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Abstract: Safflower (Carthamus tinctorius L.) is a highly adaptable but underutilized oilseed crop
capable of growing in marginal environments, with crucial agronomical, commercial, and industrial
uses. Considerable research is still needed to develop commercially relevant varieties, requiring
effective, high-throughput digital phenotyping to identify key selection traits. In this study, field
trials comprising a globally diverse collection of 350 safflower genotypes were conducted during
2017–2019. Crop traits assessed included phenology, grain yield, and oil quality, as well as unmanned
aerial vehicle (UAV) multispectral data for estimating vegetation indices. Phenotypic traits and
crop performance were highly dependent on environmental conditions, especially rainfall. High-
performing genotypes had intermediate growth and phenology, with spineless genotypes performing
similarly to spiked genotypes. Phenology parameters were significantly correlated to height, with
significantly weak interaction with yield traits. The genotypes produced total oil content values
ranging from 20.6–41.07%, oleic acid values ranging 7.57–74.5%, and linoleic acid values ranging from
17.0–83.1%. Multispectral data were used to model crop height, NDVI and EVI changes, and crop
yield. NDVI data identified the start of flowering and dissected genotypes according to flowering
class, growth pattern, and yield estimation. Overall, UAV-multispectral derived data are applicable
to phenotyping key agronomical traits in large collections suitable for safflower breeding programs.

Keywords: EVI; flowering; high-throughput phenotyping; NDVI; oil profile; safflower

1. Introduction

Safflower (Carthamus tinctorius L.) is a highly versatile but underutilized and poorly
studied oilseed crop [1]. A member of the Asteraceae family, safflower has traditionally
been cultivated in marginal regions due to its stress-tolerant nature [2–4]. Safflower is a mul-
tipurpose crop, able to be used as a food, a source of carthamin dye, in traditional medicine,
in stock feed, and as a plant-based oil source [1–3]. Safflower not only has traditional and
industrial uses but has crucial agronomic benefits. Forming deep root systems, safflower is
able to access and raise reserves of water and nutrients deep in the soil that other crops can
hardly reach, as well as penetrate compacted and sodic soils, improving soil structure [5].
In Australia, safflower has historically been grown opportunistically or as a primer crop
to more economically profitable crops, helping to resolve soil texture issues, dewater land
and break pest cycles [5–7]. Therefore, the development of modern, economically relevant
safflower varieties would allow for further uptake of this underutilized crop [7,8].

Recently, with a resurgence in the demand for renewable plant-based oils, interest has
turned to safflower due to its high-quality oil yields (32–40% per gram meal) and genotypic
variation in fatty acid composition, particularly polyunsaturated linoleic, monounsatu-
rated oleic, and saturated stearic acids [9–12]. Oils with varying concentrations of these
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acids are used in a range of applications such as cosmetics [13,14], pharmaceuticals [3,15],
food/cooking [16], and textiles [13], as well as the production of biofuels [17,18] and lu-
bricants [19]. Due to increases in demand, recent breeding efforts have focused on the
expanding industrial markets via targeted maximizing of oil yield and quality through the
selection of superior genotypes with high oleic or linoleic acid contents [9,20,21].

While the research on safflower is limited compared to more widely cultivated crops,
climate change has prompted further research into understanding diverse crop species,
including safflower. Previous field research efforts have mainly focused on the identifi-
cation of yield parameters and genotypes to overcome abiotic stress environments, such
as salinity [22–24] and drought [9,25–27], or the effects of soil nutrition on the growth
and yield [28–31]. Other key research topics have included oil content, quality, and yield,
due to the increased demand for plant-based oils [11,20,32,33]. Although research has
been conducted to further understand the diversity of agronomically relevant traits, and
their interrelationships, available for breeding efforts in safflower [34–37], limited research
has been conducted on large globally diverse reference populations [38–41]. Large-scale
research has instead focused mainly on characterizing genetic diversity, trait heritability
and the assessment of genetic relationships among different genotypes [21,38,42–45], but
further research is needed to fully support these studies, which will rely on improved
phenotypic data.

Rigorous phenotyping is critical to understanding plant behavior under varying environ-
ments and identifying novel traits for crop breeding. High-throughput phenotyping, using
advanced sensors and analysis algorithms, has driven significant advances in crop breeding,
especially when coupled with genomic breeding advances [46]. Various cameras, sensors, and
deployment mechanisms have been developed to measure and utilise spectral reflectance
at specific spectral regions, including RGB, multispectral, hyperspectral, and thermal imag-
ing [47,48]. In recent years, advances in high-throughput digital imaging platforms suitable for
field environments have seen the rise of non-destructive data capture methods for plant traits,
reducing the need for manual phenotyping efforts and increasing the range of data captured.
Previous phenotyping efforts in safflower have relied on traditional phenotyping methods for
phenological and agronomical traits [21,34–36,39]. Meanwhile, only limited research has been
conducted in safflower using high-throughput digital phenotyping methods [49,50], half of
which have been glasshouse-based studies [51,52].

