

Molecular mechanisms of growth responses to elevated atmospheric carbon dioxide in wheat (*Triticum aestivum* L.)

A Thesis submitted by

Dananjali Mekhala Gamage

BSc (Agriculture) (Hons)

For the award of

Doctor of Philosophy

2018

Abstract

The carbon dioxide concentration [CO₂] in the current atmosphere is increasing at a significant rate and is predicted to reach up to 700 µmol mol⁻¹ by the end of this century. Elevated ([CO₂]) has the potential to increase the growth and yield of crops. Being the primary substrate for photosynthesis, increased CO₂ levels significantly promote the growth of most C₃ crops through increased photosynthesis capacity and reduced stomatal conductance. This stimulation of photosynthesis is central to other post-photosynthetic key metabolic processes such as carbon and nitrogen metabolism, cell cycle functions and hormonal regulation, which may lead to changes in whole plant growth. The magnitude of these responses to elevated [CO₂] varies even within same species, indicating a significant genetic variation for CO₂ responsiveness within plant communities. In addition, the CO₂ responsiveness of plants depends on their ontogeny and is found to be more pronounced in the early development stages of the crops. However, there is a limited understanding of underlying molecular mechanisms of plant growth responses to elevated [CO₂] which is crucial for developing crop breeding strategies to improve crop productivity in a changing climate. Therefore, this project broadly aimed to dissect the molecular mechanisms of plant growth responses to elevated [CO₂] in wheat (Triticum aestivum L.), focusing on three unexplored aspects of this underlying mechanism. This project focused primarily on the early vegetative stage of wheat to study the increased CO₂ responsiveness of crops in their early ontogeny.

First, putative quantitative trait loci (QTL) for major early growth traits at elevated [CO₂] were identified using a doubled haploid population of a cross between RAC875 and Kukri, to identify the genetic regions potentially associated with CO₂ responsiveness. In total 24 putative QTL for CO₂ responsiveness were identified for different growth traits. Three QTL, worthy for future research, were identified on chromosome 2A, 1B and 4B that showed an increased response for biomass accumulation at elevated $[CO_2]$. Secondly, the role of photosynthesis and post-photosynthetic metabolic processes in moderating growth responses to elevated [CO₂] was investigated through developing an understanding of the source and sink interaction of wheat. Transcript abundance of key genes involved in carbon and nitrogen metabolism, and cell cycle functions varied greatly among CO_2 levels (400 and 700 μ mol mol⁻¹), organ types (last fully expanded leaves, expanding leaves, leaf cell elongation zone and shoot apex region) and genotypes. Finally, the interplay of different regulatory mechanisms involved in plant growth at elevated [CO₂] was investigated through a comparative proteomics analysis. Most of the differentially expressed proteins at elevated [CO₂] were involved in carbon metabolism, energy pathways, protein synthesis and cell cycle functions. However, the leaf proteome responses to elevated [CO₂] were highly genotype dependent. Overall, the results indicated that post-photosynthetic metabolic processes play a significant role in moderating plant growth responses at elevated [CO₂]. Molecular level responses of these processes are subject to developmental regulation and thus, are involved in determining the source and sink integration of plants. This study has demonstrated the intraspecific variability of growth responses to elevated [CO₂] at the genetic, transcriptomic and proteomic level. These variable responses provide valuable targets for the selection of genotypes that can thrive well in the future CO₂ enriched atmosphere.

Certification of Thesis

This Thesis is the work of Dananjali Gamage except where otherwise acknowledged, with the majority of the authorship of the papers presented as a Thesis by Publication undertaken by the Student. The work is original and has not previously been submitted for any other award, except where acknowledged.

Principal Supervisor: Professor Saman Seneweera

Associate Supervisor: Associate Professor Naoki Hirotsu

Associate Supervisor: Professor Mark W. Sutherland

Student and supervisors signatures of endorsement are held at the University.

Statement of Authorship

Chapter 2: New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide. **Gamage D**, Thompson M, Sutherland M, Hirotsu N, Makino A, Seneweera S 2018, Plant, Cell & Environment, 41(6), 1233-1246.

Dananjali Gamage (DG) contributed to 60% of the paper, consisting of the paper's design, literature collection and interpretation, and writing of the manuscript. Saman Seneweera (SS) contributed to 20% of the paper, consisting of the paper's design, revision of the paper and editorial input. Michael Thompson (MT), Amane Makino (AM), Mark W. Sutherland (MWS) and Naoki Hirotsu (NH) contributed to 20% of the paper, consisting of revision and editorial input.

Chapter 3: Early growth mechanism of wheat (*Triticum aestivum* L.) at elevated atmospheric carbon dioxide: New physiological evidence with quantitative trait loci data. **Gamage D**, Thompson M, Okamoto M, Moriyama N, Sutherland M.W., Hirotsu N, Seneweera S. (Prepared for publication)

DG contributed to 60% of the paper, consisting of experimental design; acquisition, analysis and interpretation of data; drafting and revising the manuscript. SS and NH contributed 20% and 10%, respectively consisting of the study conception and design, analysis and interpretation of data, critical revision of the manuscript. Mamoru Okamoto (MO), Nao Moriyama (NM), MWS, MT contributed 10%, consisting of data collection, revision of the manuscript and editorial input.

Chapter 4: Elevated carbon dioxide mediated early growth responses of wheat (*Triticum aestivum* L.): an analysis of source and sink interactions. **Gamage D**, Thompson M, Dehigaspitiya P, Fukushima A, Sutherland M.W., Hirotsu N, Seneweera S. (Prepared for publication)

DG contributed to 60% of the paper, consisting of experimental design; acquisition, analysis and interpretation of data; drafting and revising the manuscript. SS and NH contributed 20% and 10%, respectively consisting of the study conception and design, analysis and interpretation of data, critical revision of the manuscript. Prabuddha Dehigaspitiya (PD), Ayaka

Fukushima (AF), MT and MWS contributed 10%, consisting of data collection, revision of the manuscript and editorial input.

Chapter 5: Leaf proteome responses of wheat (*Triticum aestivum* L.) to elevated atmospheric carbon dioxide during early vegetative growth. **Gamage D**, Thompson M, Dehigaspitiya P, Faou P, Rajapaksha KH, Downs R, Sutherland M.W., Hirotsu N, Seneweera S. (Prepared for publication)

DG contributed to 60% of the paper, consisting of experimental design; acquisition, analysis and interpretation of data; drafting and revising the manuscript. SS contributed 20% a conception and design, analysis and interpretation of data, critical revision of the manuscript. NH and Harinda Rajapaksha (HR) contributed 10% consisting of data analysis, interpretation and revision of the manuscript. Pierre Faou (PF), Rachael Downs (RD), MWS, MT and PD contributed 10%, consisting of data collection, analysis, revision of the manuscript and editorial input.

Acknowledgment

This PhD has been one of the most amazing experiences of my life and I am truly grateful for all those who have supported me throughout this journey. First and foremost, I would like to acknowledge the University of Southern Queensland for providing me this great opportunity to pursue my doctoral degree along with a USQ Postgraduate Research Scholarship. I would like to express my special appreciation and sincere gratitude to my principal supervisor, Professor Saman Seneweera, for his tremendous academic support, valuable guidance and constant encouragement throughout this journey. I am also indebted to Associate Professor Naoki Hirotsu, associate supervisor of my PhD project for his great scholarly input into my research experiments and constructive discussions on data analysis and interpretation. Whenever I had doubts and questions, Prof. Hirotsu was always made himself available to clarify them despite his busy schedule. Similar profound gratitude goes to Professor Mark Sutherland, my associate supervisor, for his academic support and critical revision of all the scholarly outputs generated from this PhD study. I consider it a great opportunity to pursue my doctoral degree under the great supervision of these three exemplary academics.

I am also hugely appreciative to Dr. Anke Martin from the University of Southern Queensland who has been a dedicated mentor of molecular biology laboratory work and for her kind support during tough times in the PhD pursuit. Further, I would like to express my gratitude for Prof. Peter Terry, Director/Training and Research, USQ for his kind support during my studies at USQ. I also extend my sincere thanks to Professor Achini De Silva, Professor Seiji Nagasaka and Dr. Hao for their support in different stages of my PhD. In addition, I would like to thank Dr. Mamoru Okamoto for supplying the wheat population used in my experiments and Dr. Kolin Harinda Rajapaksha for his great support with the proteomics analysis. I'm truly grateful for Professor Amane Makino and Professor Paul Milham for their support of Nao Moriyama and Ayaka Fukushima from Toyo University, Japan for their kind support with some of my data analyses. I'm also grateful for Dr. Barbara Harmes, Dr. Marcus Harmes and Dr. Ananda Abeysekara for their great support in improving my academic writing. Additionally, I would like to thank all the staff members in the CCH who have given support over the years.

My deepest thanks go to my research buddy, Michael Thompson who has started his PhD along with me and worked together throughout this entire PhD journey. His great support with my

experiments and as a co-author of my research outputs was remarkable. I would like to extend my love and thanks to all my friends at CCH: Sriram, Barsha, Kiruba, Mela, Joe, Ahmed, Rio and Motiur who were there to share my happy and bitter moments throughout this long journey. Also, I want to give a big shout-out to my junior colleague, Prabuddha who helped and encouraged me in every possible way during this challenging period and pushed me to finish my research and thesis writing work on time. Additionally, I thank Indika, Madhubhashitha and Prasanna for their support.

I am indebted to all my friends in Brisbane and Toowoomba, Australia who were always so helpful in numerous ways. A huge appreciation goes to Dr. Jay Bandara, Gayani Bandara, Dumila Perera, Chaturika Gunatunga, Piyum Herath, Mythree Seneweera and Pramesha Madurangi for their kind support.

I would also like to extend my sincere thanks to my home university; the University of Ruhuna, Sri Lanka for granting me permission to study abroad and strengthen my knowledge and skills in plant science. I must acknowledge all the staff members of the Department of Agricultural Biology, Faculty of Agriculture for taking care of my academic duties while I was on study leave to complete this PhD. My sincere thanks go to all my cousins back home: Thiwanka, Niluka, Tharaka, Nandika and Sampath for taking good care of my family while I was away from Sri Lanka.

Last but not least, my heartfelt love and appreciation go to my dad and sister, Danu who have been by my side throughout this long academic journey from primary school to grad school. Also, today I deeply miss my darling mum who gave me all the courage and inspiration to start this challenging journey. Without their love and encouragement, I would not have finished my thesis successfully.

For me, this PhD journey was a life-changing experience. I deeply treasure every single minute of it and I am truly grateful for all the people who supported me to turn this big dream into a reality.

List of publications and submitted articles

Gamage, D., M. Thompson, M. Sutherland, N. Hirotsu, A. Makino and S. Seneweera (2018). "New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide." *Plant, cell & environment* 41(6): 1233-1246.

Gamage D, Thompson M, Okamoto M, Moriyama N, Sutherland M.W., Hirotsu N, Seneweera S. Early growth mechanism of wheat (*Triticum aestivum* L.) at elevated atmospheric carbon dioxide: New physiological evidence with quantitative trait loci data (Currently under review in *Plant, Cell and Environment*)

List of conferences attended and other co-authored scholarly articles during PhD candidature

Gamage D, Thompson M, Okamoto M, Moriyama N, Sutherland M, Hirotsu N, Seneweera S 'Early growth response of wheat (*Triticum aestivum* L.) to elevated atmospheric carbon dioxide: Quantitative trait loci for major growth traits'. Participated in the poster presentations at the *American Society of Plant Biologists' Plant Biology 2017* conference in Honolulu, Hawaii, USA.

Nagai Y, Matsumoto K, Kakinuma Y, Ujiie K, Ishimaru K, **Gamage D**, Thompson D, Milham PJ, Seneweera S and Hirotsu N (2016). "The chromosome regions for increasing early growth in rice: role of sucrose biosynthesis and NH4+ uptake." *Euphytica* 211(3): 343-352.

Thompson M, **Gamage D**, Hirotsu N, Martin A & Seneweera S 2017, 'Effects of Elevated Carbon Dioxide on Photosynthesis and Carbon Partitioning: A Perspective on Root Sugar Sensing and Hormonal Crosstalk', *Frontiers in Physiology*, 8:578, 10.3389/fphys.2017.00578.

Table of Contents

Abstractii
Certification of Thesis
Statement of authorshipiv
Acknowledgement
List of publications and submitted articlesviii
Chapter 1: Introduction and Literature Review
1.1 Climate change and future projections1
1.2 Wheat production under future climate1
1.3 Plant responses to rising atmospheric [CO ₂]
1.3.1 Plant photosynthetic responses to elevated [CO ₂]
1.3.2 Photosynthetic acclimation of C3 plants to long-term elevated [CO2] exposure3
1.3.3 Post-photosynthetic responses of plants to elevated [CO2]4
1.4 CO ₂ responsiveness and plant growth stages
1.5 Knowledge gaps in the understanding of plant growth responses to elevated [CO ₂]6
1.6 Contribution of the present study to the scientific theory and knowledge
1.7 Objectives of the study9
1.8 References11
Chapter 2: Literature Review
Chapter 3: Early growth mechanism of wheat (Triticum aestivum L.) at elevated
atmospheric carbon dioxide: New physiological evidence with quantitative trait loci data31
Chapter 4: Elevated carbon dioxide mediated early growth responses of wheat (Triticum
aestivum L.): an analysis of source and sink interactions
Chapter 5: Leaf proteome responses of wheat (Triticum aestivum L.) to elevated
atmospheric carbon dioxide during early vegetative growth145

Chapter 6: Discussion, Conclusions and Future Directions	191
6.1 Significant findings of the study	
6.2 Proposed mechanism for early growth stimulation of wheat at elevated [CO ₂]	
6.3 Future directions	199
6.4 Conclusion	
6.5 References	

Chapter 1

Introduction and Literature Review

1.1 Climate change and future projections

Climate change is currently exerting additional pressure on global agricultural productivity and thereby threatens future global food security (Ainsworth *et al.*, 2008). The causes behind climate change are diverse. Increased emission of greenhouse gases such as carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O) and halocarbons into the atmosphere is considered to be one of the main causes behind global climate change (IPCC, 2007). Among all greenhouse gases, CO₂ contributes more than 70% to global climate change (IPCC, 2007). The carbon dioxide concentration ([CO₂]) of the earth's atmosphere has increased since the industrial revolution, with human activities consequently contributing strongly to climate change (IPCC, 2007).

Since the industrial revolution, the atmospheric $[CO_2]$ has increased by more than 40%, and it is predicted to further increase by the middle of the century (IPCC, 2013). The current ambient $[CO_2]$ has already exceeded 400 µmol CO₂ mol⁻¹ (Tans & Keeling, 2018) and is expected to reach between 730 to 1020 µmol mol⁻¹ by 2100 (Solomon *et al.*, 2007). At present, the CO₂ concentration in the atmosphere is linearly increasing. For example, in the past ten years, increase in atmospheric $[CO_2]$ was recorded at a rate of 2.1 µmol mol⁻¹ per year, double what was observed in the 1960's (IPCC, 2007). The increasing atmospheric $[CO_2]$ has a significant impact on global temperature and thus precipitation patterns; projections predict global temperature will increase by 1.5-4.5°C while the distribution of rainfall decreases (IPCC, 2007). Changes in $[CO_2]$, temperature and water balance will influence climate and consequently the balance of ecosystem processes.

1.2 Wheat production under future climate

Wheat is the most widely cultivated cereal crop, an important carbohydrate source, and the most important grain protein source for a majority of the human population. Wheat contains

essential amino acids, minerals, vitamins, beneficial phytochemicals and dietary fiber components required for human nutrition (Shewry, 2009). It is predicted that the human population will increase to 9.1 billion by 2050, which will require an increase in cereal production of 3 billion tonnes to feed the growing world population (FAO, 2009). In order to satisfy the global demand for wheat, the production of more than 850 million tonnes by 2030 (FAO, 2003) is required. However, achieving these targets while conserving the quality will become a challenge under a changing climate. Australia is one of the largest wheat exporters in the world and a majority of arable lands are employed for wheat production. Climate change, including an increase in [CO₂] in the atmosphere together with high temperatures and reduced average annual rainfall, will affect the Australian wheat industry. It has been demonstrated that increasing temperature together with low precipitation is predicted to reduce the wheat yield by 7 to 16% (Kokic et al., 2005). However, some of the negative effects of climate stress variables such as water and temperature on plants can be offset by elevated [CO₂]. This is favorable for the global food production. Gaining a better understanding of the genetic and molecular nature of crop responses to $e[CO_2]$ will improve breeding programs that can ultimately increase future crop productivity (Ainsworth et al., 2008, Semenov & Halford, 2009, Tausz et al., 2013).

The majority of plant species, including wheat, fix CO₂ via the C₃ photosynthetic pathway. When [CO₂] increases in the atmosphere, photosynthesis increases until [CO₂] reaches the saturation limit (Sharkey, 1985, Seneweera *et al.*, 2011a). The relationship between photosynthesis to the changing [CO₂] concentration is well described by the biochemical model of photosynthetic CO₂ assimilation of Farquhar *et al.* (1980). The model indicates that conserved properties of ribulose 1-5 bisphosphate carboxylase/oxygenase (Rubisco), the primary carboxylating enzyme of C₃ plants, is the key to such unique photosynthetic responses to rising [CO₂]. Current ambient [CO₂] is very low at the site of fixation and any increase in [CO₂] will increase the net photosynthesis of C₃ plants (Drake *et al.*, 1997, Bloom, 2015). Laboratory and field studies have shown that the rate of photosynthesis of C₃ plants is approximately doubled when plants were grown at about 700 µmol mol⁻¹ in comparison to 400 µmol mol⁻¹ (Drake *et al.*, 1997, Ainsworth & Long, 2005, Kant *et al.*, 2012). However, the long-term photosynthesis response to elevated [CO₂] is highly unpredictable (Drake *et al.*, 1997, Seneweera *et al.*, 2005, Seneweera *et al.*, 2011a) and depends on nutrient availability, ontogenic stage and genetic background.

1.3 Plant responses to rising atmospheric [CO₂]

The increase of atmospheric $[CO_2]$ directly and indirectly affects both the net rate of photosynthesis and stomatal conductance and thereby regulates the growth and development of plants (Seneweera & Conroy, 2005). As a result of these fundamental processes, changes in other post-photosynthetic metabolic processes that may lead to changes in plant growth responses are observed and are significant; however, the underlying mechanism is not well understood (Taylor *et al.*, 1994, Seneweera *et al.*, 2003, Gamage *et al.*, 2018)

1.3.1 Plant photosynthetic responses to elevated [CO₂]

Photosynthetic rate of most C₃ plants increases when plants are grown under elevated [CO₂] (Makino & Mae, 1999). In a high [CO₂] environment, the rate of photosynthesis increases as a result of an improvement in the carboxylation efficiency of Rubisco. The carboxylation efficiency of Rubisco rises due to an increase in the CO₂/O₂ ratio at the site of CO₂ fixation (Bowes, 1993). Further, changes in the CO₂/O₂ ratio leads to a reduction in photorespiration of C₃ plants, i.e., at the present atmospheric oxygen concentration of 21 kPa and [CO₂] of 400 µmol mol⁻¹, a considerable amount of light energy is used up for photorespiration, which reduces photosynthetic rates by 20 to 50% depending on temperature (Sharkey, 1985). These physiological responses vary between species and within species. Therefore, growth response to elevated [CO₂] is determined by the plant's capacity to adjust to the [CO₂] assimilation (Thilakarathne *et al.*, 2013, Thilakarathne *et al.*, 2015).

1.3.2 Photosynthetic acclimation of C₃ plants to long-term elevated [CO₂] exposure

When plants are exposed to elevated [CO₂] for an extended period, initial photosynthetic rates are increased. However, the initial stimulation of photosynthetic rates is not always maintained for a longer period (Sharkey, 1985, Sage *et al.*, 1989, Seneweera *et al.*, 2011c). This phenomenon is known as "photosynthetic acclimation" and has been widely reported in the literature (Bowes, 1991, Makino & Mae, 1999, Seneweera *et al.*, 2002, Nowak *et al.*, 2004). A number of mechanisms have been proposed to explain photosynthetic acclimation. Among them, change in the nitrogen supply to growing leaf blades (Drake *et al.*, 1997, Nakano *et al.*, 2011b); accumulation of non-structural carbohydrates, leading to the suppression of the photosynthesis-related gene expression through the hexokinase signalling pathway (Nakano *et al.*, 1997, Stitt & Krapp, 1999, Thompson *et al.*, 2017); lower nitrogen

demand in leaves due to changes in nitrogen influx/efflux balance in growing tissues (Seneweera *et al.*, 2011b) and lower nitrogen in shoots due to suppression of NO_3^- photo-assimilation under e[CO₂] (Bloom *et al.*, 2012) are considered the main possible caused for accentuate photosynthesis acclimation. However, there is a very limited understanding of how these processes relate to plant nitrogen metabolism, and whether these processes are directly, or indirectly, associated with the impact of [CO₂] on photosynthesis. This understanding is essential to establish proper breeding approaches to breed crops to adapt to high atmospheric [CO₂].

1.3.3 Post-photosynthetic responses of plants to elevated [CO₂]

Increased photosynthetic capacity directly influences several post-photosynthetic key metabolic processes which play key roles in promoting plant growth and development under elevated [CO₂]. It is suggested that additional carbon supply at elevated [CO₂] primarily contributes to increased plant growth; however, how this additional carbon supply influences growth and what mechanisms are affected in the leaf or root tissues are still not clearly understood.

Plant growth and development is largely influenced by changes in plant carbon and nitrogen metabolism (Seneweera & Conroy, 2005). This argument is fully supported by Leakey *et al.* (2009). Changes in carbon metabolism are inevitable at elevated [CO₂], as the additional carbon supply influences carbohydrate synthesis, respiration, storage and remobilization. A proper balance among these mechanisms determines the carbon partitioning to different plant organs and maintains plant growth at the whole plant level. On the other hand, many aspects of plant growth and metabolism are regulated by nitrate, and signals derived from nitrogen metabolism (Moore *et al.*, 1999, Ainsworth *et al.*, 2012). Nitrate acts as a resource that accelerates nitrate assimilation, which results in higher levels of amino acids, proteins and decreased levels of starch (Scheible *et al.*, 1997a, Scheible *et al.*, 1997b) thus promoting the growth rate of plants. With additional nitrogen supply, plants tend to increase their growth response to elevated [CO₂], which is mainly regulated through increased plant sink capacity (Rogers *et al.*, 1996, Ainsworth *et al.*, 2004, Leakey *et al.*, 2009). These findings suggest that the capacity for photosynthesis needs to be matched with other indirect processes that control plant growth, such as plant carbon, nitrogen and hormonal metabolism at elevated [CO₂].

Research also suggests that elevated [CO₂] stimulates primary growth of shoots by influencing cell cycle properties, such as increasing the proportion of rapidly dividing cells, shortening the duration of the cell cycle (Kinsman *et al.*, 1997) and promoting cell production and expansion through cell wall loosening as a result of increased xyloglucan endotransglycosylase (XET) activity under elevated [CO₂] (Ranasinghe & Taylor, 1996). Masle (2000) indicated that cell division, cell expansion and cell patterning of plants under elevated [CO₂] may be influenced by increased substrate availability, which could potentially influence the expression of genes involved in the cell cycle and cell expansion.

Plant growth regulators, including auxins, gibberellins, cytokinins, ethylene and abscisic acid mainly regulate these cellular processes within a cell cycle. Hence, changes in hormonal levels may play a significant role in determining plant growth responses at elevated [CO₂] (Yong *et al.*, 2000). Results of several studies suggest that elevated [CO₂] promotes the synthesis of auxins, gibberellin, cytokines and ethylene by stimulating cell cycle processes and protein synthesis, and thereby plant growth (Yong *et al.*, 2000, Seneweera *et al.*, 2003, Teng *et al.*, 2006). However, the metabolism of plant growth regulators also depends on the availability of carbohydrate substrate (Farrar, 1996, Jitla *et al.*, 1997, Taiz & Zeiger, 1998, Kalve *et al.*, 2014). Under elevated [CO₂], the carbon substrate availability is higher as a result of increased photosynthesis, which is likely to increase hormonal metabolism leading to increased plant growth and development.

Genetic factors can also play a major role in regulating plant growth response to elevated [CO₂] by influencing both photosynthetic and post-photosynthetic processes. The photosynthetic response is driven through adjustments in the light reaction of photosynthesis and the carbon reduction process. The photosynthetic rate, potential acclimation propensity, carbohydrate synthesis and nitrogen use efficiency of plants varies remarkably between species and within species (Tausz *et al.*, 2013, Thilakarathne *et al.*, 2013, Thilakarathne *et al.*, 2013, Thilakarathne *et al.*, 2015). These processes are interlinked and their genetic and physiological plasticity determines the final growth responses observed under elevated [CO₂] (Rae *et al.*, 2006, Leakey *et al.*, 2009). Therefore, understanding the underlying genetic mechanisms that determine the growth response to elevated [CO₂] is essential in order to increase crop growth under rising atmospheric [CO₂]. However, development of improved crop varieties suitable for future climates will require intensive models that combine phenotypic characteristics with their

underlying genetic architecture; which is lacking in the current scientific literature (<u>Sadras &</u> <u>Calderini, 2015</u>).

1.4 CO₂ responsiveness and plant growth stages

CO₂ responsiveness of plants is largely determined by the ontogenetic stage of exposure (Centritto et al., 1999, Stitt & Krapp, 1999). The majority of C₃ species show very high growth response to elevated [CO₂], especially during the early stages of vegetative development (Poorter, 1993). Early growth responses to elevated [CO₂] are usually characterized by accelerated leaf growth and expansion resulting in increased leaf area ratios and relative growth rates (Poorter, 1993, Makino et al., 1997) which positively correlate with biomass accumulation and the final yield (Thilakarathne et al., 2015). It is suggested that increased growth at elevated [CO₂] results from the initial stimulation of photosynthesis and may decline or disappear over time (Masle et al., 1993, Centritto et al., 1999, Trevisan et al., 2014). For example, relative growth rates tend to decline, as plants grow older at elevated [CO₂]. Hence, the effect of elevated [CO₂] on relative growth rate (RGR) is often time-dependent and occurs only during the early stages of plant growth (Poorter & Navas, 2003). Studies conducted in wheat (Neales & Nicholls, 1978, Hikosaka et al., 2005), Arabidopsis (Van Der Kooij & De Kok, 1996) and tobacco (Geiger et al., 1998) showed that exposure to elevated [CO₂] leads to a stimulation of RGR in young plants whereas RGR in older plants remains unaffected. Also, it is suggested that even a 10% increase in RGR at the exponential growth phase of the plant can be converted up to a 50% growth enhancement at elevated [CO₂] (Kirschbaum, 2010). Therefore, it is necessary to understand the genetic variation in early growth responses to elevated [CO₂] in order to improve crop productivity.

1.5 Knowledge gaps in the understanding of plant growth responses to elevated [CO₂]

Despite the greater understanding of plant growth and morphological response to elevated $[CO_2]$, there is a significant knowledge gap in understanding the underlying molecular and physiological mechanisms that drive plant growth. Furthermore, the degree of contribution from photosynthetic and post-photosynthetic processes towards plant growth at elevated $[CO_2]$ is not clearly understood (Gordillo *et al.*, 2001). Most of the studies on dissecting plant growth mechanisms at elevated $[CO_2]$ have been focused on the photosynthetic responses, but there has been limited focus on the post-photosynthetic events that lead to subsequent growth and

development of plant tissues, organs and the whole plant (<u>Taylor *et al.*</u>, 1994, <u>Nunes-Nesi *et al.*</u>, 2010, <u>Gamage *et al.*</u>, 2018).

Several studies have been conducted to investigate plant metabolism (Leakey *et al.*, 2009), biomass accumulation ((Wang *et al.*, 2012), morphological and structural changes (Pritchard *et al.*, 1999, Teng *et al.*, 2006, Benlloch-Gonzalez *et al.*, 2014), stress tolerance (Vanaja *et al.*, 2011, van der Kooi *et al.*, 2016) and changes to different agronomic traits (Bourgault *et al.*, 2013, O'Leary *et al.*, 2015) under high [CO₂]; however, little is known about the molecular and physiological mechanisms of how plants respond to elevated [CO₂] (Taylor *et al.*, 2001, Huang & Xu, 2015, Thilakarathne *et al.*, 2015).

Understanding the genetic variation of plant responses to elevated [CO₂] will assist in the selection of plants for fitness and long-term adaptation to climate stress. A clear understanding of the genetic and physiological traits that contribute to an increase in crop productivity under high [CO₂] environments is also required (Ward & Kelly, 2004, Tausz et al., 2013). Physiological traits that are important for plant responses to environmental stimuli are mostly quantitative in nature (Ferris et al., 2002) and determined by a range of gene products. Therefore, identification of quantitative trait loci (QTL) that respond to elevated [CO₂] can be used as a genetic tool to utilize carbon richness to increase crop productivity (<u>Rae *et al.*</u>, 2006). This will provide information on whether the trait of interest has an associated genetic component, which can be utilized to capture high $[CO_2]$ in the atmosphere to increase the crop productivity through plant breeding. Identifying QTL for CO₂ responsiveness will also be a major starting point for future studies on individual genes, genomic regions and inheritance of traits of interest (Rae et al., 2006). However, only a few studies have been published in order to identify [CO₂] responsive QTL. Rae et al. (2006) mapped QTL for leaf growth, development, and senescence of poplar trees. Results showed that there was a differential genetic control for traits under elevated [CO₂]. Furthermore, they suggested that candidate genes co-located in the regions where response QTL were mapped. Ferris et al. (2002) mapped QTL for stomatal initiation, stomatal density, epidermal cell size, number and area in hybrid poplar under elevated [CO₂]. QTL analysis for above and below ground tree growth and biomass was conducted by Rae et al. (2007) using F₂ hybrids of poplar and they identified important areas of the genome which determine above ground growth response and root growth response to elevated [CO₂]. To our knowledge, no research studies have been published to date that elucidates the CO₂ responsive genomic regions for plant growth related traits in wheat.

When analyzing the plant growth responses to elevated [CO₂], changes in the nutritional status, cell cycle regulations and hormonal metabolism cannot be excluded because a dynamic change in C/N relations occurs during plant development. Consequently, changes in carbon and nitrogen metabolism are likely to have a major impact on plant growth processes. For example, a sharp decline in nitrogen uptake occurs at elevated [CO₂], particularly when plants reach the reproductive stage, as most of the photosynthate is used primarily for syntheses of storage and structural carbohydrates. However, there is a limited understanding on how changes in C/N metabolism interact with source-sink integration and thereby influence plant growth processes at elevated [CO₂] (Stitt & Krapp, 1999, Luo *et al.*, 2004, Lekshmy *et al.*, 2013). With the provision of additional carbon at elevated [CO₂], significant changes associated with other post-photosynthetic processes such as cell cycle functions and hormonal metabolism, especially at the molecular level is not clearly understood so far (Gamage *et al.*, 2018). Also, much less attention has been paid to investigate the interactions of all these post-photosynthetic processes and their contribution towards determining the source and sink organ integration at the whole plant level (Gamage *et al.*, 2018).

1.6 Contribution of the present study to scientific theory and knowledge

Since there is a significant knowledge gap in understanding the molecular mechanisms of how plants respond to elevated [CO₂], the experiments in this PhD thesis were designed and conducted to elucidate the underlying molecular mechanisms. This study focussed on dissecting the growth mechanisms of wheat (*Triticum aestivum* L.) in the early vegetative growth stages, as the CO₂ responsiveness of C₃ crops is comparatively high at this growth stage. Knowledge generated from this project will provide new insights into improving early vigor and growth characteristics of wheat, in a changing climate. With this purpose, three different strategies were employed to characterize the molecular growth mechanisms: (i) putative chromosomal locations regulating CO₂ responsiveness were determined through QTL mapping for different plant growth traits under elevated [CO₂]; (ii) the impact of post-photosynthetic processes to enhanced growth responses at elevated [CO₂] were determined using physiological and molecular approaches; (iii) interactions among photosynthetic and post-photosynthetic processes together with their contribution to improving plant growth at elevated [CO₂] was investigated using physiological and proteomics approaches. Overall, this

project will advance our knowledge on mechanisms controlling plant growth response to elevated [CO₂] and provide insights into the genetic factors that can be selected to increase crop productivity in a future CO₂ enriched atmosphere.

1.7 Objectives of the study

Wheat is one of the most cultivated cereal crops showing a variable response to increasing levels of $[CO_2]$ in the atmosphere. Growth and yield stimulation of wheat in response to elevated $[CO_2]$ have shown a high intraspecific variation, suggesting that enhanced photosynthetic capacity may not be the only factor determining final growth and yield of a crop at elevated $[CO_2]$. Therefore, it is necessary to establish the overall physiological and molecular mechanisms of how plant growth changes in response to rising $[CO_2]$. Although there have been significant efforts to characterize the underlying physiological mechanisms of growth responses to elevated $[CO_2]$, not much is known about these mechanisms. Thus, this PhD project broadly aims to identify the underlying molecular mechanisms that regulate the plant growth responses to elevated $[CO_2]$. To achieve this overall aim, this study was broken down into three specific objectives as outlined below.

1. Elucidate QTL associated with plant growth responses to elevated [CO₂] in wheat using a doubled haploid (DH) population

It has been suggested that the identification of new functional traits associated with higher responses to elevated $[CO_2]$ is essential to improve crop productivity under a changing climate. Therefore, identification of QTL that respond to elevated $[CO_2]$ will be useful in identifying the genetic components associated with different growth traits and their regulation under rising atmospheric CO₂. Incorporation of CO₂-response QTL into marker-assisted selection will be beneficial in crop breeding strategies for future climate. To date, there has been no research conducted to elucidate genomic regions/QTL determining enhanced growth traits observed at elevated $[CO_2]$ in wheat. As CO₂ responsiveness is higher during the early vegetative stage, identification of QTL governing early growth will aid in improving growth habit and early vigour of wheat under CO₂ enriched conditions.

2. Determine the contribution of post-photosynthetic metabolic processes to enhanced plant growth responses at elevated [CO₂] using selected DH lines that differ in CO₂ responsiveness

It is well established that growth stimulation at elevated $[CO_2]$ arises from the increased photosynthetic capacity of plants. This photosynthetic stimulation regulates other postphotosynthetic processes such as carbon and nitrogen metabolism and cell cycle functions that collectively contribute to whole plant growth. Elevated $[CO_2]$ impacts on plant growth even at the transcript level and thereby determines the protein synthesis that governs these important metabolic activities. However, there is limited understanding of how these key metabolic processes change in response to increased photosynthetic capacity, especially at the transcript level and their association with enhanced plant growth responses observed under high $[CO_2]$. Therefore, to serve this objective, a series of experiments were conducted to develop an understanding of transcript level changes to post-photosynthetic processes, plant response to increased sugar supply and growth responses at elevated $[CO_2]$.

