergone 

significant agricultural development since the 1940s. In 2014–2015, the region contributed AUD$1.32 

billion in agricultural value to Australia’s GDP, representing 11% of Queensland’s total agricultural 

value (Australian Bureau of Statistics, 2016).  

The floodplains associated with the Condamine River and its tributaries are characterised by 

predominantly basalt-derived alluvial sediment, with Tertiary basalt substrates dominating in the south 

east and Tertiary-Jurassic sediments in the northwest (Searle et al., 2007). The most common soils are 

highly fertile black, brown, grey and red Vertisols (cracking clays), with some red non-cracking clay 

soils in the eastern catchment (Biggs and Carey, 2006). Approximately 8500 km
2
 of the central area of 

the catchment is dominated by alluvial floodplain (Searle et al., 2007), extending to 130 m in depth 

(Kelly and Merrick, 2007). 

[Fig. 1]  

The region occupies a climate transition zone, with both tropical northern and temperate southern 

climatic influences and is characterised by a variable sub-tropical to semiarid climate (Hutchinson et 
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al., 2005). Annual rainfall averages range from 952 mm in the east (Toowoomba) to 673 mm in the 

west of the catchment (Chinchilla) (Australian Bureau of Meteorology, 2017). Mean annual stream 

flow for the catchment varies from 3.01 m
3
 s

-1
 at Warwick (1961–2016) to 19.44 m

3
 s

-1
 downstream at 

Chinchilla (1976–2016) (Queensland Department of Natural Resources and Mines, 2017). Although 

rainfall is summer dominant (December to February), significant falls may occur at any time 

throughout the year (Australian Bureau of Meteorology, 2017). Mean rainfall, minimum and 

maximum ambient temperatures for Dalby (approximate geographical centre of study area) are shown 

in Figure 2. Rainfall is also highly variable with occasional widespread floods under the influence of 

tropical monsoonal activity and droughts influenced by El Niño weather patterns (Australian Bureau 

of Meteorology, 2017). Since 1983, the region has experienced major summer/autumn floods (>1250 

m
3
 s

-1
) in 1983, 1988, 1990, 1996, and 2011 (Australian Bureau of Meteorology, 2017; Fig. 3). 

Widespread prolonged moderate drought (5-10% of driest years on record) occurred in 1990–1995, 

and severe drought (<5% of driest years on record) occurred in 2000–2009 (‘Millennium Drought’) 

(van Dijk et al., 2013; Fig. 3).  

[Fig. 2] [Fig. 3] 

The Condamine catchment has undergone significant landscape transformation, with the highly fertile 

soils and access to water resources being a significant driver of agricultural and regional development 

over the past 100 years (Walker and Thoms, 1993). Extensive tree clearing and alteration of 

hydrological flows have resulted in significant eco-hydrological changes throughout the Murray-

Darling Basin (e.g. Walker and Thoms, 1993), including the Condamine catchment, where there have 

been substantial hydrological and land use changes as a result of agricultural development (Biggs and 

Carey, 2006; Kath et al., 2014). Cropping for agriculture and grazing dominate the landscape of the 

Condamine catchment and comprise approximately 62% and 30% of the floodplain, respectively 

(Queensland Department of Environment and Resource Management, 1999).  

The Condamine catchment contains substantial groundwater reserves in both the shallow unconfined 

alluvial aquifers and the underlying confined Great Artesian Basin (GAB). The shallow alluvial 
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aquifers are of generally high water quality and low salinity (Searle et al., 2007), and largely used by 

agriculture (irrigation and livestock), industry, and domestic water supply, often to augment variable 

surface water supplies. Groundwater pollution is of a minor concern in the area, and has recently been 

reviewed by Dafny and Silburn (2014); with most of the management focus being on the management 

of groundwater extraction. There are an estimated 3800 active bores accessing the Condamine alluvial 

groundwater across the floodplains and a further 2700 bores accessing the nearby Main Range 

Volcanics and upland alluvium associated with tributary streams (Office of Groundwater Impact 

Assessment, 2016).  

 

2.2. Climatic phases defined by rainfall anomalies 

Extensive groundwater monitoring data are available for the Condamine catchment for the 26-year 

period from 1989 to 2015, during which several significant flooding and drought events occurred (Fig. 

3). Rainfall anomalies for the period were calculated against mean annual rainfall across Warwick, 

Dalby and Chinchilla rainfall recording stations (Australian Bureau of Meteorology, 2017) to provide an 

aggregated rainfall measure for the Condamine catchment. These three main rainfall recording stations 

encompass the broad range of climatic conditions from the north-west (Chinchilla), centre (Dalby) and 

south-east (Warwick) of the catchment. These values were compared to the widely accepted long-term 

(1961–1990) rainfall average (Hundecha and Bárdossy, 2005) to provide annual anomalies for the 

period 1989–2015. To account for lag effects of previous years—which are likely to be important for 

groundwater dynamics (Chen et al., 2004)—weighted rainfall anomalies were calculated for each year 

by adding the current year’s rainfall anomaly to that of the previous four years (weighted by years 

since).  Letting the rainfall anomaly (relative to the mean) in year i = R(yi), R(yi-1) represents the 

anomaly in the previous year and so on, then the 5 year weighted annual rainfall anomaly for each 

rainfall recording station was: 

                 
       

            
 

       

            
 

       

            
 

       

            
                                   (1) 
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Aggregated annual anomalies (j) across the three recording stations (n) were then calculated as: 

                        
 

 
                   

 

   
                                                  (2)  

For our study system, we defined climatic phase (wet or dry) on the basis of the occurrence of two or 

more extreme wet years (greater than the 90th percentile of the long-term 1961–1990 anomaly) or 

extreme dry years (less than the 10th percentile of the long-term 1961–1990 anomaly). Hundecha and 

Bárdossy (2005) use this approach to identify extreme periods in extensive climate data. Climatic 

phase boundaries were identified where there was a change from positive to negative anomalies (or 

vice versa) and the magnitude of change was approximately 50% or greater. Using this approach, we 

identified four distinct climatic (wet/dry) phases: Dry 1989–1994; Wet 1994–1999; Dry 1999–2009; 

Wet 2009–2015 (Fig. 3). 

 

2.3. Groundwater data  

All groundwater data (in metres) was extracted from the Queensland groundwater database 

(Queensland Government 2015), hence quality assured, and restricted to government monitoring bores 

accessing the unconfined alluvial aquifers. The groundwater depth reference point for these data was 

taken as the top of bore casing or casing protector to the water surface. The dataset contained data for 

a total of 445 monitoring bores for the study area over the 27 year period, from which we extracted 

groundwater level data to carry out trend analysis in each of the climatic phases (overall and wet/dry 

phases, as above). Data were aggregated to mean yearly depths and in total there were 11,060 

observations and 955 missing values.  Within each of the climatic phases analysis was only carried out 

on bores that had sufficient data to justify time series based trend analysis (see section 2.4 for details). 

