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Abstract: The Simultaneous Localization and Mapping (SLAM) scanner is an easy and portable
Light Detection and Ranging (LiDAR) data acquisition device. Its main output is a 3D point cloud
covering the scanned scene. Regarding the importance of accuracy in the survey domain, this paper
aims to assess the accuracy of two SLAM scanners: the NavVis VLX and the BLK2GO scanner. This
assessment is conducted for both outdoor and indoor environments. In this context, two types of
reference data were used: the total station (TS) and the static scanner Z+F Imager 5016. To carry
out the assessment, four comparisons were tested: cloud-to-cloud, cloud-to-mesh, mesh-to-mesh,
and edge detection board assessment. However, the results of the assessments confirmed that the
accuracy of indoor SLAM scanner measurements (5 mm) was greater than that of outdoor ones
(between 10 mm and 60 mm). Moreover, the comparison of cloud-to-cloud provided the best accuracy
regarding direct accuracy measurement without manipulations. Finally, based on the high accuracy,
scanning speed, flexibility, and the accuracy differences between tested cases, it was confirmed that
SLAM scanners are effective tools for data acquisition.

Keywords: SLAM; LiDAR; accuracy assessment; indoor and outdoor; data acquisition

1. Introduction

Three-dimensional laser scanners are instruments that capture a vast number of
observations with the use of Light Detection and Ranging (LiDAR). LiDAR is an active
sensor that sends laser rays that hit surfaces in the environment and reflect (backscatter)
to the sensor to determine the position of the surface in 3D space relative to the sensor to
create a cloud of observations, commonly known as a point cloud [1]. Panoramic images
are mainly used for the association of RGB information to 3D data. [2]. These scanners can
be used to create digital models and maps for deformation monitoring, and for many other
applications [3,4].

Using Global Navigation Satellite System (GNSS) and Inertial Measurement Unit
(IMU) data, the scanner localization and orientation can be measured. The position and
orientation data are stored as a function of the GNSS time. As the laser scanner data are also
stored with timestamps generated from the received GNSS signal, the scanner, the GNSS,
and IMU datasets can be synchronized. As a result, the scanner accuracy is primarily
determined by the accuracy of the laser sensor, GNSS, and IMU [5]. Furthermore, the
accuracy of the LiDAR reflectance can be influenced by factors such as angle of incidence,
type of material, and environmental factors [6]. The angle of incidence can affect the
amount of backscatter, with smoother surfaces having a higher reflectance being more
sensitive (the greater the angle, the less backscatter) than rough surfaces, with the angle of
incidence having little effect on the amount of backscatter [7]. Moreover, the surface type,
whether the color, how rough/smooth, how shiny/matte, or how transparent, can influence
the intensity of backscatter. The instruments used to make these types of acquisitions are
mounted on tripods and are referred to as static terrestrial laser scanners (TLS).
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A survey-grade static TLS is known to have high precision and can capture a vast num-
ber of observations. Each scan produces a point cloud that needs to be registered together
with sufficient overlap to create one overall point cloud in post-processing software [8]. Due
to these devices being static, some surveys, such as of indoor environments, can be difficult
to plan and complete. Indoor environments with short-sight distances, multiple levels with
stairs, and other obstacles can be difficult to navigate and can require multiple setups to
ensure everything is acquired, which can increase the time of the survey both in the field
and office. A solution to this problem may be the use of a Mobile Laser Scanner (MLS). MLS
is a technology that can take observations while moving. For terrestrial use, these devices
can be moved using a vehicle, trolley, or a person. These instruments have four main hard-
ware components: optical sensors, LiDAR system, navigations/positioning sensors, and a
control synchronization unit [9]. MLS offers advantages, such as reduced field and office
work due to the absence of multiple setups. These devices are more capable of navigating
indoor environments due to their portability and access to space-restricted environments.

This paper investigates man-portable Simultaneous Localization and Mapping (SLAM)
scanners. This system uses LiDAR and panoramic cameras to capture observations. An
IMU and SLAM are used to discern where the device is. SLAM has an algorithm software
that defines the trajectory of the device and the three-dimensional reconstruction of the
recorded sensors [9]. This algorithm allows the device to estimate its location concerning the
location of landmarks. In this context, different applications of the SLAM system in different
areas have been raised, such as indoor, outdoor, underwater, and airborne systems [10]. The
main two sections of the SLAM system are the localization and the mapping, which may
be separately considered. Of course, localization and mapping are particularly dependent
on each other. The map is necessary for accurate localization, whereas the localization
is vital for mapping. The position and the map in early classical SLAM algorithms were
cooperatively estimated. Later, modern performances process the localization and mapping
as two parallel duties, such as Parallel Tracking and Mapping (PTAM) [11]. Regarding
the mapping, maps are required to assist the path planning, obstacle, and avoidance, and
may represent the objective of scanning. Moreover, the accuracy of localization depends
notably on the mapping accuracy [12]. On the other hand, the algorithms for resolving
the positioning troubles may be categorized into the probabilistic and non-probabilistic
methods. Probabilistic approaches are a typical classification. The probability algorithms
are based on the Bayesian estimation approach, where mainly particle filters and Kalman
filters are employed.