Here, we describe the screening of a genotypically diverse collection of 350 safflower
genotypes [44] for morphological, phenotypical, and agronomically relevant traits, includ-
ing oil quality analysis, over three crop seasons. We highlight the use of UAV-based imagery
and analysis pipelines to elucidate new datasets for the selection of key crop breeding traits.
Our results show a significant range of phenological diversity present within the collection
screened and highlight desirable traits for future safflower improvement programs.

2. Materials and Methods
2.1. Plant Material and Field Experiments

A total of 350 safflower genotypes from the Agriculture Victoria Safflower collection
were grown across three years of field trials (Supplementary tables). These genotypes
represent the maximum genetic diversity of the reference population. These genotypes
have previously been phenotyped in glasshouse-based abiotic stress experiments [51,52] to
identify field trait genomic heritability [44,45].

Field trials were conducted for three consecutive years 2017 (36◦44′11.75′′ S; 142◦7′8.64′′ E),
2018 (36◦44′11.75′′ S; 142◦7′5.04′′ E) and 2019 (36◦44′11.15′′ S; 142◦6′57.86′′ E) at the Plant
Breeding Centre, Horsham, Victoria, Australia, under natural rainfed conditions. Horsham is
located in a temperate Mediterranean climate receiving an average of 370 mm rainfall annually,
on gray cracking clay vertisol soils. During 2017, average pre-sowing rainfall was recorded and
during the growing season, with a warmer than average in November (Figure 1, Table 1). During
2018 there was less than average pre-sowing rainfall, but significant rain around flowering in
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December, with slightly warmer temperatures. 2019 again had lower than average pre-sowing
rainfall, but significant rain around sowing, with slightly cooler temperatures.
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Figure 1. Weather data at the Plant Breeding Centre, Horsham, field site during 2017–2019. Monthly
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Table 1. Summary of the temperature and rainfall patterns during the growing period. Temperatures
experienced during the flowering period from first flowering observation to physiological maturity
across each year. Rainfall of pre-sowing period (1st January to sowing) and growing period (sowing
to harvest).

Temperature (◦C)

Minimum Average Maximum

2017
Mean 11.8 21.2 29.7
Range 0.2–22.1 10.0–32.4 18.8–44.4
2018

Mean 11.6 21.2 30.6
Range 2.8–24.1 11.3–33.5 16.4–43.7
2019

Mean 10.0 20.1 29.7
Range 1.8–23.0 11.3–32.4 16.3–46.7

Rainfall (mm)

Pre-Sowing Growth Period

2017 144.5 203.5
2018 102.5 198.4
2019 113.2 202.0

The three trials were planted in late June in a complete randomized block design. For
each plot, the seed sowing rate was 45 plants/m2 in five rows 15 cm apart, sown at 4 cm
depth, in plots totaling 5 m × 1 m. Standard agronomic practices for herbicide, fungicide,
and insecticide applications were followed during the season, with 75 kg/ha urea pre-drilled
before sowing and mono-ammonium phosphate (MAP) applied during sowing.
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2.2. Agronomic Data Acquisition

Phenological and agronomical data were recorded throughout the growing seasons.
Days to flowering start (DTFS) was observed as the days after sowing when 50% of the
plants in the plot opened their first flower. Flowering period (FP) was the number of
days from DTFS to days to flowering end (DTFE); 90% of the plants in the plot finished
flowering. Days to maturity (DTM) was observed as the date 90% of plants in the plot
reaching physiological maturity. Plant height was recorded after flowering, as the average
height of plants from ground level to maximum upright canopy level, standing plants up if
lodging occurred. After machine harvest in early February of the subsequent year, total
plot grain yield was measured in grams. Weather data were collected using an MEA Junior
weather station (MEA Pty Ltd., Adelaide, Australia).

2.3. Aerial Data Acquisition

This study employed a specialized multispectral data gathering system designed for
plant phenotyping research at the SmartSense iHub of Agriculture Victoria, as previously
described in Banerjee, et al. [53]. The system is composed of a RedEdge-M multispectral
camera (MicaSense, Seattle, WA, USA) connected to a DJI Matrice 100 quadcopter drone.
The multispectral sensor records the location data, such as latitude, longitude, and altitude,
and saves it in the camera’s tags using a built-in GPS module. Additionally, the multispec-
tral camera also records changes in the levels of incident irradiance through a downwelling
light sensor. We used a radiometric calibration panel with known radiometric coefficients
for each multispectral band. Radiometric calibration measurements were taken with the
multispectral sensor prior to each flight for image correction.

Careful planning of the drone’s flight path is crucial for obtaining accurate data using
UAVs in high-throughput crop phenotyping. The flight trajectory was planned to use
the software Ground Station Pro (DJI, Shenzhen, China) and the multispectral sensor
configured to take images with an overlap of 80% and a height of 30 m to achieve a ground
sampling distance (GSD) of 2 cm. The UAV-multispectral data were collected on different
days after sowing (DAS) to track the spectral characteristics of the safflower genotypes
throughout their growth cycle.