The total number of bores analysed in each phased is given in Table 1.  

[Table 1] 
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2.4. Groundwater level trend analyses  

Trends in groundwater levels for each bore, across and within each of the four climatic phases, were 

calculated using the Mann–Kendall test. The nonparametric Mann–Kendall test quantifies trends in 

time-series data (Kendall, 1955), and has been used to assess environmental trends (e.g. Dinopashoh et 

al., 2011; Dinopashoh et al., 2014) and groundwater trends in particular (e.g. Tabari et al., 2012; 

Abdullahi et al., 2015; Tirago et al., 2016). We used Sen’s slope estimator in association with the 

Mann-Kendall test to detect trends in the hydrological time series (after Tabari et al., 2012). The 

‘Zhang’ method (Zhang et al., 2000) for computing trends was used to determine pre-whitened 

nonlinear trends (i.e. detrended for serial autocorrelation [e.g. seasonality], which can bias analysis) 

and conducted using the ZYP (Bronaugh and Werner, 2013) and Kendall (McLeod, 2011) packages in 

R (R Core Development Team 2016). Bores with time series that had insufficient data (i.e. where, 

after removing autocorrelation, the valid proportion of data was less than 40%) were excluded from 

analysis (after Bronaugh and Werner, 2013). Two hundred and fifty-one bores were analysed across 

the entire sampling period (1989–2015), with the mean valid fraction across all bores of 0.96. We 

restricted analysis to the period 1989−2015 because this aligned with the identified wet and dry 

climatic phases (Fig. 3) and because the Condamine alluvium groundwater level data is less extensive 

and more temporally sparse prior to this period. The number of bores analysed in each climatic phase 

ranged from 356 to 377 and the mean valid fraction across all bores in each climatic phase ranged 

from 0.95 to 0.99 (Table 1). These analyses identified significant negative or positive trends (at 

p<0.05), or otherwise no trend, for each bore in each climatic phase. Changes in groundwater level (as 

metres year
-1
) were mapped for each bore showing a significant negative or positive trend across the 

Condamine alluvium. We classified bore responses into three categories; those that showed: (a) a 

significant negative trend (‘declining’); (b) a significant positive trend (‘rising’); and, (c) no trend 

(‘stable’).  
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3. Results 

3.1. Groundwater level trends (1989–2015) 

The overall net response across the entire time period (1989–2015) for groundwater monitoring bores 

in the Condamine alluvium was a significant decline in groundwater levels (Fig. 4; Mann-Kendell 

Test, p<0.05), with an average overall reduction in groundwater level of 0.06 m year
-1
 (Table 1). This 

average is based on the depth change across all monitoring bores. Across the entire sampling period, 

51 bores (20%) exhibited significant negative groundwater level trends (p<0.05), 25 bores (10%) 

exhibited significant positive groundwater level trends (p<0.05), and 175 bores (70%) exhibited no 

significant tends in groundwater levels (p>0.05; Table 1). 

[Fig. 4]   

There is a cluster of monitoring bores exhibiting negative groundwater level trends at moderate 

magnitudes in the central floodplain between Dalby and Millmerran, although bores exhibiting 

negative trends also occur elsewhere in the catchment, including in the southeast near Warwick (Fig. 

5). There is also a cluster of bores exhibiting positive trends around Dalby in the central part of the 

catchment, with the majority of positive trending bores located within approximately 30 km of the 

town (Fig. 5). Monitoring bores exhibiting no significant trend were spread throughout the catchment 

(Fig. 5).  

[Fig. 5] 

 

3.2. Groundwater level trends within climatic phases 

In the first dry climatic phase (1989–1994), there was an overall significant decline (from 1989 base 

level) in mean groundwater level, with an overall magnitude of groundwater level change of -0.30 m 

year
-1

 (Fig. 4; Table 1). In the subsequent wet phase (1994–1999), mean groundwater level increased 

significantly (p<0.05), by a magnitude of 0.08 m year
-1

 (Fig. 4; Table 1). In the second dry phase 
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(1999–2009), mean groundwater level decreased significantly (Fig. 4; p<0.05), with a magnitude of 

groundwater decline of -0.16 m year
-1

 (Table 1). In the final wet phase (2009–2015), mean 

groundwater level increased significantly (p<0.05), with a magnitude of groundwater level increase of 

0.21 m year
-1
 (Table 1).  

Trends in groundwater level changes in each dry and wet phase were spatially heterogeneous, with 

some areas showing much stronger changes in groundwater levels than others (Fig. 6). In the first dry 

phase (1989–1994), 233 bores showed significant declines in groundwater level (Mann-Kendall, 

p<0.05; Table 1). The magnitude of declining bores was highest in the central floodplain around 

Dalby, Cecil Plains and Jondaryan, although high magnitude declining bores were also evident in the 

southeast near Warwick and east of Allora (Fig. 6a). Five bores in the north of the catchment showed 

significant positive trends in groundwater level (Mann-Kendall, p<0.05; Table 1); one bore located 

near the town of Chinchilla exhibited a high magnitude of rising groundwater (Fig. 6a). Other rising 

bores during this climatic phase were located northeast of Dalby (Fig. 6a). One hundred and forty-nine 

bores, spread across the catchment (Fig. 6a) exhibited no significant trends (Mann-Kendall, p>0.05).  

[Fig. 6]  

In the following wet phase (1994–1999), 280 bores exhibited no significant trends in groundwater 

level (Mann-Kendall, p>0.05; Table 1), 72 bores exhibited significant positive trends (Mann-Kendall, 

p<0.05; Table 1), and 25 bores showed significant negative trends in groundwater levels (Mann-

Kendall, p<0.05; Table 1). Bores exhibiting rising groundwater levels during this phase were spread 

across the catchment, although bores exhibiting high magnitudes of increase were primarily located 

south of Jondaryan, east of Allora and east of Warwick (Fig. 6b). Declining trends were restricted to 

bores between Dalby and Millmerran, with two high magnitude declining bores near Kaimkillenbun 

(Fig. 6b).  