Acquisitions are taken at every epoch, and SLAM calculates the correlation between
the instrument and the environment to update its trajectory equation in conjunction with
the IMU’s measurements [13]. This enables the device to be used indoors, where the
GNSS is ineffective. The accuracy of the SLAM can be affected by drift and tracking
errors. Drift errors are the accumulation of minor measurement errors during a survey that
can cause the scan data to drift. Furthermore, tracking errors are when the environment
does not have enough discernible features and the SLAM algorithm gets confused about
where it is [14], e.g., a long homogenous corridor. Both types of errors are amplified in
areas with poor distribution of 3D features [15], outside environments, and areas where
objects move [13]. These errors can be mitigated by selecting an appropriate trajectory.
An appropriate trajectory is the use of loop closures and not rotating too quickly around
corners. Loop closures are the scanning overlap of an area from a different perspective. The
user conducts loops around an area, similar to a closed traverse in the surveying practice
to ensure this overlap [16]. This is why it is recommended that a survey should start
and finish at the same spot as one big loop closure [17]. Also, control points are another
method used to reduce these types of errors by providing alignment adjustments during
post-processing [16].

In the same context, speed is another factor that can influence an MLS survey, where
the increase in speed can lead to a decrease in the number of observations [18] and can
decrease the accuracy of acquisitions [19]. Kaartinen et al. [20] tested the elevation accuracy
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of the produced point cloud of a road with an MLS. The best results achieved were a
planimetric accuracy of 25 mm over a range of 45 m. Similar accuracies were obtained from
mapping topography changes and elevation of erosion changes of riverbanks by Vaaja
et al. [21], where the obtained RMSE value was between 23 mm and 76 mm. This may
suggest that the NavVis VLX could potentially be utilized in such applications, where the
main intent is to map elevation changes or deformation, which could be useful for moni-
toring surveys. Also, Barba et al. [22] used SLAM in the documentation of Architectural,
Engineering, and Construction (AEC) or built heritage to assess the accuracy differences
between photogrammetry, TLS, and a Wearable Mobile Laser System (WMLS) based on a
SLAM approach. For this purpose, a cloud-to-cloud comparison was employed.

One of the central challenges in SLAM is data association. This involves linking mea-
surements captured by the sensor at different instances and locations with mapped features
to determine if they originate from the same physical place [23]. Unlike photogrammetry,
where distinguishing features in each dataset is comparatively straightforward, SLAM
depends heavily on recognizing complex features, such as changes in wall orientation,
window outlines, or building and furniture edges. Thus, the accuracy of this process is
pivotal in generating a precise model.

Lauterbach et al. [24] and Chiappini et al. [25] investigated the use of MLS in an
outdoor setting, in which the focus of Building Information Modeling (BIM) was the main
goal. Results indicated that the SLAM scanner can be successfully utilized in an outdoor
environment to extract building information of buildings. This is of importance, as this
component needs to be considered when extracting features in a residential topographic
survey. Fassi and Perfetti [26] and Vatandaşlar and Zeybek [27] investigated Digital Terrain
Model (DTM) production from the derived data of SLAM in outdoor environments. Both
studies indicated that with the capture point cloud data, a DTM was successfully produced
to the required accuracies. The main differences were that these studies were applied
within a natural landscape and did not have features that would be typically found in
an urban residential area, such as buildings. Further research has indicated that from an
application use, SLAM scanners in the form of backpack devices are mainly utilized in
applications from cultural heritage preservation, environmental monitoring and forestry,
and agriculture, which mainly covers the main purposes of 3D modeling, erosion change
detection, and vegetation inventory [28]. A similar study was conducted by Yiğit et al. [29],
where a comparative analysis of MLS and TLS for indoor mapping was conducted. Within
the study, data were collected from a TLS to an MLS, and the total station (TS) of a large
multistory building was compared.

At this point, as geometric feature extraction will be used in this research (see Section 3),
and it is important to highlight the employed applied principles. Scanners provide 3D
LiDAR point clouds, and the accuracy assessment operation may use data classification
and geometric feature extraction. Nevertheless, automatic feature extraction is widely used
to implement on point clouds to obtain more accurate results on the position of features in a
point cloud dataset [30]. Many studies have investigated automatic feature extraction of the
use of a RANdom SAmple Consensus (RANSAC) algorithm and Hough transform to obtain
roof and building features at high levels of accuracy relative to baseline observations [31–33].
Another automatic feature extraction explored by Xiong and Wang [34] and Dey et al. [35]
investigated the deep learning framework for BIM construction, finding that the stated
method could efficiently and accurately segment the point cloud to list important features.

At this point, it is beneficial to highlight the novel contributions of this paper, as follows:

• Assessment of the efficiency of a SLAM scanner in the application of detailed surveys
in an outdoor setting to address the envisaged challenges.

• A comparative study is conducted on residential areas, comparing different workflow
methods and different reference datasets.

• Assessment of the capabilities of the SLAM scanner for indoor and outdoor data collection.
• Assessment of whether SLAM can achieve accuracies to a standard fit for conducting surveys.
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2. Assessment Design and Used SLAM Scanners

There are many factors that can impact the point cloud accuracy, not only hardware
performance but also software capability. When 3D reconstruction works with point cloud
data, it is always concerned with how precise the model will be, how much power it will
consume, and how fast the model will be built. This paper will not discuss the accuracy of
the constructed model starting from LiDAR data, it will focus only on the obtained point
cloud accuracy. The assessment in this paper consists of two sections: outdoor assessment
and indoor assessment.

In outdoor assessment, first, the NavVis SLAM Scanner data were compared to refer-
ence datasets measured by the TS. Second, the BLK2GO SLAM Scanner point cloud was
compared to reference TS datasets. Third, edge detection board assessment was carried out
using BLK2GO data. Fourth, the TS dataset was used as a reference model for the BLK2GO
SLAM Scanner point cloud. Finally, in indoor assessment, the NavVix SLAM Scanner
data were compared to Z+F static scanner datasets (Table 1). These experiments allow an
understanding of the behaviors of the two employed scanners and to compare the efficacity
of the two kinds of reference data. Moreover, three types of data comparison were tested:
cloud-to-cloud, cloud-to-mesh, and mesh-to-mesh. However, in indoor data assessment,
based on the obtained results of the last experiments, only one test was realized, which was
the NavVix SLAM data comparison to static scanner datasets.