3. Investigate the interplay among photosynthesis and post-photosynthesis metabolic processes and their impact on improving plant growth at elevated [CO₂] using physiological and proteomic approaches

A number of research studies have been conducted to understand the underlying physiological mechanisms of plant growth and development at elevated $[CO_2]$. Plant response to environmental stimuli such as elevated $[CO_2]$ is a result of a complex interplay of different metabolic processes through various regulatory enzymes, metabolic proteins and other biomolecules. Analysis of the whole proteome of particular plant organs will provide an opportunity to identify the protein profile expressed at a given time. This will provide important information regarding the functionality of the proteome and thus, determine the protein network associated with the growth of a particular plant organ at elevated $[CO_2]$. To our knowledge, no previous research studies have investigated leaf proteome changes in response to elevated $[CO_2]$. The results of this study will serve as a preliminary report in this regard and will help to better understand the underlying molecular mechanisms of plant growth at elevated $[CO_2]$.

1.8 References

- Ainsworth E.A., Beier C., Calfapietra C., Ceulemans R., Durand-Tardif M., Farquhar G.D., Godbold D.L., Hendrey G.R., Hickler T. & Kaduk J. (2008) Next generation of elevated [CO₂] experiments with crops: a critical investment for feeding the future world. *Plant, cell & environment*, **31**, 1317-1324.
- Ainsworth E.A. & Long S.P. (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. *New Phytologist*, **165**, 351-372.
- Ainsworth E.A., Rogers A., Nelson R. & Long S.P. (2004) Testing the "source–sink" hypothesis of down-regulation of photosynthesis in elevated [CO₂] in the field with single gene substitutions in Glycine max. *Agricultural and Forest Meteorology*, **122**, 85-94.
- Ainsworth E.A., Yendrek C.R., Skoneczka J.A. & Long S.P. (2012) Accelerating yield potential in soybean: Potential targets for biotechnological improvement. *Plant, Cell and Environment*, **35**, 38-52.
- Benlloch-Gonzalez M., Berger J., Bramley H., Rebetzke G. & Palta J.A. (2014) The plasticity of the growth and proliferation of wheat root system under elevated CO₂. *Plant and soil*, **374**, 963-976.
- Bloom A.J. (2015) Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. *Photosynthesis research*, **123**, 117-128.
- Bloom A.J., Asensio J.S.R., Randall L., Rachmilevitch S., Cousins A.B. & Carlisle E.A. (2012) CO_2 enrichment inhibits shoot nitrate assimilation in C_3 but not C_4 plants and slows growth under nitrate in C_3 plants. *Ecology*, 355-367.
- Bourgault M., Dreccer M.F., James A.T. & Chapman S.C. (2013) Genotypic variability in the response to elevated CO₂ of wheat lines differing in adaptive traits. *Functional Plant Biology*, 40, 172-184.
- Bowes G. (1991) Growth at Elevated CO₂ Photosynthetic Responses Mediated Through Rubisco. *Plant Cell and Environment*, **14**, 795-806.
- Bowes G. (1993) Facing the inevitable: Plants and increasing atmospheric CO₂. Annual Review of Plant Physiology and Plant Molecular Biology, **44**, 309-332.
- Centritto M., Lee H.S. & Jarvis P. (1999) Increased growth in elevated [CO₂]: an early, short-term response? *Global Change Biology*, **5**, 623-633.
- Drake B.G., Gonzàlez-Meler M.A. & Long S.P. (1997) More efficient plants: a consequence of rising atmospheric CO₂? *Annual review of plant biology*, **48**, 609-639.
- FAO (2003) *World agriuclture: towards 2015/2030, an FAO perspective.* Earthscan publication Ltd.
- FAO (2009) *How to feed the world in 2050*. Food and Agriculture Organization, High Level Expert Forum.
- Farquhar G., von Caemmerer S.v. & Berry J. (1980) A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. *Planta*, **149**, 78-90.
- Farrar J. (1996) Regulation of root weight ratio is mediated by sucrose: opinion. *Plant and Soil*, **185**, 13-19.
- Ferris R., Long L., Bunn S., Robinson K., Bradshaw H., Rae A. & Taylor G. (2002) Leaf stomatal and epidermal cell development: identification of putative quantitative trait loci in relation to elevated carbon dioxide concentration in poplar. *Tree Physiology*, 22, 633-640.
- Gamage D., Thompson M., Sutherland M., Hirotsu N., Makino A. & Seneweera S. (2018) New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide. *Plant, cell & environment*, **41(6)**, 1233-1246.

- Geiger M., Walch-Liu P., Engels C., Harnecker J., Schulze E.D., Ludewig F., Sonnewald U., Scheible W.R. & Stitt M. (1998) Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in older plants, and a large stimulation of nitrate reductase activity and higher levels of amino acids in young tobacco plants. *Plant, Cell* & *Environment*, 21, 253-268.
- Gordillo F.J., Niell F.X. & Figueroa F.L. (2001) Non-photosynthetic enhancement of growth by high CO₂ level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). *Planta*, **213**, 64-70.
- Hikosaka K., Onoda Y., Kinugasa T., Nagashima H., Anten N.P.R. & Hirose T. (2005) Plant responses to elevated CO₂ concentration at different scales: Leaf, whole plant, canopy, and population. *Ecological Research*, **20**, 243-253.
- Huang B. & Xu Y. (2015) Cellular and Molecular Mechanisms for Elevated CO₂–Regulation of Plant Growth and Stress Adaptation. *Crop Science*, **55**, 1405-1424.
- IPCC (2007) *Climate change 2007: The physical science basis*. Cambridge University Press, Cambridge.
- IPCC (2013) Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate change. In: [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, s.K. Ailen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Jitla D.S., Rogers G.S., Seneweera S.P., Basra A.S., Oldfield R.J. & Conroy J.P. (1997) Accerlerated early growth of rice at elevated CO₂. *Plant Physiology*, **115**, 15-22.
- Kalve S., De Vos D. & Beemster G.T. (2014) Leaf development: a cellular perspective. *Front Plant Sci*, **5**, 362.
- Kant S., Seneweera S., Rodin J., Materne M., Burch D., Rothstein S.J. & Spangenberg G. (2012) Improving yield potential in crops under elevated CO₂: integrating the photosynthetic and nitrogen utilization efficiencies. *Frontiers in plant science*, **3**, 1-9.
- Kinsman E., Lewis C., Davies M., Young J., Francis D., Vilhar B. & Ougham H. (1997) Elevated CO₂ stimulates cells to divide in grass meristems: a differential effect in two natural populations of Dactylis glomerata. *Plant, Cell & Environment*, **20**, 1309-1316.
- Kirschbaum M.U. (2010) Does Enhanced Photosynthesis Enhance Growth? Lessons Learnt From CO₂ Enrichment Studies. *Plant physiology*, pp. 110.166819.
- Kokic P., Heaney A., Pechey L., Crimp S. & Fisher B.S. (2005) Climate change predicting on agricultre: a case study. *Australian Commodities: Forecasts and Issues*, **12**.
- Leakey A.D., Ainsworth E.A., Bernacchi C.J., Rogers A., Long S.P. & Ort D.R. (2009) Elevated CO₂ effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. *Journal of experimental botany*, **60**, 2859-2876.
- Lekshmy S., Jain V., Khetarpal S. & Pandey R. (2013) Inhibition of nitrate uptake and assimilation in wheat seedlings grown under elevated CO₂. *Indian Journal of Plant Physiology*, **18**, 23-29.
- Luo Y., Su B., Currie W.S., Dukes J.S., Finzi A., Hartwig U., Hungate B., McMurtrie R.E., Oren R. & Parton W.J. (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. *Bioscience*, 54, 731-739.
- Makino A., Harada M., Sato T., Nakano H. & Mae T. (1997) Growth and N allocation in rice plants under CO₂ enrichment. *Plant Physiology*, **115**, 199-203.
- Makino A. & Mae T. (1999) Photosynthesis and plant growth at elevated levels of CO₂. *Plant and Cell Physiology*, **40**, 999-1006.
- Masle J. (2000) The effects of elevated CO₂ concentrations on cell division rates, growth patterns, and blade anatomy in young wheat plants are modulated by factors related to leaf position, vernalization, and genotype. *Plant Physiology*, **122**.

- Masle J., Hudson G.S. & Badger M.R. (1993) Effects of ambient CO₂ concentration on growth and nitrogen use in tobacco (Nicotiana tabacum) plants transformed with an antisense gene to the small subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase. *Plant Physiology*, **103**, 1075-1088.
- Moore B.D., Cheng S.H., Sims D. & Seemann J.R. (1999) The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO₂. *Plant Cell and Environment*, **22**, 567-582.
- Nakano H., Makino A. & Mae T. (1997) The effect of elevated partial pressures of CO₂ on the relationship between photosynthetic capacity and N content in rice leaves. *Plant physiology*, **115**, 191-198.
- Neales T. & Nicholls A. (1978) Growth Responses on Young Wheat Plants to a Range of Ambient CO₂ Levels. *Functional Plant Biology*, **5**, 45-59.
- Nowak R.S., Ellsworth D.S. & Smith S.D. (2004) Functional responses of plants to elevated atmospheric CO₂–do photosynthetic and productivity data from FACE experiments support early predictions? *New Phytologist*, **162**, 253-280.
- Nunes-Nesi A., Fernie A.R. & Stitt M. (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. *Molecular Plant*, **3**, 973-996.
- O'Leary G.J., Christy B., Nuttall J., Huth N., Cammarano D., Stöckle C., Basso B., Shcherbak I., Fitzgerald G. & Luo Q. (2015) Response of wheat growth, grain yield and water use to elevated CO₂ under a Free-Air CO₂ Enrichment (FACE) experiment and modelling in a semi-arid environment. *Global change biology*, **21**, 2670-2686.
- Poorter H. (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. *Vegetatio*, **104**, 77-97.
- Poorter H. & Navas M.L. (2003) Plant growth and competition at elevated CO₂: on winners, losers and functional groups. *New Phytologist*, **157**, 175-198.
- Pritchard S.G., Rogers H.H., Prior S.A. & Peterson C.M. (1999) Elevated CO₂ and Plant Structure: A Review. *Global Change Biology*, **5**, 807-837.
- Qaderi M.M. & Reid D.M. (2009) Crop responses to elevated carbon dioxide and temperature. In: *Climate Change and Crops*, pp. 1-18. Springer.
- Rae A., Ferris R., Tallis M. & Taylor G. (2006) Elucidating genomic regions determining enhanced leaf growth and delayed senescence in elevated CO₂. *Plant, Cell & Environment*, 29, 1730-1741.
- Rae A.M., Tricker P.J., Bunn S.M. & Taylor G. (2007) Adaptation of tree growth to elevated CO₂: quantitative trait loci for biomass in Populus. *New Phytologist*, **175**, 59-69.
- Ranasinghe S. & Taylor G. (1996) Mechanism for increased leaf grwoth in elevated CO₂. *Journal of Experimental Botany*, **47**, 349-358.
- Rogers G., Milham P., Gillings M. & Conroy J. (1996) Sink strength may be the key to growth and nitrogen responses in N-deficient wheat at elevated CO₂. *Functional Plant Biology*, 23, 253-264.
- Sadras V.O. & Calderini D. (2015) Crop Physiology: Applications for Genetic Improvement and Agronomy. Elsevier USA.
- Sage R.F., Sharkey T.D. & Seemann J.R. (1989) Acclimation of photosynthesis to elevated CO₂ in five C3 species. *Plant Physiology*, **89**, 590-596.
- Scheible W.-R., Gonzalez-Fontes A., Lauerer M., Muller-Rober B., Caboche M. & Stitt M. (1997a) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. *The Plant Cell*, 9, 783-798.
- Scheible W.R., Lauerer M., Schulze E.D., Caboche M. & Stitt M. (1997b) Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. *The Plant Journal*, **11**, 671-691.

- Semenov M.A. & Halford N.G. (2009) Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. *Journal of Experimental Botany*, **60**, 2791-2804.
- Seneweera S., Aben S., Basra A., Jones B. & Conroy J. (2003) Involvement of ethylene in the morphological and developmental response of rice to elevated atmospheric CO₂ concentrations. *Plant growth regulation*, **39**, 143-153.
- Seneweera S., Ghannoum O., Conroy J., Ishimaru K., Okada M., Lieffering M., Kim H.Y. & Kobayashi K. (2002) Changes in source–sink relations during development influence photosynthetic acclimation of rice to free air CO₂ enrichment (FACE). *Functional plant biology*, **29**, 947-955.
- Seneweera S., Makino A., Hirotsu N., Norton R. & Suzuki Y. (2011a) New insight into photosynthetic acclimation to elevated CO₂: The role of leaf nitrogen and ribulose-1,5-bisphosphate carboxylase/oxygenase content in rice leaves. *Environmental and Experimental Botany*, **71**, 128-136.
- Seneweera S., Makino A., Hirotsu N., Norton R. & Suzuki Y. (2011b) New insight into photosynthetic acclimation to elevated CO₂: The role of leaf nitrogen and ribulose-1, 5-bisphosphate carboxylase/oxygenase content in rice leaves. *Environmental and Experimental Botany*, **71**, 128-136.
- Seneweera S., Makino A., Hirotsu N., Norton R. & Suzuki Y. (2011c) New insight into photosynthetic acclimation to elevated CO₂: The role of leaf nitrogen and ribulose-1, 5-bisphosphate carboxylase/oxygenase content in rice leaves. *Environmental and Experimental Botany*, **71**, 128-136.
- Seneweera S., Makino A., Mae T. & Basra A.S. (2005) Response of rice to p(CO₂) enrichment: the relationship between photosynthesis and nitrogen metabolism. *Journal of Crop Improvement*, **13**, 31-53.
- Seneweera S.P. & Conroy J.P. (2005) Enhanced leaf elongation rates of wheat at elevated CO₂: is it related to carbon and nitrogen dynamics within the growing leaf blade? *Environmental and experimental botany*, **54**, 174-181.
- Sharkey T.D. (1985) Photosynthesis in intact leaves of C₃ plants: physics, physiology and rate limitations. *The Botanical Review*, **51**, 53-105.
- Shewry P. (2009) Wheat. Journal of experimental botany, 60, 1537-1553.
- Solomon S., Qin D. & Manning R. (2007) Technical summary. Climate Change 2007: The Physical Science Basis.
- Stitt M. & Krapp A. (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. *Plant, Cell & Environment*, **22**, 583-621.
- Taiz L. & Zeiger E. (1998) *Plant Physiology*. Sinauer Associates, Sunderland, Massachusetts, USA.
- Tans P. & Keeling R. (2018) Trends in atmospheric carbon dioxide. NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/)
- Tausz M., Tausz-Posch S., Norton R.M., Fitzgerald G.J., Nicolas M.E. & Seneweera S. (2013) Understanding crop physiology to select breeding targets and improve crop management under increasing atmospheric CO₂ concentrations. *Environmental and Experimental Botany*, 88, 71-80.
- Taylor G., Ceulemans R., Ferris R., Gardner S. & Shao B. (2001) Increased leaf area expansion of hybrid poplar in elevated CO₂. From controlled environments to open-top chambers and to FACE. *Environmental Pollution*, **115**, 463-472.
- Taylor G., Ranasinghe S., Bosac C., Gardner S.D.L. & Ferris R. (1994) Elevated CO₂ and plant growth: cellular mechanisms and responses of whole plants. *Journal of Experimental Botany*, 45, 1761-1774.

- Teng N., Wang J., Chen T., Wu X., Wang Y. & Lin J. (2006) Elevated CO₂ induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. *New Phytologist*, **172**, 92-103.
- Thilakarathne C.L., Tausz-Posch S., Cane K., Norton R.M., Fitzgerald G.J., Tausz M. & Seneweera S. (2015) Intraspecific variation in leaf growth of wheat (Triticum aestivum) under Australian Grain Free Air CO₂ Enrichment (AGFACE): is it regulated through carbon and/or nitrogen supply? *Functional Plant Biology*, **42**, 299-308.
- Thilakarathne C.L., Tausz-Posch S., Cane K., Norton R.M., Tausz M. & Seneweera S. (2013) Intraspecific variation in growth and yield response to elevated CO₂ in wheat depends on the differences of leaf mass per unit area. *Functional Plant Biology*, **40**, 185-194.
- Thompson M., Gamage D., Hirotsu N., Martin A. & Seneweera S. (2017) Effects of Elevated Carbon Dioxide on Photosynthesis and Carbon Partitioning: A Perspective on Root Sugar Sensing and Hormonal Crosstalk. *Frontiers in Physiology*, **8**, 578.
- Trevisan S., Manoli A. & Quaggiotti S. (2014) NO signaling is a key component of the root growth response to nitrate in Zea mays L. *Plant Signaling and Behavior*, **9**.
- van der Kooi C.J., Reich M., Löw M., De Kok L.J. & Tausz M. (2016) Growth and yield stimulation under elevated CO₂ and drought: A meta-analysis on crops. *Environmental and Experimental Botany*, **122**, 150-157.
- Van Der Kooij T.A. & De Kok L. (1996) Impact of elevated CO₂ on growth and development of Arabidopsis thaliana L. *Phyton_Horn-*, **36**, 173-184.
- Vanaja M., Yadav S., Archana G., Lakshmi N.J., Reddy P.R., Vagheera P., Razak S.A., Maheswari M. & Venkateswarlu B. (2011) Response of C₄ (maize) and C₃ (sunflower) crop plants to drought stress and enhanced carbon dioxide concentration. *Plant, Soil* and Environment, 57, 207-215.
- Wang D., Heckathorn S.A., Wang X. & Philpott S.M. (2012) A meta-analysis of plant physiological and growth responses to temperature and elevated CO₂. *Oecologia*, **169**, 1-13.
- Ward J.K. & Kelly J.K. (2004) Scaling up evolutionary responses to elevated CO₂: lessons from Arabidopsis. *Ecology Letters*, **7**, 427-440.
- Yong J.W.H., Wong S.C., Letham D.S., Hocart C.H. & Farquhar G.D. (2000) Effects of elevated CO₂ and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton. *Plant Physiology*, **124**, 767-779.

Chapter 2

Literature Review

In addition to the literature review in Chapter 1, this thesis also has a published literature review entitled "New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide". This review discusses the effect of elevated [CO₂] on photosynthetic and post-photosynthetic metabolic processes and their relationship with the growth enhancement observed in a high CO_2 environment. This chapter focusses on the cellular and molecular level responses associated with plant growth at elevated [CO₂]. The review first discusses the changes of two fundamental metabolic processes, photosynthesis and stomatal conductance, and how they are affected by elevated [CO₂] at the cellular level. Then, this review focussed on the effect of elevated [CO₂] on post-photosynthetic key metabolic processes that govern plant growth, such as carbon metabolism, nitrogen metabolism, cell cycle functions and hormonal regulation. Additionally, we discuss how plants integrate these mechanisms with source and sink activity and thereby alter plant anatomy and morphology. Finally, the knowledge gaps and potential future research are highlighted to provide the readers an understanding of what needs to be further investigated to further elucidate the molecular mechanisms underlying plant growth responses to elevated [CO₂].

Gamage D, Thompson M, Sutherland M, Hirotsu N, Makino A, Seneweera S (2018) New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide. Plant, cell & environment 41(6):1233-1246.

REVIEW

WILEY Plant. Cell & Environment

New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations

Dananjali Gamage^{1,4} I Michael Thompson¹ Amark Sutherland¹ Naoki Hirotsu^{1,2} Amare Makino³ Saman Seneweera^{1,4†}

¹Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland 4350, Australia

² Faculty of Life Sciences, Toyo University, Oura-gun, Gunma 374-0193, Japan

³ Division of Life Sciences, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Sendai 981-8555, Japan

⁴Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya 81 100, Sri Lanka

Correspondence

S. Seneweera Centre for Crop Health, University of Southern Queensland, Toowoomba Queensland 4350 Australia. Email: Saman.Seneweera@usq.edu.au

Funding information

University of Southen Queensland

Abstract

Revised: 21 March 2018

Rising atmospheric carbon dioxide concentration ($[CO_2]$) significantly influences plant growth, development, and biomass. Increased photosynthesis rate, together with lower stomatal conductance, has been identified as the key factors that stimulate plant growth at elevated $[CO_2]$ ($e[CO_2]$). However, variations in photosynthesis and stomatal conductance alone cannot fully explain the dynamic changes in plant growth. Stimulation of photosynthesis at $e[CO_2]$ is always associated with post-photosynthetic secondary metabolic processes that include carbon and nitrogen metabolism, cell cycle functions, and hormonal regulation. Most studies have focused on photosynthesis and stomatal conductance in response to $e[CO_2]$, despite the emerging evidence of $e[CO_2]$'s role in moderating secondary metabolism in plants. In this review, we briefly discuss the effects of $e[CO_2]$ on photosynthesis and stomatal conductance and then focus on the changes in other cellular mechanisms and growth processes at $e[CO_2]$ in relation to plant growth and development. Finally, knowledge gaps in understanding plant growth responses to $e[CO_2]$ have been identified with the aim of improving crop productivity under a CO_2 rich atmosphere.

KEYWORDS

carbon metabolism, cell cycle, climate change, elevated [CO₂] (e[CO₂]), hormonal metabolism, nitrogen metabolism, photosynthesis, plant growth mechanism, source-sink interactions

1 | INTRODUCTION: OPPORTUNITIES AND CHALLENGES IN A CARBON DIOXIDE ENRICHED ATMOSPHERE

The world's population is expected to increase by 2.3 billion between 2009 and 2050, requiring significant increases in global food production to fulfil future food demand (Alexandratos & Bruinsma, 2012). Current and predicted changes in climate render the achievement of food production targets even more challenging. The continuing rapid increase in atmospheric $[CO_2]$, due to a range of anthropogenic

factors, including the burning of fossil fuels and deforestation, is a major driver for the current changes in climate (Qaderi & Reid, 2009). Since preindustrial times, atmospheric $[CO_2]$ has increased more than 40% and a similar magnitude of increase is expected by the end of this century (IPCC, 2013). Current ambient $[CO_2]$ now exceeds 400 µmol/mol (Tans & Keeling, 2018) and is expected to increase even more causing significant changes in global temperature and thereby precipitation patterns. According to current projections, global temperature will increase by 1.4–3.1 °C when atmospheric $[CO_2]$ reaches ~670 µmol/mol (IPCC, 2013). The long-term exposure of plants to elevated $[CO_2]$ (e $[CO_2]$), high temperature, and water deficits will significantly influence the balance of ecosystem processes both at the regional and global level.

Carbon dioxide is the primary substrate for photosynthesis and thus can be considered as the main driver of global food production.

Abbreviations: [CO₂], carbon dioxide concentration; e[CO₂], elevated [CO₂]; O₂, oxygen; Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase [†]Author contributions: D. M. G. (50%), M. T. (5%), M. W. S. (10%), N. H. (10%), A. M. (5%), and S. S. (20%). D. G. wrote the manuscript. M. T., M. S., N. H., A. M., and S. S. each contributed to the design and review of the final manuscript.

---WILEY-

Nearly 90% of known plant species belong to the C_3 biochemical type and are not photosynthetically saturated at the current CO₂ partial pressure; therefore, photosynthesis and biomass of these species can be expected to increase under e[CO₂] conditions (Kimball, 2016; Makino & Mae, 1999). In C_3 plants, photosynthesis is catalysed by Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), an enzyme which reacts with both CO_2 and oxygen (O_2) initiating photosynthetic carbon reduction and photorespiratory carbon oxidation cycles, respectively (Drake, Gonzàlez-Meler, & Long, 1997; Makino & Mae, 1999). The efficiency of both processes is dependent on the relative partial pressures of CO₂ and O₂ at the site of fixation (Lorimer, 1981). Rubisco has a higher affinity for CO₂ than O₂, and often, Rubisco carboxylation is the rate-limiting step in C₃ photosynthesis. Increased carboxylation of Rubisco inhibits photorespiration, indirectly aiding photosynthetic rates (Makino & Mae, 1999). Photorespiration is the process that involves the oxygenation of Ribulose-1,5bisphosphate by Rubisco, which significantly wastes energy produced by photosynthesis (Makino & Mae, 1999; Walker, VanLoocke, Bernacchi, & Ort, 2016). Photosynthesis, respiration, and water relations are the three primary physiological processes of plants influenced by $e[CO_2]$. Therefore, understanding the fine and coarse control of photosynthesis, respiration, and water use, and their impact on plant growth under a CO2 rich atmosphere provides a unique opportunity to improve crop productivity under a changing climate.

Laboratory and field experiments have demonstrated that C₃ photosynthesis approximately doubles when plants grown at ~380 μ mol/ mol, are exposed to 700 μ mol/mol of CO₂ (Drake et al., 1997). Changes in plant growth and phenology at e[CO₂] are well documented across C₃ and C₄ species (Ainsworth & Long, 2005; Ainsworth & Rogers, 2007; Kimball, 2016). However, these growth traits are complex; so an understanding of the different organizational level responses to e[CO₂] is necessary to develop new breeding strategies. Although plant growth and morphology tend to change with increased atmospheric [CO₂], these responses cannot be fully explained by the direct effects of $e[CO_2]$ on photosynthesis, respiration, and water use alone (Geiger et al., 1998; Taylor, Ceulemans, Ferris, Gardner, & Shao, 2001; Thilakarathne et al., 2015). In this review, we have focused on the mechanisms by which increased carbon supply at $e[CO_2]$ influences a range of plant growth processes and cellular functions and their relation to changes in plant growth, development, and phenology.

2 | MECHANISMS OF PLANT GROWTH RESPONSES TO ELEVATED [CO₂]

Elevated [CO₂] directly and/or indirectly affects plant growth and development by modifying a range of physiological processes. Plant growth at e[CO₂] changes due to the immediate effects of e[CO₂] on photosynthesis and stomatal conductance (Ainsworth et al., 2008; Drake et al., 1997; Seneweera & Conroy, 2005; Figure 1). On the other hand, plant growth at e[CO₂] also depends on the post-photosynthetic process that may lead to changes in carbon and nitrogen metabolism, changes in cell cycle properties, and hormonal metabolism as a result of increased supply of carbon to the growing shoots and roots under e[CO₂] (Figure 2). For example, increases in photosynthetic carbon assimilation could be offset by changes in investment in photosynthetic proteins as a consequence of foliar adjustments to plant carbon and nitrogen metabolism at e[CO₂]. Most of the research has tended to focus on changes in photosynthesis and stomatal conductance in response to e[CO₂] whereas very less attention has been paid to variations in other cellular mechanisms that may moderate plant growth response to e[CO₂]. Changes in carbon and nitrogen metabolism, cell cycle properties, and hormonal metabolism together with source-sink optimization at e[CO₂] are significant and largely determine the growth responses of plants to e[CO2] (Seneweera, Aben, Basra, Jones, & Conroy, 2003; Taylor, Ranasinghe, Bosac, Gardner, & Ferris, 1994). Holistic changes of these processes are complex, closely interrelated, and determine the growth responses by differential allocation of

FIGURE 1 Effects of CO₂-induced photosynthesis and stomatal conductance on plant growth responses (Green circle = chloroplast; orange squares = epidermal cells; half circles = stomata; red arrow denotes an increase; and blue arrow denotes a decrease) 18

FIGURE 2 Effect of increased carbon supply at elevated $[CO_2]$ on other cellular processes and plant growth responses (C = Carbon; N = Nitrogen; NO₃⁻ = Nitrate; red arrow denotes an increase; and blue arrow denotes a decrease) [Colour figure can be viewed at wilevonlinelibrary.com]

resources to shoot and root depending on the environmental conditions. A thorough understanding of these processes and their association with high carbon input will advance our knowledge of the mechanistic basis of differential plant phenology observed at e[CO₂].

3 | PRIMARY EFFECTS OF ELEVATED [CO₂] ON PLANTS-PHOTOSYNTHESIS AND STOMATAL CONDUCTANCE

3.1 | Photosynthesis

Elevated [CO2] increases photosynthetic rates and thereby crop growth and yield. The main reason for this enhanced photosynthesis is the increased carboxylation efficiency of Rubisco, which is relatively low at the current atmospheric [CO2]. However, at e[CO2], the increase in CO₂ concentration at the site of CO₂ fixation will increase the CO_2/O_2 ratio; thus, the carboxylation efficiency of Rubisco will be promoted lowering the by rate of photorespiration (Bowes, 1991; Figure 1). The efficiency of photosystems I and II (PSI and PSII) is increased at e[CO₂] and correlates well with the rate of photosynthesis, producing more adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH), the two most vital components required to activate photosynthetic enzymes at e[CO₂] (Van Heerden, Swanepoel, & Krüger, 2007; Zhang et al., 2008). It has also been demonstrated that PSII yield (number of photochemical products produced per energy quantum) is higher when plants are exposed to e[CO2] (Habash, Paul, Parry, Keys, & Lawlor, 1995), suggesting that light utilization efficiency increased at $e[CO_2]$; consequently, electron flow between PSI and PSII also increased under e[CO₂] (Sekhar, Sreeharsha, & Reddy, 2015). These findings suggest the possibility of improving photosynthesis at $e[CO_2]$ without interfering with the photosynthetic light reaction.

When plants are exposed to e[CO₂], a number of genes and proteins associated with photosynthesis are differentially expressed. Genes involved in the light reaction of photosynthesis, encoding for PSII core proteins such as PSII protein K, essential for the function and assembly of the PSII reaction centre, have been up-regulated under e[CO₂] (De Souza et al., 2008; Moore, Cheng, Rice, & Seemann, 1998). In addition, Ferredoxin-1, an electron donor to NADP⁺ reductase, showed increased expression under e[CO2] (Oosten & Besford, 1995). In addition, Vicente et al. (2015) reported that genes encoding for putative PSI P700 Chl a apoprotein A1 (PsaA), apoprotein A2 (PsaB), PSII protein D1 and D2 are up-regulated in durum wheat under e[CO₂]. Increases in the expression of genes and proteins related to the light reaction of photosynthesis suggest that photochemical efficiency of photosystems is increased under e[CO2]. However, several studies showed that transcript levels of genes and proteins involved in light dependent (i.e., chlorophyll a/b binding proteins of light harvesting complexes I and II; Nie, Hendrix, Webber, Kimball, & Long, 1995; Oosten, Wilkins, & Besford, 1994) and light independent reactions (several Calvin cycle enzymes) of photosynthesis have been down-regulated in response to prolong exposure to e[CO2] (S.-H. Cheng, d Moore, & Seemann, 1998; Moore et al., 1998; Nie et al., 1995). However, more detailed studies are required to establish both photosynthesis light reaction and dark reaction responses to e[CO₂]. Further, genes associated with photosynthetic carbon metabolism have been differentially expressed under e[CO2]. For example, genes encoding fructose-1,6-bisphosphatase, transketolase, and aldolase enzymes involved in ribulose-1,5-bisphosphate regeneration were up-regulated at e[CO₂] (Wei et al., 2013). In C₄ species, several enzymes associated with the light reaction of photosynthesis, for example, NADP-malate dehydrogenase and pyruvate phosphate dikinase, were up-regulated by 117% and 174% respectively at e[CO2] 14 days after leaf emergence in sugarcane followed by up-regulation of genes associated with sucrose metabolism (Vu, Allen, & Gesch, 2006). This study further

WILEY-

showed that key enzymes involved in photosynthesis and sucrose metabolism are up-regulated at $e[CO_2]$, particularly during the early stages of plant development suggesting that C_4 plants behave like C_3 during early leaf development. All these findings suggest the possibility to improve photosynthesis by taking advantage of the CO_2 rich atmosphere.

The initial stimulation of photosynthetic rates at e[CO₂] is not always maintained over a longer period (Sage, Sharkey, & Seemann, 1989; Seneweera, 2011; Sharkey, 1985). This phenomenon is known as "photosynthetic acclimation" and has been widely reported in the literature (Alonso, Pérez, & Martínez-Carrasco, 2009; Gutiérrez et al., 2009; Martínez-Carrasco, Pérez, & Morcuende, 2005; Nakano, Makino, & Mae, 1997; Seneweera et al., 2002). A number of mechanisms have been proposed to explain plant acclimation to $e[CO_2]$. These include decline in nitrogen supply to the growing leaf blades (Drake et al., 1997; Nakano et al., 1997; Seneweera, Makino, Hirotsu, Norton, & Suzuki, 2011), accumulation of non-structural carbohydrates that suppress photosynthesis-related gene expression (Nakano et al., 1997; Stitt & Krapp, 1999), lower nitrogen demand in leaves due to changes in nitrogen influx/efflux balance in growing tissues (Seneweera et al., 2011), and lower shoot nitrogen due to suppression of nitrate (NO_3^{-}) photo-assimilation (Bloom et al., 2012). Overall, it has been suggested that the most reasonable explanation of photosynthetic acclimation to $e[CO_2]$ is the suppression of nitrogen assimilation at e[CO₂] (Bloom et al., 2012). In addition, photosynthetic acclimation will become even more pronounced when there is insufficient sink strength in the plant to accommodate increasing photo-assimilates at e[CO₂] (P. Li, Ainsworth et al., 2008). For example, this phenomenon was evaluated by Ainsworth, Rogers, Nelson, and Long (2004) using soybean (Glycine max) lines showing both determinate and indeterminate growth habit and found acclimation was more prominent in lines with determinate growth habit. This suggests that plants that are able to expand their sink capacity to utilize photo-assimilates efficiently may be more likely to sustain increased photosynthetic rates at e[CO₂].

Leaf photosynthesis is closely correlated with both the Rubisco and nitrogen content of the leaf blade (Makino & Mae, 1999; Vicente et al., 2015). The amount of Rubisco in leaves is determined by both synthesis and degradation, and it is regulated by internal and external factors. The decline in Rubisco content at e[CO₂] is known to be often associated with the accumulation of non-structural carbohydrates (Seneweera et al., 2011). However, a negative relationship between photosynthesis and soluble sugar content has not always been reported (Makino, Nakano, Mae, Shimada, & Yamamoto, 2000). Functional Rubisco has a small and large subunit, and down-regulation of genes encoding for both sub-units (rbcS and rbcL) has been observed for many species under e[CO₂] (Takatani et al., 2014; Vicente et al., 2015). The widely accepted hypothesis for the reduced Rubisco content at e[CO₂] is the repression of the *rbcS* and *rbcL* gene expression (S.-H. Cheng et al., 1998; Moore, Cheng, Sims, & Seemann, 1999; Rolland, Moore, & Sheen, 2002; Sheen, 1994). Rubisco activase, the protein required to activate the Rubisco complex, has been reported to decrease under e[CO₂] (Bokhari et al., 2007), which could compromise the activation state of the enzyme. Further, there have been reports of a decline in transcript abundance of Rubisco activase and

two Calvin Cycle enzymes, ribulose-phosphate-3-epimerase and ribose-phosphate isomerase, which may influence the turnover of Rubisco and thus the continuance of the photosynthesis mechanism (Kontunen-Soppela et al., 2010; Leakey et al., 2009). Finally, photosynthesis is largely controlled by its related protein turnover; however, there is a limited understanding of how photosynthesis-related protein turnover is influenced by e[CO₂] (Seneweera, Makino, Mae, & Basra, 2005).