In the second dry phase from 1999–2009, 197 monitoring bores exhibited significant negative 

groundwater level trends (Mann-Kendall, p<0.05; Table 1) and 168 bores showed no trend (Mann-

Kendall, p>0.05; Table 1).  Only seven bores exhibited significant positive trends (Mann-Kendall, 
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p<0.05; Table 1). Bores with declining trends were spread across the entire catchment; however, the 

magnitude of declines were greatest between Dalby and Millmerran in the central part of the 

floodplain, near Jondaryan and northeast of Allora (Fig. 6c). The bores exhibiting positive trends were 

located near Warra, east of Dalby, northeast of Bowenville, and south of Jondaryan, although these 

were only of low to moderate magnitude (Fig. 6c),  

In the second wet phase from 2009–2015, 33 bores showed significant positive groundwater level 

trends (Mann-Kendall, p<0.05; Table 1); three bores showed significant negative groundwater trends 

(Mann-Kendall, p<0.05; Table 1), and 221 bores showed no positive trend (Mann-Kendall, p<0.05; 

Table 1). Two bores with low magnitude declining trends were located around Dalby and one bore of 

very low magnitude declining trend was located at Jondaryan (Fig. 6d). Bores with rising trends were 

spread across the catchment and ranged in magnitude from low to high, with one bore south of 

Toowoomba of very high magnitude (Fig. 6d).  

Examples of individual bore time series within each of the broad type of groundwater response are 

shown in Figure 7. Bores exhibiting no significant trends typically showed great variability across the 

1989–2015 period (Fig. 7c). 

 [Fig. 7]   

 

4. Discussion 

In this study we assessed in situ groundwater level changes over a 26-year period (1989–2015) in the 

Condamine catchment, an agricultural landscape subject to significant levels of groundwater 

extraction and periodic climate extremes. We defined climate extremes on the basis of significant 

departure of annual rainfall anomaly from the long term (1961–1990) average rainfall anomaly and 

identified four distinct climatic phases. We categorised monitoring bore responses in groundwater 

level as ‘declining’ (significant negative trends), ‘rising’ (significant positive trends), or ‘stable’ (no 

significant trend) over the entire time period and within climatic phases. Overall, we found that 
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average groundwater levels declined by 0.06 m year
-1
 across Condamine catchment over the entire 26 

year study period and that, within climatic phases, groundwater recovery in wet phases was 

insufficient to offset decline in dry phases. 

This study was based on the premise that under a sustainable level of extraction, groundwater levels in 

monitoring bores would be responsive to climatic phases (i.e. decline during drought and recover 

during wet phases). If groundwater levels declined in drought, but showed recovery in wet phases, this 

would suggest some long-term resilience of the system to climate variability. Conversely, lack of 

recovery in groundwater levels during wet phases (i.e. further groundwater decline or no significant 

positive trend) would suggest that the system is experiencing chronic groundwater decline and has 

poor resilience to climate variability. ‘Stable’ bore responses might then represent a system which, 

while potentially in equilibrium in terms of recharge and extraction/leakage, was either not greatly 

exposed to extraction pressure or unresponsive to climate phases. 

The overall groundwater decline in our study area was driven by a smaller subset of highly responsive 

bores that were mostly clustered around the central Condamine floodplain. Previous studies have 

suggested a higher degree of groundwater decline in the study area of between 0.29 and 0.63 m year
-1

 

(Kelly and Merrick, 2007; Office of Groundwater Impact Assessment, 2016). However, these reports 

have focussed on a small number of bores in the central floodplain where there is high groundwater 

extraction for agriculture over longer time periods, which may explain the discrepancy in the 

magnitude of overall decline with the current study. Dafny and Silburn (2014) similarly found this 

central area of the catchment to be experiencing significant groundwater decline and attributed this to 

over-extraction for irrigation.  

Over the last 40 years or so, there have been changes in groundwater policy (a moratorium on new 

bores and reduced allocations) and the management (e.g. metering of extraction in the Condamine 

Groundwater Management Area) of groundwater resources in this catchment (Queensland 

Government, 2012; Tan et al., 2012). However, the overall decline in groundwater levels and, 

importantly, lack of substantial recovery during extreme high rainfall events and wetter phases found 
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in this study, suggests continued chronic groundwater decline for these parts of the Condamine 

alluvium despite groundwater policy and management changes.  

Analysis of distinct climatic phases in this study reveal further important patterns. As might be 

expected, the dry phase of 1989–1994 showed the majority of monitoring bores exhibiting a 

significant decrease in groundwater level. The subsequent positive groundwater level trend during the 

1994–1999 wet phase, which included two extreme rainfall years, was not sufficient to offset the 

magnitude of the negative trend during the preceding dry phase (1989–1994). Furthermore, the high 

magnitude (0.21 m year
-1
) positive trend during the 2009–2015 wet phase, while significantly greater 

than that of the negative trend in the preceding dry phase (1999–2009), was insufficient to offset the 

longer term (1989–2015) decline in groundwater levels. However, we acknowledge that the temporal 

response to wet and dry climatic phases may not be the same and may not account for any lags in 

recharge or extraction. Future analyses examining shorter-term responses to extreme rain events and/or 

annual rainfall cycles and potential groundwater recovery are needed. 

The overall declining groundwater level trend observed for the Condamine alluvium is of significance 

to the continued drought resilience of both agricultural systems and groundwater-linked ecosystems in 

this landscape. Chronic groundwater decline will leave these systems increasingly vulnerable to future 

drought and broader climatic variability. This will likely be further compounded with the projected 

increase in the magnitude of droughts and increased evapotranspiration in the region over the next 

century (CSIRO and Bureau of Meteorology, 2015). Furthermore, Crosbie et al. (2010) modelled 

groundwater recharge in the Murray-Darling Basin under low, medium and high global-warming 

scenarios and suggest that recharge for the Condamine catchment is predicted to reduce or remain the 

same under medium or high warming scenarios. These scenarios of climate change, coupled with no 

further action to reduce extraction rates (through policy change), could be expected to exacerbate the 

groundwater declines identified in this study.  

Understanding the drivers of groundwater dynamics is also complicated by multiple climate variables 

such as carbon dioxide concentration, temperature, solar radiation and rainfall intensity (e.g. 
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McCallum et al., 2010; Barren et al., 2012; Crosbie et al., 2012). Similarly, land uses (e.g. native 

vegetation, irrigated and dryland agriculture, plantation forests, etc.) and management practices, 

including extraction rates, can all impact groundwater discharge/recharge rates, hence groundwater 

levels (Willis and Black, 1996). We identified a number of bores exhibiting rising groundwater level 

trends over the entire sampling period, albeit at lower magnitudes. These bores appear to be located in 

areas where local water storages and/or flood irrigation of crops may result in localised input into the 

alluvium (Dafny and Silburn, 2014). In the Lower Macquarie Valley of New South Wales, irrigation 

has been linked to local groundwater rises from 0.04 to 0.52 m year
-1
 (Willis and Black, 1996). One 

bore adjacent to the town of Chinchilla exhibited a very strong rising groundwater trend in the first dry 

phase (1989–1994) and most likely represents the influence of urban infrastructures such as the local 

weir.  