Table 1. Comparison of products obtained from survey activities with different equipment.

Outdoor Indoor

NavVis TS BLK2GO TS NavVix Z+F

Number of points 10,340,402 365 54,668,797 573 10,827,312 117,776,549

Number of mesh
triangles 11,280,274 691 13,637,817 1118 - -

Acquisition time
(minutes) 50 180 42 190 2.45 70

Post-processing
time (minutes) 7 12 32

For this study, the NavVis VLX as well as the BLK2GO, from Leica SLAM Scanners,
were chosen to realize the SLAM accuracy assessment. The first one is a wearable device,
whereas the second one is portable. At this stage, we present the used SLAM scanners
before starting the assessment stage.

Finally, it is important to underline that in the context of error estimation, we used
the absolute values of errors and the positive half of the Gaussian curve, because most
discrepancies in our dataset were positive. This method aligns with the data distribution
and focus of this paper. Additionally, using absolute errors is common in evaluating the
accuracy with tools such as CloudCompare, as it measures the magnitude of discrepancies
without considering directions. Similar metrics, such as Mean Absolute Error (MAE) and
Mean Root Square Error (MRSE), are often used for this purpose. This approach effectively
reflects overall accuracy and meets our evaluation goal.

2.1. NavVis VLX SLAM Scanner

The NavVis VLX 2nd-generation scanner is a wearable and walkable mobile scanner
(Figure 1a). It is placed on the user’s shoulders, as seen in Figure 1a. The instrument has
two LiDAR sensors, four 20-megapixel cameras, an IMU, and SLAM software (NavVis
IVION). It offers both indoor and outdoor performance, with absolute accuracies of 6 mm at
a 68% confidence level and 15 mm at a 95% confidence level in a dedicated test environment
of 500 m2 [14]. Considering the limited existing research with this device in a residential
outdoor environment and the known efficiency of the device to capture point cloud datasets
at high speeds while moving [14], this device was selected to be used in the data acquisition.
NavVis recommends conducting a loop and walking at a normal pace when performing a
survey [14] as it reduces SLAM/drift error by providing sufficient overlap.
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The dual LiDAR sensors use the safest laser class (class 1 lasers), have a maximum
range of 100 m, and are positioned with one vertical and the other horizontal, as seen
in Figure 1a, which allows the device a greater field of view. Also, LiDAR sensors use a
wavelength of either ~905 nm or ~1550 nm. For capturing images, the cameras have a
360-degree view in static mode. The IMU with the SLAM technology allows the instrument
to discern where it is and where it has been. The NavVis can geo-reference marks either
on the wall or ground with a hook on the bottom of the instrument. The device has a
touch screen that provides information and shows an overview map of what the device has
scanned [36].

2.2. BLK2GO SLAM Scanner

In 2019, Leica Geosystems introduced the BLK2GO (Figure 1b), a portable mobile
mapping device capable of collecting 420,000 points per second, with a claimed accuracy of
10 mm within indoor environments [37]. Leica has introduced an app named BLK2GO Live.
This app allows users to observe the mapped regions and areas awaiting data collection in
real time, thereby enhancing efficiency, and reducing the requirements of mission planning.

The backbone of the BLK2GO system, the LiDAR, utilizes a class 1 laser to gather
data. This LiDAR system captures a field of view covering 360◦ horizontally and 270◦

vertically, with effective ranges spanning from 0.5 m to 25 m [38]. The laser operates at
a wavelength of 830 nm and is accompanied by a stated noise range of 3 mm [37]. The
scanner comes with three cameras, each with a resolution of 4.8 megapixels. These cameras
capture a panoramic image spanning 300◦ horizontally and 135◦ vertically. This imagery
is then utilized to detect similarities among successive images, aiding in calculating the
scanner’s movement throughout the environment. Through the utilization of the Grand
SLAM Technology, Leica aims to address the challenges encountered in traditional SLAM.
In conventional SLAM, which suffers from low demand nowadays, where images are
not captured, the precision of maps and real-time instrument positioning relies on how
effectively data from various locations can be linked together [39].
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3. Outdoor Assessment

As shown in Section 2, four experiments of SLAM scanner measurements will be
realized in this section. The next section will detail the first assessment, which was the
NavVis SLAM Scanner and TS datasets.

3.1. NavVis SLAM Scanner and TS Datasets

The goal was to assess the efficiency of a wearable NavVis VLX MLS (Figure 1a) in
the application of a residential contour and detail surveys in an outdoor setting to address
the challenges mentioned. A comparative study was conducted on a residential house in
Queensland, Australia (Figure 2a), comparing two different workflow methods. Initially, a
detailed survey was executed under conventional methods with the use of a TS and GNSS
unit for control.
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The initial field task consisted of a control survey to establish control around the site on
the local coordinate system of Map Grid of Australia (MGA) GDA2020 and on Australian
Height Datum (AHD). This was completed through a standard traverse from two known
permanent survey marks located near the site combined with the placement of three control
marks around the front kerbing and one at the rear of the property, in the form of retro
targets. Four control points were established, as previous studies have indicated that a
minimum of three control points is required for effective georeferencing of point cloud
datasets. Once the control survey was completed, the topographic survey was completed
with the conventional approach with a TS. At this point, the time to complete the survey in
conventional methods was recorded as three hours. In this context, Magnet office was the
software utilized to reduce the TS observations to align the coordinates established from
the control survey (Figure 2c) as well as a height reduction to make all observed points
relative to AHD.