2.4. Aerial Data Processing

The UAV multispectral images collected were processed using Pix4D Mapper software
(www.Pix4D.com, URL accessed on 10 February 2023). The software employs a method
known as structure from motion (SfM) which is well-suited for handling UAV data to
generate reflectance orthomosaic, digital surface model (DSM), and digital terrain model
(DTM) layers. The composite layers were then exported as individual files with a resolution
of 2 cm GSD. The MicaSense RedEdge multispectral camera captures reflectance in blue
(475 nm), green (560 nm), red (668 nm), red edge (717 nm), and near-infrared (840 nm)
bands. These surface reflectance values were used to calculate vegetation indices (VIs), the
normalized difference vegetation index (NDVI), and the enhanced vegetation index (EVI).
These VIs help to separate the spectral properties of the vegetation from factors that can
interfere with the measurements, such as the reflectance of the soil background, particularly
during the early stages of the growth cycle. The Gaussian process regression (GPR) model
was applied to for grain yield estimation from UAV-multispectral data.

2.5. Grain Quality Analysis

Total seed protein and total oil content were determined using near-infrared reflectance
(NIR) spectroscopy (Foss XDS Rapid Content Analyser, FOSS Pacific Pty Ltd., Hilleroed,
Denmark) [54]. Protein content was calibrated using the Dumas nitrogen combustion
method (TruMac, Leco Corporation, St Joseph, MI, USA), while calibration for oil content
was facilitated by the Soxhlet extraction method (Soxtec 2050, FOSS Pacific Pty Ltd., Den-
mark). The fatty acid profile (determination of oleic, linoleic, palmitic, and steric acids)
was obtained using NIR spectroscopy (Foss XDS Rapid Content Analyser) [54]. The fatty

www.Pix4D.com
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acid composition was calibrated using reference data obtained from gas chromatogra-
phy (Agilent GC 7890B, Agilent Technologies, Santa Clara, CA, USA). Briefly, safflower
samples were ground using IKA M 20 Universal mill. The oil in ground samples (0.1 g)
was extracted with petroleum ether (1.5 mL) at 40 ◦C for 30 min. The mixture was cen-
trifuged at 1000 g for 5 min and the petroleum benzene solution was decanted and dried
at 40 ◦C under nitrogen stream. The extracted oil was dissolved in toluene (1 mL) and
transesterification was performed with 10% sodium methoxide (0.5 mL) for 30 min and
subsequently neutralized with 20% citric acid (1.5 mL). The mixture was centrifuged at
2500 g for 5 min. The top organic layer was pipetted into 2 mL vials for gas chromatography.
Example chromatographs for high linoleic, intermediate oleic, and high oleic genotypes
are shown in Figure 2, which shows labelled peaks for palmitic (16:0), stearic (18:0), oleic
(18:1), and linoleic (18:2) acids. Genotypes were classified into three oil classifications
based on fatty acid profile: high linoleic (>65% of profile linoleic acid), high oleic (>55% of
profile oleic acid), and intermediate oleic (those which fall between the other two classes).
Classifications were modified from Dajue and Mündel [1], with ranges extended slightly to
account for temperature variability during seed maturation [10] and differing times from
maturity to harvest [11] experienced by differing genotypes and across growing seasons.
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2.6. Statistical Analysis

Correlation analysis was performed based on Pearson’s correlation coefficient and
T-tests to assess the relationship between phenological and agronomical traits and the slope
and y-intercept for plotting NDVI decays for each genotype, across all three years.

3. Results
3.1. Weather Variations

Different weather conditions prevailed during the three growing seasons, resulting
in varying plant responses between 2017, 2018, and 2019 (Figure 1). Pre-sowing rainfall
was highest in 2017, with long periods of rainfall just prior to sowing (Table 1), with
rainfall throughout most of the flowering and grain filling stages. Meanwhile, 2018 had
low pre-sowing rainfall, low spring rainfall during stem elongation, above average rain
during flowering, and little rainfall during grain filling and maturity stages. In the growing
year 2019, similar low pre-sowing rainfall was observed with high rainfall during the
germination and maturity stages. Overall, the annual rainfall during the growing season
was similar between years. Minimum, daily average, and maximum temperatures were
also similar between the years (Table 1), although 2017 had more cold mornings and 2019
was slightly cooler during the latter months (Figure 1).
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3.2. Plant Growth and Phenology

Plant height varied between the seasons from 76.5–177.5 cm in 2017, 36.0–87.0 cm in
2018, and 66.0–110.5 cm in 2019 (Figure 3a). Similarly, DTFS and DTM varied across the
seasons, although showing similar trends, with DTF varying between 149–168 DAS in 2017,
144–171 DAS in 2018, and 154–179 DAS in 2019 (Figure 3c); DTM varying between 196–210
DAS in 2017, 191–225 DAS in 2018, and 195–224 DAS in 2019 (Figure 3d); and FP varying
between 7–26 days in 2017, 18–33 days in 2018, and 11–28 days in 2019 (Figure 3d). Plants
grown in 2017 were taller and produced significantly higher yields, although the initial
flowering and maturity periods were decreased (Figure 3). Meanwhile, 2018 plants were
considerably shorter and their genotypes flowered for longer but produced significantly
lower yields. Plants in 2019 were shorter than in 2017, but taller than in 2018, started
flowering and matured later, and produced significantly lower yields (Figure 3). Grain
yield per plot also changed between the seasons, varying from 151.75–2430.43 g in 2017,
127.41–1312.66 g in 2018, and 219.11–980.19 g in 2019 (Figure 3e). Although, the 500 seed
weight differed little between the seasons, with weights ranging from 12.08–31.07 g in 2017,
13.78–30.70 g in 2018, and 7.8–33.93 g in 2019 (Figure 3f).
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Despite the variations in physical grain weight between the years, some key phenolog-
ical and agronomical trends could be elucidated for high-yielding genotypes. The top 20
high-yielding genotypes for each year were selected, with some overlap in the top 20 geno-
types between the years (AVS-SAFF-142, AVS-SAFF-162, AVS-SAFF-230, AVS-SAFF-265,
AVS-SAFF-269, AVS-SAFF-335, and AVS-SAFF-365: Table 2), although all 54 genotypes
listed appeared in the top 80 yielding lines in all three years (Supplementary tables). High-
performing safflower genotypes in this collection tended to start flowering in the second to
third weeks of the approximately four-week initial flowering window, finishing flowering
in the third to fourth weeks of the approximately four-week final flowering window, which
gave them a roughly median flowering period. Similarly, high-yielding genotypes matured
mid–late during the season (Table 2). Interestingly, particularly in 2017 and 2018, these
high-performing lines were often the taller genotypes, with little preference given to spined
capitula over spineless capitula.