In many cases, a broader set of climate variables and land use and management practices will interact 

with climatic conditions and these warrant further investigation to adequately account for their 

influence on groundwater use and recharge (Smerdon, 2017). Our understanding of the drivers of 

groundwater decline would also benefit from access to accurate long term and high spatial resolution 

measures of groundwater extraction in the Condamine catchment and Australia more broadly 

(Harrington and Cook, 2014). Dafny and Silburn (2014) report estimated groundwater extraction rates 

from the Condamine Alluvium of between 1.46 and 2.12 m
3
 s

-1
 since the early 1980s, exceeding the 

estimated sustainable yield of between 0.48 and 0.95 m
3
. s

-1
 (Kelly and Merrick, 2007), but time series 

data sets for individual production bores is not openly available. While the demand for groundwater 

extraction may be expected to reduce during wetter climatic phases with increased availability of both 

soil moisture and surface water, the continued decline in groundwater levels observed in the majority 

of bores in this study suggests that extraction in parts of the Condamine is unsustainable. These trends 

also indicate that changes in policy settings over this time period do not appear to have adequately 

redressed this ongoing decline. 

Similar trends indicating chronic groundwater decline has been observed in other agricultural regions, 

based on direct in situ measurement (e.g. Shamsudduha et al., 2011; Tabari et al., 2011; Daneshvar 
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Vousoughi et al., 2013), and studies using satellite gravity data (e.g. Crosbie et al., 2013; Döll et al., 

2014; Richey et al., 2015). Chronic groundwater decline due to over-exploitation of groundwater 

resources for both agricultural and domestic uses has also been observed in the Ardabil plain 

agricultural landscape in northwest Iran (Daneshvar Vousoughi et al., 2013). Non-seasonal chronic 

groundwater decline observed in parts of the Indo-Gangetic Basin has been strongly associated with 

high extraction rates, particularly during low rainfall periods (Shamsudduha et al., 2011; MacDonald 

et al., 2016).  However, while there is widespread reporting of seasonal and inter-annual trends in 

groundwater (e.g. Shamsudduha et al., 2009), few studies have previously examined groundwater 

response to longer climatic cycles (although see Tirogo et al., 2016). In addition, extraction and 

subsequent lowering of groundwater tables has substantially reduced groundwater storage in many 

regions (Steward et al., 2013; Döll et al., 2014). Global groundwater storage depletion from 2000–

2009 is estimated at 113 km
3
 yr

-1
, with highest rates of change in India, the US, Iran, Saudi Arabia and 

China (Döll et al., 2014). Reductions in groundwater storage are also likely to have occurred in the 

Condamine alluvium from the declines in groundwater level observed in this study. We are not aware 

of studies quantifying storage changes in the Condamine, but this would be an important avenue of 

future research with important implications for the sustainability of groundwater resources in the area. 

Overall decline in groundwater levels across longer climate cycles—despite some recovery in wetter 

phases as indicated in this study—provides a strong indication that a sustainable groundwater 

management regime is yet to be achieved and there are grounds for further policy adjustment. 

However, policy settings are unlikely to change unless there is strong evidence of chronic groundwater 

decline, based on reliable data and rigorous analysis. Further, unless policy is subject to regular review 

and adaptation over time, under climate change—in regions where dry and wet extreme events are 

predicted to be become more prominent (CSIRO and Bureau of Meteorology, 2015)—this situation 

will likely continue to contribute to even greater groundwater decline over time.  
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4.1. Resilience of Agricultural Landscapes and Groundwater  

Our premise in this study was that groundwater levels showing recovery in wet periods would suggest 

some degree of resilience of the agricultural system of the Condamine catchment to extreme climate 

variability. Ecological resilience (sensu Holling 1974), has been extensively researched and debated in 

community ecology, and increasingly considered in more interdisciplinary studies (e.g. Standish et al., 

2014; Thoms et al., 2018) to describe non-equilibrium systems. Walker et al. (2004) define resilience 

as the capacity of a system to absorb disturbance and reorganize while undergoing change to retain the 

same function, structure, identity, and feedbacks. We extend the approach of Colloff and Baldwin 

(2010), who developed a model of resilience for semi-arid (250-500 mm rainfall per year) floodplain 

and wetland ecosystems, to the temperate/sub-tropical (670-950 mm rainfall per year) floodplain 

agricultural system of the Condamine catchment. Colloff and Baldwin (2010) regard semi-arid 

floodplain social-ecological systems as existing in a single state, alternating between dry and wet 

phases driven by episodic floods (recharge) and droughts (drawdown). Colloff and Baldwin (2010) 

maintain that the stability of these systems is conferred by the capacity to alternate between these 

phases. While any one cycle (dry/wet phase combination) may not see complete recovery of 

groundwater, it could be expected that over a number of cycles, groundwater recharge would represent 

a relatively steady-state system. Our study suggests incomplete recovery over multi-decadal scales, 

which may indicate a transitioning (unstable) state for the agricultural system of the Condamine 

catchment in response to a shift in climate and/or groundwater extraction practises. While this may not 

yet be a catastrophic shift (e.g. Scheffer et al., 2001), failure of policy to address unsustainable 

groundwater extraction rates in the context of climate change may prove disastrous. 

In our study, the proportion of declining bores during both dry climatic phases was much greater than 

the proportion of rising bores in the following wet phases despite a number of policy interventions on 

groundwater extraction during this period. Under climate change, where dry and wet extreme events 

are predicted to be become more prominent (CSIRO and Bureau of Meteorology, 2015), this pattern 

could intensify leading to even greater decline and less recovery than we have observed.  
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We conclude that over 1989–2015, there is evidence of a significant net decline in groundwater levels 

in the important agricultural landscape of the Condamine catchment, southern Queensland. Analysis of 

trends within distinct climatic phases further reveals that recharge during intense wet periods does not 

offset the decline in groundwater levels during prolonged drought. While this decline in groundwater 

levels is restricted to a smaller subset of highly responsive bores within the catchment, it is indicative 

of the chronic groundwater decline likely to occur more widely with increasing reliance on 

groundwater systems to supplement variable rainfall and reduced availability of surface water 

resources. Future extraction policy, and water resource management practises more broadly, will need 

to carefully consider the heterogeneity of groundwater system responses and the potential impacts of 

climate change on groundwater dynamics. 

 

Acknowledgements 

The authors would like to acknowledge Ernest Dunwoody for fruitful discussions on groundwater data. We 

also thank the International Centre for Applied Climate Sciences (ICACS) at the University of Southern 

Queensland for logistic support. We thank Anthony O’Grady for suggestions that have improved the 

manuscript. This research did not receive any specific grant from funding agencies in the public, 

commercial, or not-for-profit sectors. 