Subsequently, that same area was surveyed using the NavVis VLX (Figure 2b), where
the measured point cloud was georeferenced using NavVis Ivion software. Both datasets,
derived from the TS and the point cloud, were superimposed together after generating
two DTMs, which will be used for NavVis VLX data assessment (see Section 3.1.2). The
horizontal and positional accuracies of the produced point cloud from the NavVis VLX
were compared to the baseline of the TS with three different data analysis techniques,
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consisting of a cloud-to-cloud, cloud-to-mesh, and mesh-to-mesh comparison. For this
purpose, CloudCompare 2.12.4 software was used to carry out this comparison. To analyze
the horizontal position (x and y axis) of the point cloud regarding the baseline TS data, a list
of features, such as retaining walls, service utilities, such as power poles and water meters,
fences, concrete driveways, slight sloping elevation, and also a house located on the site,
were compared with computation of the Root Mean Square Error (RMSE). These features
were labeled manually on the LiDAR point cloud, whereas they were assigned during a
survey by TS.

3.1.1. Data Assessments

The site survey was conducted using a TS to provide reference data. The instrument
used to complete the TS survey was a Leica TS16. This instrument has a stated angular
accuracy of 3 s of ark and a distance accuracy of 2 mm + 2 ppm when using the reflectorless
feature [40].

To compare the LiDAR point cloud with the survey data, the point cloud was filtered
by the removal of duplicate points at a tolerance of 5 mm. This tolerance value was
considered regarding the mean laser spot radius value (3 mm) added to the tolerance
amount. The purpose of the removal of duplicate points in the point cloud is to keep
the useful points and make them more manageable to work with, and reduce the noise
in the point cloud, which in turn will enhance the visualization of the cloud [41]. This
has also been proven to speed up processing times due to the reduction in point cloud
size [42]. After this filtering, the point cloud was compared to the points from the exported
Triangulated Irregular Network (TIN) using an Iterative Closest Point (ICP) algorithm [5].

In the second test, a cloud-to-mesh comparison was utilized for data analysis, in which
the LiDAR point cloud was classified into the ground and off-ground points. Thereafter, a
mesh generated by Delaunay 2.5D [43] was created of the filtered ground points (Figure 3),
which was compared to the points exported from the TIN produced from the TS point
clouds. The third form of data analysis involved a mesh-to-mesh comparison of the scan
data compared to the TS point clouds. A mesh was produced, also using Delaunay 2.5D, on
these two datasets, which were then compared to one another. This chosen test was utilized
because it has been shown to ensure the triangles are well shaped and avoids creating
any irregular or elongated triangles in the mesh, which can result in some inaccuracy in
interpolation [43]. At this stage, it is important to note that the last three comparisons
have been proven to be the main forms of comparison utilized in studies on point cloud
comparison [44].
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The last conducted assessment was the vertical and horizontal positional comparison
between the two datasets of extracted geometric features located on the site. The main
points of interest selected for comparison consisted of features that would not have much
deviation in X and Y coordinates, for example, the building corners of the house located on
the site, and for the vertical component, features such as finished levels of the buildings
and decks located on the site. Comparisons were computed between the differences in X, Y,
and Z coordinates. To investigate the standard deviation of the residuals computed, the
RMSE was calculated for these data (Equation (1)):

RMSE =

√
∑ V2

n
(1)

where v is the deviation, and n is the sample size.

3.1.2. Results and Discussion

In the context of the LiDAR data assessment, even though the aim of surveying or
laser scanning a given structure is generally to extract sections, planes, or 3D models, the
direct comparison of the raw data (the point clouds) can provide more faithful results
regarding avoiding modeling errors [44]. This is why Antova [44] suggested three kinds
of data analysis for the vertical or Z coordinate comparison between the TS point clouds
and the NavVis VLX scanner data, which are a cloud-to-cloud, cloud-to-mesh, and mesh-
to-mesh comparison. To provide a statistical analysis of the two datasets, the Gaussian
distribution, otherwise known as the normal distribution, was utilized, as this measure
provided information on how far the data were from the mean, as well as the standard
deviation. The standard deviation from the three conditions tested is the main important
value derived from the analysis because it represents the average distance of data points
from the mean as well as quantifies the spread of the data. The Gaussian distribution
analysis was calculated at three confidence levels: 68%, 95%, and 100 %, i.e., the 68%
confidence level is where approximately 68% of the data falls within one standard deviation
of the mean. Figure 4a shows the histogram of the cloud-to-cloud comparison, with a
mean of 35 mm and a standard deviation of 22 mm. Figure 4b shows the histogram of the
cloud-to-mesh comparison, with a mean of 110 mm and a standard deviation of 180 mm.
Finally, Figure 4c presents the histogram of the mesh-to-mesh comparison, with a mean of
27 mm and a standard deviation of 65 mm.
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Concerning the feature comparison, the main selected features from the site are pre-
sented in Tables 2 and 3, where the Z coordinate is compared to features measured on
the site, such as finished floor levels on the front and back deck. This was carried out
by calculating the elevation difference between the baseline measurements from the TS
compared to the LiDAR point cloud. The RMSE value was 15 mm (Table 2). For the
horizontal positional accuracies, the selected features in the two datasets are displayed in
Table 3. For this comparison, the X and Y coordinates of the MLS were compared to the
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baseline of the TS observations. The calculated RMSE for the X coordinate was 28 mm, and
63 mm for the Y coordinate. The greatest difference in the horizontal positions was found
for the electrical pole feature, with a difference of 63 mm in X and 93 mm in Y.