3.2 | Stomatal conductance

Stomatal conductance is mainly controlled by the size of the stomatal aperture (Ainsworth & Rogers, 2007); number of stomata per unit of leaf area (Casson & Gray, 2008; Casson & Hetherington, 2010); and water transport capacity of the guard cell (Leakey et al., 2009). Stomatal conductance is decreased in crops exposed to e[CO₂] (Ainsworth & Long, 2005; Leakey et al., 2009; Figure 1). The size of the stomatal aperture is mainly determined by the turgor pressure of guard cells, which is mediated through ion concentration (Araújo, Fernie, & Nunes-Nesi, 2011). It is reported that e[CO₂] increases the activity of outward rectifying K⁺ channels relative to that of inward rectifying K⁺ channels, causing stomatal closure (Brearley, Venis, & Blatt, 1997). Elevated [CO2] also stimulates Cl⁻ release from guard cells and increases Ca²⁺ concentration within them (Brearley et al., 1997; Webb, McAinsh, Mansfield, & Hetherington, 1996). These changes help to depolarize the membrane potential of guard cells causing stomatal closure (Hanstein & Felle, 2002), which is very common under e[CO2]. It has also been demonstrated that e[CO2] increases the concentration of malate, the effector mediating flux flow between CO₂ and these anion channels (Hedrich et al., 1994). Modified malate concentrations under e[CO2] enhance the activation potential of anion channels, thus indirectly influencing stomatal closure. Because e[CO₂] is known to promote anion channels, attempts have been made to identify genes encoding guard cell anion channels.

Stomatal guard cell responses to e[CO2] are also driven by multiple signalling components associated with guard cell activity. Because e[CO₂] is known to promote anion channels, attempts have been made to identify genes encoding guard cell anion channels. As a result, SLAC1 (Slow Anion Channel Associated 1) was identified in Arabidopsis thaliana that encodes a protein mediating CO2 induced stomatal closure through regulating S-type anion channels (Laanemets et al., 2013; Negi et al., 2008; Vahisalu et al., 2008). SLAC1 is activated by the gene OST1 (open stomata 1) that is a SNF-1 related protein kinase 2, a positive regulator of CO2-induced stomatal closure (Lind et al., 2015; Merilo et al., 2013). Activation of OST1 is triggered by abscisic acid (ABA) signalling at e[CO2] involving PYR/RCAR family of ABA receptors (Chater et al., 2015; Merilo et al., 2013; Merilo, Jalakas, Kollist, & Brosché, 2015). In another study, Yamamoto et al. (2016) showed that SLAC1 channel perceives CO2 signals by an ABA-independent pathway in a transmembrane region of the guard cells. In addition, it has been reported that other phytohormones such as jasmonic acids are altered at e[CO₂]. Jasmonic acid is known to play a significant role in mediating stomatal closure at e[CO₂] (Geng et al., 2016). A very recent study by He et al. (2018) revealed that a novel allele of the Arabidopsis BIG locus named cis1 is involved as a signalling component report

GAMAGE FT AL

for controlling stomatal aperture at $e[CO_2]$. Further, they indicated that loss of *BIG* function compromises activation of guard cell S-type anion channels by bicarbonate at $e[CO_2]$.

Recent studies indicate that redox signalling, which includes reactive oxygen species produced by NADPH oxidases encoded by respiratory burst oxidase homologs, has a key role in determining stomatal conductance and density at $e[CO_2]$ (Chater et al., 2015). Carbonic anhydrases also appear to have a role in the regulation of stomatal movement. These enzymes catalyse the conversion of CO₂ to bicarbonate (HCO₃⁻), which functions as a molecular activator of SLAC1 anion channels in the guard cells (Xue et al., 2011). Consistent with this proposition is the finding that expression of CA1 and CA4 (β-carbonic anhydrase 1 and 4) was significantly higher in guard cells at e[CO₂] (Hu et al., 2010; Xue et al., 2011). Mutants that lack these genes showed reduced CO2-induced stomatal movements and increased stomatal density indicating that these genes play a key role in determining both stomatal movement and development (Hu et al., 2010). Additionally, studies in Arabidopsis thaliana revealed that protein kinase HT1 (High Leaf Temperature 1; Hashimoto et al., 2006; Hashimoto-Sugimoto et al., 2016), RHC1 (resistant to high CO2, a MATE type transporter that link e[CO₂] with repression of HT1; Tian et al., 2015), and mitogen activated protein kinase (MPK4 and MPK12; Hőrak et al., 2016; Jakobson et al., 2016) are strongly related to CO2-induced stomatal closure. Another hypothesis for guard cell activity is based on the high levels of sucrose produced at e[CO₂] (Kang, Outlaw, Andersen, & Fiore, 2007; Kelly et al., 2013). When sucrose production rate exceeds the sucrose loading rate to the phloem at e[CO₂], excess sucrose will be transported to the stomata via transpiration flow stimulating stomatal closure through hexokinase mediated expression of ABA-related genes (Kelly et al., 2013). Further, these authors showed that increased expression of hexokinase in guard cells is associated with the CO₂ induced stomatal closure; however, the role of sugars in regulating stomatal regulation deserves further exploration.

Stomatal density is also vital for determining the efficiency of photosynthesis and water use in plants. Decreased stomatal numbers have been observed in a wide range of species at e[CO₂] (Casson & Gray, 2008; Casson & Hetherington, 2010; Woodward & Kelly, 1995). Further, molecular evidence indicates that e[CO₂] impedes stomatal development in plants. Gray et al. (2000) identified the HIC (High Carbon Dioxide) gene from Arabidopsis thaliana that encodes for an enzyme called putative 3-keto acyl coenzyme A synthase that negates stomatal development in response to e[CO₂]. In another study, Kim et al. (2006) demonstrated that the SDD1 gene, which encodes for putative subtilisin serine protease, was down-regulated under e[CO₂]. This protein is involved in signal processing that contributes to guard cell formation and development. These changes at the molecular level are likely to contribute towards the reduction of stomatal formation under e[CO₂]. In addition, the expression of genes encoding water transport proteins, such as aquaporins, is suppressed in the guard cells of some plants under e[CO₂] (Gupta et al., 2005; Wei et al., 2013). Such adjustments of guard cell chemistry may have a major impact on the reduced stomatal conductance and thus an improvement in water use efficiency of the plant under $e[CO_2]$. At the same time, several other aquaporins, such as tonoplast intrinsic protein 1 (*T1P1*), are up-regulated in stems and leaves (Ainsworth, Rogers, Vodkin, Walter, & Schurr, 2006; Wei et al., 2013). These findings suggest that $e[CO_2]$ can facilitate intercellular and vascular water transport that may eventually contribute to improved water use efficiency of plants.

4 | IMPACT OF ELEVATED [CO₂] ON OTHER CELLULAR MECHANISMS AND ITS INFLUENCE ON PLANT GROWTH

4.1 | Effects of elevated [CO₂] on plant carbon metabolism

Carbon metabolism at e[CO₂] is collectively determined by photosynthesis, respiration, sugar storage, and remobilization capacity (Aranjuelo et al., 2015). In general, C₃ photosynthesis increases at e[CO₂] but the magnitude of the response can change with plant developmental stages and prevailing environmental conditions (Leakey et al., 2009). Also, increased photosynthesis rates at e[CO₂] results in higher sugar production, including glucose, fructose, and raffinose, across a range of plant species (Aranjuelo et al., 2015; Watanabe et al., 2013). These additional sugars are available for development of new sink organs such as leaves, stems, tillers, and seeds. The developmental plasticity of these organs determines the final growth response to e[CO2]. However, plant responses to e[CO₂] are much greater at early vegetative stages compared with later stages (Makino, Harada, Sato, Nakano, & Mae, 1997; Seneweera et al., 2002). This ontological variation is largely determined by sink activity and varies with both species and environmental conditions (J. Y. Li, Liu et al., 2008).

Enzymes associated with plant carbon metabolism play a key role in determining sink activity. For example, sucrose phosphate synthase (SPS) and sucrose synthase (SUS) are the key enzymes regulating sucrose biosynthesis and transport in most terrestrial plants (Koch, 2004; Rogers, Milham, Gillings, & Conroy, 1996; Seneweera, Basra, Barlow, & Conroy, 1995). It has been reported that starch to sucrose ratio in leaves correlates well with SPS activity (Chávez-Bárcenas et al., 2000), and up-regulation of both SUS and SPS proteins occurs especially in young fully expanded leaves under e[CO₂] (Aoki et al., 2003; W.-H. Cheng, Im, & Chourey, 1996; Gesch, Vu, Boote, Hartwell Allen, & Bowes, 2002; Seneweera et al., 1995). In addition, specific genes related to SUS (RSus1) and SPS (sps1) were found to be highly expressed under e[CO₂] in rice (J. Y. Li, Liu, et al., 2008). These findings suggest that e[CO2] increases sucrose biosynthesis in many species. However, the rate of sucrose biosynthesis depends on a range of physiological and environmental factors. Plants have evolved strategies to translocate soluble sugars away from leaves, which reduces starch accumulation in the leaf blade. Starch accumulation in the leaves leads to feedback inhibition of photosynthesis at e[CO₂]. It has also been identified that the ratio of starch to sucrose is a good indicator of plant acclimation to e[CO₂] (Sharkey, Laporte, Lu, Weise, & Weber, 2004) and suggests that lower starch to sucrose ratios could be used as a breeding target to increase crop productivity under e[CO₂]. 21

4.2 | Change of nitrogen metabolism at elevated [CO₂]

Long-term growth responses to $e[CO_2]$ are largely determined by nitrogen supply (Seneweera et al., 2011; Seneweera & Conroy, 2005:Stitt & Krapp, 1999: Takatani et al., 2014). However, the nitrogen concentration of plants decreases at e[CO₂] (Stitt & Krapp, 1999; Takatani et al., 2014), especially in leaf tissues (Seneweera, 2011). The decrease in leaf nitrogen is not due to a simple dilution effect caused by a relative increase in plant carbohydrates but could be due to a decrease in allocation of nitrogen to leaves at the whole plant level. It has been observed that e[CO₂] changes nitrogen allocation to different organs, reduces the partitioning to leaves, while increasing allocation to leaf sheaths and roots (Seneweera, 2011). However, the mechanism(s) by which e[CO₂] decreases tissue concentrations of nitrogen and protein are not fully understood as growth at e[CO₂] can affect multiple processes involved in nitrogen metabolism (Stitt & Krapp, 1999; Takatani et al., 2014). Vicente et al. (2015) showed down-regulation of transcripts for key enzymes of nitrogen uptake, deamination and assimilation [glutamate dehydrogenase (GDH1); aspartate synthetase (ASN1), ferredoxin-nitrate reductase (nir)], and nitrate transporters [low-affinity nitrate transporter (NRT1.5B)] may have contributed to a low nitrogen status at $e[CO_2]$. A widely documented cause for this change in nitrogen is that e[CO₂] increases the rate of carbohydrate production and consequently increases the carbon to nitrogen ratio of plants (Geiger, Haake, Ludewig, Sonnewald, & Stitt, 1999; Paul & Driscoll, 1997; Seneweera et al., 2002; Seneweera & Conroy, 2005). This increase in carbon to nitrogen ratio results in increased initial growth rates of plants, which is later hindered by nitrogen limitation under e[CO₂].

Several mechanisms have been proposed to explain lower nitrogen concentration in plant shoots at e[CO₂] (Figure 2): dilution of nitrogen by extra carbohydrates (Gifford, Barrett, & Lutze, 2000); reduction in nitrogen uptake relative to carbon gain (BassiriRad, Gutschick, & Lussenhop, 2001; Del Pozo et al., 2007; Vuuren et al., 1997); reduction of plant nitrogen demand (Stitt & Krapp, 1999); ontogenetic drift leading to changes in nitrogen balance (Bernacchi, Thompson, Coleman, & Mcconnaughay, 2007; Coleman, McConnaughay, & Bazzaz, 1993); and changes in NO₃⁻ photo-assimilation (Bloom, 2015; Bloom, Smart, Nguyen, & Searles, 2002). Of these, the most reasonable explanation is the reduction in nitrogen influx to above-ground plant organs by lowered NO₃⁻ photo-assimilation and down-regulation of gene expression through sugar sensing and signalling pathways. Plants exposed to e[CO₂] accumulate excess soluble sugars, which are known to influence gene expression associated with plant carbon and nitrogen metabolism (Lastdrager, Hanson, & Smeekens, 2014; Smeekens, Ma, Hanson, & Rolland, 2010). Together with these responses, e[CO₂] also reduces the transpiration flow through lowered stomatal conductance which then lowers the passive nutrient transport to the plant shoots (McDonald, Erickson, & Kruger, 2002). Hence, the nitrogen inflow to the plant shoots is reduced significantly at $e[CO_2]$.

Rubisco is the rate-limiting enzyme in photosynthesis, it accounts for nearly 50% of soluble nitrogen in leaves (Makino, Mae, & Ohira, 1984; Spreitzer & Salvucci, 2002). A high turnover of this enzyme is the key to maintaining the photosynthetic rates at e[CO₂], which is influenced by many environmental factors such as nitrogen availability, water availability, and temperature. Synthesis of this enzyme is controlled by transcriptional, posttranscriptional, and translational processes. The degradation is mainly controlled by various chloroplast proteolytic enzymes. It has been reported that Rubisco synthesis is reduced at e[CO₂] whereas its degradation is accelerated. The major cause of decreased synthesis of Rubisco is suggested to be associated with the sugar sensing mechanism based on the hexokinase signalling pathway that can suppress transcription of rbcS and rbcL genes encoding the small and large subunit of Rubisco, respectively (S.-H. Cheng et al., 1998; Jang, León, Zhou, & Sheen, 1997; Makino et al., 1984). However, Seneweera and Conroy (2005) have suggested that among the number of other mechanisms contributing to lower shoot nitrogen, lower NO₃⁻ photo-assimilation at e[CO₂] may reduce the nitrogen flux into the leaf blade and thereby reduce Rubisco synthesis. These authors further proposed another possibility via an increase in the proteolytic enzyme activity in the chloroplasts (Seneweera et al., 2005), but its physiological relevance and the regulation of these proteases are still not well understood. However, a greater understanding of Rubisco turnover during leaf development is essential to improve crop productivity under CO₂ rich atmosphere.

4.3 | Influence of elevated [CO₂] on cell cycle and cell wall properties

The cell cycle is the series of events that take place in a cell leading to cell division. All organisms are composed of one or more cells; cells are the fundamental units of structure and function in all living organisms. The cell cycle is influenced by various environmental factors including $[CO_2]$ (Kinsman et al., 1997; Figure 2). For example, increased cell division, shortening of the duration of the cell cycle, promotion of cell production, and expansion through cell wall loosening is reported at $e[CO_2]$ (Ranasinghe & Taylor, 1996). In another study, Masle (2000) demonstrated that cell division, cell expansion, and cell patterning are altered by $e[CO_2]$. It has been suggested that high carbon supply at $e[CO_2]$ may contribute to accelerated cell division and expansion in meristematic tissues and enhance early growth and development of the plant (Thilakarathne et al., 2015).

Elevated [CO₂] influences the expression of genes associated with cell division, growth, and cell wall properties. In particular, genes encoding for expansins, pectin esterase, and xyloglucan endotransglycosylase, which play a key role in cell wall loosening, are up-regulated at e[CO₂] and thus facilitate leaf expansion (De Souza et al., 2008; Gupta et al., 2005; Taylor et al., 2005; Wei et al., 2013). On the other hand, gene expression of B-xylosidase, an enzyme responsible for hemicellulose metabolism of secondary cell walls, is down-regulated at e[CO₂] (Kontunen-Soppela et al., 2010). Down-regulation of secondary wall construction enzymes is likely to contribute to cell wall extensibility and cell growth. Further, it has been found that cell cycle genes encoding cyclin, cyclin-dependent protein kinase, cyclin-dependent protein kinase regulator, and tubulin were up-regulated at e[CO₂], together with ribosomal protein genes that regulate cytoplasm growth of plant cells (Ainsworth et al., 2006; Wei et al., 2013). Up-regulation of these enzymes involved in the cell cycle and in cytoplasmic growth may contribute to increase22division,

growth, and expansion of plant cells observed under $e[CO_2]$. However, limited information is available on transcriptome level responses to $e[CO_2]$, and such information may allow us to have a better understanding of how the cell cycle changes in response to $e[CO_2]$. A clear understanding of whether this increased activity related to the cell cycle is just a general downstream effect of more photo-assimilates being available for growth, or occurs because of divergence in gene expression mediated by increased sugar levels, needs to be established.

4.4 | Source-sink relationship and trehalose-6phosphate signalling at elevated [CO₂]

Plant growth responses to CO₂ enrichment are also linked to the source-sink status of the whole plant (Makino & Mae, 1999). Elevated [CO₂] increases the carbon source activity that results in a higher rate of photosynthetic CO₂ assimilation providing more carbohydrates for metabolism (Paul & Foyer, 2001). As a result of this increase in substrate availability and up-regulation of genes encoding proteins involved in sucrose catabolism, sink activity of the plants is directly promoted (Pollock & Farrar, 1996). High sink activity of plants can be clearly observed at e[CO₂], especially during early stages of growth (Ainsworth & Rogers, 2007; Leakey et al., 2009; Ranasinghe & Taylor, 1996), influencing cell expansion, patterning, and plant structure (Kinsman et al., 1997; Masle, 2000). The increased levels of carbohydrates at e[CO₂] are efficiently used by plants to develop additional sinks such as new tillers and secondary shoots to accommodate the photo-assimilates generated by photosynthesis (Jitla et al., 1997; Makino & Mae, 1999). When the sink strength is not sufficient to accommodate all the assimilates from photosynthesis, sugar accumulation in source tissues will decrease the photosynthesis rates through feedback inhibition. This will reduce the ratio of source to sink activity and adjust the photo-assimilate production towards an equilibrium. Therefore, both source and sink activities are strongly cross-regulated to sustain desirable plant growth rates at different development stages (Körner, 2015).

There is considerable evidence for this proposition that changes in growth responses to e[CO2] depend on the relationship between the photosynthetic rate of source tissue and the sugar demand of the sink tissue of the plant. For example, canopy defoliation in e[CO2] treatments that reduced the source to sink ratio, resulted in high photosynthetic rates being maintained in the remaining source leaves alleviating photosynthesis acclimation (Ainsworth et al., 2003; Rogers et al., 1998). Because the production from source leaves was less compared with the demand of the sink tissues, a higher rate of photosynthesis was maintained in the remaining tissues to sustain the equilibrium. On the other hand, a reverse response can be observed when the sink size of the plants is reduced through physical restrictions (Arp, 1991) or genetic manipulation (Ainsworth et al., 2004) that leads to an increase in the source to sink ratio. In this case, plants initially increase photosynthetic rates followed by down-regulation of photosynthetic activity due to the inadequate sink capacity (Ainsworth & Bush, 2011; White, Rogers, Rees, & Osborne, 2015). Hence, photosynthetic stimulation and growth at e[CO₂] directly depend on the sink strength and its ability to make use of additional sucrose supply at e[CO₂].

WILEY-Plant, Cell & Environment

The production and consumption of the photo-assimilates (predominantly sucrose) is a dynamic process and varies according to environmental conditions, and the metabolic demands of the plant. Thus, plants need to maintain a fast and precise balance between source and sink while adjusting them over the long run to sustain their growth (Lawlor & Paul, 2014). The mechanistic understanding of the integration of source/sink interaction with the processes of carbon assimilation is still a long-running debate (Lawlor & Paul, 2014; Paul & Pellny, 2003). One mechanism linking these two processes involves trehalose-6-phosphate (T6P), a signal molecule that influences the basic metabolism of plant proteins (Paul, 2007; Paul, Primavesi, Jhurreea, & Zhang, 2008). Trehalose-6-phosphate is an intermediate in glucose synthesis, generated from glucose-6-phosphate (G6P) and UDP-glucose in the presence of trehalose-6-phosphate synthase1 (TPS1; Lastdrager et al., 2014). It is essential for the vegetative growth of plants and the concentration of T6P is dependent on the sucrose concentration (Lawlor & Paul, 2014; van Dijken, Schluepmann, & Smeekens, 2004). When sucrose concentration is high, such as in plants grown at e[CO₂], high T6P availability will influence SnRK1, a SNF1-related protein kinase which is a key sensor regulating the balance of anabolic and catabolic processes in cells (Schluepmann, Berke, & Sanchez-Perez, 2011; Y. Zhang et al., 2009). The rising T6P content will inhibit the activity of SnRK1 resulting in an increase in anabolic processes stimulating growth and development of the cells and thereby the plant production (Lawlor & Paul, 2014). Therefore, growth stimulation observed at e[CO₂] could be due to this strong correlation between sucrose, T6P content, and the T6P/SnRK1 signalling process. In response to high sucrose content generated at $e[CO_2]$, plants tend to alter their source-sink balance, and species with increased growth plasticity will thrive well in CO2 rich conditions (White et al., 2015). This could partly explain the large variation in growth responses that exists between and within species at e[CO₂]. Recently, Paul, Oszvald, Jesus, Rajulu, and Griffiths (2017) have highlighted the possibility of modifying T6P content to alter carbon allocation as an approach to improve the yield potential of cereal crops in a changing climate.

4.5 | Plant hormonal metabolism is influenced by elevated [CO₂]

Plant hormones play a major role in modifying plant development at $e[CO_2]$ (Gupta et al., 2005; Teng et al., 2006; De Souza et al., 2008; Wei et al., 2013; Figure 2). Few studies have investigated the effect of long-term $e[CO_2]$ on endogenous hormone production in plants. Woodrow and Grodzinski (1993) and Seneweera et al. (2003) demonstrated that plants exposed to $e[CO_2]$ produce higher levels of ethylene than plants grown under ambient $[CO_2]$. Further, the same plants had a greater capacity to convert ACC (1-aminocyclopropane-1-carboxylic acid) oxidase to ethylene (Seneweera et al., 2003). This conversion is mediated by ACC oxidase that was highly expressed when plants were exposed to $e[CO_2]$. Accumulation of ACC oxidase is higher under $e[CO_2]$ as this enzyme has an absolute requirement of $[CO_2]$ for its activation, and thus contributes to high levels of ethylene production (Finlayson & Reid, 1996). It has been demonstrated that an increase in ethylene production is a key feature of

WILEY-

accelerated growth and development in rice under $e[CO_2]$ that accelerates tiller number and auxiliary bud development, potentially leading to higher grain yield (Seneweera et al., 2003). Despite the importance of ethylene in response to $e[CO_2]$, little in-depth investigation has been carried out exploring its role in plant growth responses to $e[CO_2]$.

Auxins, gibberellic acids, and cytokinins are important plant hormones that synergistically regulate cell division, cell expansion, control shoot meristem development, and stem elongation (Cato, Macedo, & Peres, 2013). Teng et al. (2006) investigated the effects of e[CO₂] on plant hormones using Arabidopsis thaliana and concluded that there was a significant increment in indole-3-acetic acid (one of the common plant hormones in the auxin class), gibberellic acid, zeatin riboside, dihydrozeatin riboside, and isopentenyl adenosine of the class cytokinin at e[CO₂]. Transcript abundance of genes related to synthesis and transport of auxins (auxin response factor, auxin influx carrier), cytokinins (cytokinin response factor), and gibberellic acids (gibberellin response modulation protein) have been reported to increase under e[CO₂] (De Souza et al., 2008; Gupta et al., 2005; Taylor et al., 2005; Wei et al., 2013). In addition, e[CO₂] influences the selective transport system of hormones that maintain hormone balance in plants. For example, reduction in gene transcripts related to auxin and cytokinin transport, such as auxin: hydrogen symporter 8 and cytokinin transporter 2 and 3, has been observed under e[CO₂] (Wei et al., 2013).

ABA plays a critical role in environmental stress responses, promoting senescence and eventually abscission (Finkelstein, 2013). Teng et al. (2006) reported that the concentration of ABA was significantly reduced under e[CO₂] and suggested that low levels of ABA are likely to be associated with delayed senescence. Molecular evidence has shown that several genes related to ABA synthesis (genes encoding ABA2 xanthoxin dehydrogenase, ABA-responsive protein) were suppressed, whereas expression of ABA degradation enzymes (ABA hydrolase and glycosyl hydrolase) was up-regulated at e[CO₂] (Wei et al., 2013). Together, these findings suggest that altered ABA metabolism at e[CO₂] may have a significant impact on plant growth and development (Figure 2). In addition, it is well-established that ABA plays a major role in determining stomatal conductance in plants (Chater et al., 2015). Such changes in ABA metabolism is likely to lower the stomatal conductance and thus improve the plant's water use efficiency.

4.6 | Plant morphological and anatomical responses to elevated [CO₂]

The morphology of plants is significantly influenced by $e[CO_2]$, mainly as a result of changes in the activity of primary and secondary meristems of roots and shoots (Pritchard, Rogers, Prior, & Peterson, 1999). Growth characteristics of the shoot apex in the early stage of vegetative growth have provided important information on how $e[CO_2]$ influences plant growth and development. Jitla et al. (1997) demonstrated changes in the shoot apex at $e[CO_2]$ and they observed increased height and diameter of the apical dome, increased length of leaf primordia, and a greater number of tiller buds in the shoot apex of rice grown under $e[CO_2]$. These dynamic changes of shoot and root meristem occur primarily as a result of increased carbon supply and increased growth of sink tissues stimulated by hormonal signalling. As a consequence of these changes, relative growth rate of the plants increases at $e[CO_2]$ (Lambers, Chapin, & Pons, 2008; Makino et al., 1997) that leads to an increase in biomass and yield.

Leaf morphology and anatomy are influenced by environmental conditions including e[CO₂]. Stimulation of early leaf growth has been identified as one of the key physiological traits associated with final biomass and grain yield (Seneweera, Milham, & Conroy, 1994; Thilakarathne et al., 2015). Under e[CO₂], plants tend to show an increased rate of leaf initiation and accelerated elongation coupled with enhanced leaf area (Seneweera et al., 1995; Taylor et al., 1994; Taylor et al., 2001). Canopy size can be increased by greater leaf number and individual leaf area that leads to greater photosynthetic area per given plant at e[CO2]. However, leaf area is not always enhanced by CO₂ enrichment. For example, in rice, although the leaf area increases during seedling and early vegetative stages at e[CO₂], it frequently decreases during the later vegetative and reproductive stages (Makino et al., 1997; Seneweera et al., 1995). In addition, when plants are exposed to e[CO₂], leaf thickness and leaf internal anatomy are also substantially altered. For example, in soybean (Glycine max) leaf, e[CO₂] induced an extra layer of palisade cells (Rogers, Thomas, & Bingham, 1983; Smith, Lewis, Ghannoum, & Tissue, 2012), and in the leaves of Pinus radiata, e[CO2] increased both the mesophyll cross section and the area of vascular tissue (Araújo et al., 2011; Conroy, Barlow, & Bevege, 1986). Increases in mesophyll and vascular tissue area are considered important parameters that contribute to photosynthetic capacity and assimilate transport efficiency of the plant (Jitla et al., 1997; Pritchard et al., 1999). In addition, plants grown at e[CO₂] have shown a significant variation in leaf mass per unit area, which may partly explain the intraspecific variability of growth responses in CO₂ rich conditions (Evans & Poorter, 2001; Thilakarathne et al., 2013). In wheat (Triticum aestivum L.), this trait is associated with increases in photosynthetic rates per unit leaf area, leaf nitrogen content on area basis, plant growth rates and yield at e[CO₂] (Thilakarathne et al., 2013). Differences in leaf mass per unit area indicate the ability of plants to deploy on resources in response to environmental signals (Hikosaka & Shigeno, 2009). It is highly likely that changes in leaf anatomy and morphology at e[CO₂] increase the photo-assimilate supply to the apical meristem, which promotes leaf primordial development (Pritchard et al., 1999). Further, it is suggested that increased availability of soluble carbohydrates from expanding leaf blades is a key factor contributing towards high leaf elongation rates, leaf area expansion, and whole plant growth observed under $e[CO_2]$.

Plant growth is influenced by both above-ground and belowground processes under e[CO₂]. Below-ground processes of plants facilitate photosynthesis through nutrient and water uptake, which then influence above-ground biomass production (Madhu & Hatfield, 2013). Under e[CO₂], plant root growth is also accelerated (Benlloch-Gonzalez, Berger, Bramley, Rebetzke, & Palta, 2014). Several studies have reported that plants tend to increase root biomass and dry weight, especially in wheat (Benlloch-Gonzalez et al., 2014; Chaudhuri, Kirkham, & Kanemasu, 1990), sorghum (Chaudhuri, Burnett**2K**irkham, & Kanemasu, 1986), and soybean (Del Castillo, Acock, Reddy, & Acock, 1989; Libault, 2014) under CO_2 enriched conditions. Salsman, Jordan, Smith, and Neuman (1999) claim that the increase in root biomass at $e[CO_2]$ is associated with increased starch levels in roots and an increase in the levels of ABA that may have caused more carbon to be allocated to root growth.

4.7 | Future research perspectives on plant growth responses to elevated [CO₂]

There is greater body of knowledge on the changes in photosynthesis and stomatal conductance in response to $[CO_2]$ than of the other cellular processes influenced by the increased carbon supply generated at $e[CO_2]$. A better understanding of these post-photosynthetic effects of $e[CO_2]$ on plant growth is essential for the development of strategies to improve crop productivity under a CO_2 rich atmosphere. Among these, an improved understanding of plant carbon and nitrogen metabolism, source/sink interactions, cell cycle properties and their crosstalk with hormones during atmospheric CO_2 enrichment is required to establish a holistic overview of the physiological mechanisms modulating plant growth responses under these conditions.

Breeding crops for a changing future climate requires the identification of key physiological and growth traits that help to enhance crop productivity. Further, understanding the genetic variation of plant responses to e[CO₂] will also assist in selecting plants for greater fitness and long-term adaptation to climate stress (Ward & Kelly, 2004). However, very limited information is available on the genetic regulation of plant growth at e[CO₂] (Rae, Ferris, Tallis, & Taylor, 2006). It has been reported that CO₂ responsiveness of plants is a quantitative trait that is determined by a range of gene products (Ferris et al., 2002). Therefore, identification of quantitative trait loci via the collection of phenotypic, biochemical, and physiological data on genetically characterized populations will help to develop an understanding of the cellular mechanism of plant responses to e[CO2] (Rae et al., 2006) and assist the selection of appropriate germplasm for use in breeding programs. In order to achieve this target, state of the art analytical techniques such as high throughput genomics, proteomics, metabolomics, and transcriptomics are required. Identification of the candidate genes involved in the plant's primary metabolism will also be helpful in understanding the regulatory networks of plant growth and shifts in carbon-nitrogen balance at e[CO2] (Vicente et al., 2015). Understanding plant sugar-hormonal crosstalk mainly associated with carbon and nitrogen metabolism will be important to adapt to a CO₂ rich atmosphere. However, in the real world, increased atmospheric [CO₂] interacts with higher global temperatures and altered rainfall patterns to provide plants with a "triple whammy" of challenges. With experimentation on e[CO2] generally conducted under controlled temperatures and adequate water supply, it is difficult to predict the results to these actual situations. Therefore, understanding the interactions of these triple challenges (e[CO₂], altered water availability and increased temperature) from cellular to whole plant level is crucial when addressing future food security targets under a changing climate.

5 | CONCLUDING REMARKS

Climate change is challenging the productivity of global agriculture and thus global food and nutrient security. As CO₂ is the primary substrate for photosynthesis and plant growth, a better understanding of the atmospheric [CO₂] utilization strategies of plants will pave the way for increasing crop productivity. Considerable research has established the adjustments in photosynthesis and stomatal conductance in response to e[CO₂], but not much attention has been paid to understanding the role of other key cellular processes in modifying physiological and plant growth process. The findings from long-term [CO₂] enrichment studies suggest that understanding the cellular processes together with the source-sink interaction is essential to capture the full benefits of rising [CO₂] on crops. Theoretically, a number of bottle necks in C₃ photosynthesis can be overcome with elevated levels of [CO2]; however, the physiological and molecular mechanisms to achieve this target are still not clearly understood. In particular, understanding is needed of the effects of e[CO₂] on carbon and nitrogen metabolism, the cell cycle, and hormonal metabolism, which are more likely to play a major role in modifying plant growth processes. Comprehensive research in this area of study will open up new avenues for minimizing photosynthetic inefficiencies and thereby potentially improve crop productivity in a future CO2-enriched atmosphere. However, interactions with elevated temperatures and changes in available water will render this productivity goal very challenging.

ACKNOWLEDGMENT

This work was supported by the University of Southern Queensland, Australia.

CONFLICT OF INTEREST

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

ORCID

Dananjali Gamage b http://orcid.org/0000-0002-3128-4283 Michael Thompson b http://orcid.org/0000-0001-8150-7652 Naoki Hirotsu b http://orcid.org/0000-0002-9893-7111 Amane Makino b http://orcid.org/0000-0003-2779-6275 Saman Seneweera b http://orcid.org/0000-0001-5147-9988

REFERENCES

- Ainsworth, E., Davey, P., Hymus, G., Osborne, C., Rogers, A., Blum, H., ... Long, S. (2003). Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO₂ Enrichment (FACE). *Plant, Cell & Environment, 26*, 705–714.
- Ainsworth, E. A., Beier, C., Calfapietra, C., Ceulemans, R., Durand-Tardif, M., Farquhar, G. D., ... Kaduk, J. (2008). Next generation of elevated [CO₂] experiments with crops: A critical investment for feeding the future world. *Plant, Cell & Environment*, 31, 1317–1324.
- Ainsworth, E. A., & Bush, D. R. (2011). Carbohydrate export from the leaf: A highly regulated process and target to enhance photosynthesis and productivity. *Plant Physiology*, 155, 64–69. 25

1242 WILEY-Part

Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. *New Phytologist*, *165*, 351–372.