Table 2. Top yielding genotypes from each year with corresponding phenology. Heat map of
phenological data compared to the rest of genotypes in each year. Red—earliest/lowest data points;
dark green—latest/highest data points. DTFS, days to start of flowering from initial sowing date;
DTFE, days to the end of flowering; DTM, days to physiological maturity; FP, flowering period from
the start of flowering to the end of flowering; seed yield, yield per plot.

Genotype DTFS DTFE DTM FP Plant Height (cm) Seed Yield (g) Capitulum
Morphology

2017 AVS-SAFF-6 159 179 206 20 136.67 2430.43 Spined
AVS-SAFF-11 161 182 208 21 123.93 2107.49 Spineless
AVS-SAFF-53 157 177 204 20 124.47 1987.62 Spined

AVS-SAFF-116 162 181 208 19 118.67 1952.60 Spined
AVS-SAFF-117 158 181 207 22 149.87 1980.21 Spineless
AVS-SAFF-118 160 180 207 20 131.47 1947.35 Spined
AVS-SAFF-142 157 175 205 18 133.00 1967.18 Spineless
AVS-SAFF-229 157 176 204 18 135.40 2017.80 Spined
AVS-SAFF-232 157 175 203 19 146.33 2209.51 Spineless
AVS-SAFF-263 162 180 207 18 121.40 2144.79 Spined
AVS-SAFF-265 155 175 204 20 123.53 1934.13 Spineless
AVS-SAFF-269 161 178 204 17 111.73 2476.32 Spined
AVS-SAFF-299 161 180 205 19 138.33 2389.06 Spineless
AVS-SAFF-312 161 177 206 16 124.33 2012.51 Spined
AVS-SAFF-321 160 181 208 21 128.13 2028.79 Spined
AVS-SAFF-325 161 181 206 20 132.40 2055.95 Spined
AVS-SAFF-335 160 180 206 20 118.20 2046.02 Spined
AVS-SAFF-357 161 182 208 22 135.67 1933.29 Spined
AVS-SAFF-364 159 180 206 20 128.00 1990.00 Spined
AVS-SAFF-365 168 185 208 17 144.27 1979.89 Spineless

2018 AVS-SAFF-33 156 182 201 26 66.50 1048.57 Spineless
AVS-SAFF-50 158 181 200 24 69.50 1151.53 Spined
AVS-SAFF-73 156 182 200 26 65.00 1065.76 Spined

AVS-SAFF-118 161 185 204 24 67.00 1044.44 Spined
AVS-SAFF-129 161 185 203 24 75.50 1151.74 Spineless
AVS-SAFF-144 165 187 209 23 74.50 1100.34 Spineless
AVS-SAFF-150 160 184 202 24 72.50 1204.25 Spineless
AVS-SAFF-157 162 191 223 30 57.50 1078.83 Spined
AVS-SAFF-162 159 183 206 24 65.50 1096.71 Spined
AVS-SAFF-218 151 180 199 29 56.50 1063.27 Spined
AVS-SAFF-230 159 184 201 25 68.50 1038.84 Spined
AVS-SAFF-238 166 194 215 29 74.00 1062.23 Spineless
AVS-SAFF-265 158 183 198 25 77.50 1041.90 Spineless
AVS-SAFF-295 156 181 199 25 57.50 1090.99 Spined
AVS-SAFF-296 161 185 204 24 82.50 1312.66 Spineless
AVS-SAFF-298 160 186 203 26 79.50 1073.10 Spined
AVS-SAFF-335 159 185 203 26 62.00 1090.40 Spined
AVS-SAFF-350 162 194 216 33 71.00 1055.54 Spined
AVS-SAFF-365 171 196 215 25 78.50 1145.36 Spineless
AVS-SAFF-368 161 186 205 26 81.50 1050.44 Spined