 

  



  

Chronic groundwater decline under extreme climate cycles 

21 

References 

Abdullahi, M.G., Toriman, M.E., Gasim, M.B., and Garba, I., 2015. Trends Analysis of Groundwater: 

Using Non-Parametric Methods in Terengganu Malaysia. J. Earth. Sci. Clim. Change 6. doi: 10.4172/2157-

7617.1000251 

Aghakouchak, A., Feldman, D., Stewardson, M.J., Saphores, J.D., Grant, S., Sanders, B., 2014. Australia's 

drought: lessons for California. Science 343, 1430–1431. doi: 10.1126/science.343.6178.1430 

Australian Bureau of Meteorology, 2017. Australian Bureau of Meteorology Climate Data Online. 

Commonwealth of Australia, Canberra [cited 17 April 2017.] Available from 

http://www.bom.gov.au/climate/data/index.shtml 

Australian Bureau of Statistics, 2016. Value of Agricultural Commodities Produced, Australia, 2014-15. 

Australian Bureau of Statistics, Canberra. [cited 17 April 2017.] Available from 

http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/7503.02014-15?OpenDocument  

Barron, O.V., Crosbie, R,S., Dawes, W.R., Charles, S.P., Pickett, T., Donn, M.J., 2012. Climatic controls 

on diffuse groundwater recharge across Australia. Hydrol. Earth Syst. Sci. 16 (12), 4557–4570. doi: 

10.5194/hess-16-4557-2012 

Biggs, A., Carey, B., 2006. The Condamine Catchment. Queensland Natural Resources and Water, 

Queensland. 

Bronaugh, D., Werner, A., 2013. zyp: Zhang + Yue-Pilon trends package. R package version 0.10-1. 

http://CRAN.R-project.org/package=zyp. 

Cheema, M.J.M., Immerzeel, W.W., Bastiaanssen, W.G.M., 2014. Spatial Quantification of Groundwater 

Abstraction in the Irrigated Indus Basin. Ground Water 52, 25–36. doi: 10.1111/gwat.12027.  

Chen, Z., Grasby, S., Osadetz, K.G., 2004. Relation between climate variability and groundwater level in 

the upper carbonate aquifer, south Manitoba, Canada. J. Hydrol. 290, 43–62.  

http://www.bom.gov.au/climate/data/index.shtml
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/7503.02014-15?OpenDocument


  

Chronic groundwater decline under extreme climate cycles 

22 

Chen, J.L., Wilsona, C.R., Tapley, B.D., Scanlon, B., Güntner, A., 2016. Long-term groundwater storage 

change in Victoria, Australia from satellite gravity and in situ observations. Glob. Plan. Change 139, 56–

65. doi: 10.1016/j.gloplacha.2016.01.002 

Colloff, M.J., Baldwin, D.S., 2010. Resilience of floodplain ecosystems in a semi-arid environment. The 

Rangeland Journal 32, 305–314. doi: 10.1071/RJ10015 

Crosbie, R.S., McCallum, J.L., Walker, G.R., Chiew, F.H.S., 2010. Modelling climate-change impacts on 

groundwater recharge in the Murray-Darling Basin, Australia. Hydrogeol. J. 18, 1639–1656. doi: 

10.1007/s10040-010-0625-x 

Crosbie, R.S., McCallum, J.L., Walker, G.R., Chiew, F.H.S., 2012. Episodic recharge and climate change 

in the Murray-Darling Basin, Australia. Hydrogeol. J. 20, 245–261. doi: 10.1007/s10040-011-0804-4 

Crosbie, R.S., Pickett, T., Mpelasoka, F.S., Hodgson, G., Charles, S.P., Barron, O.V., 2013. An assessment 

of the climate change impacts on groundwater recharge at a continental scale using a probabilistic approach 

with an ensemble of GCMs. Climatic Change 117, 41–53. doi: 10.1007/s10584-012-0558-6 

CSIRO, 2008. Water Availability in the Condamine-Balonne. A report to the Australian Government from 

the CSIRO Murray-Darling Basin Sustainable Yields Project, CSIRO, Canberra. 

CSIRO and Bureau of Meteorology, 2015. Climate Change in Australia Information for Australia’s Natural 

Resource Management Regions: Technical Report, CSIRO and Bureau of Meteorology, Australia. 

Dafny E., Silburn D.M., 2014. The hydrogeology of the Condamine River Alluvial Aquifer, Australia: a 

critical assessment. Hydrogeol. J. 22, 705–727. doi: 10.1007/s10040-013-1075-z 

Daneshvar Vousoughi, F., Dinpashoh, Y., Aalami, M.T., Jhajharia, D., 2013. Trend analysis of 

groundwater using non-parametric methods (case study: Ardabil plain). Stoch. Environ. Res. Risk Assess. 

27, 547–559. doi: 10.1007/s00477-012-0599-4 

Dinpashoh, Y., Jhajharia, D., Fakheri-Fard, A., Singh, V.P., Kahya, E., 2011. Trends in reference crop 

evapotranspiration over Iran. J. Hydrol. 399, 422–433. doi: 10.1016/j.jhydrol.2011.01.021 



  

Chronic groundwater decline under extreme climate cycles 

23 

Dinpashoh, Y., Mirabbasi, R., Jhajharia, D., Abianeh, H.Z., Mostafaeipour, A., 2014. Effect of short-term 

and long-term persistence on identification of temporal trends. Journal of Hydrologic Engineering, 19, 

617–625. doi: 10.1061/(ASCE)HE.1943-5584.0000819 

Döll, P., 2009. Vulnerability to the impact of climate change on renewable groundwater resources: a 

global-scale assessment. Environ. Res. Lett. 4 (3), 35006–35006. doi: 10.1088/1748-9326/4/3/035006 

Döll, P., Müller Schmied, H., Schuh, C., Portmann, F.T., Eicker, A., 2014. Global-scale assessment of 

groundwater depletion and related groundwater abstractions: Combining hydrological modeling with 

information from well observations and GRACE satellites. Water Resour. Res. 50, 5698–5720. doi: 

10.1002/2014WR015595. 

Fekete, B.M., Robarts, R.D., Kumagai, M., Nachtnebe, H-P., Odada, E., Zhulidov, A.V., 2015. Time for in 

situ renaissance. Science 349, 685–686. doi: 10.1126/science.aac7358. 