PC

- Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO₂]: Mechanisms and environmental interactions. *Plant, Cell & Environment*, 30, 258–270.
- Ainsworth, E. A., Rogers, A., Nelson, R., & Long, S. P. (2004). Testing the "source-sink" hypothesis of down-regulation of photosynthesis in elevated [CO₂] in the field with single gene substitutions in Glycine max. *Agricultural and Forest Meteorology*, 122, 85–94.
- Ainsworth, E. A., Rogers, A., Vodkin, L. O., Walter, A., & Schurr, U. (2006). The effects of elevated CO₂ concentration on soybean gene expression. An analysis of growing and mature leaves. *Plant Physiology*, 142, 135–147.
- Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/ 2050: The 2012 revision. In ESA Working paper No (pp. 12–03). Rome: FAO.
- Alonso, A., Pérez, P., & Martínez-Carrasco, R. (2009). Growth in elevated CO₂ enhances temperature response of photosynthesis in wheat. *Physiologia Plantarum*, 135, 109–120.
- Aoki, N., Ono, K., Sasaki, H., Seneweera, S., Sakai, H., Kobayashi, K., & Ishimaru, K. (2003). Effects of elevated CO₂ concentration on photosynthetic carbon metabolism in flag-leaf blades of rice before and after heading. *Plant Production Science*, *6*, 52–58.
- Aranjuelo, I., Erice, G., Sanz-Sáez, A., Abadie, C., Gilard, F., Gil-Quintana, E., ... Araus, J. L. (2015). Differential CO₂ effect on primary carbon metabolism of flag leaves in durum wheat (Triticum durum Desf.). *Plant, Cell & Environment*, 38, 2780–2794.
- Araújo, W. L., Fernie, A. R., & Nunes-Nesi, A. (2011). Control of stomatal aperture: A renaissance of the old guard. *Plant Signaling & Behavior*, 6, 1305–1311.
- Arp, W. (1991). Effects of source-sink relations on photosynthetic acclimation to elevated CO₂. Plant, Cell & Environment, 14, 869–875.
- BassiriRad, H., Gutschick, V. P., & Lussenhop, J. (2001). Root system adjustments: Regulation of plant nutrient uptake and growth responses to elevated CO₂. *Oecologia*, 126, 305–320.
- Benlloch-Gonzalez, M., Berger, J., Bramley, H., Rebetzke, G., & Palta, J. A. (2014). The plasticity of the growth and proliferation of wheat root system under elevated CO₂. *Plant and Soil*, 374, 963–976.
- Bernacchi, C. J., Thompson, J. N., Coleman, J. S., & Mcconnaughay, K. D. (2007). Allometric analysis reveals relatively little variation in nitrogen versus biomass accrual in four plant species exposed to varying light, nutrients, water and CO₂. Plant, Cell & Environment, 30, 1216–1222.
- Bloom, A. J. (2015). Photorespiration and nitrate assimilation: A major intersection between plant carbon and nitrogen. *Photosynthesis Research*, 123, 117–128.
- Bloom, A. J., Asensio, J. S. R., Randall, L., Rachmilevitch, S., Cousins, A. B., & Carlisle, E. A. (2012). CO enrichment inhibits shoot nitrate assimilation in C but not C plants and slows growth under nitrate in C plants. *Ecol*ogy, 93, 355–367.
- Bloom, A. J., Smart, D. R., Nguyen, D. T., & Searles, P. S. (2002). Nitrogen assimilation and growth of wheat under elevated carbon dioxide. *Proceedings of the National Academy of Sciences*, 99, 1730–1735.
- Bokhari, S. A., Wan, X.-Y., Yang, Y.-W., Zhou, L., Tang, W.-L., & Liu, J.-Y. (2007). Proteomic response of rice seedling leaves to elevated CO₂ levels. *Journal of Proteome Research*, *6*, 4624–4633.
- Bowes, G. (1991). Growth at elevated CO₂ Photosynthetic responses mediated through Rubisco. *Plant Cell and Environment*, 14, 795-806.
- Brearley, J., Venis, M. A., & Blatt, M. R. (1997). The effect of elevated CO₂ concentrations on K+ and anion channels of Vicia faba L. guard cells. *Planta*, 203, 145–154.
- Casson, S., & Gray, J. E. (2008). Influence of environmental factors on stomatal development. New Phytologist, 178, 9–23.

- Casson, S. A., & Hetherington, A. M. (2010). Environmental regulation of stomatal development. *Current Opinion in Plant Biology*, 13, 90–95.
- Cato, S. C., Macedo, W. R., & Peres, L. E. P. (2013). Sinergism among auxins, gibberellins and cytokinins in tomato cv. Micro-Tom. *Horticultura Brasileira*, 31, 549–553.
- Chater, C., Peng, K., Movahedi, M., Dunn, J. A., Walker, H. J., Liang, Y.-K., ... Wilson, I. (2015). Elevated CO₂-induced responses in stomata require ABA and ABA signaling. *Current Biology*, 25, 2709–2716.
- Chaudhuri, U., Burnett, R., Kirkham, M., & Kanemasu, E. (1986). Effect of carbon dioxide on sorghum yield, root growth, and water use. Agricultural and Forest Meteorology, 37, 109–122.
- Chaudhuri, U., Kirkham, M., & Kanemasu, E. (1990). Root growth of winter wheat under elevated carbon dioxide and drought. *Crop Science*, *30*, 853–857.
- Chávez-Bárcenas, A. T., Valdez-Alarcón, J. J., Martinez-Trujillo, M., Chen, L., Xoconostle-Cázares, B., Lucas, W. J., & Herrera-Estrella, L. (2000). Tissue-specific and developmental pattern of expression of the rice sps1 gene. *Plant Physiology*, 124, 641–654.
- Cheng, S.-H., d Moore, B., & Seemann, J. R. (1998). Effects of short-and long-term elevated CO₂ on the expression of ribulose-1, 5-bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana (L.) Heynh. *Plant Physiology*, 116, 715–723.
- Cheng, W.-H., Im, K. H., & Chourey, P. S. (1996). Sucrose phosphate synthase expression at the cell and tissue level is coordinated with sucrose sink-to-source transitions in maize leaf. *Plant Physiology*, 111, 1021–1029.
- Coleman, J., McConnaughay, K., & Bazzaz, F. (1993). Elevated CO₂ and plant nitrogen-use: Is reduced tissue nitrogen concentration sizedependent? *Oecologia*, 93, 195–200.
- Conroy, J., Barlow, E., & Bevege, D. (1986). Response of Pinus radiata seedlings to carbon dioxide enrichment at different levels of water and phosphorus: growth, morphology and anatomy. *Annals of Botany*, 165–177.
- De Souza, A. P., Gaspar, M., Da Silva, E. A., Ulian, E. C., Waclawovsky, A. J., Dos SaNTOS, R. V., ... Buckeridge, M. S. (2008). Elevated CO₂ increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. *Plant, Cell & Environment*, 31, 1116–1127.
- Del Castillo, D., Acock, B., Reddy, V., & Acock, M. (1989). Elongation and branching of roots on soybean plants in a carbon dioxide-enriched aerial environment. Agronomy Journal, 81, 692–695.
- Del Pozo, A., Pérez, P., Gutiérrez, D., Alonso, A., Morcuende, R., & Martínez-Carrasco, R. (2007). Gas exchange acclimation to elevated CO₂ in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers. Environmental and Experimental Botany, 59, 371–380.
- Drake, B. G., Gonzàlez-Meler, M. A., & Long, S. P. (1997). More efficient plants: A consequence of rising atmospheric CO₂? Annual Review of Plant Biology, 48, 609–639.
- Evans, J., & Poorter, H. (2001). Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. *Plant, Cell & Environment*, 24, 755–767.
- Ferris, R., Long, L., Bunn, S., Robinson, K., Bradshaw, H., Rae, A., & Taylor, G. (2002). Leaf stomatal and epidermal cell development: Identification of putative quantitative trait loci in relation to elevated carbon dioxide concentration in poplar. *Tree Physiology*, 22, 633–640.
- Finkelstein, R. (2013). Abscisic acid synthesis and response. *The Arabidopsis* Book, 11. e0166
- Finlayson, S. A., & Reid, D. M. (1996). The effect of CO₂ on ethylene evolution and elongation rate in roots of sunflower (Helianthus annuus) seedlings. *Physiologia Plantarum*, 98, 875–881.
- Geiger, M., Haake, V., Ludewig, F., Sonnewald, U., & Stitt, M. (1999). The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen **Re**tabolism
and growth to elevated carbon dioxide in tobacco. *Plant, Cell & Environment, 22, 1177-1199.*

- Geiger, M., Walch-Liu, P., Engels, C., Harnecker, J., Schulze, E. D., Ludewig, F., ... Stitt, M. (1998). Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in older plants, and a large stimulation of nitrate reductase activity and higher levels of amino acids in young tobacco plants. *Plant, Cell & Environment*, 21, 253–268.
- Geng, S., Misra, B. B., Armas, E., Huhman, D. V., Alborn, H. T., Sumner, L. W., & Chen, S. (2016). Jasmonate-mediated stomatal closure under elevated CO₂ revealed by time-resolved metabolomics. *The Plant Journal*, 88, 947–962.
- Gesch, R., Vu, J., Boote, K., Hartwell Allen, L., & Bowes, G. (2002). Sucrosephosphate synthase activity in mature rice leaves following changes in growth CO₂ is unrelated to sucrose pool size. *New Phytologist*, 154, 77–84.
- Gifford, R. M., Barrett, D. J., & Lutze, J. L. (2000). The effects of elevated [CO₂] on the C: N and C: P mass ratios of plant tissues. *Plant and Soil*, 224, 1–14.
- Gray, J. E., Holroyd, G. H., van der Lee, F. M., Bahrami, A. R., Sijmons, P. C., Woodward, F. I., ... Hetherington, A. M. (2000). The HIC signalling pathway links CO₂ perception to stomatal development. *Nature*, 408, 713–716.
- Gupta, P., Duplessis, S., White, H., Karnosky, D., Martin, F., & Podila, G. (2005). Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO₂ and tropospheric O3. *New Phytologist*, 167, 129–142.
- Gutiérrez, D., Gutiérrez, E., Pérez, P., Morcuende, R., Verdejo, A. L., & Martinez-Carrasco, R. (2009). Acclimation to future atmospheric CO₂ levels increases photochemical efficiency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers. *Physiologia Plantarum*, 137, 86–100.
- Habash, D. Z., Paul, M. J., Parry, M. A., Keys, A. J., & Lawlor, D. W. (1995). Increased capacity for photosynthesis in wheat grown at elevated CO₂: The relationship between electron transport and carbon metabolism. *Planta*, 197, 482–489.
- Hanstein, S. M., & Felle, H. H. (2002). CO₂-triggered chloride release from guard cells in intact fava bean leaves. Kinetics of the onset of stomatal closure. *Plant Physiology*, 130, 940–950.
- Hashimoto, M., Negi, J., Young, J., Israelsson, M., Schroeder, J. I., & Iba, K. (2006). Arabidopsis HT1 kinase controls stomatal movements in response to CO₂. *Nature Cell Biology*, *8*, 391–397.
- Hashimoto-Sugimoto, M., Negi, J., Monda, K., Higaki, T., Isogai, Y., Nakano, T., ... Iba, K. (2016). Dominant and recessive mutations in the Raf-like kinase HT1 gene completely disrupt stomatal responses to CO₂ in Arabidopsis. *Journal of Experimental Botany*, 67, 3251–3261.
- He, J., Zhang, R. X., Peng, K., Tagliavia, C., Li, S., Xue, S., ... Hubbard, K. E. (2018). The BIG protein distinguishes the process of CO₂-induced stomatal closure from the inhibition of stomatal opening by CO₂. New Phytologist., 218, 232–241.
- Hedrich, R., Marten, I., Lohse, G., Dietrich, P., Winter, H., Lohaus, G., & Heldt, H. W. (1994). Malate-sensitive anion channels enable guard cells to sense changes in the ambient CO₂ concentration. *The Plant Journal*, *6*, 741–748.
- Hikosaka, K., & Shigeno, A. (2009). The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. *Oecologia*, 160, 443–451.
- Hörak, H., Sierla, M., Töldsepp, K., Wang, C., Wang, Y.-S., Nuhkat, M., ... Salojärvi, J. (2016). A dominant mutation in the HT1 kinase uncovers roles of MAP kinases and GHR1 in CO₂-induced stomatal closure. *The Plant Cell*, 28, 2493–2509. https://doi.org/10.1105/tpc.16.00131
- Hu, H., Boisson-Dernier, A., Israelsson-Nordström, M., Böhmer, M., Xue, S., Ries, A., ... Schroeder, J. I. (2010). Carbonic anhydrases are upstream regulators of CO₂-controlled stomatal movements in guard cells. *Nature cell biology*, 12, 87.
- IPCC (2013) Summary for policymakers. In: Climate Change 2013: The Physical Sclence Basis. Contribution of Working Group I to the Fifth

Assessment Report of the Intergovernmental Panel on Climate change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, s. K. Ailen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (eds.). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

- Jakobson, L., Vaahtera, L., Tõldsepp, K., Nuhkat, M., Wang, C., Wang, Y.-S., ... Sindarovska, Y. (2016). Natural variation in Arabidopsis Cvi-0 accession reveals an important role of MPK12 in guard cell CO₂ signaling. *PLoS Biology*, 14. e2000322
- Jang, J.-C., León, P., Zhou, L., & Sheen, J. (1997). Hexokinase as a sugar sensor in higher plants. *The Plant Cell*, *9*, 5–19.
- Jitla, D. S., Rogers, G. S., Seneweera, S. P., Basra, A. S., Oldfield, R. J., & Conroy, J. P. (1997). Accelerated early growth of rice at elevated CO₂. Plant Physiology, 115, 15–22.
- Kang, Y., Outlaw, W. H., Andersen, P. C., & Fiore, G. B. (2007). Guard-cell apoplastic sucrose concentration–A link between leaf photosynthesis and stomatal aperture size in the apoplastic phloem loader Vicia faba L. Plant, Cell & Environment, 30, 551–558.
- Kelly, G., Moshelion, M., David-Schwartz, R., Halperin, O., Wallach, R., Attia, Z., ... Granot, D. (2013). Hexokinase mediates stomatal closure. *The Plant Journal*, 75, 977–988.
- Kim, S. H., Sicher, R. C., Bae, H., Gitz, D. C., Baker, J. T., Timlin, D. J., & Reddy, V. R. (2006). Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO₂ enrichment. *Global Change Biology*, 12, 588–600.
- Kimball, B. A. (2016). Crop responses to elevated CO_2 and interactions with H_2O , N, and temperature. *Current Opinion in Plant Biology*, 31, 36–43.
- Kinsman, E., Lewis, C., Davies, M., Young, J., Francis, D., Vilhar, B., & Ougham, H. (1997). Elevated CO₂ stimulates cells to divide in grass meristems: A differential effect in two natural populations of Dactylis glomerata. *Plant, Cell & Environment*, 20, 1309–1316.
- Koch, K. (2004). Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. *Current Opinion in Plant Biology*, 7, 235–246.
- Kontunen-Soppela, S., Parviainen, J., Ruhanen, H., Brosche, M., Keinänen, M., Thakur, R. C., ... Karnosky, D. F. (2010). Gene expression responses of paper birch (Betula papyrifera) to elevated CO₂ and O₃ during leaf maturation and senescence. *Environmental Pollution*, 158, 959–968.
- Körner, C. (2015). Paradigm shift in plant growth control. Current Opinion in Plant Biology, 25, 107–114.
- Laanemets, K., Wang, Y. F., Lindgren, O., Wu, J., Nishimura, N., Lee, S., ... Kilk, K. (2013). Mutations in the SLAC1 anion channel slow stomatal opening and severely reduce K+ uptake channel activity via enhanced cytosolic [Ca2+] and increased Ca2+ sensitivity of K+ uptake channels. *New Phytologist*, 197, 88–98.
- Lambers, H., Chapin, F. I., & Pons, T. (2008). Plant physiological ecology. New York, NY, USA: Springer-Verlag.
- Lastdrager, J., Hanson, J., & Smeekens, S. (2014). Sugar signals and the control of plant growth and development. *Journal of Experimental Botany*, 65, 799–807.
- Lawlor, D. W., & Paul, M. J. (2014). Source/sink interactions underpin crop yield: The case for trehalose 6-phosphate/SnRK1 in improvement of wheat. Frontiers in Plant Science, 5, 418.
- Leakey, A. D., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., & Ort, D. R. (2009). Elevated CO₂ effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. *Journal of Experimental Botany*, 60, 2859–2876.
- Li, J. Y., Liu, X. H., Cai, Q. S., Gu, H., Zhang, S. S., Wu, Y. Y., & Wang, C. J. (2008). Effects of elevated CO₂ on growth, carbon assimilation, photosynthate accumulation and related enzymes in rice leaves during sinksource transition. *Journal of Integrative Plant Biology*, 50, 723–732.
- Li, P., Ainsworth, E. A., Leakey, A. D., Ulanov, A., Lozovaya, V., Ort, D. R., & Bohnert, H. J. (2008). Arabidopsis transcript and metabolite profiles: Ecotype-specific responses to open-air elevated [CO₂]. *Plant, Cell & Environment*, 31, 1673–1687.

Libault, M. (2014). The carbon-nitrogen balance of the nodule and its regulation under elevated carbon dioxide concentration. *BioMed Research International*, 2014, 1–7.

PC

- Lind, C., Dreyer, I., López-Sanjurjo, E. J., von Meyer, K., Ishizaki, K., Kohchi, T., ... Al-Rasheid, K. A. (2015). Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure. *Current Biology*, 25, 928–935.
- Lorimer, G. H. (1981). The carboxylation and oxygenation of ribulose 1, 5-bisphosphate: The primary events in photosynthesis and photorespiration. Annual Review of Plant Physiology, 32, 349–382.
- Madhu, M., & Hatfield, J. L. (2013). Dynamics of plant root growth under increased atmospheric carbon dioxide. Agronomy Journal, 105, 657.
- Makino, A., Harada, M., Sato, T., Nakano, H., & Mae, T. (1997). Growth and N allocation in rice plants under CO2 enrichment. *Plant Physiology*, 115, 199–203.
- Makino, A., & Mae, T. (1999). Photosynthesis and plant growth at elevated levels of CO₂. *Plant and Cell Physiology*, 40, 999–1006.
- Makino, A., Mae, T., & Ohira, K. (1984). Relation between nitrogen and ribulose-1, 5-bisphosphate carboxylase in rice leaves from emergence through senescence. *Plant and Cell Physiology*, 25, 429–437.
- Makino, A., Nakano, H., Mae, T., Shimada, T., & Yamamoto, N. (2000). Photosynthesis, plant growth and N allocation in transgenic rice plants with decreased Rubisco under CO₂ enrichment. *Journal of Experimental Botany*, 51, 383–389.
- Martínez-Carrasco, R., Pérez, P., & Morcuende, R. (2005). Interactive effects of elevated CO₂, temperature and nitrogen on photosynthesis of wheat grown under temperature gradient tunnels. *Environmental and Experimental Botany*, 54, 49–59.
- Masle, J. (2000). The effects of elevated CO₂ concentrations on cell division rates, growth patterns, and blade anatomy in young wheat plants are modulated by factors related to leaf position, vernalization, and genotype. *Plant Physiology*, 122, 1399–1416.
- McDonald, E. P., Erickson, J. E., & Kruger, E. L. (2002). Research note: Can decreased transpiration limit plant nitrogen acquisition in elevated CO₂? Functional Plant Biology, 29, 1115–1120.
- Merilo, E., Jalakas, P., Kollist, H., & Brosché, M. (2015). The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity, elevated CO₂, and exogenous ABA. *Molecular Plant*, 8, 657–659.
- Merilo, E., Laanemets, K., Hu, H., Xue, S., Jakobson, L., Tulva, I., ... Broschè, M. (2013). PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-and CO₂-induced stomatal regulation. *Plant Physiology*. 113.220608
- Moore, B., Cheng, S. H., Rice, J., & Seemann, J. (1998). Sucrose cycling, Rubisco expression, and prediction of photosynthetic acclimation to elevated atmospheric CO₂. *Plant, Cell & Environment*, 21, 905–915.
- Moore, B., Cheng, S. H., Sims, D., & Seemann, J. (1999). The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO₂. *Plant, Cell & Environment, 22*, 567–582.
- Nakano, H., Makino, A., & Mae, T. (1997). The effect of elevated partial pressures of CO₂ on the relationship between photosynthetic capacity and N content in rice leaves. *Plant Physiology*, 115, 191–198.
- Negi, J., Matsuda, O., Nagasawa, T., Oba, Y., Takahashi, H., Kawai-Yamada, M., ... Iba, K. (2008). CO₂ regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. *Nature*, 452, 483–486.
- Nie, G., Hendrix, D. L., Webber, A. N., Kimball, B. A., & Long, S. P. (1995). Increased accumulation of carbohydrates and decreased photosynthetic gene transcript levels in wheat grown at an elevated CO₂ concentration in the field. *Plant Physiology*, 108, 975–983.
- Oosten, J., & Besford, R. (1995). Some relationships between the gas exchange, biochemistry and molecular biology of photosynthesis during leaf development of tomato plants after transfer to different carbon dioxide concentrations. *Plant, Cell & Environment, 18*, 1253–1266.

- Oosten, J. J., Wilkins, D., & Besford, R. (1994). Regulation of the expression of photosynthetic nuclear genes by CO₂ is mimicked by regulation by carbohydrates: A mechanism for the acclimation of photosynthesis to high CO₂? *Plant, Cell & Environment*, 17, 913–923.
- Paul, M. (2007). Trehalose 6-phosphate. Current Opinion in Plant Biology, 10, 303–309.
- Paul, M., & Driscoll, S. (1997). Sugar repression of photosynthesis: The role of carbohydrates in signalling nitrogen deficiency through source: Sink imbalance. *Plant, Cell & Environment, 20*, 110–116.
- Paul, M. J., & Foyer, C. H. (2001). Sink regulation of photosynthesis. Journal of Experimental Botany, 52, 1383–1400.
- Paul, M. J., Oszvald, M., Jesus, C., Rajulu, C., & Griffiths, C. A. (2017). Increasing crop yield and resilience with trehalose 6-phosphate: Targeting a feast-famine mechanism in cereals for better source-sink optimization. *Journal of Experimental Botany*, 68, 4455-4462.
- Paul, M. J., & Pellny, T. K. (2003). Carbon metabolite feedback regulation of leaf photosynthesis and development. *Journal of Experimental Botany*, 54, 539–547.
- Paul, M. J., Primavesi, L. F., Jhurreea, D., & Zhang, Y. (2008). Trehalose metabolism and signaling. Annual Review of Plant Biology, 59, 417–441.
- Pollock, C., & Farrar, J. (1996). Source-sink relations: The role of sucrose. In *Photosynthesis and the environment* (pp. 261–279). Springer.
- Pritchard, S., Rogers, H., Prior, S. A., & Peterson, C. (1999). Elevated CO₂ and plant structure: A review. *Global Change Biology*, *5*, 807–837.
- Qaderi, M. M., & Reid, D. M. (2009). Crop responses to elevated carbon dioxide and temperature. In *Climate change and crops* (pp. 1–18). Springer.
- Rae, A., Ferris, R., Tallis, M., & Taylor, G. (2006). Elucidating genomic regions determining enhanced leaf growth and delayed senescence in elevated CO₂. Plant, Cell & Environment, 29, 1730–1741.
- Ranasinghe, S., & Taylor, G. (1996). Mechanism for increased leaf grwoth in elevated CO₂. Journal of Experimental Botany, 47, 349–358.
- Rogers, A., Fischer, B. U., Bryant, J., Frehner, M., Blum, H., Raines, C. A., & Long, S. P. (1998). Acclimation of photosynthesis to elevated CO₂ under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO₂ enrichment. *Plant Physiology*, 118, 683–689.
- Rogers, G., Milham, P., Gillings, M., & Conroy, J. (1996). Sink strength may be the key to growth and nitrogen responses in N-deficient wheat at elevated CO₂. Functional Plant Biology, 23, 253–264.
- Rogers, H. H., Thomas, J. F., & Bingham, G. E. (1983). Response of agronomic and forest species to elevated atmospheric carbon dioxide. *Science*(Washington), 220, 428–429.
- Rolland, F., Moore, B., & Sheen, J. (2002). Sugar sensing and signaling in plants. *The Plant Cell*, 14, S185–S205.
- Sage, R. F., Sharkey, T. D., & Seemann, J. R. (1989). Acclimation of photosynthesis to elevated CO₂ in five C3 species. *Plant Physiology*, 89, 590–596.
- Salsman, K. J., Jordan, D. N., Smith, S. D., & Neuman, D. S. (1999). Effect of atmospheric CO₂ enrichment on root growth and carbohydrate allocation of Phaseolus spp. *International Journal of Plant Sciences*, 160, 1075–1081.
- Schluepmann, H., Berke, L., & Sanchez-Perez, G. F. (2011). Metabolism control over growth: A case for trehalose-6-phosphate in plants. *Journal of Experimental Botany*, 63, 3379–3390.
- Sekhar, K. M., Sreeharsha, R. V., & Reddy, A. R. (2015). Differential responses in photosynthesis, growth and biomass yields in two mulberry genotypes grown under elevated CO 2 atmosphere. *Journal of Photochemistry and Photobiology B: Biology*, 151, 172–179.
- Seneweera, S. (2011). Effects of elevated CO₂ on plant growth and nutrient partitioning of rice (Oryza sativa L.) at rapid tillering and physiological maturity. *Journal of Plant Interactions*, *6*, 35–42.
- Seneweera, S., Aben, S., Basra, A., Jones, B., & Conroy, J. (2003). Involvement of ethylene in the morphological and developmenta²⁸esponse

WILEY-Plant, Cell & Environment

of rice to elevated atmospheric CO_2 concentrations. Plant Growth Regulation, 39, 143–153.

- Seneweera, S., Ghannoum, O., Conroy, J., Ishimaru, K., Okada, M., Lieffering, M., ... Kobayashi, K. (2002). Changes in source-sink relations during development influence photosynthetic acclimation of rice to free air CO₂ enrichment (FACE). *Functional Plant Biology*, 29, 947–955.
- Seneweera, S., Makino, A., Hirotsu, N., Norton, R., & Suzuki, Y. (2011). New insight into photosynthetic acclimation to elevated CO₂: The role of leaf nitrogen and ribulose-1, 5-bisphosphate carboxylase/oxygenase content in rice leaves. *Environmental and Experimental Botany*, 71, 128–136.
- Seneweera, S., Makino, A., Mae, T., & Basra, A. (2005). Response of rice to p (CO₂) enrichment: The relationship between photosynthesis and nitrogen metabolism. *Journal of Crop Improvement*, 13, 31–53.
- Seneweera, S., Milham, P., & Conroy, J. (1994). Influence of elevated CO₂ and phosphorus nutrition on the growth and yield of a short-duration rice (Oryza sativa L. cv. Jarrah). *Functional Plant Biology*, 21, 281–292.
- Seneweera, S. P., Basra, A. S., Barlow, E. W., & Conroy, J. P. (1995). Diurnal regulation of leaf blade elongation in rice by CO₂ (is it related to sucrose-phosphate synthase activity?). *Plant Physiology*, 108, 1471–1477.
- Seneweera, S. P., & Conroy, J. P. (2005). Enhanced leaf elongation rates of wheat at elevated CO 2: Is it related to carbon and nitrogen dynamics within the growing leaf blade? *Environmental and Experimental Botany*, 54, 174–181.
- Sharkey, T., Laporte, M., Lu, Y., Weise, S., & Weber, A. (2004). Engineering plants for elevated CO₂: A relationship between starch degradation and sugar sensing. *Plant Biology*, *6*, 280–288.
- Sharkey, T. D. (1985). Photosynthesis in intact leaves of C3 plants: Physics, physiology and rate limitations. *The Botanical Review*, 51, 53–105.
- Sheen, J. (1994). Feedback control of gene expression. Photosynthesis Research, 39, 427–438.
- Smeekens, S., Ma, J., Hanson, J., & Rolland, F. (2010). Sugar signals and molecular networks controlling plant growth. *Current Opinion in Plant Biology*, 13, 273–278.
- Smith, R. A., Lewis, J. D., Ghannoum, O., & Tissue, D. T. (2012). Leaf structural responses to pre-industrial, current and elevated atmospheric CO₂ and temperature affect leaf function in Eucalyptus sideroxylon. *Functional Plant Biology*, 39, 285–296.
- Spreitzer, R. J., & Salvucci, M. E. (2002). Rubisco: Structure, regulatory interactions, and possibilities for a better enzyme. *Annual Review of Plant Biology*, 53, 449–475.
- Stitt, M., & Krapp, A. (1999). The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background. *Plant, Cell & Environment*, 22, 583–621.
- Takatani, N., Ito, T., Kiba, T., Mori, M., Miyamoto, T., Maeda, S.-i., & Omata, T. (2014). Effects of high CO₂ on growth and metabolism of Arabidopsis seedlings during growth with a constantly limited supply of nitrogen. *Plant and Cell Physiology*, 55, 281–292.
- Tans P. & Keeling R. (2018) Trends in atmospheric carbon dioxide. NOAA/ ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/)
- Taylor, G., Ceulemans, R., Ferris, R., Gardner, S., & Shao, B. (2001). Increased leaf area expansion of hybrid poplar in elevated CO 2. From controlled environments to open-top chambers and to FACE. *Environmental Pollution*, 115, 463–472.
- Taylor, G., Ranasinghe, S., Bosac, C., Gardner, S. D. L., & Ferris, R. (1994). Elevated CO₂ and plant growth: Cellular mechanisms and responses of whole plants. *Journal of Experimental Botany*, 45, 1761–1774.
- Taylor, G., Street, N. R., Tricker, P. J., Sjödin, A., Graham, L., Skogström, O., ... Jansson, S. (2005). The transcriptome of Populus in elevated CO₂. *New Phytologist*, 167, 143–154.
- Teng, N., Wang, J., Chen, T., Wu, X., Wang, Y., & Lin, J. (2006). Elevated CO₂ induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. *New Phytologist*, 172, 92–103.

- Thilakarathne, C. L., Tausz-Posch, S., Cane, K., Norton, R. M., Fitzgerald, G. J., Tausz, M., & Seneweera, S. (2015). Intraspecific variation in leaf growth of wheat (Triticum aestivum) under Australian Grain Free Air CO₂ Enrichment (AGFACE): Is it regulated through carbon and/or nitrogen supply? *Functional Plant Biology*, 42, 299–308.
- Thilakarathne, C. L., Tausz-Posch, S., Cane, K., Norton, R. M., Tausz, M., & Seneweera, S. (2013). Intraspecific variation in growth and yield response to elevated CO₂ in wheat depends on the differences of leaf mass per unit area. *Functional Plant Biology*, 40, 185–194.
- Tian, W., Hou, C., Ren, Z., Pan, Y., Jia, J., Zhang, H., ... He, Y. (2015). A molecular pathway for CO 2 response in Arabidopsis guard cells. *Nature Communications*, 6, 6057.
- Vahisalu, T., Kollist, H., Wang, Y.-F., Nishimura, N., Chan, W.-Y., Valerio, G., ... Desikan, R. (2008). SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. *Nature*, 452, 487–491.
- van Dijken, A. J., Schluepmann, H., & Smeekens, S. C. (2004). Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. *Plant Physiology*, 135, 969–977.
- Van Heerden, P., Swanepoel, J., & Krüger, G. (2007). Modulation of photosynthesis by drought in two desert scrub species exhibiting C 3-mode CO 2 assimilation. *Environmental and Experimental Botany*, 61, 124–136.
- Vicente, R., Pérez, P., Martínez-Carrasco, R., Usadel, B., Kostadinova, S., & Morcuende, R. (2015). Quantitative RT-PCR platform to measure transcript levels of C and N metabolism-related genes in durum wheat: Transcript profiles in elevated [CO₂] and high temperature at different levels of N supply. *Plant and Cell Physiology*, 56, 1556–1573.
- Vu, J. C., Allen, L. H., & Gesch, R. W. (2006). Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO 2. *Plant Science*, 171, 123–131.
- Vuuren, M. M., Robinson, D., Fitter, A. H., Chasalow, S. D., Williamson, L., & Raven, J. A. (1997). Effects of elevated atmospheric CO₂ and soil water availability on root biomass, root length, and N, P and K uptake by wheat. *New Phytologist*, 135, 455–465.
- Walker, B. J., VanLoocke, A., Bernacchi, C. J., & Ort, D. R. (2016). The costs of photorespiration to food production now and in the future. *Annual Review of Plant Biology*, 67, 107–129.
- Ward, J. K., & Kelly, J. K. (2004). Scaling up evolutionary responses to elevated CO₂: Lessons from Arabidopsis. *Ecology Letters*, 7, 427–440.
- Watanabe, C. K., Sato, S., Yanagisawa, S., Uesono, Y., Terashima, I., & Noguchi, K. (2013). Effects of elevated CO₂ on levels of primary metabolites and transcripts of genes encoding respiratory enzymes and their diurnal patterns in *Arabidopsis thaliana*: Possible relationships with respiratory rates. *Plant and Cell Physiology*. pct185
- Webb, A. A., McAinsh, M. R., Mansfield, T. A., & Hetherington, A. M. (1996). Carbon dioxide induces increases in guard cell cytosolic free calcium. *The Plant Journal*, *9*, 297–304.
- Wei, H., Gou, J., Yordanov, Y., Zhang, H., Thakur, R., Jones, W., & Burton, A. (2013). Global transcriptomic profiling of aspen trees under elevated [CO₂] to identify potential molecular mechanisms responsible for enhanced radial growth. *Journal of Plant Research*, 126, 305–320.
- White, A. C., Rogers, A., Rees, M., & Osborne, C. P. (2015). How can we make plants grow faster? A source-sink perspective on growth rate. *Journal of Experimental Botany*, 67, 31–45.
- Woodrow, L., & Grodzinski, B. (1993). Ethylene exchange in Lycopersicon esculentum Mill. leaves during short-and long-term exposures to CO₂. *Journal of Experimental Botany*, 44, 471–480.
- Woodward, F., & Kelly, C. (1995). The influence of CO₂ concentration on stomatal density. New Phytologist, 131, 311–327.
- Xue, S., Hu, H., Ries, A., Merilo, E., Kollist, H., & Schroeder, J. I. (2011). Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO₂ signal transduction in guard cell. *The EMBO Journal*, 30, 1645–1658.
- Yamamoto, Y., Negi, J., Wang, C., Isogai, Y., Schroeder, J. I., & Iba, K. (2016). The transmembrane region of guard cell SLAC1 channels **29** erceives

WILEY-

 CO_2 signals via an ABA-independent pathway in Arabidopsis. The Plant Cell, 28, 557–567.