3.3. Aerially Derived Traits

The plant height of safflower genotypes varied between 31 and 105 cm in 2018 and
54 to 108 cm in 2019 with a normal distribution. The average plant heights were 61.8 cm
and 88.6 cm in 2018 and 2019, respectively (Figure 3a). A correlation-based assessment was
conducted to evaluate the performance of the SfM-derived CHM in relation to manual plot
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height measurements (Figure 4). The assessment revealed a statistically linear relationship
between CHM and ground truth plant height with a coefficient of determination (R2) of
0.51 and therefore a moderately strong positive correlation. To minimise differences caused
by plant growth, the manual measurements were carried out on the same days as the aerial
imagery. Unlike the highest points measured during ground-based surveys, the CHM
represents the complete relief of the crop surface at the time of measurement; therefore, the
average CHM was found to be about 27 cm lower than the manual canopy height.
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Figure 4. Crop height analysis between manually collected height measurements and UAV-derived
height measurements for 2018 and 2019 combined data. Green dots represent individual genotypes
in 2018 and 2019 seasons.

Figure 5 illustrates the average NDVI and EVI curves for all genotypes across 2018
and 2019. Both curves peaked higher and earlier in 2019 (Figure 5b), although the peak
and subsequent decay occurred in a similar timeframe across both years. NDVI peaked
in mid-November, just before the first genotypes began flowering, then it decayed in a
significantly strong linear pattern until full plant maturity (Figures 5 and 6). Based on
manual phenology, these patterns in NDVI decay from the saturation peak were used to
separate differences in flowering time between genotypes. Generally, genotypes which
flowered early (Figure 6; blue) had the lowest peak NDVI, therefore the y-intercept and
slope of decay, with late flowering genotypes preserving their higher peak NDVI values for
longer (Figure 6; yellow), as illustrated by the higher slope of decay and y-intercept. Mid–
early flowering (orange) and mid–late flowering genotypes (grey) also showed distinct
separation between the values for early and late genotypes.

To understand the relationship between traits, correlation analysis was performed
on the aggregate data from all three seasons and across all genotypes. Highly significant
strongly positive correlations were seen between flowering and maturity traits, includ-
ing DTFS and DTFE (r = 0.843 ***), DTFS and DTM (r = 0.839 ***), and DTFE and DTM
(r = 0.830 ***; Table 3). Although FP had strong significant interactions with the above traits,
these were not as strongly negative correlations and were mainly between DTFS and FP
(r = −0.558 ***). Height showed significantly high positive correlations to flowering and
maturity traits, DTFS (r = 0.800 ***) and DTM (r = 0.736 ***). Meanwhile, yield only had
some significant correlations with other traits; they were negative to moderately weak
correlations, such as those with DTFS (r = −0.197 ***) and FP (r = 0.290 ***). Interestingly,
highly significant correlations were observed between all phenological and agronomical
traits and the NDVI slope, although these were all only moderately weak negative corre-
lations, such those correlations with DTFS (r = −0.310 ***), DFTE (r = −0.311 ***), height
(r = −0.358 ***), and yield (r = −0.318 ***; Table 3). Similarly, NDVI y-int had strongly
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significant correlations with almost all other traits, although these correlations were only
moderately weak, DTFS (r = 0.308 ***), DTFE (r = 0.357 ***), and yield (r = 0.356 ***).
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Table 3. Correlation matrix between phenological traits for all genotypes across all three years.
All traits except NDVI were collected manually. In the correlation matrix values are correlation
coefficients (r); *** p < 0.001, ** p < 0.01, * p < 0.05; DTFS, days to flowering starting; DTFE, days to
flowering ending; DTM, days to maturity and FP, flowering period.

DTFS DTFE DTM FP Height Yield NDVI
Slope

NDVI
y–int

DTFS
DTFE 0.843 ***
DTM 0.839 *** 0.830 ***

FP –0.558 *** –0.023 –0.280 ***
Height 0.800 *** 0.617 *** 0.736 *** –0.535 ***
Yield –0.197 *** –0.049 –0.083 * 0.290 *** –0.087 *
NDVI
Slope –0.310 *** –0.311 *** –0.254 *** 0.100 ** –0.358 *** –0.318 ***
NDVI
y–int 0.308 *** 0.357 *** 0.263 *** –0.026 0.281 *** 0.356 *** –0.944 ***

A yield prediction algorithm was used to model plot yield based on UAV data, which
gave a strong correlation (R2 = 0.63) between harvested grain yield and predicted grain
yield (Figure 7).

Agriculture 2023, 13, 620 12 of 21 
 

 

 
Figure 7. Crop yield prediction modelled using manual yield and digital predicated yield values for 
safflower genotypes based on yield data for three years. 

Table 4. Summary of oil characteristics for 350 safflower genotypes grown during 2017–2019. Oil 
content (%) and percentage of oil composition containing oleic (%) and linoleic (%) acids. Based on 
oleic and linoleic ratios, genotypes were charactered into three groups: high linoleic, intermediate 
linoleic, and high oleic. 