Flint, L.E., Flint, A.L., Stolp, B.J., Danskin, W.R., 2012. A basin-scale approach for assessing water 

resources in a semiarid environment: San Diego region, California and Mexico. Hydrol. Earth Syst. Sci. 16 

(10), 3817–3833. doi: 10.5194/hess-16-3817-2012 

Gleeson, T, Wada, Y., Bierkens, M.F.P. van Beek, L.P.H., 2012. Water balance of global aquifers revealed 

by groundwater footprint. Nature 488, 197–200. doi:10.1038/nature11295 

Gurdak, J.J., Hanson, R.T., McMahon, P.B., Bruce, B.W., McCray, J.E., Thyne, G.D., Reedy, R.C., 2007. 

Climate variability controls on unsaturated water and chemical movement, high plains aquifer, USA. 

Vadose Zone J., 6, 533–547. doi: 10.2136/vzj2006.0087 

Harrington, N., Cook, P., 2014. Groundwater in Australia. National Centre for Groundwater Research and 

Training, Adelaide, Australia. 

Holling, C.S., 1974. Resilience and stability of ecological systems. Annu Rev. Ecol. Syst. 4, 1–23. 

Hundecha, Y., Bárdossy, A., 2005. Trends in daily precipitation and temperature extremes across western 

Germany in the second half of the 20
th

 century. Int. J. Climatol. 25, 1189–1202. doi: 10.1002/joc.1182 



  

Chronic groundwater decline under extreme climate cycles 

24 

Hutchinson, M.F., McIntyre, S., Hobbs, R.J., Stein, J.L., Garnett, S., Kinloch, J., 2005. Integrating a global 

agro-climatic classification with bioregional boundaries in Australia. Glob. Ecol. Biogeo. 14, 197–212. 

Jan, C.D., Chen, T.H., Lo, W.C., 2007. Effects of rainfall intensity and distribution on groundwater level 

fluctuations. J. Hydrol. 332, 348–360. doi: 10.1016/j.jhydrol.2006.07.010 

Kath, J., Dyer, F.J., 2017. Why groundwater matters: an introduction for policy-makers and managers. 

Policy Studies 38, 447–461. doi: 10.1080/01442872.2016.1188907 

Kath, J., Reardon-Smith, K., Le Brocque, A.F., Dyer, F. J., Dafny, E., Fritz, L., Batterham, M., 2014. 

Groundwater decline and tree change in floodplain landscapes: identifying non-linear threshold responses 

in canopy condition. Glob. Ecol. Conser. 2, 148–160. doi: 10.1016/j.gecco.2014.09.002 

Kelly, B., Merrick, N., 2007. Groundwater knowledge and gaps in the Condamine Alliance area. National 

Centre for Groundwater Management (NCGM), University of Technology, Sydney. 

Kendall, M.G., 1955. Rank Correlation Methods. 2nd edn. Griffin, London. 

Konikow, L.F., 2014. Long-Term Groundwater Depletion in the United States. Groundwater 53, 2–9. doi: 

10.1111/gwat.12306.  

Kuss, A.J.M., Gurdak, J.J., 2014. Groundwater level response in U.S. principal aquifers to ENSO, NAO, 

PDO, and AMO. J. Hydrol., 519, 1939–1952. doi: 10.1016/j.jhydrol.2014.09.069 

Leblanc, M.J., Tregoning, P., Ramillien, G., Tweed, S.O., Fakes, A., 2009. Basin-scale, integrated 

observations of the early, 21st century multiyear drought in southeast Australia. Water Resour. Res. 45, 

W04408. doi: 10.1029/2008WR007333. 

Leblanc, M., Tweed, S., Ramillien, G., Tregoning, P., Frappart, F., Fakes, A., Cartwright, I., 2011. Ch 10: 

Groundwater change in the Murray basin from long- term in- situ monitoring and GRACE estimates In, 

Climate Change Effects on Groundwater Resources Climate Change Effects on Groundwater Resources: A 

Global Synthesis of Findings and Recommendations (Eds. Holger Treidel, Jose Luis Martin-Bordes, Jason 

J. Gurdak) Taylor & Francis Group, Boca Raton. pp. 169-187. 



  

Chronic groundwater decline under extreme climate cycles 

25 

Lee, J.Y., Yi, M.J., Moon, S.H., Cho, M., Won, J.H., Ahn, K.H., Lee, J.M. 2007. Causes of the changes in 

groundwater levels at Daegu, Korea: the effect of subway excavations. Bull. Eng. Geol. Environ. 66, 251–

258. doi: 10.1007/s10064-006-0074-x 

Long, D., Chen, X., Scanlon, B.R., Wada, Y., Hong, Y., Singh, V.P., Chen, Y., Wang, C., Han, Z., Yang, 

W., 2016. Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer? 

Scientific Reports 6, 24398. doi: 10.1038/srep24398 

MacDonald, A.M., Bonsor, H.C., Ahmed, K.M., Burgess, W.G., Basharat, M., Calow, R.C., Dixit, A., 

Foster, S.S.D., Gopal, K., Lapworth, D.J., Lark, R.M., Moench, M., Mukherjee, A., Rao, M.S., 

Shamsudduha, M., Smith, L., Taylor, R.G., Tucker, J., van Steenbergen, F., Yadav, S.K., 2016. 

Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nature 

Geoscience 9, 762–766. doi: 10.1038/ngeo2791 

Mair, A., Hagedorn, B., Tillery, S., El-Kadi, A.I., Westenbroek, S., Ha, K., Koh, G-W., 2013. Temporal 

and spatial variability of groundwater recharge on Jeju Island, Korea. J. Hydrol. 501, 213–226. doi: 

10.1016/j.jhydrol.2013.08.015 

McCallum, J.L., Crosbie, R.S., Walker, G.R., Dawes, W.R., 2010. Impacts of climate change on 

groundwater in Australia: A sensitivity analysis of recharge Hydrogeol. J. 18, 1625–1638. doi: 

10.1007/s10040-010-0624-y 

McLeod, A.I., 2011. Kendall: Kendall rank correlation and Mann-Kendall trend test. R package version 

2.2. http://CRAN.R-project.org/package=Kendall. 

Office of Groundwater Impact Assessment, 2016. Groundwater connectivity between the Condamine 

Alluvium and the Walloon Coal Measures: A hydrogeological investigation report. Office of Groundwater 

Impact Assessment, Queensland Department of Natural Resources and Mines. Brisbane, Australia. 

Panda, K., Mishra, A., Jena, S.K., James, B.K., Kumar, A., 2007. The influence of drought and 

anthropogenic effects on groundwater levels in Orissa, India. J. Hydrol. 343, 140–153. 



  

Chronic groundwater decline under extreme climate cycles 

26 

Queensland Department of Natural Resources and Mines, 2017. Water Monitoring Information Portal. 