- Zhang, D.-Y., Chen, G.-Y., Gong, Z.-Y., Chen, J., Yong, Z.-H., Zhu, J.-G., & Xu, D.-Q. (2008). Ribulose-1, 5-bisphosphate regeneration limitation in rice leaf photosynthetic acclimation to elevated CO 2. *Plant Science*, 175, 348–355.
- Zhang, Y., Primavesi, L. F., Jhurreea, D., Andralojc, P. J., Mitchell, R. A., Powers, S. J., ... Paul, M. J. (2009). Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. *Plant Physiology*, 149, 1860–1871.

How to cite this article: Gamage D, Thompson M, Sutherland M, Hirotsu N, Makino A, Seneweera S. New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. *Plant Cell Environ*. 2018;41: 1233–1246. https://doi.org/10.1111/pce.13206

Chapter 3

Early growth mechanism of wheat (*Triticum aestivum* L.) at elevated atmospheric carbon dioxide: New physiological evidence with quantitative trait loci data

In this study, a quantitative trait loci (QTL) analysis was carried out to identify the potential genetic components associated with plant growth responses to elevated [CO₂]. A doubled haploid population of wheat was used for QTL mapping, focussing on the early vegetative growth stage. Together with QTL mapping, a detailed characterization of the parental lines of the mapping population was also conducted under ambient and elevated [CO₂] conditions. QTL mapping was conducted for several important plant growth traits and the CO₂ responsiveness of each trait was used to determine CO₂-response QTL. This chapter has been submitted as a research article to "Plant, Cell and Environment" and is currently under review.

Gamage D, Thompson M, Okamoto M, Moriyama N, Sutherland M.W., Hirotsu N, Seneweera S, 'Early growth mechanism of wheat (*Triticum aestivum* L.) at elevated atmospheric carbon dioxide: New physiological evidence with quantitative trait loci data' (Under review)

1 Article title:

- 2 Early growth mechanism of wheat (*Triticum aestivum* L.) at elevated atmospheric carbon
- 3 dioxide: New physiological evidence with quantitative trait loci data

4 Authors:

Dananjali Gamage¹, Michael Thompson¹, Mamoru Okamoto², Nao Moriyama³, Mark W.
Sutherland¹, Naoki Hirotsu^{1&3}, Saman Seneweera^{1&4*1}

7 Author affiliations:

- ¹ Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350,
 Australia.
- ¹⁰ ² ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, School
- of Agriculture, Food, and Wine, University of Adelaide, South Australia 5062, Australia.
- ¹² ³Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-
- 13 0193, Japan
- ⁴ National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka

15 ***Corresponding author:**

- 16 Saman Seneweera,
- 17 E-mail <u>Saman.Seneweera@usq.edu.au</u>, Tel: +61746315525

18 Abbreviations:

- 19 [CO₂] Carbon dioxide concentration
- 20 QTL Quantitative trait loci
- 21 WAP Weeks after planting
- 22 DH Doubled haploid
- 23 Rubisco Ribulose 1,5-bisphosphate carboxylase/oxygenase

¹DG – Study design, acquisition, analysis and interpretation of data, drafting of manuscript, MT- Acquisition of data, NM- interpretation of data, MO & MWS – critical revision, NH – study design, analysis and interpretation of data and critical revision, SS- Study conception and design, analysis and interpretation of data, critical revision

- 24 RGR Relative growth rate
- 25 LER Leaf elongation rate
- 26 V_{cmax} Maximum carboxylation rate of Rubisco
- 27 J_{max} Maximum rate of photosynthetic electron transport
- 28 *TPU* Rate of triose phosphate utilization
- 29 DC decimal code for wheat growth stage
- 30 C_i Intra-cellular CO₂ concentration
- 31 G_s Rate of stomatal conductance
- 32 QTL Quantitative trait loci
- 33 WUE water use efficiency
- 34 NUE nitrogen use efficiency
- 35

36 Summary statement

- 37 Elevated [CO₂] increases biomass accumulation and growth of wheat (*Triticum aestivum* L.)
- during early ontogeny. Growth at elevated [CO₂] was linked to 24 putative quantitative trait
- 39 loci (QTL). CO₂ response of biomass production was associated with 3 key QTL on
- 40 chromosome 2A, 1B and 4B.

41 Abstract

The underlying genetic variation of plant growth responses to elevated [CO₂] is still not clearly 42 understood. Here, a quantitative trait loci (QTL) analysis was carried out in a doubled haploid 43 population of wheat (*Triticum aestivum* L.) grown at 700 µmol mol⁻¹ (elevated [CO₂]) and 400 44 μ mol mol⁻¹ (ambient [CO₂]). The mapping population including the parental lines, Kukri and 45 RAC875 showed a significant difference in growth habit under ambient and elevated [CO₂] 46 (P<0.05), indicating a differential response to elevated [CO₂]. Data for major early growth traits 47 and their responsiveness to elevated [CO₂] were used for QTL mapping. In total, 24 putative 48 QTL were identified for CO₂ responsiveness. Among them, three QTL showed increased dry 49 weight response to elevated $[CO_2]$, which were located on chromosome 2A (LOD = 4.372), 1B 50 (LOD = 2.538) and 4B (LOD = 2.511). Of these, QTL on 2A and 4B played a role in increasing 51 shoot dry weight (2A: LOD = 4.409, 4B: LOD = 2.506) at elevated [CO₂]. These findings 52 53 suggest the existence of a major mechanism that controls CO₂ response at the genetic level. Further in-depth analysis of these genomic regions is required to identify candidate genes 54 55 responsible for enhanced plant growth under elevated [CO₂].

56 **Keywords**: CO₂ responsiveness, Elevated [CO₂]; Early growth; QTL; *Triticum aestivum* L.

57 **1. Introduction**

The atmospheric carbon dioxide concentration ([CO₂]) has risen at a remarkable rate and 58 currently exceeds 400 µmol mol⁻¹ (Tans & Keeling, 2018), which is a more than 30% increment 59 in $[CO_2]$ since the industrial revolution (IPCC, 2013). It is predicted that atmospheric $[CO_2]$ 60 may reach 550 μ mol mol⁻¹ in 2050 and 730 to 1020 μ mol mol⁻¹ by 2100 (Solomon *et al.*, 2007) 61 as a consequence of anthropogenic activities such as fossil fuel combustion and deforestation. 62 Although CO₂ is considered a greenhouse gas, it is the primary substrate for plant 63 photosynthesis and substantially stimulates photosynthesis especially in C₃ plants, supporting 64 vigorous growth and development. Plants of C₃ origin are not photosynthetically saturated at 65 the current CO₂ partial pressure due to the properties of Ribulose 1,5-bisphosphate 66 carboxylase/oxygenase (Rubisco), the primary carboxylation enzyme of C₃ plants (Makino & 67 Mae, 1999). Under current ambient conditions, $[CO_2]$ is very low at the site of CO_2 fixation 68 69 and any increases in $[CO_2]$ will increase the CO_2/O_2 ratio, thereby increasing the carboxylation efficiency of Rubisco by lowering the rate of photorespiration (Bowes, 1991, Drake et al., 70 71 1997). This increase in ambient [CO₂] directly and indirectly affects photosynthesis and stomatal conductance and subsequently increases the growth and development of plants 72 73 (Seneweera & Conroy, 2005, Ainsworth et al., 2008, Gamage et al., 2018). To improve the crop productivity in a CO₂ rich atmosphere, a thorough understanding of long-term adaptations 74 of plants to elevated [CO₂] at the genetic level is essential (Rae *et al.*, 2006). 75

Growth response to elevated [CO₂] varies depending on the plant species and growth stage 76 (Seneweera, 2011a, Fitzgerald et al., 2016). The majority of the C₃ species show very high 77 growth responses to elevated $[CO_2]$, especially at early stages of vegetative development 78 (Poorter, 1993). Early growth responses to elevated [CO₂] are usually characterized by 79 accelerated leaf growth and expansion, which will result in increased leaf area ratios and 80 relative growth rates (Poorter, 1993). It is suggested that increased growth response to elevated 81 [CO₂] results from the initial stimulation of photosynthesis and this stimulation may disappear 82 over time (Masle et al., 1993, Centritto et al., 1999, Trevisan et al., 2014). Similar to 83 photosynthesis response, relative growth rate (RGR) also tends to decline as plants grow older 84 at elevated [CO₂] (Makino et al., 1997). Hence, the effect of elevated [CO₂] on RGR is often 85 time-dependent and occurs only at the early stage of plant growth (Poorter & Navas, 2003). It 86 has also been reported with species such as wheat (Neales & Nicholls, 1978, Hikosaka et al., 87 2005), Arabidopsis (Van Der Kooij & De Kok, 1996) and tobacco (Geiger et al., 1998) that 88 89 exposure to elevated [CO₂] increased the RGR in young plants whereas in old plants, RGR

remains unaffected. Even a slight increase in RGR in the exponential growth phase of the plants 90 can be translated up to 50% absolute growth enhancement at elevated [CO₂] (Kirschbaum, 91 2010). In addition, increased photosynthetic capacity at elevated [CO₂] leads to accelerated leaf 92 elongation rates (LER) and contributes towards higher green leaf area production under high 93 [CO₂]. Faster rates of RGR and LER observed at elevated [CO₂] strongly correlate with the 94 total biomass production and consequently influence on grain yield production (Jitla et al., 95 1997, Seneweera & Conroy, 2005). This early advantage of enhanced seedling growth and 96 vigor is vital for the plant's subsequent establishment and, consequently, impacts on crop 97 productivity (Thilakarathne et al., 2015, Nagai et al., 2016). Therefore, an understanding of the 98 fundamental mechanisms of how crops respond to elevated [CO₂] at the early growth stages is 99 crucial to the development of new breeding strategies for increasing crop yield potential under 100 rising [CO₂] in the atmosphere. However, plant growth, or structural development, is a complex 101 process (Ter Steege et al., 2005) and detailed experiments are required to identify the different 102 organizational level responses to elevated [CO₂] and uncover the holistic mechanism of plant 103 growth at elevated [CO₂]. 104

A large intra-specific variation in growth response to elevated [CO₂] has been widely reported 105 (Thilakarathne et al., 2015), however, there is limited information available for the genetic 106 control of plant growth responses to elevated [CO₂] (Rae et al., 2006). Physiological traits that 107 are affected by environmental factors such as elevated [CO₂] are quantitatively determined 108 (Ferris et al., 2002). To identify the genetic response of traits changed by external 109 environmental factors, identification of quantitative trait loci (QTL) for a particular trait is 110 important (Rae et al., 2006). Quantitative trait loci are the regions within a genome that 111 correlate with the phenotypic variation of a particular quantitative trait (Collard *et al.*, 2005) 112 and provides information on whether the trait of interest has an associated genetic component 113 that can be utilized in plant breeding programmes. Identification of new CO₂-responsive QTL 114 provides new tools to improve crop productivity under a CO₂ rich atmosphere and thus 115 adaptation to climate stress (Rae et al., 2006). 116

117

There had been few studies focused on identifying CO_2 -responsive QTLs with tree species. For example, <u>Rae *et al.*</u> (2006) mapped QTL for increased leaf growth and delayed senescence in

120 hybrid poplar (*Populus spp*) and showed that candidate genes controlling the traits collocate to

121 the regions where QTL were mapped. In another study, Ferris *et al.* (2002) determined QTL

122 for leaf stomatal initiation, stomatal density, epidermal cell size, number and area in hybrid

poplar. In addition, QTL for above ground and below ground tree growth were determined in 123 poplar by Rae *et al.* (2007), showing that there are significant genomic regions in the poplar 124 genome that respond to shoot and root biomass at elevated [CO₂]. However, only a limited 125 number of studies have been carried out to identify QTL responsive to elevated [CO₂] in 126 cultivated crops and there have not been any studies on wheat (Triticum aestivum L.) (Gamage 127 et al., 2018), which is the most widely cultivated and consumed cereal crop (Shewry, 2009). 128 Moreover, none of the studies have been focused on the early vegetative growth despite its 129 important role in determining final biomass and yield. Therefore, identifying key genomic 130 131 regions determining plant growth traits under elevated [CO₂] will provide key information to broaden our knowledge and understanding of how plants respond to high CO₂. 132

133

In this study, we aimed to elucidate the genomic regions responsible for growth-related traits 134 under elevated [CO₂], focusing on the early vegetative growth stage in wheat. The main 135 objective was to identify QTL for plant growth responses at ambient [CO₂] and elevated [CO₂]. 136 Further, we tested whether the variation of CO₂ responsiveness in wheat is associated with new 137 138 QTLs and/or physiological response of the crop. The ultimate goal of this study is to identify the genetic basis of growth responses of wheat to elevated [CO₂] and incorporate these traits 139 140 into future breeding programs to improve the crop productivity and to maintain ecological 141 success in a changing climate.

- 142
- 143 **2. Materials and methods**
- 144

145 **2.1** Plant materials – mapping population

A doubled haploid (DH) wheat mapping population (152 wheat lines including parental 146 cultivars) derived from a cross between RAC875 and Kukri (Fleury et al. (2010) was used in 147 this study. This mapping population was obtained from the Australian Centre for Plant 148 Functional Genomics, University of Adelaide, Australia. The parental lines of this population 149 were physiologically characterized in detail by Izanloo et al. (2008). RAC875 150 (RAC655/3/Sr21/4*LANCE//4*BAYONET) is a breeder's line which shows good and stable 151 yield potential even under water-limited conditions. On the other hand, Kukri 152 (76ECN44/76ECN36//MADDEN/6*RAC177) is a cultivar that shows less yield potential (less 153 than 44%) under the same conditions (Bennett et al., 2012a, Bennett et al., 2012b). The harvest 154 index (HI) and the nitrogen use efficiency (NUE) of Kukri is 41% and 100.4 kg grain yield kg⁻ 155

¹, respectively. For RAC875, HI and NUE is 43% and 108.1 kg grain yield kg⁻¹, respectively 156 (Mahjourimaid *et al.*, 2015). The differences in NUE in these cultivars is suggested to be a key 157 determinant of variation in growth and yield response (Gamage *et al.*, 2018). Elevated [CO₂] 158 significantly reduces the nitrate photo assimilation (Bloom, 2015), changes the nitrogen 159 allocation to different plant organs (Bernacchi et al., 2007), reduces the nitrogen uptake relative 160 to the carbon gain (Del Pozo et al., 2007) and thereby reduces nitrogen demand (Stitt & Krapp, 161 1999). On the other hand, both Kukri and RAC875 have different water use efficiencies (WUE) 162 (Izanloo et al., 2008) which was significantly changed under elevated [CO₂] (Conley et al., 163 164 2001, Keenan et al., 2013). It is likely that different NUE and WUE of these parental lines provided them with the ability to perform differently at elevated [CO₂]. 165

166 **2.2 Growth conditions**

167 2.2.1. Experiment 01 – Parental lines characterization

Two parental lines of the mapping population, Kukri and RAC875, were characterized for all 168 the growth and physiological traits that were investigated in this study. Plants were grown in a 169 temperature-controlled glasshouse under either 400 or 700 µmol mol⁻¹ [CO₂] maintaining a day 170 and night temperature of 22°C and 13°C, respectively. Plants were harvested at two different 171 physiological stages: 4 weeks and physiological maturity. Total final biomass, thousand grain 172 weight, tiller number at anthesis and final yield were recorded. Four weeks after planting 173 (WAP) and at anthesis (DC 65) (Zadoks et al., 1974), gas exchange measurements were carried 174 175 out in the last fully expanded leaf and flag leaf, respectively using an infrared gas analyzer (IRGA) system (Li-6400, Li-Cor, Lincoln, NE, USA) as described in Seneweera et al. (2002). 176 The net photosynthesis rate, stomatal conductance, transpiration rate, and intercellular CO₂ 177 concentration were measured in both growth stages. The [CO₂] in the leaf chamber was 178 maintained at 400 μ mol mol⁻¹ and 700 μ mol mol⁻¹ for ambient and elevated [CO₂], respectively. 179 The leaf chamber temperature was maintained at 25°C and irradiance was maintained at 1500 180 μ mol quanta m⁻² s⁻¹ which was supplied by a red and blue light source (6400-02B LED source). 181 Photosynthesis gas exchange measurements were conducted during the day, between 0900 182 hours and 1430 hours to produce A-Ci response curves (photosynthesis (A) versus intracellular 183 [CO₂] (Ci) curves). Prior to taking the readings for A-Ci response curves, each leaf was allowed 184 10-15 mins to reach a steady state of photosynthesis at 400 µmol mol⁻¹ or 700 µmol mol⁻¹. The 185 initial slopes of the A-Ci response curves were used to calculate maximum carboxylation rate 186

of Rubisco ($V_{c.max}$) and maximum rate of photosynthetic electron transport (J_{max}) as suggested by Farquhar *et al.* (1980) and Von Caemmerer and Farquhar (1981), respectively.

190 2.2.2. Experiment 02 – Glasshouse experiment

One hundred and fifty-two lines of the mapping population, including the two parental lines, 191 were germinated on moistened filter papers in Petri plates. When germinated seedlings reached 192 2 cm in height, they were planted in pots (140 mm in diameter) filled with 1.5 kg of brown 193 topsoil. The experiment was laid as a completely randomized design with each line of the 194 mapping population replicated three times in three individual pots. The pots were placed in 195 glass houses maintained at either ambient CO_2 (400 µmol mol⁻¹) or elevated CO_2 (700 µmol 196 mol^{-1}). The conditions in the glasshouses were identical except for the varied [CO₂] 197 concentration. Day and night temperature was maintained at 22°C and 13°C, respectively. All 198 pots were randomized at weekly intervals to minimize the glasshouse effect. Standard crop 199 management practices were carried out to ensure optimum crop health and growth throughout 200 the study period. The experiment was maintained in both glasshouses for four weeks during 201 winter 2015 in the University of Southern Queensland, Australia (Latitude: 27° 33' 38.02" S 202 and Longitude: 151° 55' 55.20" E). 203

204 2.2.3. Experiment 03 – Growth chamber experiment

The same 152 lines of the mapping population were again grown in two identical growth 205 chambers (Reach in growth chambers, PGC-105, Percival, USA) under controlled 206 environmental conditions for four weeks in 400 mm pots using the same soil type. Both 207 chambers were maintained at a 14-hour photoperiod with day and night temperatures of 23°C 208 and 13°C, respectively. Relative humidity in the chambers was maintained at 70% throughout 209 the growth period. The light intensity was diurnally varied and was 1000 μ mol m⁻² s⁻¹ during 210 midday throughout the growing period. Plants were supplied with optimum nutrients and water 211 throughout the growth period. Elevated $[CO_2]$ conditions were maintained at ~700 µmol mol⁻¹ 212 and ambient $[CO_2]$ condition was maintained at ~400 µmol mol⁻¹ throughout the growing 213 214 season.

215

216 2.3. Growth trait measurements

In this study, shoot dry mass, root dry mass, total dry mass, RGR, seedling height, LER and 217 leaf width were measured as growth traits focusing on the early vegetative stage of wheat 218 seedlings of the mapping population. All the physiological trait measurements were carried out 219 as described by (Pérez-Harguindeguy et al., 2013). In experiment 02, measurements were taken 220 at 2 WAP and 4 WAP in the glasshouse experiment. In both data collection rounds, one plant 221 from each replicate was measured for seedling height, leaf width and LER. Another plant was 222 carefully sampled to determine aboveground biomass accumulation. Plants were oven dried at 223 70°C for 72 hours and dry weights were measured. Plant growth analysis and RGR calculations 224 225 were carried out as described by Hunt (2003).

In experiment 03, seedlings were carefully harvested, including roots, at the end of the growth period (4WAP) and washed with water to remove all soil residues attached to the roots. Then, the shoot and root were separated, and oven dried at 70°C for 72 hours to determine the dry weight of shoots and roots separately. Then, the root to shoot ratio of each line of the mapping population was calculated.

231 2.4. Calculation of CO₂ responsiveness of each growth trait

Percentage responsiveness of each measured trait to elevated $[CO_2]$ was calculated as described in <u>Rae *et al.* (2006)</u>. These results were then considered as the responsiveness of each trait and used for QTL mapping.

235

236
$$CO_2 \text{ responsiveness} = \frac{(\text{Trait value at elevated } [CO_2] - \text{Trait value at ambient } [CO_2])}{\text{Trait value at ambient } [CO_2]} \times 100 (\%)$$

237

238 2.5. QTL mapping

The genetic map of this mapping population was published by Bennett *et al.* (2012b) employing 239 456 DArT and SSR markers forming linkage groups representing all 21 chromosomes (Bennett 240 et al., 2012b, Bennett et al., 2012c). This genetic map was used in this study to identify the 241 potential QTL associated with early growth traits of wheat. In this study, traits used for QTL 242 mapping included seedling height, LER, leaf width, shoot dry weight, root dry weight, RGR 243 and root to shoot dry weight ratio. Measurements for these traits were separately taken from 244 ambient [CO₂] and elevated [CO₂] grown wheat seedlings. Then these data were used to map 245 putative QTL under both ambient [CO₂] and elevated [CO₂]. The CO₂ responsiveness of each 246

trait was calculated separately as mentioned in section 2.4 and these data were used to identify response QTL under elevated $[CO_2]$. The trait data were tested for normality before they were used in the analysis. The physiological data for each 152 wheat lines together with their relevant genotypic data were fed in to the QGene software for QTL mapping. QTL mapping was conducted using QGene software version 4.3.10 employing single trait multiple interval mapping to obtain LOD scores, additive effects and QTL effect (R^2) values. For each trait, a minimum LOD value of 2.0 was used for the identification of putative QTL.

254 2.6. Data analyses

The trait differences in plants grown at ambient [CO₂] and elevated [CO₂] were analyzed using the paired t-test to confirm the suitability of data for QTL mapping. Treatment effects and interactions were determined through Analysis of Variance. Differences were considered significant at P<0.05. All the data were analyzed using SPSS statistical software version 23 (IBM, Armonk, NY, USA). All the graphical representations were carried out using GraphPad Prism scientific software version 5.01 (GraphPad Software, San Diego, CA).

261

3. Results

263 3.1. The response of Kukri and RAC875 to elevated [CO₂]

Elevated [CO₂] increased total dry mass and total grain yield per plant, respectively, by 30% 264 and 82.8% for Kukri compared with 23% and 64.2% for RAC875 (Table 1, P<0.01 and 265 Supplementary Figure 1). A significant [CO₂] effect was observed for the rate of 266 photosynthesis at elevated [CO₂] and for the number of tillers at anthesis (Table 1, P<0.01 and 267 Supplementary Figure 1). Photosynthetic rates were significantly increased in both parental 268 269 lines when grown at elevated [CO₂] (Figure 1(a) and Supplementary Table S1, P<0.01), however, Kukri showed a slightly higher increase in photosynthetic rate (46.2%) than that of 270 RAC875 (38.13%). The cultivar effect was significant on net photosynthesis at elevated [CO₂] 271 (P<0.01) and J_{max} (P<0.01). At anthesis, both parental lines showed a decrease in V_{cmax} , in 272 which Kukri showed a comparatively higher decline (Figure 1(c)). However, Kukri showed a 273 higher J_{max} under elevated [CO₂] than the RAC875 and the effect of cultivars on J_{max} was 274 statistically significant (Figure 1(d)). In addition, there was a significant interaction between 275 $[CO_2]$ and cultivar on J_{max} (P<0.01). Further, the rate of triose phosphate utilization (*TPU*) of 276

the two varieties was significantly different when grown at elevated $[CO_2]$ with Kukri showing a slightly lower *TPU* than that of RAC875 (Figure 1 (e)).

In the early growth stages, both parental lines showed a significantly higher photosynthetic rate 279 at elevated [CO₂] (Figure 1(b) and Supplementary Table S1, P<0.01) and the magnitude of 280 increase in photosynthetic rates were similar for Kukri and RAC875. Despite the similar 281 photosynthetic rates of these two varieties in the early growth stages, Kukri showed a 282 significantly higher biomass accumulation in shoots (44%) and roots (42%) than RAC875 283 284 when plants were grown at elevated [CO₂] (Table 1). Shoot and root biomass accumulation, seedling height, LER and RGR of Kukri were significantly higher than those traits of RAC875 285 at elevated [CO₂] (Table 2, P<0.05) 286

287 **3.2.** Mapping population response to elevated [CO₂]

There was a marked difference between the traits measured in ambient [CO₂] and elevated 288 [CO₂] (Table 2, P<0.05), indicating that QTL mapped from these data will be relevant and of 289 value for further detailed analysis. The frequency distributions for all the measured growth 290 traits of the mapping populations grown in both glasshouse and growth chambers (controlled 291 292 environment chambers) are shown in Figure 2 and 3, respectively, and the trait values of parental lines of the mapping population are marked under both ambient [CO₂] and elevated 293 [CO₂]. All the measured parameters obtained from different CO₂ treatments showed continuous 294 variation and near-normal distribution except for root dry weights, which were positively 295 skewed (Figure 2 & Figure 3). In general, plant growth was stimulated under elevated [CO₂] 296 as assessed from biomass accumulation, seedling height, RGR and LER of different lines either 297 grown at elevated or ambient [CO₂] in glasshouse conditions. For example, the average 298 biomass accumulation of the population was prominent at elevated [CO₂] with an increase of 299 73 mg per plant when compared with ambient $[CO_2]$ grown plants. However, growth responses 300 301 of the population to elevated [CO₂] greatly differed under growth chamber conditions. The average biomass accumulation in shoots and roots of the DH lines showed an increase of 175 302 mg and 62 mg per plant, respectively, when compared with the average trait values of plants 303 grown at ambient [CO₂]. 304

305 3.3. Detection of QTL for growth traits

A total of 13 QTL were identified for the population in ambient [CO₂] (Table 3), 31 QTL in elevated [CO₂] (Table 4) and 24 CO₂-response QTL (Table 5) for the nine traits investigated in this study. There was evidence of QTL for all the growth traits measured under ambient and elevated $[CO_2]$. However, significant CO₂-response QTL were identified in all traits except for LER and RGR. The QTL identified at elevated $[CO_2]$ were distributed across 15 chromosomes, with the chromosomes of the A and B genomes having the most number of QTL (12 each).

Totally, 12 QTL were identified in this study which explained a significant phenotypic 313 variation for biomass accumulation at elevated [CO₂] (Table 4). Of them, four QTL were 314 315 identified on chromosomes 2A, 3B, 7D and 3D for shoot dry weight, which explained 7.6 -9.9% variation in this trait. In experiment 03, QTL for shoot dry weight were found on 1A, 3A, 316 6B and 6D, which explained a total of 42.6% of the phenotypic variation in the population. Of 317 these, the QTL on chromosome 6B could explain 14.4% of shoot dry weight variation in the 318 DH population. In addition, two QTL on chromosome 2A, two QTL on chromosomes 3B and 319 320 2D, and two QTL on chromosomes 3B and 6B were identified as putative QTL for controlling root dry weight, root to shoot ratio and total dry weight, respectively (Table 4). Interestingly, 321 322 the QTL for shoot dry weight on chromosome 6B is collocated with the QTL for total dry weight on the same chromosome. Three CO₂-response QTL associated with increased dry 323 weight were identified on chromosomes 2A, 1B and 4B (Table 5). Of these QTL, two 324 (identified on 2A and 4B) played a role in determining shoot dry weight response to elevated 325 [CO₂]. 326

Six QTL located on 2A, 1B, 3B, 6B and 7D were found to control seedling height (2 WAP) at 327 328 elevated [CO₂] and the most significant QTL was located on chromosome 3B (Table 4). This was further confirmed by the presence of a QTL on chromosome 3B for the trait of seedling 329 height at 4WAP (Table 4). The location of the QTL for these traits at ambient [CO₂] was 330 different (chromosome 3B and 6D, Table 3). Further, different CO₂ response-QTL for seedling 331 height were identified during plant development. For example, CO₂-response QTL for seedling 332 height at 2WAP were mapped on chromosomes 6A, 7A and 2D while a response QTL for 333 seedling height at 4WAP was mapped on chromosome 1B (Table 5). 334

For LER, three QTL were identified on chromosomes 4A, 6A and 1B at elevated [CO₂] which accounted for 24% phenotypic variation of this trait (Table 4). For the same trait, only one QTL was identified (chromosome 3B) under ambient [CO₂] (Table 3), however, no CO₂-response QTL was identified. Leaf width of plants also showed differential control under the two CO₂ treatments. At elevated [CO₂], four QTL for leaf width were identified on chromosomes 6A, 1B, 6B and 2D, of which the QTL located on 6B and 2D were found to explain 38.6%
phenotypic variation of the trait at elevated [CO₂]. For the same trait, only two QTL were
identified at ambient [CO₂] and they were located on chromosomes 6B and 2D (Table 3).
Further, the CO₂-response QTL for leaf width was identified on chromosome 6B (Table 4).

344

345 Discussion

346 4.1. Variation of photosynthesis capacity and plant growth responses at elevated [CO₂]

Genetic variation in growth response to elevated [CO₂] has been documented for many crop 347 and pasture species (Shimono et al., 2009, Thilakarathne et al., 2013, Thilakarathne et al., 348 2015), however, the molecular and genetic mechanism of this response is not fully understood. 349 350 To the best of our knowledge, this study is the first to report new QTL for key plant growth traits of wheat grown under elevated $[CO_2]$. We have also established that the parental lines of 351 352 the mapping population showed contrasting growth responses for elevated [CO₂]. In this study, we identified contrasting growth behavior for two parents, Kukri and RAC875, and among 353 their progenies for different growth traits, particularly at early vegetative growth. The parent 354 line Kukri, showed a higher responsiveness to elevated [CO₂], showing higher trait values for 355 most of the traits tested in this study, especially in biomass accumulation. Significant 356 interactions were found for $[CO_2]$ effect and genotypic effect of the mapping population for 357 main growth traits such as dry mass accumulation and LER suggesting that even the mapping 358 population responded to elevated and ambient $[CO_2]$ in two distinct patterns (Supplementary 359 Table S2). It is likely that such distinct variation in response to elevated [CO₂] could be linked 360 to different water use efficiencies (WUE) of the genotypes, that mapping population was 361 originally generated (Bennett et al., 2012a, Bennett et al., 2012c). On the other hand, the 362 parental cultivars of this mapping population also differ in their NUE which correlates with the 363 final grain yield production (Mahjourimaid et al., 2015). Therefore, the differences in plant 364 365 growth responses at elevated $[CO_2]$ could be due to the differences in plant nitrogen and water status. In addition to the genetic capacity of these genotypes for differential WUE, the increased 366 levels of [CO₂] generally enhances the rates of photosynthesis and reduces transpiration, 367 resulting in higher WUE (Figure 1(f), Hsiao & Jackson, 1999) and thereby facilitate higher 368 plant growth and productivity. Further, it is worthy to highlight that the physiological 369 parameters of progeny lines perform slightly different manner when plants are grown under 370 glasshouse and controlled environmental conditions. Perhaps, this could relate to the light 371

condition of the growth chambers. In both experiments, the CO₂ levels were strictly maintained 372 at 400 and 700 µmol mol⁻¹ at all the time. However, the temperatures were maintained 373 according to a schedule throughout the day, light intensity and relative humidity were 374 maintained at a constant level throughout the growth period in the controlled growth chambers 375 (Supplementary Table S3). In glasshouse, the temperature and [CO₂] was finely controlled but 376 plant was exposed to sunlight. However, consistently under both environmental conditions, 377 there was a clear increase in plant growth and changes in physiological parameters at elevated 378 [CO₂]. 379

Increased photosynthesis rate largely determines the biomass response to elevated [CO₂] across 380 a range of crops, including wheat (Makino & Mae, 1999, Seneweera, 2011b). In this study, 381 photosynthesis rates of the parental lines were significantly increased at elevated [CO₂], but 382 these rates depended on the plant's developmental stage. The photosynthesis rates at early 383 growth stages were higher than the photosynthesis rates at anthesis across both cultivars. 384 However, there was a marked difference between the biomass accumulations in the two 385 parental lines, suggesting the presence of other regulatory mechanisms that control plant 386 growth at elevated $[CO_2]$. Generally, the best indicators of the whole photosynthesis process 387 are V_{cmax} and J_{max} which represent Rubisco activity and the electron transport contributing to 388 RuBP regeneration that are crucial for proper functioning of the photosynthesis machinery in 389 plants (Sharkey, 2016). The V_{cmax} and J_{max} parameters of these two parents also showed a 390 considerable difference, with Kukri displaying a comparatively higher reduction of these two 391 important photosynthesis parameters. However, the J_{max} of Kukri was higher than RAC875 392 suggesting that Rubisco-regeneration limitation of Kukri was less than RAC875 at elevated 393 [CO₂] (Sun et al., 2011). The effect of [CO₂] on TPU was significantly reduced suggesting that 394 net photosynthesis is no longer sensitive to increased [CO₂] (Yang et al., 2016). At this stage, 395 both Rubisco and RuBP regeneration activity may have been regulated at a rate that matches 396 with TPU (Yang et al., 2016), which was apparent with decreased V_{cmax} values at elevated 397 [CO₂]. 398

Acclimation of photosynthesis to elevated $[CO_2]$ is usually associated with significant decreases in Rubisco activity, which will lead to changes in the photosynthetic efficiency of leaves in response to the biochemical adjustments in the carbon and nitrogen metabolism of plants (Ghildiyal & Sharma-Natu, 2000). In the case of elevated $[CO_2]$, although plants become acclimated to high $[CO_2]$ levels, the acclimated photosynthesis rates of plants are higher than the photosynthesis rate of plants grown at ambient $[CO_2]$. This may have led to improvements

in the overall performance of the plants in the high CO₂ environment. Despite the large 405 reduction of V_{cmax} in Kukri compared to RAC875, Kukri showed the highest shoots and roots 406 biomass response to elevated [CO₂], suggesting that increased photosynthesis capacity may not 407 be the only factor that drives increased plant growth and development in the high CO₂ 408 environment. This hypothesis was further supported by recent findings that genetic variation 409 in wheat responses to elevated [CO₂] is determined by specific leaf nitrogen status rather than 410 photosynthetic gas exchange characteristics (Thilakarathne et al., 2015). It has also been 411 demonstrated that cultivars with a high tillering capacity/secondary shoots development 412 413 capacity have a greater ability to thrive well in elevated [CO₂] (Shimono et al., 2009, Tausz et al., 2013), as even a slight stimulation in net assimilation rates and RGR will produce more 414 photosynthetic tissues and leaf area during earlier stages, accelerating their growth at elevated 415 [CO₂]. This could offset the negative impacts of the downward acclimation of photosynthesis 416 in the later stage of plant development at elevated [CO₂] (Van Der Kooij & De Kok, 1996). 417 However, if CO₂ responsiveness is to be capitalized on to improve crop productivity, it is 418 important to instigate both photosynthetic and other important post-photosynthetic related CO₂ 419 420 responsive traits such as plant nitrogen and water status together. Further, it is also required to develop a greater understanding on the coordination of light capture (Zhu et al., 2008) and 421 422 energy conversion (Murchie et al., 2009) of plants to cope with the atmospheric CO₂ increase.