Table 2. Height differences between the MLS data and TS for measured features.

Feature TS
Z (m)

MLS
Z (m) ∆ Z (mm)

Water meter 37.449 37.453 −4

Storm water pit 37.327 37.312 15

FFL front deck 40.674 40.678 −4

FFL back deck 40.66 40.674 −14

Roof heights 44.673 44.698 −25

RMSE (mm)

Confidence level

100% 15

95% 14

68% 10

Table 3. X and Y coordinate differences between the MLS data and TS for measured features.

TS MLS

Feature X (m) Y (m) X (m) Y (m) ∆ X (mm) ∆ Y (mm)

Front deck corner 501,452.516 6,970,295.245 501,452.520 6,970,295.22 −4 25

Building corner 501,452.131 6,970,292.727 501,452.100 6,970,292.789 31 −62

Building corner 501,456.724 6,970,291.919 501,456.710 6,970,291.920 14 −1

Building corner 501,456.977 6,970,293.345 501,456.960 6,970,293.290 17 55

Building corner 501,466.178 6,970,291.649 501,466.19 6,970,291.55 −12 99

Building corner 501,464.789 6,970,283.685 501,464.85 6,970,283.68 −61 5

Building corner 501,451.046 6,970,286.189 501,451.01 6,970,286.23 36 −41

Back deck corner 501,450.14 6,970,281.271 501,450.13 6,970,281.27 10 1

Back deck corner 501,456.101 6,970,280.18 501,456.09 6,970,280.19 11 −10

Electrical pole 501,443.919 6,970,279.769 501,443.856 6,970,279.676 63 93

Electrical pole 501,447.283 6,970,301.2 501,447.289 6,970,301.224 −6 −24

Street sign 501,446.139 6,970,293.845 501,446.12 6,970,293.684 19 161

Street sign 501,453.381 6,970,306.063 501,453.405 6,970,306.111 −24 −48

Gully pit corner 501,458.671 6,970,307.661 501,458.688 6,970,307.709 −17 −48

Gully pit corner 501,459.563 6,970,307.532 501,459.573 6,970,307.53 −10 2

RMSE_X (mm) RMSE_Y (mm)

Confidence level

100% 28 63

95% 27 60

68% 19 43

As presented in Figure 4, from the histograms of the Gaussian distribution of the three
comparison tests, the cloud-to-cloud comparison produced the best results based on the
lowest standard deviation score of 22 mm. The main reason for testing the three different
comparative methods was to define which method would be most accurate for comparing
the DTM extracted points from the TS observations as the baseline. The cloud-to-cloud
comparison primarily involved calculating distances between similar points of two point
cloud datasets. It was the most efficient and simple to utilize as it does not require another
model to be built, such as a Digital Elevation Model (DEM), meaning less manipulation
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and filtering of the point cloud dataset [45]. Indeed, it calculates the nearest-neighbor
distance, which is the distance between two points in the cloud, which is then compared
to the two similar points in the other observed cloud, and then their Euclidean distance is
calculated [46]. In this paper, the DTM model from the TS data was utilized for comparison,
as it is one of the main requirements typically provided for design purposes, hence why
this dataset was compared to the point cloud. The proven result of a standard deviation
of 22 mm suggests that the DTM would be able to be produced quite accurately with the
scanned point cloud data from the NavVis VLX, with the tested feature extraction of point
picking in the cloud of ground points of features, such as surface levels, footpaths, and the
top of bottom of walls, to form the ground classification. When comparing this standard
deviation result for elevation to other studies with the use of an MLS, it was evident that
the NavVis performed quite well.

Concerning the horizontal accuracy, the calculated RMSE for the X and Y coordinates
identified some evident variances from the baseline of the TS observations. Certain features
compared on a horizontal plane differed in tolerance, which would make it questionable
to be utilizing these data to produce an accurate topographic map. This is the case, as a
certain tolerance must be met when the horizontal position of features is crucial to define
in the residential contour and detailed survey, as they are typically relative to cadastral
boundaries. The results showed a combined RMSE of 30 mm in the abscissa and 60 mm
in the ordinate, and when considering these values, it can indicate that these tolerances
would be not suitable for residential topographic surveys. These results do, however, fall
upon the method utilized in this study of manual feature extraction from point picking in
the cloud and largely rely upon the interpretation of the point cloud data. This provides a
suggestion for implementing different methods of feature extraction on the point cloud to
investigate if the accuracies are improved on the horizontal comparison. To conduct this
experimentation again, the use of automatic feature extraction algorithms, as mentioned
in Section 1, could be advantageous to obtain more accurate points that represent certain
features on the site, for example, building corners of the house, which then could be
compared to baseline observations.

The NavVis XLV produced a point cloud that was vertically accurate after georeferenc-
ing, with a standard deviation of 22 mm from the computed cloud-to-cloud comparison.
However, the horizontal accuracies, i.e., X and Y coordinates, did not seem to be as accurate,
which may be due to an inaccurate feature extraction method and lack of control points.
This suggests that further investigation should be realized on feature extraction, and the
enhanced algorithms can be used to improve feature extraction. Finally, from an efficiency
and flexibility standpoint, the NavVis VLX produced great results, which was reflected in
the time to scan the site, which was 50 min, compared to the 3 h it took with the TS.