Department of Natural Resources and Mines, Queensland Government, Brisbane, Australia. Available from 

https://water-monitoring.information.qld.gov.au/  

Queensland Department of Environment and Resource Management, 1999. Land Use Mapping Data, 

Queensland. Queensland Government, Brisbane, Australia. 

Queensland Government, 2012. Water Management Plan for the Upper Condamine Alluvium Sustainable 

Diversion Limit Area. Interim water resource plan for the Commonwealth Water Act 2007. Department of 

Natural Resources and Mines, Queensland Government, Brisbane, Australia. 

Queensland Government, 2015. Groundwater Database – Queensland. Queensland Government, Brisbane, 

Australia. Available from https://data.qld.gov.au/dataset/groundwater-database-queensland. 

R Core Development Team, 2014. R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org/. 

Richey, A.S., Thomas, B.F., Lo, M.-H., Reager, J.T., Famiglietti, J.S., Voss, K., Swenson, S., Rodell, M., 

2015. Quantifying renewable groundwater stress with GRACE, Water Resour. Res. 51, 5217–5238. doi: 

10.1002/2015WR017349 

Russo, T.A.; Lall, U., 2017. Depletion and response of deep groundwater to climate-induced pumping 

variability. Nature Geo. 10, 105–108. doi: 10.1038/NGEO2883 

Sahoo, S., Russo, T., Lall, U., 2016. Comment on “Quantifying renewable groundwater stress with 

GRACE” by Alexandra S. Richey et al., Water Resour. Res., 52, 4184–4187. doi: 10.1002/2015WR018085 

Searle, R.D., Walting, K.M, Biggs, A.J.W., Secombe, K.E., 2007. Strategic Salinity Risk Assessment in the 

Condamine Catchment. Queensland Department Natural Resources and Water, Brisbane. 

Sen, Z., 2017. Hydrological trend analysis with innovative and over-whitening procedures. Hydrol. Sci. J. 

62, 294–305. doi: 10.1080/02626667.2016.1222533 

https://water-monitoring.information.qld.gov.au/
https://data.qld.gov.au/dataset/groundwater-database-queensland


  

Chronic groundwater decline under extreme climate cycles 

27 

Shahid, S. Hazarika, M.K., 2010. Groundwater drought in the north-western districts of Bangladesh. Water 

Res. Manage. 24, 1989–2006.  doi: 10.1007/111269-009-9534-y 

Shamsudduha, M., Chandler, R.E., Taylor, R.G., Ahmed, K.M., 2009. Recent trends in groundwater levels 

in a highly seasonal hydrological system: the Ganges–Brahmaputra–Meghna delta. Hydrol. Earth Syst. Sci. 

13, 2373–2385. 

Shamsudduha, M., Taylor, R., Ahmed, K.M., Zahid, A., 2011. The impact of intensive abstraction on 

recharge to a shallow regional aquifer system: evidence from Bangladesh. Hydrogeol. J. 19, 901–916. 

Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B.. 2001. Catastrophic shifts in ecosystems. 

Nature, 413 (6856), 591−596. doi: 10.1038/35098000 

Simmons, C.T., 2016. Groundwater down under. Groundwater 54, 459–460. doi: 10.1111/gwat.12433 

Smerdon, B.D., 2017. A synopsis of climate change effects on groundwater recharge J. Hydrol. 555, 125–

128. doi: 10.1016/j.jhydrol.2017.09.047 

Standish, R.J., Hobbs, R.J., Mayfield, M.M., Bestelmeyer, B.T., Suding, K.N., Battaglia, L.L., Eviner, V., 

et al., 2014. Resilience in ecology: Abstraction, distraction, or where the action is? Biological 

Conservation, 177, 43–51. doi: 10.1016/j.biocon.2014.06.008 

Steward, D.R., Bruss, P.J., Yang, X., Staggenborg, S.A., Welch, S.M., & Apley, M.D., 2013. Tapping 

unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, 

projections to 2110. Proceedings of the National Academy of Sciences, 110, 3477-3486. doi: 

10.1073/pnas.1220351110 

Swirepik, J.L., Burns, I.C., Dyer, F.J., Neave, I.A., O'Brien, M.G., Pryde, G.M., Thompson, R.M., 2016. 

Environmental Water Requirements for the Murray–Darling Basin, Australia's Largest Developed River 

System. River Res. Applic. 32, 1153–1165. doi: 10.1002/rra.2975 

Tabari, H., Nikbakht, J., Shifteh Some’e, B., 2012. Investigation of groundwater level fluctuations in the 

north of Iran. Environ. Earth Sci. 66, 231–243. doi:10.1007/s12665-011-1229-z 



  

Chronic groundwater decline under extreme climate cycles 

28 

Tan, P-L., Baldwin, C., White, I., Burry, K., 2012. Water planning in the Condamine Alluvium, 

Queensland: Sharing information and eliciting views in a context of overallocation. J. Hydrol. 474, 38–46. 

doi:10.1016/j.jhydrol.2012.01.004 

Taylor, R.G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., 

Famiglietti, J.S., Edmunds, M., Konikow, L., Green, T.R., Chen, J., Taniguchi, M., Bierkens, M.F.P., 

MacDonald, A., Fan, Y., Maxwell, R.M., Yechieli, Y., Gurdak, J.J., Allen, D.M., Shamsudduha, M., 

Hiscock, K., Yeh, P.J.-F., Holman, I., Treidel, H., 2013. Ground water and climate change. Nature Clim. 

Change 3 (4), 322–329. 

Thoms, M.C., Piegay, H., Parsons, M., 2018. What do you mean, ‘resilient geomorphic systems’? 

Geomorphology, 305, 8–19. doi: 10.1016/j.geomorph.2017.09.003 

Tirogo, J., Jost, A., Biaou, A., Valdes-Lao, D., Koussoubé, Y., Ribstein, P., 2016. Climate Variability and 

Groundwater Response: A Case Study in Burkina Faso (West Africa). Water 8, 171. 

van Dijk, A.I.J.M., Beck, H.E., Crosbie, R.S., de Jeu, R.A.M., Liu, Y.Y., Podger, G.M., Timbal, B., Viney, 

N.R., 2013. The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and 

implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49, 1040–1057. 

doi: 10.1002/wrcr.20123. 

Vaux, H., 2011. Groundwater under stress: the importance of management. Environ. Earth Sci. 62, 19–23. 

doi: 10.1007/s12665-010-0490-x 

Vos, C.C., Berry, P., Opdam, P., Baveco, H., Nijhof, B., O'Hanley, J., Bell, C., Kuipers, H., 2008. Adapting 

landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. 