Increased photosynthesis at elevated [CO₂] leads to increased biomass accumulation, 423 consequently changing plant growth, development and morphology, which was mainly 424 determined by traits such as shoot to root dry weight ratio, LER and RGR (Masle, 2000, 425 Seneweera & Conroy, 2005). Increased biomass accumulation during early growth is the key 426 determinant of the final grain yield in cereals. The positive relationship between these two traits 427 is widely used across the globe to increase crop yield potential (Villegas et al., 2001). Although 428 increases in photosynthesis rates at elevated $[CO_2]$ have a positive influence on biomass 429 accumulation, our study's results showed that there was a high variation in biomass 430 accumulation in the parents and the progenies of the DH population despite their rate of 431 432 photosynthesis being similar. However, the variation of this response, whether mediated through improved WUE and/or NUE is not known. If so, these physiological mechanisms 433 independently operate to respond to elevated [CO₂]. In a study conducted by Izanloo et al. 434 (2008), Kukri and RAC875 showed a great difference in WUE, in which Kukri performed well 435 only in well-watered conditions and RAC875 produced stable yield even under moderate 436 drought stress conditions, suggesting that Kukri has a lower WUE compared to RAC875. Our 437

experiments were conducted under proper watering schedules and thus, WUE did not 438 measured, except instantaneous WUE from gas exchange data. However, when plants exposed 439 to elevated [CO₂], Kukri showed a large reduction of stomatal conductance and transpiration 440 rate compared to RAC875 which may have led to higher WUE in Kukri than the RAC875 441 (Figure 1(f)). This increased WUE, together with the high NUE of Kukri (Mahjourimajd et al., 442 <u>2015</u>, <u>Mahjourimajd *et al.*, 2016</u>), may have partly contributed to the higher accumulation of 443 biomass in shoots and roots and, consequently, all the growth traits showed a significant 444 response to elevated [CO₂]. These findings suggest that growth at elevated [CO₂] is controlled 445 by multiple physiological processes, mainly improved photosynthesis, WUE, and NUE, and 446 these processes likely play a significant role in determining the final growth and yield response 447 under rising [CO₂]. 448

449

450 4.2. Genetic basis of plant growth responses to elevated [CO₂] – identification of promising 451 putative QTL

The progenies of the mapping population differed greatly in all growth traits related to final 452 biomass accumulation. Presence of significant positive correlation coefficients between shoot 453 and root biomass at ambient and elevated [CO₂] suggest that these traits are under genetic 454 control and are susceptible to environmental influence (Supplementary Table S3 and S4). 455 456 These findings were further confirmed by QTL mapping in which we found a large number of QTL for different growth traits of wheat in ambient and elevated [CO₂]. In this study, totally 457 68 QTL were determined for plant growth traits, of which 31 were detected at elevated [CO₂], 458 13 QTL at ambient [CO₂] and 24 QTL for CO₂ responsiveness (Figure 4). Although some QTL 459 from the ambient and elevated $[CO_2]$ treatment collocated on the genetic map, there were many 460 QTL that were solely identified in the different growing conditions. A similar pattern of results 461 was observed in a study by (Rae et al., 2006) in which they identified QTL for enhanced leaf 462 growth of hybrid poplar at elevated [CO₂]. Out of all QTL identified at elevated [CO₂], 13 QTL 463 were related to biomass accumulation suggesting that elevated [CO₂] induced biomass gain is 464 highly genetically controlled. This was further supported by summed percentage phenotypic 465 466 variance. For example, the variance of QTL related to shoot biomass accumulation was 43% while QTL mapped for root biomass explained 22% of its phenotypic variation. The genetic 467 and environmental interaction for these two traits, shoot and root biomass, was statistically 468 significant and suggest that DH progenies act differently under the two CO₂ conditions. These 469

findings further indicate that some of the regulatory mechanisms only turn on under elevated[CO₂].

A number of QTL regions identified in this study are worthy of future research. Among the 472 QTL mapped under elevated [CO₂], 11 QTL showed a positive additive effect from Kukri for 473 shoot dry weight (1A: wPt-6568 - wmc0215a, 2A: wPt-2052 - wPt-1139, 6B: wPt-2768 -474 barc0117, 3D: barc0247 - barc0134, 6D: wPt-9887 - wPt-0745), total dry weight (6B: wPt-475 2768 – barc0117), root to shoot dry weight ratio (7D: barc0184 – wPt-0934), seedling height 476 (2A: wPt-9809 - wPt-0944, 6A: wPt-6003 - barc0095, 3B:stm0092tctg - wPt-7001) and leaf 477 elongation rate (4A: wPt-7306 - wPt-9277) (Figure 4). Of these, a significant QTL was 478 observed for shoot weight on chromosome 6B (between wPt-2768 - barc0117), which 479 explained 14.4% of the phenotypic variation of shoot biomass accumulation. A major QTL for 480 total plant biomass was also identified in the same locus of chromosome 6B suggesting that 481 482 there might be some candidate genes that located within this region, which may be largely responsible for biomass gain at elevated [CO₂]. 483

Many traits tested in this study showed a differential control over the two CO₂ treatments, 484 which was evident from the presence of CO₂-response QTL (Rae et al., 2006). Carbon dioxide 485 response effect was mapped using the percentage difference between plants grown at elevated 486 and ambient [CO₂], considering the possibility of using this as a potential trait score that could 487 be used in plant breeding to capitalize on the high CO₂ atmosphere. Out of the CO₂-response 488 QTL detected, 10 showed a positive additive effect (Figure 4) from the parent Kukri, especially 489 for shoot dry weight (2A: wPt-5801 - wPt-3753, 4B: barc0340a - gwm0495, 3D: barc0223 -490 barc0247), root dry weight (2A: wPt- 2052 – wPt-1139, 3D: barc0223 – barc0247), total dry 491 (2A: wPt-5801 - wPt-3753, 1B: wPt-8093 - wPt-5769, 4B: barc0340a - gwm0495 weight) and 492 seedling height (6A: wPt-6003 - wmc0111, 2D: wPt-2636 - wPt-7027). Interestingly, the CO₂-493 response QTL for shoot dry weight and total dry weight on chromosome 2A and 4B had 494 collocated each other, which further confirms that this region might harbor important genes 495 that control plant adaptation to elevated CO₂ levels. For example, chromosome 2AS contains 496 phenology genes such as *Ppd-A1* (Laurie, 1997) that play a key role in photoperiod sensitivity 497 which may have an influence and thereby regulate the vegetative growth of wheat (Kamran et 498 al., 2014). These phenology genes highly modulate by environmental stimulations and thus 499 involve in improving plants' adaptability to a certain environment (Miralles & Richards, 2000, 500 Royo et al., 2018). In addition, CO₂-response QTL identified for LER on chromosome 6A and 501

for RGR on chromosome 3D, also showed a positive additive effect, however, these two QTL
 were not significant at 95% confidence level.

In a recent study by Mahjourimaid et al. (2016), the same DH mapping population has been 504 employed to map the QTL related to grain yield in response to different nitrogen applications, 505 some of which are overlapping with regions identified in our study. For example, some QTL 506 identified on 2A, 6B, 7A and 7D for biomass accumulation and CO₂-response QTL in our study 507 were closer to the QTL regions identified in their study. In addition, QTL for other traits such 508 509 as seedling height, LER and leaf width identified on 1B, 3B and 6A were in line with their study's results (Mahjourimaid et al., 2016). It is always desirable to compare and contrast the 510 genomic regions that have been previously identified in a similar environment to determine the 511 validity of these genomic regions before further detailed analysis. This was a major challenge 512 for our study as only a very limited number of studies have been conducted to identify the 513 genomic regions responsible for plant growth and development at elevated $[CO_2]$, especially 514 in commercially cultivated crops such as wheat. 515

Greater early vigor is considered as one of the important traits for improving wheat yield 516 potential under different environmental conditions (Ludwig & Asseng, 2010). This trait is also 517 known to influence biomass accumulation and nitrogen uptake throughout crop development 518 (Reinke et al., 2002, Liao et al., 2004). In our study, we identified a large number of QTL for 519 different plant growth traits at ambient and elevated [CO₂] conditions, mostly on dry matter 520 accumulation at the early vegetative stage. Three CO₂-response QTL identified on 521 522 chromosomes 2A, 1B and 4B for biomass accumulation can be considered as regions worthy for future research. These QTL are assumed to be involved in sensitivity to [CO₂] responses of 523 biomass production and are likely to be associated with different post-photosynthetic 524 processes. This natural variation provides important information about the adaptation of plants 525 to elevated $[CO_2]$ in the long term. Thus, this information provides new insights for future 526 research on understanding the molecular mechanisms of plant growth responses to elevated 527 [CO₂] and facilitates wheat breeding for the future changing climate. However, before utilizing 528 these QTL into the marker-assisted breeding programs it is required to validate them to confirm 529 their reproducibility. Then, further in-depth research is required to carry out the fine-mapping 530 of the potential QTL to identify the candidate genes responsible for increased growth 531 stimulation at elevated [CO₂]. However, before utilizing these QTL into the marker-assisted 532 breeding programmes it is required to validate them to confirm their reproducibility. Further 533

in-depth research is required to carry out the fine-mapping of the potential QTL to identify the candidate genes responsible for increased growth at elevated $[CO_2]$.

536

537

4. Conclusion

Limited information is available on the genetic basis of plant growth responses to elevated 538 atmospheric [CO₂]. However, this information is essential in determining the ability of plants 539 to adapt to the rapidly changing atmospheric [CO₂]. High biomass accumulation of plants at 540 the early vegetative stage is an important trait that influences their subsequent establishment 541 and productivity in the later stages of development. Therefore, improving this trait will be 542 highly beneficial for plants to enhance CO₂ utilization and thereby stimulate the early vigorous 543 growth of the plants. In this study, we developed an understanding of the physiological and 544 genetic variability of plant growth responses to elevated [CO₂]. Further, we made an effort to 545 identify major QTL that is associated with plant growth at elevated [CO₂] using a DH 546 population of wheat. Here, we identified some unique QTL worthy of future research. Several 547 CO₂-responsive QTL identified in this study were associated with growth traits, mainly 548 549 biomass accumulation. These QTLs were collocated into the same location, suggesting that these regions might play a significant role in determining growth responses at elevated $[CO_2]$. 550 However, these genomic regions should be further fine mapped to identify the possible genes 551 responsible for growth at elevated [CO₂]. Also, it is noteworthy to mention that increased 552 atmospheric [CO₂] interacts with higher global temperatures and altered rainfall patterns, 553 which will continuously challenge plant communities. Therefore, understanding the 554 interactions of these environmental conditions on plant growth is crucial in improving crop 555 productivity under a future CO₂ rich atmosphere. 556

557 **Conflict of interest**

558 The authors declare no conflict of interest.

559 Acknowledgment

560 The doubled haploid mapping population was obtained from the Australian Centre for Plant

561 Functional Genomics, University of Adelaide, Australia to carry out the research. This study

was funded by the Strategic Research Fund of the University of Southern Queensland,

563 Australia.

564 List of Figures

Figure 1 (a) Rate of photosynthesis at anthesis; **(b)** Rate of photosynthesis at 4WAP **(c)** V_{cmax} : Maximum rate of Rubisco carboxylation at anthesis; **(d)** J_{max} :Maximum rate of electron transport at anthesis **(e)** *TPU*: Triosephosphate use limitation **(f)** Rate of transpiration at anthesis in Kukri and RAC875 grown at ambient [CO₂] (400 µmol mol⁻¹) and elevated [CO₂] (700 µmol mol⁻¹), respectively. All measurements were carried out at the 4 replication level. Vertical error bars represent standard errors of mean values. P values indicate the significance: *, P<0.05; **, P<0.01; ns, not significant.

572

Figure 2 Frequency distribution of early growth traits in the RAC875/Kukri DH population: 573 (a) shoot dry weight (2WAP); (c) shoot dry weight (4WAP); (e) Seedling height (2WAP); (g) 574 seedling height (4WAP); (i) relative growth rate; (k) leaf elongation rate; (m) leaf width at 575 576 ambient $[CO_2]$ (400 µmol mol⁻¹); and (b) shoot dry weight (2WAP); (d) shoot dry weight (4WAP); (f) Seedling height (2WAP); (h) seedling height (4WAP); (j) relative growth rate; (l) 577 leaf elongation rate; (n) leaf width at elevated $[CO_2]$ (700 µmol mol⁻¹) under glasshouse 578 conditions. Open circle denotes the trait value of parent Kukri and closed circle denotes the 579 580 trait value for parent RAC875.

581

Figure 3 Frequency distribution of (**a**) shoot dry weight (4WAP); (**c**) root dry weight (4WAP); (**e**) total dry weight (4WAP); (**g**) root to shoot ratio (4WAP) of DH population at ambient [CO₂] (400 μ molmol⁻¹) and (**b**) shoot dry weight (4WAP); (**d**) root dry weight (4WAP); (**f**) total dry weight (4WAP); (**h**) root to shoot ratio (4WAP) of DH population at elevated [CO₂] (700 μ molmol⁻¹) under controlled growth conditions. Open circle denotes the trait value of parent Kukri and closed circle denotes the trait value for parent RAC875.

588

Figure 4 Distribution of quantitative trait loci (QTL) for different early growth traits in 589 response to ambient [CO₂] (400 µmol mol⁻¹), elevated [CO₂] (700 µmol mol⁻¹) and response 590 QTL to elevated $[CO_2]$ in wheat. Numbers on the bars represent traits: 1, Shoot Dry Weight 591 (2WAP); 2, Shoot Dry Weight (4WAP); 3, Seedling Height (2WAP); 4, Seedling Height 592 (4WAP); 5, Leaf Elongation Rate; 6, Leaf Width; 7, Relative Growth Rate; 8, Shoot Dry 593 Weight (4WAP, Controlled Environment); 9, Root Dry Weight (4WAP, Controlled 594 Environment), 10, Total Dry Weight (4WAP, Controlled Environment), 11, Root to Shoot Dry 595 Weight Ratio (4WAP, Controlled Environment). Red and blue bars represent positive additive 596

- effect and negative additive effect, respectively. Bars with continuous and dotted borders
 represents QTL at ambient [CO₂] and at elevated [CO₂], respectively. Bars with yellow colour
 borders represents response QTL to elevated [CO₂].
- 600
- 601 Supplementary Figure 1 Growth parameters of Kukri and RAC875 grown at ambient [CO₂]
- $(400 \ \mu mol \ mol^{-1})$ and elevated [CO₂] (700 $\mu mol \ mol^{-1}$); (a) Shoot dry weight, (b) Root dry
- 603 weight, (c) Total dry weight and (d) root to shoot ration at 4 weeks after planting (WAP) and
- (e) Total dry mass per plant, (f) 1000 grain weight per plant, (g) Number of tillers per plant and
- 605 (f) Total grain yield per plant at maturity.

606	List of Tables
607	
608	Table 1. Growth parameters of Kukri and RAC875 grown at ambient $[CO_2]$ (a $[CO_2]$, 400 µmol
609	mol ⁻¹) and elevated [CO ₂] (e[CO ₂], 700 µmol mol ⁻¹) at 4 weeks after planting (WAP) and at
610	maturity. ns, not significant; *, P<0.05; **, P<0.01.
611	
612	Table 2. Mean values of different physiological traits of parental lines and progenies of the
613	DH population grown at ambient and elevated [CO ₂] conditions. a[CO ₂), ambient [CO ₂];
614	e[CO2], elevated [CO2]; WAP, weeks after planting; Min, minimum value; Max, maximum
615	value; *, P <0.05.
616	
617	Table 3. QTL for growth traits of DH population detected in ambient [CO ₂] conditions (400
618	μmol mol ⁻¹). WAP, weeks after planting.
619	
620	Table 4. QTL for growth traits of the DH population detected in elevated [CO ₂] conditions
621	(700 μ mol mol ⁻¹). WAP, weeks after planting.
622	
623	Table 5. QTL for CO2 responsiveness of growth traits of the DH population to elevated [CO2]
624	conditions (700 μ mol mol ⁻¹). WAP, weeks after planting.
625	
626	Supplementary Table S1. Analysis of variance (ANOVA) results of gas exchange
627	measurements of Kukri and RAC875 grown at ambient $[CO_2]$ (400 µmol mol ⁻¹) and elevated
628	[CO ₂] (700 μ mol mol ⁻¹) at 4 weeks after planting (WAP) and at anthesis (DC65). a[CO ₂),
629	ambient [CO ₂]; e[CO ₂], elevated [CO ₂]; G_s , rate of stomatal conductance; C_i , intracellular
630	[CO ₂]; V_{cmax} , Maximum carboxylation rate of Rubisco; J_{max} , Maximum rate of photosynthetic
631	electron transport; TPU, rate of triose phosphate utilization; ns, not significant; *, P<0.05; **,
632	P<0.01.
633	Supplementary Table S2. Analysis of variance (ANOVA) for different growth traits
634	investigated in experiment 02 (glasshouse trial) and experiment 03 (growth chamber trial).
635	WAP, weeks after planting; ns, not significant; *, P<0.05; **, P<0.01.

- 637 **Supplementary Table S3.** Controlled environmental conditions provided to the Reach-in
- 638 plant growth chambers throughout the experimental period.
- 639 Supplementary Table S4. Correlation matrix of physiological traits of the DH population
- grown under different CO₂ concentrations in experiment 02 (glasshouse experiment). a[CO₂],
- ambient [CO₂); e[CO₂], elevated [CO₂]; WAP, weeks after planting; *, P<0.05; ** P<0.01.
- 642
- 643 Supplementary Table S5. Correlation matrix of physiological traits of the DH population
- grown under different CO₂ concentrations in experiment 03 (growth chamber experiment).
 a[CO₂]; ambient [CO₂]; e[CO₂], elevated [CO₂]; WAP, weeks after planting; *, P<0.05; **,
- 646 P<0.01.

Figure 1

(**d**)

(b)

(**f**)

Seedling Height (2 WAP)

(h)

28 30 32 34 36 38 40 42 44 46 48

Figure 2

Table 1. Growth parameters of Kukri and RAC875 grown at ambient $[CO_2]$ (a $[CO_2]$, 400 µmol mol⁻¹) and elevated $[CO_2]$ (e $[CO_2]$, 700 µmol mol⁻¹) at 4 weeks after planting (WAP) and at maturity. ns, not significant; *, P<0.05; **, P<0.01.

Trait	Mean CO ₂	effect		Mean cultiva	Interaction effect (ANOVA results)						
	a[CO ₂]	e[CO ₂]	ANOVA result	Kukri	RAC875	ANOVA result	[CO ₂]x Cultivar				
Growth-related traits at 4 WAP											
Shoot dry weight (mg/plant)	258.2	339.4	**	336	261.6	**	**				
Root dry weight (mg/plant)	99.2	156.7	**	162.3	93.6	**	ns				
Total dry weight (mg/plant)	357.4	496.1	**	498.3	355.2	**	**				
Root to shoot ratio	0.38	0.46	**	0.484	0.352	**	**				
Growth-related traits at maturity											
Total dry mass (g/plant)	11.7	14.9	**	13.3	13.3	ns	ns				
Thousand grain weight (g/plant)	35.2	37.6	ns	37.6	35.1	ns	ns				
Tiller number	7	9	**	8	8	ns	ns				
Total grain yield (g/plant)	8.1	14	**	10.6	11.6	ns	ns				

Table 2. Mean values of different physiological traits of parental lines and progenies of the DH population grown at ambient and elevated [CO₂] conditions. a[CO₂), ambient [CO₂]; e[CO₂], elevated [CO₂]; WAP, weeks after planting; Min, minimum value; Max, maximum value; *, P <0.05.

	CO.	Parents		DH population								
Traits	level	Kukri	RAC875	Min	Max	Mean	Mean Squares	Broad-sense heritability				
Experiment 02 – Glasshouse experiment												
Shoot dry weight (2WAP) (mg)	a[CO ₂]	47.2	36.5	20.7	78.1	51.7 ± 0.9	784.7*					
Shoot dry weight (2 wAi) (ling)	e[CO ₂]	65.7	61.6	31	76.9	55.3 ± 0.8	_	0.79				
Shoot dry weight $(AWAP)$ (mg)	a[CO ₂]	263.7	222.3	122.6	414	272.2 ± 4.5	380467.6*					
Shoot dry weight (4 wAi) (hig)	e[CO ₂]	413.5	294	166.3	495	345.4 ± 5.6	_	0.98				
Seedling height (2WAP) (cm)	a[CO ₂]	20.1	20.8	14.3	26.6	20.3 ± 0.2	31.1*					
Seeding height (2 w AI) (cm)	e[CO ₂]	22.6	22.6	13.8	25.6	19.6 ± 0.2	_	0.77				
Seedling height (AWAD) (cm)	a[CO ₂]	35	30.4	26.5	47.6	37.1 ± 0.3	36.7*					
Seeding height (4 w AI) (cm)	e[CO ₂]	37.6	34.9	28.8	48.1	37.9 ± 0.3	_	0.61				
Relative growth rate (mg/day)	a[CO ₂]	0.037	0.034	0.01	0.05	0.03 ± 0.0004	0.001*					
Kelative growth fate (ing/day)	e[CO ₂]	0.038	0.032	0.02	0.05	0.04 ± 0.0004	_	0.96				
Leaf elongation rate (mm/h)	a[CO ₂]	6.3	6.1	4.1	8.4	6.3 ± 0.1	15.6*					
	e[CO ₂]	6.8	7.6	1.4	8.8	6.7 ± 0.1	_	0.89				
Leaf width (mm)	a[CO ₂]	6.7	7.3	5	9	0.7 ± 0.01	0.7*					
	e[CO ₂]	6.7	8	6	10	0.80 ± 0.01	_	0.98				
Experiment 03 – Growth chamber experiment												
Shoot dry weight (4WAP) (mg)	a[CO ₂]	271.6	247.2	61.6	251.2	146.1 ± 2.9	2293036*	0.99				
	e[CO ₂]	403.2	277.8	165.9	681.6	321 ± 7.5						
--------------------------------------	---------------------	-------	-------	-------	-------	-----------------	------------	------				
Root dry weight $(4WAP)$ (mg)	a[CO ₂]	133.6	63.6	16.5	131	46.3 ± 1.7	288182.2*					
Root dry weight (4 WAI) (hig)	e[CO ₂]	192.9	121.6	32	273.1	107.9 ± 3.6		0.99				
Total dry weight (4WAP)	a[CO ₂]	405.2	310.9	80.1	382.1	192.3 ± 4.4	4207025.2*					
(mg)	e[CO ₂]	596	399.3	235.7	937.1	428.9 ± 10.5		0.99				
P oot to shoot ratio $(AWAP)$	a[CO ₂]	0.49	0.26	0.15	0.85	0.33±0.008	0.048*					
	e[CO ₂]	0.48	0.44	0.19	0.61	0.31±0.007		0.02				

				Explained	Additivo	
Trait	Chromosome	Position	Peak LOD	variance	affoot	Nearest marker interval
				(%)	eneci	
		Experin	nent 02 - Glassho	ouse experimen	ıt	
Shoot dry weight						
(2WAP)	1A	174	2.407	7	8.06	wPt-3870 - wPt-9802
Shoot dry weight						
(4WAP)	6D	0	1.311	3.9	-11.34	barc0137b-barc0065
Seedling height (2WAP)	6D	22	3.087	8.9	-0.655	Stm0671acaq-psp3001
Solding height $(AWAP)$	3B	20	3.404	9.8	1.15	Barc0106-cfe0254
Securing height (4 w AF)	6D	26	2.949	8.5	-1.109	Psp3001-barc0338
Leaf elongation rate	3B	14	4.113	11.7	0.724	wPt-7001 - barc0106
Leaf width	2D	60	2.933	8.5	-0.028	Ksm0098 - wPt-7599
	6B	58	2.511	7.3	-0.024	Gwm0304b - wmm777-13
Relative growth rate	1A	166	3.673	10.5	-0.006	wPt-3870 - wPt-9802
		Experiment	t 03 – Growth cl	hamber experir	nent	
Shoot dry weight (4WAP)	3B	6	2.352	6.9	0.011	Stm0092tctg - wPt-7001
Root dry weight (4WAP)	3B	30	2.119	6.2	0.006	Cfe0254 – barc0170
Total dry weight (4WAP)	3B	30	2.479	7.2	0.016	Cfe0254 – barc0170

Table 3. QTL for growth traits of DH population detected in ambient $[CO_2]$ conditions (400 µmol mol⁻¹). WAP, weeks after planting.

Root: Shoot dry weight						
ratio (4WAP)	5A	56	2.191	6.4	0.023	Barc0091 - wPt-0335

				Explained	A J J:4:	
Trait	Chromosome	Position	Peak LOD	variance	Additive	Nearest marker interval
				(%)	effect	
		Experin	ent 02 - Glassho	ouse experimen	t	
Shoot dry weight	3B	180	3.444	9.9	-3.238	wPt-7924 - wPt-9675
(2WAP)	2A	16	2.958	8.6	-2.884	wPt-2052 - wPt-1139
(2 W A r)	7D	90	2.616	7.6	4.017	wPt-4115 - stm0535
Shoot dry weight						
(4WAP)	3D	108	2.622	7.6	21.269	Barc0247 – barc0134
	3B	176	3.605	10.3	-0.896	wPt-7924 - wPt-9675
	6B	142	3.65	10.5	-0.739	wPt-1370 - cfa2141
Seedling height (2WAD)	2A	168	2.545	7.4	0.618	wPt-9809 - wPt-0944
Seeding height (2 w AI)	7D	100	3.107	9	0.573	wPt-4115 - stm0535
	1B	170	2.588	7.5	-0.543	Gwm0314c - cfb3200
	2A	18	2.475	7.2	-0.531	wPt-1139 - wPt-2762
	3B	8	4.512	12.8	1.138	Stm0092tctg - wPt-7001
Seedling height (4WAP)	6A	2	2.853	8.3	1.026	wPt-6003 – barc0095
	6A	40	5.869	16.3	-1.937	Ppd-d1 - wPt-0330
	4A	88	2.582	7.5	0.201	wPt-7306 - wPt-9277

Table 4. QTL for growth traits of the DH population detected in elevated [CO₂] conditions (700 µmol mol⁻¹). WAP, weeks after planting.

Leaf elongation rate	6A	62	3.18	9.2	-0.247	wPt-0330 - barc0328b
-	1B	168	2.529	7.4	-0.209	Gwm0314c - cfb3200
	6B	146	6.418	17.7	-0.033	Cfa2141 – wPt-5231
Leaf width	2D	92	7.756	20.9	-0.042	Wmc0256a – barc0353b
-	6A	78	4.974	14	-0.031	wPt-0330 - barc0328b
-	1 B	168	3.9	11.1	-0.026	Gwm0314c - cfb3200
Relative growth rate	4D	62	1.942	3.7	-0.001	Barc0054 – cfd0287
		Experiment	03 – Growth ch	amber experi	ment	
	1A	212	3.322	9.6	0.029	wPt-6568 – wmc0215a
Shoot dry weight (4WAP)	6B	40	5.129	14.4	0.044	wPt-2768 - barc0117
	6D	52	3.23	9.3	0.025	wPt-9887 - wPt-0745
	3A	4	3.229	9.3	-0.024	wPt-4647 - gdm0033b
	2A	0	3.232	9.3	0.013	wPt-1560 - psp3000
Root dry weight (4WAP)						
	2A	76	4.469	12.7	-0.035	Gwm0413 – barc0137a
	3B	142	2.611	7.6	-0.106	wPt-7924 - wPt-9675
Total dry weight (4WAP)						
	6B	32	4.21	12	0.077	wPt - 2768 – barc0117
Root: Shoot dry weight	3B	116	2.636	7.7	-0.024	wPt - 0817 - wPt - 7924
ratio (4WAP)	2D	26	4.36	12.4	-0.057	wPt - 8266 - wPt - 6904
	7D	24	2.915	8.5	0.048	Barc0184 – wPt - 0934

Table 5. QTL for CO₂ responsiveness of growth traits of the DH population to elevated $[CO_2]$ conditions (700 μ mol mol⁻¹). WAP, weeks after planting.

Tro:t	Chromosomo	Desition	Deals I OD	Explained	Additive	Neevest more interval
ITan	Chromosome	rosition	reak LOD	variance (%)	effect	inearest marker interval
		Ex	xperiment 02 -	Glasshouse exp	eriment	
Shoot dry weight						
(2WAP)	6D	52	1.811	5.3	7	wPt-9887 - wPt-0745
Shoot dry weight	2D	96	2.585	7.5	-9.536	Barc0353b – gwm0169
(4WAP)	3D	98	3.508	10.1	13.613	Barc0223 – barc0247
Seedling height						
(2WAP)	2D	22	3.404	9.8	3.587	wPt-2636 - wPt-7027
	6A	0	2.515	7.3	3.408	wPt-6003 – wmc0111
	7A	72	2.494	7.3	-2.861	Barc0328a – psp3001a
Seedling height						
(4WAP)	1B	140	2.115	6.2	-2.917	wPt-5769 – gwm0314c
Leaf elongation rate	6A	2	1.632	4.8	10.516	wPt-6003 - barc0095
Leaf width	6B	144	2.018	5.9	-4.749	wPt-1370 - cfa2141
Relative growth rate	1D	4	1.888	5.6	5.563	wPt-0596 - wPt-5870
		Expe	riment 02 - G	rowth chamber	experiment	
	4B	0	2.506	7.3	16.69	Barc0340a – gwm0495

	2A	36	4.409	12.5	22.112	wPt-5801 - wPt-3753
Shoot dry weight	3A	0	2.941	8.5	-18.782	wPt-4647 - gdm0033b
(4WAP)	7A	98	4.761	13.4	-25.25	wPt-8658 - wmc0264
	5A	60	2.62	7.6	-28.261	wPt-0335 - wPt-3132
Root dry weight	2A	8	2.34	6.8	28.42	wPt-2052 - wPt-1139
(4WAP)	3D	104	2.442	7.1	27.287	Barc0223 – barc0247
Total dry weight	4B	0	2.511	7.3	17.968	Barc0340a – gwm0495
(4WAP)	2A	36	4.372	12.4	23.778	wPt-5801 - wPt-3753
	7A	98	4.957	13.9	-27.538	wPt-8658 – wmc0264
—	1B	44	2.538	7.4	17.757	wPt-8093 - wPt-5769
_	2B	184	3.042	8.8	-24.901	wPt-6262 - wmc0533
Root: Shoot dry weight						
ratio (4WAP)	2A	198	2.534	7.4	-9.068	wPt-3475 – stm0658acag

573 **References**

- Ainsworth E.A., Beier C., Calfapietra C., Ceulemans R., Durand-Tardif M., Farquhar G.D.,
 Godbold D.L., Hendrey G.R., Hickler T. & Kaduk J. (2008) Next generation of elevated
 [CO₂] experiments with crops: a critical investment for feeding the future world. *Plant, cell & environment*, **31**, 1317-1324.
- Bennett D., Izanloo A., Edwards J., Kuchel H., Chalmers K., Tester M., Reynolds M.,
 Schnurbusch T. & Langridge P. (2012a) Identification of novel quantitative trait loci
 for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum
 aestivum L.) population adapted to southern Australian conditions. *Theoretical and Applied Genetics*, **124**, 697-711.
- Bennett D., Izanloo A., Reynolds M., Kuchel H., Langridge P. & Schnurbusch T. (2012b)
 Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. *Theoretical and Applied Genetics*, 125, 255-271.
- Bennett D., Reynolds M., Mullan D., Izanloo A., Kuchel H., Langridge P. & Schnurbusch T.
 (2012c) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.)
 under heat, drought and high yield potential environments. *Theoretical and Applied Genetics*, **125**, 1473-1485.
- Bernacchi C.J., Thompson J.N., Coleman J.S. & Mcconnaughay K.D. (2007) Allometric
 analysis reveals relatively little variation in nitrogen versus biomass accrual in four
 plant species exposed to varying light, nutrients, water and CO₂. *Plant, cell & environment*, **30**, 1216-1222.
- Bloom A.J. (2015) Photorespiration and nitrate assimilation: a major intersection between plant
 carbon and nitrogen. *Photosynthesis research*, **123**, 117-128.
- Bowes G. (1991) Growth at Elevated CO₂ Photosynthetic Responses Mediated Through
 Rubisco. *Plant Cell and Environment*, 14, 795-806.
- Centritto M., Lee H.S. & Jarvis P. (1999) Increased growth in elevated [CO₂]: an early, short term response? *Global Change Biology*, 5, 623-633.
- Collard B., Jahufer M., Brouwer J. & Pang E. (2005) An introduction to markers, quantitative
 trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic
 concepts. *Euphytica*, 142, 169-196.
- Conley M.M., Kimball B., Brooks T., Pinter Jr P., Hunsaker D., Wall G., Adam N., LaMorte
 R., Matthias A. & Thompson T. (2001) CO2 enrichment increases water-use efficiency
 in sorghum. *New Phytologist*, **151**, 407-412.
- Del Pozo A., Pérez P., Gutiérrez D., Alonso A., Morcuende R. & Martínez-Carrasco R. (2007)
 Gas exchange acclimation to elevated CO 2 in upper-sunlit and lower-shaded canopy
 leaves in relation to nitrogen acquisition and partitioning in wheat grown in field
 chambers. *Environmental and experimental botany*, **59**, 371-380.
- Drake B.G., Gonzàlez-Meler M.A. & Long S.P. (1997) More efficient plants: a consequence
 of rising atmospheric CO₂? *Annual review of plant biology*, 48, 609-639.
- Farquhar G., von Caemmerer S.v. & Berry J. (1980) A biochemical model of photosynthetic
 CO2 assimilation in leaves of C3 species. *Planta*, 149, 78-90.
- Ferris R., Long L., Bunn S., Robinson K., Bradshaw H., Rae A. & Taylor G. (2002) Leaf
 stomatal and epidermal cell development: identification of putative quantitative trait
 loci in relation to elevated carbon dioxide concentration in poplar. *Tree Physiology*, 22,
 633-640.
- Fitzgerald G.J., Tausz M., O'Leary G., Mollah M.R., Tausz-Posch S., Seneweera S., Mock I.,
 Löw M., Partington D.L. & McNeil D. (2016) Elevated atmospheric [CO₂] can

- dramatically increase wheat yields in semi-arid environments and buffer against heat waves. *Global change biology*, **22(6)**, 2269-2284.
- Fleury D., Jefferies S., Kuchel H. & Langridge P. (2010) Genetic and genomic tools to improve
 drought tolerance in wheat. *Journal of experimental botany*, 61(12), 3211-3222.
- Gamage D., Thompson M., Sutherland M., Hirotsu N., Makino A. & Seneweera S. (2018) New
 insights into the cellular mechanisms of plant growth at elevated atmospheric carbon
 dioxide. *Plant, cell & environment*, **41(6)**, 1233-1246.
- Geiger M., Walch-Liu P., Engels C., Harnecker J., Schulze E.D., Ludewig F., Sonnewald U.,
 Scheible W.R. & Stitt M. (1998) Enhanced carbon dioxide leads to a modified diurnal
 rhythm of nitrate reductase activity in older plants, and a large stimulation of nitrate
 reductase activity and higher levels of amino acids in young tobacco plants. *Plant, Cell & Environment*, 21, 253-268.
- 634 Ghildiyal M. & Sharma-Natu P. (2000) Photosynthetic acclimation to rising atmospheric 635 carbon dioxide concentration. 961-966.
- Hikosaka K., Onoda Y., Kinugasa T., Nagashima H., Anten N.P.R. & Hirose T. (2005) Plant
 responses to elevated CO₂ concentration at different scales: Leaf, whole plant, canopy,
 and population. *Ecological Research*, 20, 243-253.
- Hsiao T.C. & Jackson R.B. (1999) Interactive effects of water stress and elevated CO₂ on
 growth, photosynthesis, and water use efficiency. In: *Carbon dioxide and environmental stress*, pp. 3-31. Elsevier.
- Hunt R. (2003) Growth analysis, individual plants. *Encyclopaedia of applied plant sciences*.
 Academic Press, Londres, 579-588.
- IPCC (2013) Summary for Policymakers. In: Climate Change 2013: The Physical Science
 Basis.Contribution of Working Group I to the Fifth Assessment Report of the
 Intergovernmental Panel on Climate change. In: [Stocker, T.F., D. Qin, G.-K. Plattner, *M. Tignor, s.K. Ailen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.).*Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Izanloo A., Condon A.G., Langridge P., Tester M. & Schnurbusch T. (2008) Different
 mechanisms of adaptation to cyclic water stress in two South Australian bread wheat
 cultivars. *Journal of Experimental Botany*, **59**, 3327-3346.
- Jitla D.S., Rogers G.S., Seneweera S.P., Basra A.S., Oldfield R.J. & Conroy J.P. (1997)
 Accerlerated early growth of rice at elevated CO₂. *Plant Physiology*, **115**, 15-22.
- Kamran A., Iqbal M. & Spaner D. (2014) Flowering time in wheat (Triticum aestivum L.): a
 key factor for global adaptability. *Euphytica*, **197**, 1-26.
- Keenan T.F., Hollinger D.Y., Bohrer G., Dragoni D., Munger J.W., Schmid H.P. & Richardson
 A.D. (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide
 concentrations rise. *Nature*, **499**, 324.
- Kirschbaum M.U. (2010) Does Enhanced Photosynthesis Enhance Growth? Lessons Learnt
 From CO₂ Enrichment Studies. *Plant physiology*, pp. 110.166819.
- Laurie D.A. (1997) Comparative genetics of flowering time. In: *Oryza: From Molecule to Plant*, pp. 167-177. Springer.
- Liao M., Fillery I.R. & Palta J.A. (2004) Early vigorous growth is a major factor influencing
 nitrogen uptake in wheat. *Functional Plant Biology*, **31**, 121-129.
- Ludwig F. & Asseng S. (2010) Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates. *Agricultural Systems*, **103**, 127-136.
- Mahjourimajd S., Kuchel H., Langridge P. & Okamoto M. (2015) Evaluation of Australian
 wheat genotypes for response to variable nitrogen application. *Plant and Soil*, 1-9.