 Seed 
Yield (g) 

Oil Characteristics 

n Oil Content (%) Oleic (%) Linoleic (%) 

  Mean Range Mean Range Mean Range 

2017         

High 
linoleic 

1271.73 331 30.43 24.47–41.07 12.88 7.57 – 21.75 77.73 68.20–83.10 

Intermed
iate oleic 

886.20 11 30.69 24.10–37.13 38.05 26.33–51.75 52.22 39.65–64.20 

High 
oleic 

1036.84 8 37.41 35.30–40.67 67.00 59.93–74.50 24.13 17.00–32.67 

2018         

High 
linoleic 

672.33 331 29.44 23.10–37.60 14.71 11.00–23.30 75.16 67.40–78.85 

Intermed
iate oleic 

526.88 11 30.13 24.15–34.15 41.30 30.00–54.85 49.15 35.55–60.85 

High 
oleic 

457.71 8 35.38 34.60–36.55 59.98 56.65–70.20 30.94 20.60–34.20 

2019         

Figure 7. Crop yield prediction modelled using manual yield and digital predicated yield values for
safflower genotypes based on yield data for three years.

3.4. Oil Quality Traits

As the primary commercial use for safflower is oil production, understanding the
variability in oil content and quality traits across the population was important. Oil
classification classes were relatively stable across the three seasons for most genotypes
in the growing season (Supplementary tables). Most of the genotypes in the collection
presented in this article were high linoleic genotypes, with only six definitive high oleic
genotypes (Table 4). Oil content varied across years, with the largest values seen in 2017,
while the lowest oil content percentages were seen for certain genotypes in 2019. High
oleic genotypes across all seasons produced the highest oil contents (Table 4). High linoleic
genotypes typically had lower overall oil contents. Stearic and palmitic acid percentages
varied little between the years or genotypes (Supplementary tables).



Agriculture 2023, 13, 620 11 of 18

Table 4. Summary of oil characteristics for 350 safflower genotypes grown during 2017–2019. Oil
content (%) and percentage of oil composition containing oleic (%) and linoleic (%) acids. Based on
oleic and linoleic ratios, genotypes were charactered into three groups: high linoleic, intermediate
linoleic, and high oleic.

Seed Yield (g)

Oil Characteristics

n Oil Content (%) Oleic (%) Linoleic (%)

Mean Range Mean Range Mean Range

2017
High linoleic 1271.73 331 30.43 24.47–41.07 12.88 7.57 – 21.75 77.73 68.20–83.10

Intermediate oleic 886.20 11 30.69 24.10–37.13 38.05 26.33–51.75 52.22 39.65–64.20
High oleic 1036.84 8 37.41 35.30–40.67 67.00 59.93–74.50 24.13 17.00–32.67

2018
High linoleic 672.33 331 29.44 23.10–37.60 14.71 11.00–23.30 75.16 67.40–78.85

Intermediate oleic 526.88 11 30.13 24.15–34.15 41.30 30.00–54.85 49.15 35.55–60.85
High oleic 457.71 8 35.38 34.60–36.55 59.98 56.65–70.20 30.94 20.60–34.20

2019
High linoleic 564.92 331 27.2 20.60–30.75 16.1 10.90–23.60 73.0 64.60–78.65

Intermediate oleic 564.13 13 28.77 23.05–33.70 40.41 26.75–54.25 49.07 35.50–60.80
High oleic 435.73 6 31.14 29.65–33.50 59.19 55.60–64.80 30.84 25.25–34.55

4. Discussion
4.1. Seasonal Effects

The plasticity of phenology traits in safflower, as a response to varying growing
environments, has previously been illustrated, particularly for plant biomass and struc-
ture [25,32,37,43,55,56]. Differences in rainfall patterns and temperature had significant
impacts on safflower development and yield. In 2017, higher summer pre-sowing rain-
fall was recorded along with a wet, warm spring, although rainfall dramatically reduced
during the summer, which resulted in larger, taller plants, able to produce more branches
and flowers, and therefore higher overall yields. Lower pre-sowing rainfall in 2018 and
2019 failed to replace soil moisture lost to the previous cover crop, which significantly
hindered safflower development and therefore yield. This trend echoes the findings by
Bhattarai, et al. [57] who illustrated that safflower more efficiently utilizes pre-sowing
rainfall compared to in-season irrigation, suggesting adequate moisture at depth is more
necessary for safflower yield than rainfall. The deep taproot formed by safflower, which
can give drought tolerance to the crop [1], may, therefore, only be of benefit when deep
water reserves are available towards the end of the season. Instead the lack of shallower
roots may hinder yield development as plants seem to lack the ability to capture late season
rainfall [58]. This also suggests that previous crop rotations can have significant impacts
on the growth and yield of subsequent safflower crops, as demonstrated by Krupinsky,
et al. [59], Tanaka, et al. [60], and Bassil, et al. [61] for safflower yield and N uptake. Slightly
cooler temperatures in 2019 during flowering resulted in delays in flowering and maturity,
matching with previous observations that safflower has degree day thresholds, which need
to be met for reproductive development progression [32,62]. Although Arshad, et al. [55]
demonstrated that simulated drought stress also influenced flowering and maturity phe-
nology by shortening durations, suggesting that water availability as well as temperature
and daylength impact safflower phenology. Yield in any crop, including safflower, is highly
complex, depending on interrelations between genetics, the environment, and architec-
ture. Despite the highly variable yields between the three seasons presented here, the 500
seed weight differed little between the years. This matches with previous research, which
similarly concluded yield differences in safflower were more likely dependent on plant
vigour and size, i.e., the number of branches and number of capitula and therefore the total
number of seeds per plant [21,32,35–37,39,63] than seed size, unless under severe stress
environments [22,55,64]. Seasonal effects therefore strongly influence safflower growth
and yield, and consequently multi-year, multi-environment trials need to be factored into
breeding or selection programs. Further, long-term studies on the effects of crop rotation,
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climatic variability, and fertilizer regimes, such as those conducted on cereals [65,66], would
significantly contribute to improve safflower breeding and agronomical practices.