3.2. NavVix SLAM Data and Static Scanner Dataset

In this section, a new SLAM scanner assessment of the outdoor area (Figure 5a) was
carried out using a static scanner to measure a reference point cloud. The equipment used
to measure the point clouds included the Z+F 5016 static TLS (Figure 5b) and the NavVix
VLX 2 SLAM Scanner (Figure 1a,b). The NavVix VLX 2 SLAM scanner was presented
in Section 2. Concerning Z+F 5016 static TLS, the field of view is 360◦ × 320◦, and the
maximum laser range of class 1 “eye-safe” equals 360 m, in addition to a spot diameter of
~3.5 mm @ 1 m/~0.3 mrad. Also, it is supported by a full-panorama (80 MPixel) camera to
calculate the point cloud RGB colors.

At this stage, it is important to note that the scanning accuracy is mainly affected by
the laser spot diameter, which can be changed according to the laser range. This is why
the LiDAR point accuracy was located around ±4 mm. In this context, the TLS data were
filtered to remove erroneous points, such as duplicate points and point cloud noise. For
this purpose, two filters were applied. The first filter was the Statistical Outlier Removal
(SOR), which eliminates the noise points (Rusu et al., 2007 [47]). This filter supposes that
the distance between one LiDAR point and its neighborhood is normally distributed. The
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second filter removes the duplicate points at a given distance tolerance by testing each point
neighborhood [3]. Thereafter, depending on the 50% overlap between neighboring stations,
as well as the used target points, a registration process between neighboring station clouds
was successfully completed, with a connection standard deviation of 3.4 mm and a target
standard deviation of 0.3 mm.

Figure 5. Scanning site and static scanner: (a) area of interest and (b) TLS equipment Z+F 5016 static,
operating within the outdoor area.

Discussion

To complete the comparison of SLAM and static datasets, a cloud-to-cloud comparison
was applied (Figure 6). The outdoor data accuracy achieved was 3 mm at a 68% confidence
level, with a maximum distance from the TLS of 6 mm at 68%. In comparison to the stated
relative accuracy of 8 mm at 68%, and the white paper outdoor building façade scenario
accuracy of 6 mm at 68%, the assessment results achieved better accuracy of the outdoor
area. The resulting point cloud seen in Figure 6a displays higher distances in red, located
on the sandstone wall adjacent to the water feature and front entrance. Most of the data
can be seen to be within the range of 0 mm and 5 mm, colored in blue. Promising results
were obtained from the comparison with the terrestrial laser scanner, which undoubtedly
had greater accuracy, confirming the efficiency of the SLAM scanner regarding the static
scanner within the outdoor areas.

Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 20 
 

 

  
(a) (b) 

Figure 6. SLAM and static datasets comparison: (a) superimposition of the two datasets and (b) 
histogram of Gaussian distribution cloud-to-cloud comparison. 

3.3. BLK2GO SLAM Scanner Accuracy Assessment 
It is necessary for the data measurement to grasp the potential levels of accuracy at-

tainable from instruments, such as the BLK2GO. This section aims to assist in evaluating 
the accuracy of this instrument and determining whether the instrument can deliver sat-
isfactory levels of accuracy in survey works. It includes the use of an edge detection board 
as well as a comparison with TS data to assess the SLAM LiDAR accuracy. At this stage, 
it is important to underline that some accuracy assessments in this section will apply dif-
ferent strategies from those applied in Section 3.1 that can present a richness of data as-
sessment approaches. 

3.3.1. Edge Detection Board Assessment 
Without any human intervention, the determination of object edges, and subse-

quently the accuracy of measured objects, relies on the density of the point grid at specific 
distances. As highlighted in Section 1, the precise identification of objects is paramount in 
the SLAM process. Though this test could be influenced by the type of materials of the 
object surveyed, this paper focused on edge detection regardless of the material type, and 
this topic will be deeply studied in future research. 

Thus, accurate data association plays a critical role in combining datasets and, ulti-
mately, generating a precise model. Typically, scanning systems calculate measurements 
by computing the angular and distance differences between successive points. Conse-
quently, targets situated closer to the scanning unit will exhibit a denser concentration of 
closely spaced points, while targets positioned farther away will display a lower point 
density [48]. The test apparatus consisted of a 12 mm ply board, with eight Medium-Den-
sity Fiberboard (MDF) panels of different thicknesses attached to it (Figure 7). A steel ma-
chinist ruler and digital calipers were used to directly confirm the dimensions of the MDF 
pieces attached to the board. Once all the measurements were confirmed, multiple scans 
of the board were executed. This approach enabled the assessment of distance measure-
ments and the determination of object edges concerning the sensor’s proximity. 

Figure 6. SLAM and static datasets comparison: (a) superimposition of the two datasets and
(b) histogram of Gaussian distribution cloud-to-cloud comparison.

3.3. BLK2GO SLAM Scanner Accuracy Assessment

It is necessary for the data measurement to grasp the potential levels of accuracy
attainable from instruments, such as the BLK2GO. This section aims to assist in evaluating
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the accuracy of this instrument and determining whether the instrument can deliver
satisfactory levels of accuracy in survey works. It includes the use of an edge detection
board as well as a comparison with TS data to assess the SLAM LiDAR accuracy. At this
stage, it is important to underline that some accuracy assessments in this section will apply
different strategies from those applied in Section 3.1 that can present a richness of data
assessment approaches.

3.3.1. Edge Detection Board Assessment

Without any human intervention, the determination of object edges, and subsequently
the accuracy of measured objects, relies on the density of the point grid at specific distances.
As highlighted in Section 1, the precise identification of objects is paramount in the SLAM
process. Though this test could be influenced by the type of materials of the object surveyed,
this paper focused on edge detection regardless of the material type, and this topic will be
deeply studied in future research.