- Mahjourimajd S., Taylor J., Sznajder B., Timmins A., Shahinnia F., Rengel Z., Khabaz-Saberi
 H., Kuchel H., Okamoto M. & Langridge P. (2016) Genetic basis for variation in wheat
 grain yield in response to varying nitrogen application. *PloS one*, **11**, e0159374.
- Makino A., Harada M., Sato T., Nakano H. & Mae T. (1997) Growth and N allocation in rice
 plants under CO₂ enrichment. *Plant Physiology*, **115**, 199-203.
- Makino A. & Mae T. (1999) Photosynthesis and plant growth at elevated levels of CO₂. *Plant and Cell Physiology*, 40, 999-1006.
- Masle J. (2000) The effects of elevated CO₂ concentrations on cell division rates, growth
 patterns, and blade anatomy in young wheat plants are modulated by factors related to
 leaf position, vernalization, and genotype. *Plant Physiology*, **122**.
- Masle J., Hudson G.S. & Badger M.R. (1993) Effects of ambient CO₂ concentration on growth
 and nitrogen use in tobacco (Nicotiana tabacum) plants transformed with an antisense
 gene to the small subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase. *Plant Physiology*, **103**, 1075-1088.
- Miralles D. & Richards R. (2000) Responses of leaf and tiller emergence and primordium
 initiation in wheat and barley to interchanged photoperiod. *Annals of Botany*, **85**, 655 663.
- Murchie E., Pinto M. & Horton P. (2009) Agriculture and the new challenges for photosynthesis research. *New Phytologist*, **181**, 532-552.
- Nagai Y., Matsumoto K., Kakinuma Y., Ujiie K., Ishimaru K., Gamage D.M., Thompson M.,
 Milham P.J., Seneweera S. & Hirotsu N. (2016) The chromosome regions for increasing
 early growth in rice: role of sucrose biosynthesis and NH₄+ uptake. *Euphytica*, 211,
 343-352.
- Neales T. & Nicholls A. (1978) Growth Responses on Young Wheat Plants to a Range of
 Ambient CO₂ Levels. *Functional Plant Biology*, 5, 45-59.
- Pérez-Harguindeguy N., Díaz S., Garnier E., Lavorel S., Poorter H., Jaureguiberry P., Bret Harte M., Cornwell W., Craine J. & Gurvich D. (2013) New handbook for standardised
 measurement of plant functional traits worldwide. *Australian Journal of Botany*, 61,
 167-234.
- Poorter H. (1993) Interspecific variation in the growth response of plants to an elevated ambient
 CO₂ concentration. *Vegetatio*, **104**, 77-97.
- Poorter H. & Navas M.L. (2003) Plant growth and competition at elevated CO₂: on winners,
 losers and functional groups. *New Phytologist*, **157**, 175-198.
- Rae A., Ferris R., Tallis M. & Taylor G. (2006) Elucidating genomic regions determining
 enhanced leaf growth and delayed senescence in elevated CO₂. *Plant, Cell & Environment*, 29, 1730-1741.
- Rae A.M., Tricker P.J., Bunn S.M. & Taylor G. (2007) Adaptation of tree growth to elevated
 CO₂: quantitative trait loci for biomass in Populus. *New Phytologist*, **175**, 59-69.
- Reinke R., Richards R., Angus J. & Lewin L. (2002) Early vigor: an important foundation for
 rapid biomass accumulation. In: *Proceedings 2nd Temperate Rice Conference* (eds
 J.E.Hill & B.Hardy), pp. 429-438, Sacramento, USA, 13-17 June 1999).
- Royo C., Ammar K., Alfaro C., Dreisigacker S., del Moral L.F.G. & Villegas D. (2018) Effect
 of Ppd-1 photoperiod sensitivity genes on dry matter production and allocation in
 durum wheat. *Field Crops Research*, 221, 358-367.
- Seneweera S. (2011a) Effects of elevated CO₂ on plant growth and nutrient partitioning of rice
 (Oryza sativa L.) at rapid tillering and physiological maturity. *Journal of Plant Interactions*, 6, 35-42.
- Seneweera S. (2011b) Reduced nitrogen allocation to expanding leaf blades suppresses
 ribulose-1, 5-bisphosphate carboxylase/oxygenase synthesis and leads to
 photosynthetic acclimation to elevated CO₂ in rice. *Photosynthetica*, **49**, 145-148.

- Seneweera S., Ghannoum O., Conroy J., Ishimaru K., Okada M., Lieffering M., Kim H.Y. &
 Kobayashi K. (2002) Changes in source–sink relations during development influence
 photosynthetic acclimation of rice to free air CO₂ enrichment (FACE). *Functional plant biology*, 29, 947-955.
- Seneweera S.P. & Conroy J.P. (2005) Enhanced leaf elongation rates of wheat at elevated CO₂:
 is it related to carbon and nitrogen dynamics within the growing leaf blade?
 Environmental and experimental botany, 54, 174-181.
- Sharkey T.D. (2016) What gas exchange data can tell us about photosynthesis. *Plant, Cell & Environment*, **39**, 1161-1163.
- Shewry P. (2009) Wheat. *Journal of experimental botany*, **60**, 1537-1553.
- Shimono H., Okada M., Yamakawa Y., Nakamura H., Kobayashi K. & Hasegawa T. (2009)
 Genotypic variation in rice yield enhancement by elevated CO₂ relates to growth before
 heading, and not to maturity group. *Journal of Experimental Botany*, **60**, 523-532.
- Solomon S., Qin D. & Manning R. (2007) Technical summary. Climate Change 2007: The
 Physical Science Basis.
- Stitt M. & Krapp A. (1999) The interaction between elevated carbon dioxide and nitrogen
 nutrition: the physiological and molecular background. *Plant, Cell & Environment*, 22,
 583-621.
- Sun J., Zhang J., Larue C.T. & Huber S.C. (2011) Decrease in leaf sucrose synthesis leads to
 increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis
 but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1. *Plant, cell & environment*, 34, 592-604.
- Tans P. & Keeling R. (2018) Trends in atmospheric carbon dioxide. NOAA/ESRL
 (www.esrl.noaa.gov/gmd/ccgg/trends/).
- Tausz M., Tausz-Posch S., Norton R.M., Fitzgerald G.J., Nicolas M.E. & Seneweera S. (2013)
 Understanding crop physiology to select breeding targets and improve crop
 management under increasing atmospheric CO₂ concentrations. *Environmental and Experimental Botany*, 88, 71-80.
- Ter Steege M.W., den Ouden F.M., Lambers H., Stam P. & Peeters A.J. (2005) Genetic and
 physiological architecture of early vigor in Aegilops tauschii, the D-genome donor of
 hexaploid wheat. A quantitative trait loci analysis. *Plant Physiol*, **139**, 1078-1094.
- Thilakarathne C.L., Tausz-Posch S., Cane K., Norton R.M., Fitzgerald G.J., Tausz M. &
 Seneweera S. (2015) Intraspecific variation in leaf growth of wheat (Triticum aestivum)
 under Australian Grain Free Air CO₂ Enrichment (AGFACE): is it regulated through
 carbon and/or nitrogen supply? *Functional Plant Biology*, 42, 299-308.
- Thilakarathne C.L., Tausz-Posch S., Cane K., Norton R.M., Tausz M. & Seneweera S. (2013)
 Intraspecific variation in growth and yield response to elevated CO₂ in wheat depends
 on the differences of leaf mass per unit area. *Functional Plant Biology*, 40, 185-194.
- Trevisan S., Manoli A. & Quaggiotti S. (2014) NO signaling is a key component of the root
 growth response to nitrate in Zea mays L. *Plant Signaling and Behavior*, 9.
- Van Der Kooij T.A. & De Kok L. (1996) Impact of elevated CO₂ on growth and development
 of Arabidopsis thaliana L. *PHYTON-HORN-*, **36**, 173-184.
- Villegas D., Aparicio N., Blanco R. & Royo C. (2001) Biomass accumulation and main stem
 elongation of durum wheat grown under Mediterranean conditions. *Annals of Botany*,
 88, 617-627.
- Von Caemmerer S.v. & Farquhar G. (1981) Some relationships between the biochemistry of
 photosynthesis and the gas exchange of leaves. *Planta*, **153**, 376-387.
- Yang J.T., Preiser A.L., Li Z., Weise S.E. & Sharkey T.D. (2016) Triose phosphate use
 limitation of photosynthesis: short-term and long-term effects. *Planta*, 243, 687-698.

- Zadoks J.C., Chang T.T. & Konzak C.F. (1974) A decimal code for the growth stages of
 cereals. *Weed research*, 14, 415-421.
- Zhu X.-G., Long S.P. & Ort D.R. (2008) What is the maximum efficiency with which
 photosynthesis can convert solar energy into biomass? *Current opinion in biotechnology*, **19**, 153-159.

Supplementary Figure 1 Growth parameters of Kukri and RAC875 grown at ambient $[CO_2]$ (400 µmol mol⁻¹) and elevated $[CO_2]$ (700 µmol mol⁻¹); (a) Shoot dry weight, (b) Root dry weight, (c) Total dry weight and (d) root to shoot ration at 4 weeks after planting (WAP) and (e) Total dry mass per plant, (f) 1000 grain weight per plant, (g) Number of tillers per plant and (f) Total grain yield per plant at maturity

Supplementary Table S1. Analysis of variance (ANOVA) results of gas exchange measurements of Kukri and RAC875 grown at ambient $[CO_2]$ (400 µmol mol⁻¹) and elevated $[CO_2]$ (700 µmol mol⁻¹) at 4 weeks after planting (WAP) and at anthesis (DC65). a $[CO_2]$, ambient $[CO_2]$; e $[CO_2]$, elevated $[CO_2]$; G_s , rate of stomatal conductance; C_i , intracellular $[CO_2]$; V_{cmax} , Maximum carboxylation rate of Rubisco; J_{max} , Maximum rate of photosynthetic electron transport; *TPU*, rate of triose phosphate utilization; ns, not significant; *, P<0.05; **, P<0.01.

Trait	Mean CO ₂	effect		Mean cultiva	Interaction effect (ANOVA results)		
	a[CO2]	e[CO ₂]	ANOVA result	Kukri	RAC875	ANOVA result	[CO ₂]x Cultivar
		Photos	ynthesis paraı	neters at 4 WA	P		
Photosynthesis rate (μ mol CO ₂ m ⁻² s ⁻¹)	23.6	29.1	**	27.8	24.9	**	ns
Gs (mol H ₂ O m ⁻² s ⁻¹)	0.35	0.311	ns	0.364	0.306	ns	ns
$\frac{Ci}{(\mu \text{mol CO}_2 \text{ mol}^{-1})}$	277.4	524.9	**	404.9	397.4	ns	ns
Transpiration	4.1	3.5	ns	3.9	3.7	*	ns
		Photosynth	esis paramete	rs at anthesis (]	DC65)		
Photosynthesis rate $(\mu mol CO_2 m^{-2} s^{-1})$	23.3	29.7	**	25.4	27.5	*	**
V_{cmax} (mol H ₂ O m ⁻² s ⁻¹)	44.1	43.6	ns	43.5	43.8	ns	ns
J_{max} (µmol CO ₂ mol ⁻¹)	221.3	225.9	ns	218.3	228.3	**	**
$\frac{TPU}{(\mu \text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1})}$	19.4	18.0	**	17.9	19.4	**	ns

Gs	0.52	0.34	**	0.30	0.52	**	*
$(mol H_2O m^{-2} s^{-1})$							
Ci	266.6	536.8	**	416.4	397.4	**	ns
(µmol CO ₂ mol ⁻¹)							
	4.47	4.46	ns	3.9	4.9	**	**
Transpiration							

Supplementary Table S2. Analysis of variance (ANOVA) for different growth traits investigated in experiment 02 (glasshouse trial) and experiment 03 (growth chamber trial). WAP, weeks after planting; ns, not significant; *, P<0.05; **, P<0.01.

Variance component			Experim	nent 02 – gla		Experiment 03 – growth chamber trial					
	Shoot dry weight (2WAP)	Shoot dry weight (4WAP)	Seedling height (2WAP)	Seedling height (4WAP)	Relative growth rate	Leaf elongatio n rate	Leaf width	Shoot dry weight (4WAP)	Root dry weight (4WAP)	Total dry weight (4WAP)	Root to shoot ratio (4WAP)
Genotype	**	**	**	**	*	**	**	**	**	**	**
[CO ₂]	**	**	**	*	**	**	**	**	**	**	**
Genotype x	**	ns	ns	ns	ns	**	**	**	**	**	**
[CO ₂]											
interaction											

Supplementary Table S3. Controlled environmental conditions provided to the Reach-in plant growth chambers throughout the experimental period.

Time Period	Temperature	Relative humidity	[CO ₂] concentration		Light intensity
			Ambient [CO ₂]	Elevated [CO ₂]	
06:00 hrs	15°C	70%	400 µmolmol ⁻¹	$700 \ \mu molmol^{-1}$	Partial (40%)
08:00 hrs	20°C	70%	400 µmolmol ⁻¹	700 µmolmol ⁻¹	Partial (40%)
11:00 hrs	23°C	70%	400 µmolmol ⁻¹	700 µmolmol ⁻¹	Partial (40%)
15:00 hrs	20°C	70%	400 µmolmol ⁻¹	700 µmolmol ⁻¹	Partial (40%)
18:00 hrs	15°C	70%	400 µmolmol ⁻¹	700 µmolmol ⁻¹	Partial (40%)
20:00 hrs	13°C	70%	400 µmolmol ⁻¹	700 µmolmol ⁻¹	Partial (40%)

Traits	CO ₂ level	Shoot dry weight (2WAP)	Shoot dry weight (4WAP)	Seedling height (2WAP)	Seedling height (4WAP)	Relative growth rate	Leaf elongation rate	Leaf width
Shoot dry weight	e[CO ₂]	1	0.430**	0.515**	0.147	-0.455**	0.368**	.334**
(2WAP)	a[CO ₂]	1	0.337**	0.479**	0.088	-0.579**	0.295**	0.255**
Shoot dry weight	e[CO ₂]		1	0.409**	0.151	0.597**	0.405**	0.36**
(4WAP)	a[CO ₂]		1	.303**	0.174**	0.550**	0.272**	0.247**
Seedling height	e[CO ₂]			1	0.338**	-0.051	0.701**	0.392
(2WAP)	a[CO ₂]			1	0.207*	-0.165*	0.741**	0.412**
Seedling height	e[CO ₂]				1	0.028	0.354**	0.090
(4WAP)	a[CO ₂]				1	0.088	0.231**	0.356**
Relative growth	e[CO ₂]					1	0.082	0.061
rate	a[CO ₂]					1	-0.051	-0.005
Leaf elongation	e[CO ₂]						1	0.277**
rate	a[CO ₂]						1	0.375**
Leaf width	e[CO ₂]							1
	a[CO ₂]							1

Supplementary Table S4. Correlation matrix of physiological traits of the DH population grown under different CO₂ concentrations in experiment 02 (glasshouse experiment). a[CO₂], ambient [CO₂); e[CO₂], elevated [CO₂]; WAP, weeks after planting; *, P<0.05; ** P<0.01.

Supplementary Table S5. Correlation matrix of physiological traits of the DH population grown under different CO₂ concentrations in experiment 03 (growth chamber experiment). a[CO₂]; ambient [CO₂]; e[CO₂], elevated [CO₂]; WAP, weeks after planting; *, P<0.05; **, P<0.01.

Traits	CO ₂ level	Shoot dry weight (4WAP)	Root dry weight (4WAP)	Total dry weight (4WAP)	Root to shoot ratio (4WAP)
Shoot dry weight	e[CO ₂]	1	.789**	.978**	.115
(4WAP)	a[CO ₂]	1	.803**	.973**	.400**
Root dry weight (4	e[CO ₂]		1	.899**	.665**
WAP)	a[CO ₂]		1	.919**	.851**
Total dry weight	e[CO ₂]			1	.307**
(4WAP)	a[CO ₂]			1	.594**
Root to shoot ratio	e[CO ₂]				1
(4WAP)	a[CO ₂]				1

Chapter 4

Elevated carbon dioxide mediated early growth responses of wheat (*Triticum aestivum* L.): an analysis of source and sink interactions

This study was conducted to understand the role of key photosynthetic and post-photosynthetic metabolic processes in determining plant growth responses at elevated [CO₂]. A multidisciplinary approach was used to characterize photosynthesis, carbon metabolism, nitrogen metabolism and cell cycle functions using physiological and molecular tools. Experiments were conducted using selected wheat lines from the doubled haploid population based on their CO₂ responsiveness. Physiological characterization was carried out at the whole plant level whereas biochemical and molecular analyses were carried out at different organ levels. The last fully expanded leaf, expanding leaf, cell elongation region and shoot apex region were used in gene expression and sugar analyses to understand the source and sink interactions at elevated [CO₂]. This chapter has been prepared as a research article to be submitted to "Plant, Cell and Environment".

Gamage D, Thompson M, Dehigaspitiya P, Fukushima A, Sutherland M.W., Hirotsu N, Seneweera S, 'Elevated carbon dioxide mediated early growth responses of wheat (*Triticum aestivum* L.): an analysis of source and sink interactions' (Prepared for publication)

1	Article title:
2	Elevated carbon dioxide mediated early growth responses of wheat (Triticum aestivum L.): an
3	analysis of source and sink interactions
4	
5	Authors:
6	Dananjali Gamage ^{1&3} , Michael Thompson ¹ , Prabuddha Dehigaspitiya ¹ , Ayaka Fukushima ² ,
7	Mark W. Sutherland ¹ , Naoki Hirotsu ^{1&2} , Saman Seneweera ^{1,3&4*1}
8	
9	Author affiliations:
10	¹ Centre for Crop Health, University of Southern Queensland, Toowoomba QLD 4350
11	Australia.
12	² Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, 374-0193 Japan.
13	³ Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna,
14	Kamburupitiya 81 100, Sri Lanka.
15	⁴ National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka
16	
17	*Corresponding author:
18	A/Prof. Saman Seneweera
19	Centre for Crop Health,
20	University of Southern Queensland,
21	Toowoomba Queensland 4350 Australia.
22	Email: <u>Saman.Seneweera@usq.edu.au</u>
23	
24	Abbreviations:
25	[CO ₂] – Carbon dioxide concentration; Rubisco - Ribulose 1,5-bisphosphate
26	carboxylase/oxygenase; LFELB - Last fully expanded leaf blade; ELB - Expanding leaf blade;
27	CER - cell elongation region; LCEZ - leaf cell elongation zone; SAR - shoot apex region;
28	<i>rbcL</i> - Ribulose 1,5 –bisphosphate carboxylase/oxygenase (large sub unit); <i>rbcS</i> - Ribulose 1,5
29	-bisphosphate carboxylase/oxygenase (small sub unit); SPP1 - Sucrose Phosphate Phosphatase
30	1; SPS1 - Sucrose Phosphate Synthase 1; SUS1 - Sucrose Synthase type 1; NiR - Ferredoxin

¹DG – Study design, acquisition, analysis and interpretation of data, drafting of manuscript, MT, PD, AF- Acquisition of data and revision of the manuscript, MWS – critical revision, NH analysis and interpretation of data and critical revision, SS- Study conception and design, analysis and interpretation of data, critical revision

Nitrite Reductase; Fd-GOGAT - Putative ferredoxin-dependent glutamate synthase; GS2a -31 Glutamine Synthetase (Plastidial) – GS2; GS2b - Glutamine Synthetase (Plastidial) – GS2; 32 NADH-GOGAT - Putative NADH-dependent glutamate synthase; GS1a - Glutamine 33 synthetase (cytosolic) – GS1; GSr1 - Glutamine synthetase (cytosolic) – GS1; TaEXPA1 - α – 34 expansin A1; TaEXPA3 - α - expansin A3; TaEXPB1 - β - expansin B1; TaEXPB2 - β -35 expansin B2; TaEXPB3 - β - expansin B3; TaEXPB6 - β - expansin B6; TaEXPB23 - β -36 expansin B23; *TaXTH1* - Xyloglucan endotransglucosylase/hydrolase 1; *TaXTH2* - Xyloglucan 37 endotransglucosylase/hydrolase 2; TaXTH3 - Xyloglucan endotransglucosylase/hydrolase 3; 38 TaXTH4 - Xyloglucan endotransglucosylase/hydrolase 4; TaXTH5 -39 Xyloglucan endotransglucosylase/hydrolase 5. 40 41

42 Summary statement

Soluble sugar accumulation at elevated [CO₂] varies between cultivar, CO₂ levels and the organ type. In response to the availability of different sugars, expression of key genes related to photosynthesis, carbon and nitrogen metabolism and cell wall metabolism have been upregulated.

47 Abstract

The physiological and molecular mechanisms of plant growth responses at elevated [CO₂] were 48 investigated through developing an understanding of the source and sink interaction using 49 wheat. Wheat plants were grown under ambient $[CO_2]$ (400 µmol mol⁻¹) and elevated $[CO_2]$ 50 (700 µmol mol⁻¹) for 6 weeks. Above ground and below ground biomass accumulation, total 51 leaf area and rate of photosynthesis were measured at 42 days after planting. Total soluble 52 carbohydrate concentration in different plant organs (last fully expanded leaf blade, expanding 53 leaf blade and cell elongation region) was measured. Expression analysis of genes involved in 54 55 photosynthesis (*rbcL*, *rbcS*), carbon metabolism (*SPP1*, *SPS1* and *SUS1*), nitrogen metabolism (*Fd-GOGAT, NADH-GOGAT, GS2a, GS2b, GSr1, GS1a*), cell wall metabolism (α and β – 56 expansins, Xyloglucan endotransglucosylase/hydrolases) was performed using real-time 57 quantitative-PCR. There were significant interactions between $[CO_2]$ and cultivar for above 58 (P<0.01) and below ground biomass (P<0.01), total leaf area (P<0.01), total soluble 59 carbohydrate content (P<0.01) and leaf photosynthesis (P<0.05). Transcript abundance of key 60 genes showed a marked difference at elevated [CO₂] showing a significant [CO₂] effect across 61 all organ types and the cultivars (P<0.05). Genes involved in cell wall metabolism and sucrose 62 synthesis were highly expressed in growing sink tissues. Significant correlations exist between 63 64 sugar concentration and SPP1 and some of the Xyloglucan endotransglucosylase/hydrolases encoding genes (TaXTH3, TaXTH5), implying that these metabolic activities may play a 65 leading role in determining the growth response to elevated [CO₂]. 66 67

Keywords: Carbon and nitrogen metabolism, Cell wall metabolism, Elevated [CO₂], Organ specific, Post-photosynthetic processes, Transcript abundance

71 **1. Introduction**

By 2100, the carbon dioxide concentration ($[CO_2]$) in the atmosphere is predicted to reach ~730 72 to ~1020 μ mol mol⁻¹, which is approximately double the [CO₂] of the atmosphere today (IPCC 73 2014). According to Tans and Keeling (2018), the current [CO₂] has already reached up to 400 74 µmolmol⁻¹ and has significantly impacted precipitation and temperature patterns. Despite these 75 negative effects of elevated [CO₂], it also has a positive impact on plant growth and 76 development through improvements in photosynthesis capacities of crops, especially of C₃ 77 origin (Ainsworth et al. 2008; Gamage et al. 2018). Overarching research studies have shown 78 that stimulation of photosynthesis and growth of C_3 plants at elevated $[CO_2]$ is primarily due 79 to the CO_2 to O_2 ratio at the site of CO_2 fixation. The current atmospheric $[CO_2]$ is insufficient 80 to saturate primary carboxylation, the rate-limiting step of photosynthesis by Ribulose-1,5-81 82 bisphosphate carboxylase/oxygenase (Rubisco), and thus, the majority of C₃ plants are not photosynthetically saturated at current [CO₂] (Bowes 1993; Aranjuelo et al. 2015; Bloom 83 84 2015). Therefore, high [CO₂] at the site of fixation leads to increased carboxylation efficiency of Rubisco and thereby increases the photosynthesis capacity of the plant. This process, 85 substantially reduces a competing O₂ fixing reaction commonly known as photorespiration and 86 indirectly facilitates the primary CO₂ fixation at elevated [CO₂] (Bloom 2015). However, the 87 initial stimulation of photosynthesis at elevated [CO₂] gradually decreases and settles in the 88 latter part of the plant development. This process is known as photosynthetic acclimation and 89 depend on species, nutritional status and other environmental conditions (Gutiérrez et al. 2009; 90 Alonso, Pérez, and Martínez-Carrasco 2009). Consistent with this proposition, it has been 91 demonstrated that the highest plant growth response occurs at early growth stages, which will 92 eventually lead to structural changes, greater biomass accumulation and yield of crops (Makino 93 94 et al. 1997; Seneweera et al. 2002; Thilakarathne et al. 2015; Kimball 2016; Jitla et al. 1997). Therefore, understanding the underlying physiological and molecular mechanism of plant 95 growth responses to elevated [CO₂] at early growth stages is highly beneficial for incorporating 96 97 CO₂ responsive traits into current breeding programs in order to improve crop productivity. (Gamage et al. 2018). 98 99

Photosynthesis and its subsequent events associated with plant growth and morphogenesis, are
 closely linked with the carbohydrate metabolism of the plant (<u>Masle 2000</u>; <u>Paul and Pellny</u>
 <u>2003</u>). Photosynthesis is a two-way process, including carbohydrate synthesis and utilization;
 however, these processes are subjected to a feedback regulation process, which highly controls

the source and sink interaction (Paul and Foyer 2001; Paul and Pellny 2003; Körner 2015). It 104 has been identified that one of the key factors that determine plant growth is the conversion of 105 Triose Phosphate (the first stable photosynthesis intermediate) to other types of sugars. In 106 addition, efficient loading/unloading of these sugars into phloem and transport into growing 107 sink tissues also play a role in determining the growth response to elevated [CO₂] (Masle 108 2000; Yang et al. 2016). High carbohydrate availability at elevated [CO₂] will therefore be used 109 by the plants to develop additional sinks through tiller and secondary shoot production which 110 will significantly influence plant growth habits and thereby the final yield (Jitla et al. 1997; 111 112 Makino and Mae 1999; Seneweera et al. 2002). This growth stimulation is then involved with meristem initiation, cell division, expansion and differentiation and integrates these processes 113 to develop new sink tissues in order to utilize Triose Phosphate in an efficient manner (Masle 114 2000; Gamage et al. 2018). 115

116

117 The increased carbon supply at elevated [CO₂] not only influences the source-sink integration of plants, but also has a profound effect on the plant transcriptome, which determines the 118 119 mechanism for adjusting to a particular environmental change (Vicente et al. 2015; Ainsworth et al. 2006). The transcript level changes in key genes associated with different metabolic 120 121 pathways have been previously reported in wheat grown at elevated [CO₂]. It has been well established that a number of genes, including carbon and nitrogen metabolism-related genes, 122 function partly through a sugar sensing mechanism. These genes differentially expressed 123 between the organs and highly cross-regulate with resource allocation and utilization among 124 plant tissues (Koch 1996; Koch 2004). For example, plants grown at elevated [CO₂] showed 125 no repression of photosynthetic genes and photosynthetic capacity with enhanced carbon 126 supply, provided that nitrogen and sink capacity of the plants are not limited (Geiger et al. 127 1999; Martin, Oswald, and Graham 2002; Ainsworth et al. 2004). This efficient carbohydrate 128 generation and utilization can be observed especially in the early stages of plant growth at 129 elevated [CO₂] when the sink strength of the plant is generally high (Ainsworth and Bush 130 2011). 131

132

At elevated [CO₂], plants produce excess sugars, which includes different metabolically active sugars such as sucrose, glucose and fructose. Sugar concentrations in different plant tissues vary in a significant manner, facilitating a broader range of signals which may ultimately contribute to adaptive changes to different environmental conditions (Koch 1996; Gibson 2005; Smeekens et al. 2010). For example, photosynthesis genes in carbon exporting cells or

in source tissues are typically upregulated, as the generated sugars are constantly translocated 138 to sink tissues in which genes related to sucrose formation and amino acids synthesis are 139 upregulated (Paul and Pellny 2003; Stitt, Lunn, and Usadel 2010). This suggests that the roles 140 performed by each gene and their related proteins can be tissue/organ-specific and their roles 141 may be cross-linked with the sugar availability of a particular tissue or an organ. Despite the 142 importance of this phenomena, tissue/organ-specific gene expression and its role in 143 determining plant growth and development at elevated [CO₂] have not been studied in detail 144 (Gamage et al. 2018; Vicente et al. 2015). The high sugar supply will result in changes in 145 146 metabolism, enzyme activity and development activity, but this information has not been evaluated in an extensive manner with relation to CO₂ enriched conditions (Gamage et al. 2018; 147 Koch 1996; Aranjuelo et al. 2015; Thompson et al. 2017). Therefore, the role of sugar-148 responsive genes in specific tissues, crosstalk with carbon and nitrogen metabolism, together 149 with plant growth responses, deserves further exploration. 150

151

In this study, we investigated various aspects related to the underlying physiological and 152 153 molecular mechanisms of plant growth responses at elevated $[CO_2]$. Here we tested the following hypotheses: (i) plant early growth response to elevated [CO₂] varies between 154 cultivars; (ii) plant growth responses are primarily mediated through a variation in net 155 photosynthesis capacity; (iii) response to elevated [CO₂] is partially controlled by post-156 photosynthetic processes, such as carbon and nitrogen metabolism, and cell cycle functions, 157 such as cell elongation and expansion, and; (iv) both photosynthetic and post-photosynthetic 158 processes are mediated through sugar supply and source-sink integration under elevated $[CO_2]$. 159 This is the first step towards dissecting the mechanism of early growth of wheat in response to 160 elevated [CO₂], focusing on post-photosynthesis metabolism. 161

162

163 **2. Materials and methods**

164

165 **2.1 Plant materials**

This study used plant material from a mapping population of wheat derived from the two parental genotypes Kukri and RAC875, which have shown contrasting growth habits, nitrogen use efficiencies and has shown a large variation of growth response to elevated [CO₂] (Izanloo et al. 2008, our unpublished data; Bennett, Izanloo, et al. 2012; Bennett, Reynolds, et al. 2012). The two parental lines have been previously screened for their growth parameters and CO₂ responsiveness at elevated [CO₂] (unpublished data). Seeds of the mapping population were sourced from Australian Centre for Plant Functional Genomics, University of Adelaide, Australia. Based on the results of this screening trial, four high responsive and four less CO₂responsive wheat lines were selected and progressed for further analysis in this study (Supplementary Table S1). For the clarity in interpretation of results, high responsive lines will be named henceforth H₁, H₂, H₃ and H₄ while less responsive lines will be named as L₁, L₂, L₃ and L₄.