J. Appl. Ecol. 45, 1722–1731. 

Wada, Y., 2016. Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future 

Prospects. Surv. Geophys. 37, 419–451. doi: 10.1007/s10712-015-9347-x 

Walker, K.F., Thoms, M.C., 1993. Environmental-effects of flow regulation on the lower River Murray, 

Australia. Regulated Rivers-Res. .Manage. 8, 103–119. 



  

Chronic groundwater decline under extreme climate cycles 

29 

Walker, B.H., Holling, C.S., Carpenter, S.R., Kinzig, A.S., 2004. Resilience, adaptability and 

transformability in Social–ecological Systems. Ecol. Soc. 9: 5.  

Weider, K., Boutt, D., 2010. Heterogeneous water table response to climate revealed heterogeneous water 

table response to climate revealed by 60 years of ground water data. Geophys. Res. Lett. 37, L24405. doi: 

10.1029/2010GL045561 

White, I., Burry, K., Baldwin, C., Tan, P., George, D., Mackenzie, J., 2010. Tools for water planning: 

lessons, gaps and adoption. PART 3: Condamine groundwater: from over allocation to sustainable 

extraction. Rep. Water Line 37, National Water Commission, Canberra. 

Willis, T.M., Black, A.S., 1996. Irrigation increases groundwater recharge in the Macquarie Valley. Soil 

Res. 34 (6), 837–847. 

Zektser, S., Loáiciga, H.A., Wolf, J.T., 2005. Environmental impacts of groundwater overdraft: selected 

case studies in the southwestern United States. Env. Geol. 47, 396–404. doi: 10.1007/s00254-004-1164-3 

Zhang, X., Vincent, L.A., Hogg, W.D., Niitsoo, A., 2000. Temperature and Precipitation Trends in Canada 

During the 20th Century. Atmosphere-Ocean 38, 395–429. doi: 10.1080/07055900.2000.9649654 

 



  

Groundwater decline under extreme climate cycles 

30 

Table 1. Summary of groundwater level responses showing Sen’s slope estimators, number and proportion of bores and mean groundwater level changes within response 

types across the entire sampling period (1989–2015) and within climatic phases. 

Trend (Response)  

Mean Sen’s slope (trend)  
Mean linear 

trend 

Number of 

bores 

Proportion of 

bores 

Groundwater level change  

(m year
-1

) 

Mean per year Mean over 

period/phase 

Mean intercept Mean  Standard 

error 

Entire period (1989–2015)     251 1.00 -0.06 0.01 

Negative (Declining) -0.16 -4.41 -21.77 -0.16 51 0.20 -0.14 0.01 

Positive (Rising) 0.13 3.68 -17.00 0.06 25 0.10 0.04 0.02 

No trend (Stable) 0.03 0.90 -15.92 -0.06 175 0.70 -0.06 0.01 

Dry phase (1989–1994)     363 1.00 -0.30 0.02 

Negative (Declining) -0.55 -3.32 -12.57 -0.45 233 0.64 -0.35 0.02 

Positive (Rising) 0.22 1.30 -19.49 0.22 5 0.02 0.17 0.09 

No trend (Stable) -0.35 -2.07 -13.02 -0.29 125 0.34 -0.22 0.03 

Wet phase (1994–1999)     377 1.00 0.08 0.01 

Negative (Declining) -0.17 -1.05 -21.48 -0.20 25 0.07 -0.17 0.02 

Positive (Rising) 0.35 2.11 -14.11 0.30 72 0.19 0.22 0.03 

No trend (Stable) 0.07 0.43 -15.58 0.10 280 0.74 0.07 0.01 

Dry phase (1999–2009)     372 1.00 -0.16 0.01 

Negative (Declining) -0.24 -2.62 -15.60 -0.23 197 0.53 -0.19 0.01 

Positive (Rising) 0.12 1.29 -19.53 0.13 7 0.02 0.10 0.04 

No trend (Stable) -0.08 -0.85 -15.66 -0.18 168 0.45 -0.13 0.01 

Wet phase (2009–2015)     257 1.00 0.21 0.02 

Negative (Declining) -0.08 -0.58 -16.21 -0.08 3 0.01 -0.06 0.03 

Positive (Rising) 0.26 1.79 -24.37 0.24 33 0.13 0.18 0.03 

No trend (Stable) -0.07 -0.52 -15.13 0.28 221 0.86 0.22 0.02 

All negative and positive trends are significant at p<0.05 (Mann-Kendall test). Values in italics are across the specified period and are either totals (number of bores, proportion of bores) or means 

(groundwater level change) and associated standard errors. 
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Figure 1. Map of Condamine River Sub-basin, southern Queensland, showing major tributaries, towns 

(solid circles), and distribution of alluvium.  

Figure 2. (a) Mean monthly rainfall and (b) mean maximum (solid line) and minimum (dashed line) daily 

ambient temperatures for Dalby recording station for the period of analysis (1989–2015).  

Figure 3. Weighted rainfall anomaly (5 year) for the Condamine catchment (1983–2015) with respect to 

long-term rainfall anomaly (1961–1990). 90
th
 and 10

th
 percentiles for long term anomaly (1961–1990) 

shown as dashed horizontal lines. Rainfall anomalies were calculated against mean annual rainfall across 

Warwick, Dalby and Chinchilla recording stations. Dry and wet phases for the period of analysis (1989 to 

2015) are shown. 

Figure 4. Mean proportional change in groundwater level relative to 1989 for all alluvial monitoring 

bores (1989–2015). Shading represents 95% confidence limits. 

Figure 5. The spatial distribution and number of bores showing groundwater level trend responses during 

the period 1989–2015 (n = 251): positive trend ( ); negative trend ( ); no trend ( ). The size of plotted 

circles is proportional to the change in groundwater level (magnitude) and is indicated by the scale. 

Figure 6. Mean change in groundwater levels per year for the four different climatic phases analysed: (a) 

dry phase 1989–1994 (n = 363); (b) wet phase 1994–1999 (n = 377); (c) dry phase 1999–2009 (n = 371); 

and, (d) wet phase 2009–2015 (n = 356): positive trend ( ); negative trend ( ); no trend ( ). The size of 

plotted circles is proportional to the change in groundwater level (magnitude) and is indicated by the scale.  

Figure 7. Examples of individual bore time series within broad types of groundwater responses identified: 

(a) negative trends (decline); (b) positive trends (rising); and, (c) no trend. 
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Highlights 

 Groundwater decline occurred over a period of extreme climate variability. 

 Groundwater levels declined an average of 0.06 m.year-1 over 26-year period. 

 Groundwater decline was not offset by extreme wet climate periods. 

 Spatially, both declining and rising bores were highly clustered. 

 