Thus, accurate data association plays a critical role in combining datasets and, ulti-
mately, generating a precise model. Typically, scanning systems calculate measurements by
computing the angular and distance differences between successive points. Consequently,
targets situated closer to the scanning unit will exhibit a denser concentration of closely
spaced points, while targets positioned farther away will display a lower point density [48].
The test apparatus consisted of a 12 mm ply board, with eight Medium-Density Fiberboard
(MDF) panels of different thicknesses attached to it (Figure 7). A steel machinist ruler and
digital calipers were used to directly confirm the dimensions of the MDF pieces attached
to the board. Once all the measurements were confirmed, multiple scans of the board
were executed. This approach enabled the assessment of distance measurements and the
determination of object edges concerning the sensor’s proximity.

Figure 7. (a) Edge detection board and (b) edge detection board with the SLAM scanner.

The scans were taken at distances of 2 m, 5 m, 7 m, 10 m, 15 m, and 25 m, each lasting
40 s. Running the scan for 40 s provided sufficient time for the instrument to establish
its position and ensure a comprehensive saturation of points on the board. To assess the
collected data, the horizontal and vertical values of each token were measured at varying
distances. To assess the depth measurement of the tokens, sections of the edge detection
board were considered, allowing for an assessment of the depth measurements when using
a top view. Figure 8 shows the results of the edge detection board scan, where the tokens
were 120 mm × 105 mm and varied in depth from 3 mm to 24 mm.
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3.3.2. Discussion

From Figure 8, the instrument consistently delivered high-quality results up to a
distance of 7 m. However, the mean standard deviation in the x-axis was 4.7 mm, and
in the y-axis, 4.8 mm. The data obtained from the edge detection board played a crucial
role in evaluating the accuracy of the LiDAR unit and determining the ideal proximity
to a subject for obtaining reliable results. The calculated distance throughout the scans
provided accurate results. The increase in the standard deviation aligns with the findings
of Harrap and Lato [48].

From Table 4, the results from the Z-axis were far less impressive, with errors of up
to 14 mm recorded in the 10 m scan. However, the data obtained from these scans were
uninterpretable at distances beyond 10 m. Table 4 shows the differences in definition
between the scans taken at 2 m to 10 m of cross-section. The weaker outcomes of in-depth
measurements primarily stemmed from the scanner’s stationary position during the scan.
Since the scanner was arranged perpendicular to the board, it resulted in the creation of
small shadows by the tokens. To address this problem and potentially enhance the results,
the instrument should be moved laterally and vertically while maintaining the desired
offset. Implementing these adjustments would allow the instrument to perform more
effectively by enabling better scanning of the corners.

Table 4. Edge detection board depth results.

Scan
Distances to
Target (m)

Confirmed
Depth (mm) 3 6 9 12 15 18 21 24

2
Scanned

Depth (mm) 7 14 14 17 20 23 32 31

Delta (mm) 4 8 5 5 5 5 11 7

5
Scanned

Depth (mm) 5 8 11 16 20 25 28 29

Delta (mm) 2 2 2 4 5 7 7 5

7
Scanned

Depth (mm) 8 12 13 20 20 20 27 29

Delta (mm) 5 6 4 8 5 2 6 5

10
Scanned

Depth (mm) - - 20 17 15 23 25 30

Delta (mm) - - 14 8 3 8 7 9
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3.3.3. TS Datasets as a Reference

A survey of the site was conducted using TS (Leica TS16) to provide reference data.
The TS used had a stated angular accuracy of 3 s of the ark and a distance accuracy of
2 mm + 2 ppm when using the reflectorless feature. A traverse was executed around the
site using the TS, following the same trajectory as the data collected from the scanner. Data
were collected at three different points: along the base of the walls, halfway up the walls,
and at the intersections of the ceiling and walls, to enable a three-dimensional model to be
constructed. From these data, approximately 550 positions were recorded for comparison
to the scan data. The data collected from the TS were imported into GeoCivil for reduction.
Within this program, the data were assessed for outliers and the strings were completed.
Once the data were assessed, they were moved to the same coordinate system as the data
collected from the scanner. Finally, a data exchange file (dxf) was produced to enable
import into CloudCompare. This software was also used to calculate areas of the leases
from the TS data.

After filtering the scan data (Section 3.2), the cloud-to-cloud comparison strategy
was then employed to compare the surveys from the subject area. This analysis visually
highlighted any disparities that emerged between the surveys and provided a statistical
summary of the quality of the scan data. Subsequently, a comprehensive investigation was
undertaken to ascertain the underlying causes of these discrepancies and determine their
magnitude. Figure 9 shows the results of the comparison between the data collected from
the TS and the BLK2GO. It can be noted that the data obtained from the BLK2GO yielded a
mean value of 21 mm, with a standard deviation of 12 mm. Although it fell slightly short
of the manufacturer’s stated accuracy claims, the difference was not dramatic. The mean
and standard deviation could potentially be improved by removing less of the point cloud.
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4. Indoor Assessment

This section focuses on the indoor assessment of the SLAM scanner’s accuracy. This
choice was adopted regarding the wide employment of SLAM scanners for data acquisition
in indoor projects. In this context, the NavVix VLX 2 scanner data were compared with
reference datasets measured by the Z+F static scanner.