4.2. High-Performing Genotypes

Generally, the high-performing genotypes for the environment described in this article
had similar characteristics and phenology, although a few genotypes showed differing
strategies. Significant strong correlations were seen between phenology traits, with geno-
types that initiated flowering earlier, finished flowering earlier, and therefore matured
earlier, although only weak significant correlations were seen with yield. Therefore, while
yield is a complex trait, phenology and height significantly impact final harvest values,
matching previous findings [36,37,40,41,67]. Many of the top-performing genotypes across
the three seasons were intermediate genotypes, with them starting flowering in the middle
of the four-week initial flowering window seen in this collection, although they tended to
finish flowering and then maturity mid–late in the final flowering and maturity windows.
It has previously been speculated that early to intermediate safflower varieties would be
better suited to southern Australian cropping systems [62,68]. Earlier varieties are better
adapted to drier environments and more beneficial in seasons with reduced deep soil water
reserves or rainfall, with them being able to finish flowering and assimilate remobiliza-
tion before drought stress occurs late in the season. In wetter seasons, later varieties that
can extract soil moisture and translocate and assimilate for longer may be preferable to
increase available yield and oil content [28,32,69]. Interestingly, several early (i.e., AVS-
SAFF-163, AVS-SAFF-218, and AVS-SAFF-265) and late (i.e., AVS-SAFF-157, AVS-SAFF-238,
AVS-SAFF-350, and AVS-SAFF-365) genotypes also produced high yields in this study,
especially in 2019. The lack of strongly consistent top-performing genotypes across all three
seasons illustrates the lack of safflower varieties adapted to Southern Australian farming
systems and changing growing conditions between seasons. Although, further research
around the seven genotypes (AVS-SAFF-142, AVS-SAFF-162, AVS-SAFF-230, AVS-SAFF-
265, AVS-SAFF-269, AVS-SAFF-335, AVS-SAFF-365, and AVS-SAFF-365) which performed
well across two seasons may benefit future Australian safflower breeding efforts, as they
are likely to have more traits suitable for these environments. The diversity of phenotypic
strategies in response to different growing seasons shown in this collection demonstrates
the genetic variability available in safflower populations for yield-contributing traits. The
result from our experiments also suggests intermediate genotypes may be more econom-
ically profitable in the long term, with them able to maintain reasonable yields across
the spectrum of dry to wet seasons, rather than genotypes specifically suited to drier or
wetter environments.

Interestingly, capitulum morphology had little impact on plant development and yield,
with the spineless genotypes in this collection performing well across all years, mimicking
the findings of Kumar, et al. [38]. This is despite spiny genotypes being more prevalent in
the collection, representative of their domination in production in most areas due to the
relatively poor grain performance of many past spineless genotypes [70,71]. The release of
higher yielding and disease-resistant spineless varieties may improve uptake by farmers.
While sacrificing some resistance to large animal predators, the spineless safflower would
be more “user-friendly” in terms of disease surveillance and harvesting, especially when
rectifying blockages [72].

Plant height has significant direct and indirect links to crop biomass, flowering, and
yield [35]. Environmental conditions, rainfall, genetics, and planting density all impact final
plant height [22,25,29,30,41,67,73–75], as plant height was considerably lower in 2018 and
2019 due to lower rainfall and temperatures. Previous researchers have described that the
ideal safflower ideotype, for moderate to arid growing regions, was short, early flowering
and spiny, as, in their studies, height had a negative correlation with yield [40,56]. Other
research has clearly demonstrated strongly positive correlations between the two traits, as
taller plants often had increased stem branching, therefore more capitula and thus higher
yields [9,32,36,37,41,73]. Increased branching would increase the photosynthetic capacity of
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the plants [63], although greater stem biomass seems to have no impact on stem assimilate
storage or remobilization in safflower [69]. On the other hand, Moghaddam, et al. [56]
found principal component analysis split genotypes into those with a negative correlation
between yield and height and those with a positive correlation. This echoes the results in
this study, where the highest yielding genotypes tended to be intermediate to tall genotypes,
for each year, but when considering all genotypes over the three seasons, only a very weak
negative correlation was observed. Plant height and stability under different environments
may, therefore, only be a direct economically relevant trait for only some genotypes and/or
environments [28]. Height may instead have more impact on yield through the correlations
with flowering and maturity traits. Highly significant strongly positive correlations were
observed between DTFS, DTFE, and DTM, with a highly significant moderately negative
correlation with FP. Therefore, earlier flowering and maturing genotypes tended to be
shorter but had longer flowering periods. This matches previous data, demonstrating the
same relationship between flowering and height, although these studies found stronger
correlations between yield and flowering [35,40,41,56]. Height and flowering are, therefore,
traits of interest for future breeding efforts.