To assess the NavVix scanner’s accuracy, a point cloud measured by the Z+F Imager
5016 scanner was used as reference data because this scanner is much more accurate than
NavVix [49]. To meet the aim of this research, the Ipswich City Council Art Gallery in
Queensland, Australia, was chosen to conduct the scan experiment. The test area was
set, and data were collected by the TLS and the MLS, performing three separate scans:
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normal walking speed in a loop closure (loop normal; Figure 10a), fast walking speed in a
loop closure (loop fast), and normal walking speed in a straight path with no loop closure
(straight normal; Figure 10b) [14]. The results of the loop normal were used to provide the
best accuracy against the TLS data and to compare the other MLS scans. The second scan
(loop fast) was chosen to test the effects of speed on the device by walking at a fast pace.
The third survey (straight normal) was chosen to test the effects of not conducting a loop in
the scan. The TLS point cloud was used as the reference model (ground truth) for the MLS
point clouds for carrying out a cloud-to-cloud distance comparison [50].
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Figure 10. NavVix VLX 2 indoor scans: (a) normal walking speed in a loop closure, and (b) normal
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Discussion

The analysis was conducted to assess the relative accuracy of each of the MLS scans
compared to the TLS scan. Further analysis was conducted to assess if speed and perform-
ing a loop closure with the MLS affected its relative accuracy. Speed was calculated using
the metadata of the MLS scans, and the relative accuracy was calculated. To analyze each of
the MLS point clouds, the MLS point clouds were compared to the TLS point clouds using
a cloud-to-cloud comparison with a quadratic local model calculated for the TLS to yield a
better approximation of the test site’s surface. Thereafter, a distribution-fitting statistical
test was realized to conduct a Gaussian test. Finally, these data were used to determine the
mean, standard deviation, and RMS between the two point clouds, as shown in Figure 11.
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Despite the high similarity between the obtained accuracies, it can be noted that
each point cloud aligned better with the loop normal, producing a result approximately
5 mm better. Comparing all point cloud results showed that the loop normal point cloud
produced the most accurate results, as seen in Figure 11, with a mean of 4 mm, standard
deviation at 2σ (95% C.I.) of 8 mm, maximum deviation at 2σ (95% C.I.) of 12 mm, and
an RMSE of 5 mm. This is shown in Figure 11, with loop normal producing the lowest
mean, standard deviation, and RMSE. This point cloud was followed by straight normal
and then loop fast in terms of accuracy. The Gaussian histograms for each scan showed
that they had a normal distribution with a high peak, and each was skewed to the left
on the lower end of the distance. This indicates that some of the higher distance values
caused the mean to shift to the right of where most of the values lay. The high peak of
the histograms also showed that most of the cloud-to-cloud distances were within a small
range. The maximum deviation for all points clouds at 2σ (95% C.I.) was 16 mm.

These results showed a significant difference in the number of points observed between
the loop normal and loop fast (10,371,499 points). The loop normal also produced a more
accurate result, with a maximum at 95% C.I. of 12 mm. When comparing the number of
points observed, the TLS point cloud had over 100 million more points observed than the
loop normal, which had the highest number of points for an MLS survey. The TLS survey
took approximately 70 min from start to finish, whereas the loop normal scan took 2.45 min.

5. Conclusions

This comprehensive assessment of the NavVis VLX and BLK2GO SLAM scanners
yielded significant insights into their performance across various conditions and environ-
ments. The findings demonstrated the influence of multiple factors on the accuracy and
capabilities of these scanners, highlighting the critical roles of speed, flexibility, surface
type, and scanning conditions. Speed and flexibility were found to have a more substantial
impact on accuracy than loop closures, suggesting that prioritizing these factors can lead to
better outcomes when using SLAM scanners in survey work. Additionally, the ease with
which the instrument can scan different surfaces, especially those with high angles of inci-
dence, played a major role. Surfaces that are difficult to scan may not provide the necessary
backscatter to produce an accurate point cloud. The time required for a SLAM scanner to
collect data in the field was significantly shorter compared to traditional methods, such as
total station (TS) and terrestrial laser scanner (TLS). Despite this efficiency, TLS and TS are
better suited for high-accuracy scans, whereas SLAM scanners are more appropriate for
scenarios where lower accuracy is acceptable in exchange for speed and flexibility.

Indoor environments showed higher accuracy levels, with SLAM scanners achieving
up to 5 mm accuracy. For outdoor environments, accuracy varied between 10 mm and
60 mm depending on the conditions and factors involved. The cloud-to-cloud comparison
method provided the most direct and accurate measurement of point cloud data, with
the loop normal scan achieving a mean accuracy of 4 mm, standard deviation of 8 mm,
and RMSE of 5 mm. The maximum deviation observed was 16 mm at the 95% confidence
interval (C.I.). The NavVis VLX scanner exhibited robust performance, with an absolute
accuracy of 6 mm at the 68% confidence level and 15 mm at the 95% confidence level
in controlled environments. The BLK2GO scanner, although portable, achieved a stated
accuracy of 10 mm within indoor environments.

The results indicated that SLAM scanners hold significant promise for various sectors,
particularly in indoor environments and applications, such as underground mining, where
regular, frequent surveys can detect movements early. However, for tasks requiring high
precision, such as cadastral surveys, TLS and TS remain more suitable. Further research
should focus on assessing the impact of environmental factors, such as elevation changes,
on SLAM scanner performance, conducting real-world surveys, such as building final plans
or digital twins to evaluate the practical applicability and efficiency gains of SLAM scanners
compared to traditional methods, and enhancing feature extraction algorithms to improve
horizontal accuracy, particularly in residential topographic surveys. In conclusion, while
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SLAM scanners offer significant advantages in terms of speed and flexibility, their accuracy
must be carefully considered relative to the specific requirements of the survey task. These
findings provide a foundation for understanding the strengths and limitations of SLAM
technology and guide future developments and applications in the surveying field.
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