The highest performing genotypes in this study were all linoleic genotypes, with the
few oleic genotypes in the collection yielding relatively low. While the oil ranges in this
collection, 7.57–74.5% oleic acid and 17.0–83.1% linoleic acid, were quite diverse, they do not
encompass the extremes seen in other collections [10]. Despise this, the range suggests all
major genes controlling fatty acid content [11] are present in the collections, which should
not limit this collection’s use for breeding super high (>85%) oleic or linoleic genotypes.
Although interestingly, the seven oleic genotypes in this collection tended to produce
consistently higher oil content than linoleic genotypes, with them being comparable to the
highest total oil content levels seen in other studies [9,25,34]. As expected, total oil content
and percentage linoleic vs. oleic changed depending on the growing season, especially
rainfall [11,32]. Factors such as temperature during seed maturation [10] and the duration
from maturity to harvest [11] would have also accounted for some variability between the
genotypes and growing seasons.

4.3. UAV-Derived Traits

High-throughput phenotyping allows for the rapid and accurate measurement of
many plant traits, which can be used to identify genetic variations, correlations between
different traits and ultimately select genotypes of interest in breeding programs. Previously,
high-throughput phenotyping has only been deployed in limited field circumstances to
study safflower, such as using image analysis pipelines to analyse aerially-derived RGB
images and estimate safflower establishment rates and density [49]. Two of the simpler
traits to remotely capture data using multispectral sensors are NDVI and EVI, which
estimate crop green biomass. As the plants grew slowly during the rosette stages, NDVI
and EVI stayed low until stem elongation, and branching increased overall plot biomass
and therefore greenness. Despite flowering being delayed in 2019, both NDVI and EVI
increased quicker and reached higher NDVI and EVI values, which was consistent with
plants in 2019 being larger, although some late-season weeds may also have contributed
to this. Peak NDVI for individual genotypes tended to occur around mid-November,
although more genotypes tended to peak around 14th November in 2018 compared to
20th November in 2019, which matches with the delay in flowering also seen in 2019. As
NDVI shows moderate significant correlations with flowering and earliness of flowering
is known to impact yield, we investigated if peak NDVI values and NDVI decay could
be used to identify early and late flowering genotypes. Early flowering genotypes tended
to have lower peak (y–intercept) NDVI values with a lower decay slope. These earlier
plants, therefore, likely would have finished vegetative growth and branching earlier,
often producing less biomass/greenness before initiating flowering. The lower initial
biomass also explains the lower decay/slope, as all genotypes had close to the same NDVI
at field trial harvest. Late flowering genotypes continued accumulating biomass for an
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extra few weeks, resulting in higher peak NDVI values and therefore biomass. As the
peak NDVI value was higher and the decay started later, the rate of decay was sharper.
Peak NDVI values (NDVI y-intercept) had significantly positive moderate correlations
with DTFS, DTFE, DTM, and height, as well as seed yield. These correlations match our
other observations about the relationships between flowering, biomass, height, and yield.
NDVI has otherwise only previously been used to differentiate fertilizer treatments in
safflower [50], suggesting further research potential in the use of Vis to monitor and predict
important crop traits.

Multispectral UAV data have previously been successfully used to estimate crop yield
throughout the growing season [76–78]. Harvested yield data and UAV-derived indices
were used to develop a model for crop prediction with a correlation of R2 = 0.63. This
suggests that the approach of compiling VIs and structural data to predict future safflower
yields has potential use by researchers and farmers alike.

The utilization of high-throughput imaging platforms will continue to unlock research
potential in difficult or time-consuming conditions to capture safflower traits. While we
have demonstrated the usefulness of NDVI to identify the start of flowering in safflower,
other traits of agronomical and economic relevance may also be captured using sensor-
based systems. Early vigour [79], crop volume and coverage [53], and lodging [80] are
traits of interest in safflower production, which have already been successfully adapted to
sensor-based approaches. As the number of flowers/capitula highly influenced seed yield,
yield modelling would be significantly improved via modelling flower numbers. Similar
approaches using VIs and flower classification deep learning methods have successfully
classified flower types in wildflowers [81], phenotyped flowers and their effects on yield in
canola [82,83], as well as identifying the location of safflower flowers for automated petal
harvest [84].

5. Conclusions

In this study, we examined the diversity of phenotypic and agronomic responses of 350
safflower genotypes grown over three seasons. Phenotypic traits and overall crop perfor-
mance strongly varied with environmental conditions, especially temperature, pre-sowing
rainfall, and in-season rainfall. The results showed high-performing genotypes tended
to be intermediate for most structural and phenological traits, allowing them to access
and relocate more resources than early genotypes while still finishing their lifecycle before
late-season drought stress impacted yields. Although, the ideal ideotype varies between
seasons and growing environments. Interestingly, spineless genotypes performed similarly
to spiky genotypes, suggesting future breeding efforts for more producer-suitable crops
may include spinless genotypes without yield sacrifices. Furthermore, we demonstrated
the use of UAV-derived spectral image data to determine plant height, biomass changes,
the start of flowering, and yield estimation. Additional research is needed to further the use
of UAV-derived data and machine learning processes in the high-throughput phenotyping
of safflower.
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