178

179 2.2 Growth Conditions

180 The ten selected wheat lines (four high responsive, four less responsive and two parental lines) were grown in two identical growth chambers (Reach in growth chambers, PGC-105, Percival, 181 182 USA) at the University of Southern Queensland, Australia. Plants were grown with a 14-hour photoperiod and a day and night temperature of 23°C and 13°C, respectively (Supplementary 183 184 Table S2). The relative humidity of both chambers was maintained at 70% throughout the day while light intensity varied. A light intensity of 1000 µmolm⁻²s⁻¹ was maintained during mid-185 day throughout the growing period. Elevated $[CO_2]$ conditions were maintained at ~700 186 μ molmol⁻¹ and ambient [CO₂] conditions were maintained at ~400 μ molmol⁻¹ throughout the 187 growing season. 188

189

Seeds from all the ten lines were surface sterilized for 1 min in 2.6% NaClO and washed 190 thoroughly using reverse osmosis water. Then, sterilized seeds were placed on moistened filter 191 papers (Whatmann, Sigma-Aldrich, USA) in Petri dishes and allowed for germination. After 192 one week of germination, seedlings were transplanted on 400 mm plastic pots filled with 500 193 g of brown top soil. Then, these pots were either placed in elevated $[CO_2]$ or ambient $[CO_2]$. 194 195 The experiment was comprised of a completely randomized design at the three-replication level and was maintained for six weeks after transplantation. Pots were randomized every four days 196 within each chamber and swapped between chambers weekly to minimize the chamber effect. 197 Throughout the growing period plants were carefully monitored and all the standard 198 199 management practices were carried out to ensure crop health.

200

201 2.3 Biomass and leaf area determination

At the end of the six weeks growth period (42 days after planting [DAP]), a set of seedlings from all ten lines were harvested and separated to last fully expanded leaf blades, other leaf blades and roots to determine above-ground and below-ground biomass, total leaf area of the
young wheat seedlings. Before determining biomass, leaf area of the last fully expanded leaves
and other leaf blades were measured using a leaf area meter. Then, to determine the biomass,

- leaf blades and root samples of all the ten wheat lines were oven dried for 48 hours at 60°C.
- 208

209 2.4 Tissue carbohydrate analysis

210

211 2.4.1 Sample Collection

After six weeks of transplanting, four seedlings of each replicate were carefully sampled for 212 213 carbohydrate analysis. Seedlings were separated into last fully expanded leaf (LFELB), immediate growing leaf and roots. Then, the stem was cut from the base of the main plant, and 214 215 the leaf sheaths removed to clear the expanding leaf blade (ELB). From the expanding leaf, a 2 cm section was cut from the base of the seedling and this section was considered as the "shoot 216 217 apex region" (SAR) of the young seedling. From the remaining expanding leaf, another section of 5 cm from the remaining leaf blade was cut and used for further analysis as the "leaf cell 218 elongation zone" (LCEZ). These tissues were carefully sampled and separately stored in 1.5 219 mL Eppendorf tubes for further analysis. 220

221

222 **2.4.2** Determination of Carbohydrates

Samples collected; LFELB, ELB and pooled samples representing LCEZ and SAR (henceforth named as cell elongation region [CER]) of each line, were oven dried at 65° C for 72 hours. All tissue types were then ground to fine powder using a ball mill (Tissue Lyser II, QIAGEN, Australia) and 50 mg of each sample was used to analyze the glucose, fructose and sucrose in each tissue type at both elevated [CO₂] and ambient [CO₂]. Analysis of these sugars was assayed enzymatically using a Boehringer Mannheim kit (Catalogue No – 10716260035) according to the manufacturer's instructions (R-Biopharm, Germany).

230

231 2.5 Gas exchange and chlorophyll fluorescence measurements

Six weeks after planting, gas exchange measurements of the last fully expanded leaf were carried out as described by <u>Seneweera et al. (2002)</u>. Gas exchange measurements were carried out using a portable photosynthesis system (IRGA, LI-6400, LI-COR, USA) from 9.00 am to 2.00 pm. Leaf chamber temperature and air flow rate of the LI-COR system was maintained at

25°C and 500 µmol s⁻¹, respectively. Leaf chamber [CO₂] was controlled by the [CO₂] mixer 236 and reference [CO₂] in the chamber was maintained at either 400 µmol mol⁻¹ or 700 µmol mol⁻¹ 237 ¹ under ambient [CO₂] and elevated [CO₂], respectively. Chamber irradiance was supplied by 238 a red and blue light source and light intensity was maintained at 1500 μ mol quanta m⁻² s⁻¹. 239 Relative humidity of the leaf chamber was maintained between 50–70%. Prior to starting gas 240 exchange measurements, the leaf was allowed to reach a steady state of photosynthesis. The 241 steady state of photosynthesis was achieved between 10–15 min and then spot measurements 242 of the rate of photosynthesis, stomatal conductance, intracellular [CO₂] and rate of transpiration 243 244 were recorded in each genotype.

245

Chlorophyll fluorescence parameters were estimated using the leaf chamber fluorometer attached to an LI-6400XT portable photosynthesis system (LI-6400, LI-COR, USA). After plants reached a steady state photosynthesis rate, PSII operating efficiency (ϕ PSII), electron transport rate (ETR), photochemical quenching (q_P), non-photochemical quenching (NPQ) and maximum PSII efficiency (Fv'/Fm') were measured for the two parental cultivars Kukri and RAC875.

252

253 **2.6 Gene expression analysis**

254

255 2.6.1 Sample collection

Another set of samples were used for gene expression analysis. From one wheat line, four different plant organs, as described in the earlier section, were used for gene expression analysis (LFELB, ELB, LCEZ and SAR). Four plants from each replicate were used for this analysis. Samples were harvested between 10:00 to 13:00 hours and, as soon as they were harvested, were carefully transferred into liquid nitrogen and stored at -80°C until total RNA extraction was completed.

262

263 2.6.2 RNA extraction and quantification

Total RNA was extracted from 300 mg (fresh weight basis) of frozen plant materials. Plant materials were ground with liquid nitrogen using a chilled mortar and pestle to obtain a fine powder. Then, 700 μ l of TPS buffer (100 mM Tris-HCl (pH 8), 10 mM EDTA and 1 M KCl) and 500 μ l (per 300 mg of plant tissues) of Trizol® Reagent (Invitrogen by Thermo Fisher Scientific, USA) were added to the ground plant materials and further ground until the sample was completely homogenized. Then, RNA extraction for these homogenized samples was carried out according to the manufacturer's instructions. The quantity of extracted RNA was determined using a Qubit 3 Fluorimeter (Invitrogen by Thermo Fisher Scientific, USA) as per the manufacturer's instructions. Finally, total RNA concentration was adjusted to a constant concentration $(1\mu g/\mu l)$ per sample for subsequent reactions.

274

275 **2.6.3 cDNA Synthesis**

All the samples of RNA were treated with DNase I, Amplification Grade (Invitrogen by Thermo Fisher Scientific, USA), according to the manufacturer's instructions, to avoid possible contaminations of genomic DNA in the samples. Then, cDNA synthesis was carried out by reverse transcription reactions performed using a SensiFASTTM cDNA synthesis kit (Catalogue No – Bio-65054, Bioline, UK) in a total volume of 20 μ l according to manufacturer's instructions.

282

283 2.6.4 Identification of gene-specific primers

Gene-specific primers associated with photosynthesis, carbon metabolism, nitrogen metabolism and cell cycle were sourced from previously published literature and verified for their specificity with *Triticum aestivum* L. using the Primer-Blast option in National Centre for Biotechnology Information (NCBI). Details of the genes used in the study along with their primer sequences and relevant literature are listed in Table 1 and Supplementary Table S2. All the primers were sourced from Integrated DNA Technologies, Inc. USA.

290

291 2.6.5 Real-time Quantitative PCR (qRT-PCR)

The qRT-PCR assays were carried out in an optical 96 well plate with the QuantStudio 3 Real-292 Time PCR system (Applied Biosystems from Thermo Fisher Scientific, USA), using SYBR 293 green to monitor double-stranded DNA synthesis. The assay reaction mixture of 20 µl 294 contained 4 µl of diluted cDNA (1:10), 2 µl 10 mM gene-specific primer, 4 µl of DNAse/RNase 295 free water and 10 µl of 2X-SYBR Green Master Mix reagent (Applied Biosystems from 296 297 Thermo Fisher Scientific, USA). The programme for the thermal cycler was 95°C for 10 minutes, 40 cycles of 95°C for 15 sec and 60°C for 1 minute. The melt curve protocol followed 298 with 15 seconds at 95°C and then 60 seconds each at 1.6°C increments between 60°C and 95°C. 299 Samples from LFELB, ELB, LCEZ and SAR of two parental lines (Kukri and RAC0875) were 300

used in three biological replicates per treatment in the qRT-PCR assay. The efficiency of the qRT-PCR was determined using raw fluorescence data as input in LinRegPCR v2012.3 (Ruijter et al. 2009). Determination of relative expression was done using the comparative threshold cycle (C_t) method $2^{-\Delta\Delta Ct}$ (Schmittgen and Livak 2008; Pfaffl 2001) and presented as the log₂ fold change of elevated and ambient [CO₂].

306

307 2.7 Statistical Analysis

Treatment effects and interactions were determined by Analysis of Variance (ANOVA) 308 through general linear modeling. Standard errors of differences and the Tukey's test were used 309 310 to determine the differences between treatments. Differences were considered significant at P<0.05. Pearson product-moment correlation test was conducted to analyse the potential 311 correlation between sugar content and the relative gene expression at elevated [CO₂]. All 312 statistical analyses were performed using SPSS statistical software version 23 (IBM, Armonk, 313 314 NY, USA). All graphical representations were carried out using GraphPad Prism scientific software version 5.01 (GraphPad Software, San Diego, CA). 315

- 316
- 317

318 **3. Results**

319

320 3.1 Genetic variation in growth response to elevated [CO₂]

Growth characteristics of two parental lines of the mapping population showed a significant difference when they were grown at elevated [CO₂]. There were significant interactions between [CO₂] and cultivar for biomass accumulation (Figure 1(a), P<0.05) and total leaf area (Figure 1(b), P<0.05, Details of the ANOVA results are listed in Supplementary Table S4). Above ground biomass accumulation and total leaf area of Kukri were increased by 11.5% and 10.2% at elevated [CO₂]. Similarly, in RAC875, total plant dry mass and total leaf area were increased by 86% and 34.5%, respectively at elevated [CO₂].

- In the selected wheat lines, there were significant interactions between $[CO_2]$ and cultivar for above (P<0.01) and below ground biomass (P<0.01) and total leaf area (P<0.01, Table 2). The
- mean CO₂ responsiveness for above and below ground biomass accumulation were 225.4%
- and 175.7%, respectively, for high responsive lines. Of them, the highest CO₂-responsiveness
- was recorded for the H_2 wheat line for both above and below ground dry mass accumulation.

Increase in above and below ground dry mass of less responsive wheat lines showed a less response to elevated $[CO_2]$ and showed an increase of 31.2% and 34.7%, respectively, under elevated $[CO_2]$. The overall increase in leaf area production at elevated $[CO_2]$ was higher at elevated $[CO_2]$, however, there was a marked decrease in CO₂ responsiveness of total leaf area (-17.99%) of the less responsive lines (Table 2).

339

340 3.2 Net photosynthesis and chlorophyll fluorescence activity at elevated [CO₂]

The rate of photosynthesis of the parental cultivars, Kukri and RAC875, was significantly 341 stimulated when grown under elevated [CO₂] (P<0.05) (Figure 2(a)). However, RAC875 342 showed comparatively higher photosynthetic stimulation when compared to Kukri. In 343 RAC875, the net photosynthetic rate has been increased by 70.46% at elevated [CO₂]. With 344 regards to the chlorophyll fluorescence parameters, the maximum efficiency of PSII and non-345 photochemical quenching of these two cultivars were not significantly different at elevated 346 347 [CO₂]. However, the operating efficiency of PSII (Figure 2(b)), the rate of electron transport in PSII (Figure 2(c)) and photochemical quenching of PSII (Figure 2(d)) were significantly higher 348 (P<0.05) in RAC875 under elevated [CO₂]. 349

350

The photosynthesis capacity of the other wheat lines was also substantially increased at elevated [CO₂]. There was a significant interaction between [CO₂] and cultivar for leaf photosynthesis of these wheat lines (P<0.05, Table 2). A higher response for photosynthesis at elevated [CO₂] was demonstrated in high responsive wheat lines with the H₂ wheat line showing the highest percentage increase. The increases in photosynthesis capacity of less responsive lines were less under high [CO₂] and showed a marked decrease in CO₂ responsiveness for rates of photosynthesis (-12.16%, Table 2).

358

359 3.3 Carbohydrate biosynthesis and organ-specific carbohydrate accumulation at elevated 360 [CO₂]

Large differences in sugar accumulation between two parental cultivars were observed under elevated [CO₂]. The soluble sugar concentrations of two parental cultivars significantly varied between genotypes (P<0.05) and different organs (P<0.05) under high CO₂ conditions (Figure 1(c)). The highest total sugar content was found in the CER at elevated [CO₂] which showed an increase of 64.4% in Kukri and 117.3% in RAC875 (P<0.01, Figure 3). In ELB, the highest total soluble sugar content was observed in RAC875 with an increase of 67% at elevated [CO₂]

(Figure 3). In general, the highest sucrose concentration was detected in the LFELB and the 367 contents were increased by 177.9% and 398.6% in Kukri and RAC875, respectively, at elevated 368 [CO₂] (Supplementary Figure S1). Among all the sugars, glucose and fructose were the 369 prominent soluble sugars in CER of the wheat seedlings. At elevated [CO₂], glucose and 370 fructose concentrations were increased by 145.6% and 33.8%, respectively, in Kukri and 371 227.8% and 177.2%, respectively, in RAC0875 (Supplementary Figure S1). Overall, RAC875 372 showed the highest response for carbohydrate biosynthesis and accumulation under elevated 373 [CO₂] across all the organ types. 374

375

Among the other eight selected wheat lines, the total soluble carbohydrate content of high 376 responsive lines showed higher percentage increase at elevated [CO₂], when compared with 377 the less responsive lines (Table 2). The highest CO₂ responsiveness for total soluble 378 carbohydrates accumulation was observed in wheat lines H1 and H2, with a 31.5% and 25.1% 379 increase in soluble carbohydrate concentration at elevated [CO₂] respectively (Table 3). The 380 least response for soluble carbohydrate accumulation was observed in the wheat line L₁, which 381 showed a - 5.5% responsiveness to elevated [CO₂] (Table 3). There were significant 382 interactions among [CO₂], cultivar and organ for sucrose (P<0.01), glucose (P<0.01) and 383 384 fructose (P<0.01) contents across the different wheat lines tested in this study (Table 3). The sucrose and fructose contents of LFELB, ELB and CER were higher in plants grown at elevated 385 [CO₂]. However, the glucose concentrations were lower at elevated [CO₂] across all organs 386 when compared to ambient $[CO_2]$ grown plants. The highest CO_2 responsiveness for total 387 soluble carbohydrate accumulation was observed in wheat lines H₁ and H₂, with a respective 388 increase of 33.4% and 42.8% in last fully expanded leaves, 14.2% and 40.2% in ELB and 389 62.36% and 35.18% in CER of the plants grown at elevated [CO₂]. 390

391

392 **3.4** Effect of elevated [CO₂] on the expression of key photosynthesis-related genes

Genes encoding Rubisco, *rbcL* and *rbcS*, were tested to understand the variation in photosynthesis at the molecular level. Relative expression of *rbcL* and *rbcS* varied significantly among different organs (P<0.01) in two CO₂ levels (P<0.01) (Supplementary Table S5). Expression of *rbcL* did not differ between the genotypes, however, expression of *rbcS* showed a significant difference between the two genotypes (P<0.05). In general, *rbcL* expression was higher in photosynthetic tissues (LFELB and ELB) while *rbcS* expression was higher in nonphotosynthetic tissues (SAR) (Table 4). Expression of both genes was upregulated in elevated $[CO_2]$ across all plant organs. More importantly, expression of *rbcL* and *rbcS* in LFELB, was greater in RAC875 than Kukri at elevated [CO₂]. The expression of *rbcL* and *rbcS* in the LFELB of RAC875 showed a 1.7 and 1.9-fold increase, respectively at elevated [CO₂] when compared to the expression of these genes in Kukri.

404

405 3.5 Effect of elevated [CO₂] on carbon metabolism

Distinctive organ-specific expression patterns were observed for SPP1, SPS1 and SUS1 across 406 the genotypes tested. These genes showed a significant increase in expression at elevated [CO₂] 407 when compared to plants grown at ambient [CO₂] (P<0.01, Supplementary Table S5). 408 409 However, a significant genotypic difference was only observed for SPS1 gene expression at elevated [CO₂] (Supplementary Table S5, P<0.01). Expression of all these genes significantly 410 differed in different organs (P<0.01, Supplementary Table S5). In the last fully expanded leaf 411 and expanding leaf, relative expression of SPP1 was the highest, while SUS1 showed the 412 413 highest expression in cell elongation and shoot apex regions (Table 5).

414

The expression of SPP1, SPS1 and SUS1 in the LFELB of RAC875 grown at elevated [CO₂] 415 showed a significant increase in expression compared to ambient [CO₂] grown plants, with a 416 5.4, 4.8, 2.0-fold increase, respectively. The expression of SPS1 was upregulated at elevated 417 [CO₂] across all organ types, where the highest fold increase was observed in the LFELB of 418 both cultivars. In contrast, the SPP1 gene was upregulated only in photosynthetic tissues, while 419 it showed a lower transcript abundance in the non-photosynthetic tissues. This scenario was 420 comparatively less at elevated [CO₂] demonstrating an indirect upregulation of this gene. 421 Expression of SUS1 gene was higher in the cell elongation and shoot apex regions of RAC875, 422 with a fold increase of 2.19 and 2.64 at elevated [CO₂]. 423

424

425 **3.6** Effect of elevated [CO₂] on genes associated with plant nitrogen metabolism

Since the leaf is the predominant site for nitrogen assimilation in plants, key genes involved in nitrogen metabolism were examined in the LFELB and ELB of Kukri and RAC875. The expression of *NiR*, *GS1a*, *GSr1*, *NADH-GOGAT*, *GS2a*, *GS2b* and *Fd-GOGAT* at elevated [CO₂] significantly differed from the expression levels observed at ambient [CO₂] (P<0.01, Supplementary Table S5). Further, expression of all these genes was significantly varied between LFELB and ELB organs (P<0.05, Supplementary Table S5) except for *NADH-GOGAT* and *NiR* expression. Highest transcript abundance for *GS2a* and *Fd-GOGAT* was

observed in ELB than the LFELB under both ambient and elevated [CO₂] (Table 6). However, 433 the CO₂ effect on expression of these genes was higher in LFELB. For example, Kukri showed 434 5.9 and 4.1 fold change increase and RAC875 showed 1.63 and 2.53 fold change increase, 435 respectively, for *Fd-GOGAT* and *GS2a* expression at elevated [CO₂]. Similarly, expression of 436 GS1a was comparatively higher in LFELB, of which RAC875 showed the highest expression 437 with a fold increase of 8.6 when compared to ambient [CO₂]. In contrast, GSr1 and NADH-438 GOGAT expressions were comparatively less in both LFELB and ELB. A marked upregulation 439 of these two genes was observed in the LFELB of RAC875 at elevated [CO₂] with a fold 440 441 increase of 21 and 9.6, respectively.

442

3.7 Effect of elevated [CO₂] on the expression of key genes related to cell elongation and expansion

445 A majority of genes associated with α and β-expansins were highly expressed in meristematic 446 tissues in LCEZ and SAR of both Kukri and RAC875. With reference to α-expansins, 447 expression of *TaEXPA3* varied significantly between organ types and genotypes at two 448 different CO₂ treatments (P<0.05, Supplementary Table S5). In the SAR, there was a higher 449 upregulation of this gene in both cultivars at elevated [CO₂], of which Kukri showed the highest 450 expression. Although the transcript abundance for *TaEXPA1* was high in the LCEZ and SAR, 451 no significant differences were found between the two CO₂ treatments.

452

The expression of β -expansing also differed significantly between two CO₂ treatments except 453 for TaEXPB1 (P<0.01, Supplementary Table S5). In general, expression of TaEXPB2, 454 TaEXPB3, TaEXPB6 and TaEXPB23 were highly expressed at elevated [CO₂] in both varieties 455 (Table 7). In the LCEZ of Kukri, TaEXPB2, TaEXPB6 and TaEXPB23 showed a marked 456 upregulation, while all tested genes, except for *TaEXPB1*, were highly expressed in RAC875 457 at elevated [CO₂] (Table 7). In contrast, the expression of *TaEXPB1* was only upregulated in 458 the SAR of both cultivars (P<0.05, Supplementary Table S5). The genotype differences in 459 expression of *TaEXPB3* and *TaEXPB6* were significant, of which RAC875 showed a higher 460 response to elevated [CO₂]. 461

462

The detection of several α and β-expansins was very low in LFELB and ELB, and therefore, those results are not reported in this study. In leaf tissues, *TaEXPA3*, *TaEXPB6* and *TaEXPB23* were the only three genes in expansins category that showed a detectable relative expression at both CO₂ levels and significantly varied between last fully expanded and expanding leaves (P<0.05, Supplementary Table S5). These three genes showed a down-regulation in LFELB while they showed an upregulation in ELB (Table 7). Further, *TaEXPA3* and *TaEXPB6* expression varied significantly between Kukri and RAC875 at elevated [CO₂].

- There effect of $[CO_2]$ (P<0.01) and genotype (P<0.05) on XTH gene expression were 470 significant except for *TaXTH4* (Supplementary Table S5). However, the expression of all XTH 471 members was varied significantly between different organs (P<0.01, Supplementary Table S5). 472 and organ type on the expression of different XTH genes tested in this study. The expression 473 474 of TaXTH1, TAXTH2 and TaTH3 were highest in the ELB of both cultivars (Table 8). At elevated [CO₂], expression of these genes together with *TaXTH5* was upregulated in both 475 cultivars (Table 8). In RAC875, expression of TaXTH1, TaXTH2, TaXTH3 and TaXTH5 476 showed 2.88, 2.01, 8.39 and 2.59-fold increases, respectively, when compared to ambient 477 [CO₂]. Conversely, the LFELB of the two genotypes showed the least transcript abundance for 478 *XTH* gene members compared with the other organ types, both at ambient and elevated [CO₂] 479 (Table 8). The expression of TaXTH2, TaXTH3, and TaXTH4 in LFELB of Kukri was down-480 regulated while XTH5 showed substantial upregulation at elevated [CO₂]. In RAC875, TaXTH1 481 and TaXTH4 were down-regulated at elevated [CO₂] while TaXTH2, TaXTH3 and TaXTH4 482 483 were upregulated.
- 484

In general, expression of all the XTH gene members was high in SAR and LCEZ (P<0.01, 485 Supplementary Table S5), of which TaXTH5 showed the highest expression (Table 8). At 486 elevated [CO₂], a significant genotypic difference was only observed for *TaXTH1*, *TaXTH2* 487 and *TaXTH3* expression in the SAR (P<0.05, Supplementary Table S5), with 1.4, 0.7 and 0.8 488 fold increases, respectively, in Kukri and 6.1, 3.4 and 3.7 fold increase, respectively, in 489 RAC875. There was a significant upregulation of *TaXTH5* at elevated [CO₂], although there 490 was no genotypic difference. The expression of *XTH* genes in the LCEZ was also substantially 491 higher than leaf tissues. In Kukri, TaXTH1, TaXTH2 and TaXTH5 showed the highest 492 upregulation with fold increases of 1.6, 1.4 and 2.3, respectively, at elevated [CO₂] (Table 8). 493 The expression of, TaXTH3 and TaXTH5 was highest in RAC875, with a fold increase of 3.7 494 and 2.6, respectively, at high CO₂ conditions (Table 8). 495
496 4. Discussion

497

Faster growth at elevated atmospheric [CO₂] during early ontogeny appears to be a major 498 contributor to accelerated growth for many crops (Makino and Mae 1999; Jitla et al. 1997). 499 Thus, this enhanced early growth and vigor is crucial in determining the final grain yield of a 500 crop (Thilakarathne et al. 2015; Seneweera and Conroy 2005). The genetic variation in plant 501 responses to elevated [CO₂] is well documented (Thilakarathne et al. 2013; Thilakarathne et al. 502 2015; Tausz et al. 2013), but it has been suggested that this growth variation cannot only be 503 504 explained through increases in photosynthetic capacity at elevated [CO₂] (Taylor et al. 1994; Gamage et al. 2018). A strong carbon and nitrogen relationship between source and sink tissues 505 at elevated [CO₂] has been established in previous studies (Paul and Foyer 2001; Paul and 506 Pellny 2003; Seneweera et al. 2002), but the underpinning mechanisms that drive the genetic 507 variation in plant response to elevated [CO₂] are not yet established (Gamage et al. 2018). 508

509

510 4.1 Biomass accumulation and enhanced growth stimulation at elevated [CO₂]

The increased photosynthetic capacity and improved water use efficiency at elevated [CO₂] 511 have paved the way for improvements in biomass accumulation in many crops (Ainsworth and 512 Rogers 2007), including wheat (Thilakarathne et al. 2013; Thilakarathne et al. 2015). This has 513 been further confirmed in this current study as both the parental lines (Kukri and RAC875) 514 showed a higher carbon assimilation rate and a higher biomass accumulation at elevated [CO₂] 515 (Figure 1 and 2). Consistent with this, the total soluble sugar content of these two cultivars was 516 also higher, indicating the greater availability of carbohydrate substrates for other post-517 photosynthetic key metabolic activities of the plant (Figure 1 and 3). Of the two parental lines, 518 RAC875 consistently showed higher photosynthetic rates, soluble sugar accumulation and 519 biomass accumulation at elevated [CO₂] when compared to Kukri. On the other hand, the effect 520 of [CO₂] on photosynthesis of selected wheat lines was not statistically significant, while the 521 522 interaction effect between [CO₂] and genotype was significant in our study (Table 2). This supports our hypothesis that increases in rates of photosynthesis alone cannot explain the 523 growth enhancement observed at elevated [CO₂]. Thus it is suggested that along with 524 photosynthesis, modifications in key post-photosynthetic metabolic processes such as sucrose 525 metabolism, nitrogen metabolism and cell wall metabolism, are required (Gamage et al. 2018) 526 to maintain optimum growth rates at elevated [CO₂], especially at the early vegetative growth 527 528 stage. The selected wheat lines were different to their parental lines were selected on the based

on their CO₂ responsiveness. The lines H₁, H₂, H₃, and H₄ showed a highest growth response 529 to elevated [CO₂] while L₁, L₂, L₃ and L₄ showed the lowest response to elevated [CO₂] 530 compared to parental lines. For example, the highest above biomass response to elevated [CO₂] 531 was observed in wheat line H₃ with 257.5% increase in biomass, which was higher than the 532 both parental lines. Similarly, lowest response of above ground biomass at elevated [CO₂] was 533 observed in wheat line L₃ with 14.9% which was below both parental lines. Further, the high 534 responsive lines showed a mean increase of below ground biomass accumulation by 176% in 535 response to elevated [CO₂] while less responsive lines showed an average increase of 34.8% at 536 elevated [CO₂]. The increase in leaf area at elevated [CO₂] was higher in high responsive lines 537 with an average increase of 27.6%. However, there was a substantial decrease in leaf area 538 increment (-18.0%) in less responsive lines when exposed to elevated [CO₂]. These results 539 clearly showed that the selected progeny lines perform differently to the parental lines and to 540 each other when exposed to high levels of [CO₂]. 541

542

543 4.2 Soluble sugar contents vary among plant organs, genotypes and CO₂ concentrations

Glucose, fructose and sucrose are the main soluble sugars that play a key role in maintaining 544 overall plant growth and development (Rosa et al. 2009). The abundance of these sugars differ 545 in different organ types and their accumulation largely varied during plant ontogeny. In 546 particular, glucose and fructose are actively involved in cell division (Koch 2004), hence the 547 supply of these sugars to growing tissues is critically important for accelerated growth (Eveland 548 and Jackson 2011). Consistent with this proposition, our study demonstrated that glucose and 549 fructose contents in the growing tissues such as young leaves, cell elongation and the shoot 550 apex region were significantly higher in plants at elevated [CO₂] (Supplementary Figure S1 551 and Table 3). Perhaps, sucrose hydrolysis is accelerated at elevated [CO₂] as a result of 552 553 increased metabolic demand. On the other hand, sucrose availability at elevated [CO₂] was high in mature tissues such as LFELB indicating its role in cell differentiation and maturation (Koch 554 2004). As soon as sucrose is produced in the source tissues, they are rapidly translocated to 555 sink tissues to be used for growth or to store as reserves. It has also been established that soluble 556 sugars play a major role in controlling the proliferation of plant organs (Gibson 2005). This 557 could be a possible reason for the observed higher leaf area stimulation of the wheat seedlings 558 grown at elevated [CO₂] in our study. 559

560

A significant genotypic variation for soluble carbohydrate production was observed under 561 elevated [CO₂]. High responsive wheat lines showed a higher soluble sugar content at elevated 562 [CO₂] while less responsive wheat lines did not show a notable increase despite the increases 563 in CO₂ assimilation rates at elevated [CO₂]. This suggests that carbohydrate production at 564 elevated [CO₂] not only depends on the increased photosynthetic capacity, but also varies based 565 on the genotype and their genetic capacity to utilize these carbohydrates in different metabolic 566 activities. For example, plants that can utilize these carbohydrates to generate more tillers or 567 secondary shoots and increase their sink capacity are likely to produce more soluble sugar at 568 569 elevated [CO₂] (Ainsworth et al. 2004). Therefore, plants' genetic capacity to utilize photoassimilates efficiently is a critical factor to sustain photosynthesis and thereby regulate their 570 growth and development. 571

- 572
- 573
- 574

4.3 Light-dependent and light independent reactions of photosynthesis are genetically varied at elevated [CO₂]

577 The light reaction of photosynthesis plays a key role in increasing photosynthetic capacity of plants at elevated [CO₂] (<u>Gamage et al. 2018</u>). The activity of Photosystem II (PSII) in the light 578 reaction is quite sensitive to a wide range of biotic and abiotic factors making it a good indicator 579 of how plants generally respond to climate change and adapt to ecological variations (Murchie 580 and Lawson 2013). Chlorophyll fluorescence is one of the best tools to obtain detailed 581 information on the state of PSII in response to an environmental change (Sekhar, Sreeharsha, 582 and Reddy 2015). Both Kukri and RAC875 showed no significant difference in maximum PSII 583 efficiency under light, when all the reaction centers are open (Fv'/Fm'), and non-584 photochemical quenching (NPQ), suggesting that plants do not experience any stressful 585 condition at elevated [CO₂] (Figure 2). However, the effective quantum yield (ϕ PSII) of both 586 587 the parental lines was significantly higher in elevated $[CO_2]$ suggesting that the proportion of absorbed light used in PSII photochemistry increased under rising [CO₂] (Figure 2, 588 Supplementary Table S4). This may be because of the increased number of PSII reaction 589 centers opened at PSII allowing reaction centers to accept further electrons. This was further 590 confirmed by the increased photochemical quenching (q_p) of parental cultivars at elevated 591 [CO₂]. The increased electron transport rate (ETR) observed at elevated [CO₂] may have 592 facilitated higher photochemical quenching (q_p) as electrons are transported away from PSII 593

due to the enzymes involved in CO₂ fixation. Overall, chlorophyll fluorescence measurements 594 suggested that the light utilization efficiency of PSII system is higher at elevated [CO₂] and 595 consequently the electron flow between the photosystems is increased. This correlates well 596 with the increased photosynthesis rates of the two parental lines, which further indicates that 597 the light reaction of photosynthesis tends to produce more ATP and NADPH to support 598 increased rates of light independent reaction at elevated [CO2]. A good correlation between 599 PSII efficiency and CO₂ assimilation has been reported in previous studies (Sekhar, Sreeharsha, 600 and Reddy 2015; Rasineni, Guha, and Reddy 2011; Brestic et al. 2012) suggesting that 601 602 chlorophyll fluorescence measurements can be used to screen photochemically efficient genotypes for better carbon assimilation in a changing climate. 603

604

The light-independent reaction of photosynthesis commences with catalysis by Ribulose-1,5-605 bisphosphate carboxylase/oxygenase (Rubisco), which can carboxylate in the presence of CO₂ 606 or oxygenate with O₂ (Makino and Mae 1999; Drake, Gonzàlez-Meler, and Long 1997). 607 Rubisco has a higher affinity for CO₂ than O₂, and therefore, with the higher partial pressure 608 609 of CO₂ at elevated [CO₂], the rate of Rubisco carboxylation tends to increase, enhancing photosynthesis rates. This stromal protein contains eight small subunits and eight large subunits 610 611 encoded by nuclear multigene family (*rbcS*) and single gene in the chloroplast genome (*rbcL*) (Suzuki et al. 2010; Suzuki et al. 2009). Changes in Rubisco synthesis is primarily explained 612 by the changes to transcript abundance of the Rubisco encoding genes (Suzuki et al. 2010). At 613 elevated [CO₂] conditions, expression of these two photosynthetic genes varies between the 614 two genotypes. In general, expression of *rbcL* and *rbcS* were higher in plants grown at elevated 615 [CO₂] (Table 4). The highest expression for *rbcL* was observed in fully expanded leaves of 616 RAC875 along with higher maximum net photosynthesis rates than Kukri at elevated $[CO_2]$. 617 Moreover, expression of *rbcS* in fully expanded leaves was also higher in elevated [CO₂] than 618 in ambient [CO₂]. Since the expression of these two genes correlates with the synthesis of 619 Rubisco, these results suggest that more Rubisco synthesis has taken place in fully the 620 expanded leaves than in other organs. This could have determined the increased photosynthesis 621 capacity of the plants observed at high CO₂ conditions. In the expanding leaf, *rbcL* and *rbcS* 622 expression were higher in Kukri than in RAC875 at elevated [CO₂] suggesting further that 623 transcript abundance is subject to genotypic variations. We could observe comparatively higher 624 expression in *rbcL* in leaf tissues when compared with *rbcL* expression in non-photosynthetic 625 tissues. For example, the expression of the *rbcL* gene was less while *rbcS* expression was high 626 in cell elongation and shoot apex regions when compared to other photosynthetic tissues. This 627

could be due to lower abundance of the chloroplast genome to code for *rbcL* expression. A
similar pattern of expression in *rbcL* and *rbcS* was also observed in previous studies conducted
in amaranth (Nikolau and Klessig 1987), pea (Sasaki, Nakamura, and Matsuno 1987) and rice
(Suzuki, Makino, and Mae 2001). Overall, expression of photosynthetic genes tends to change
with the plants' genotype, growth stage, tissue type and the environmental conditions in which
the plants are grown.

634

4.4 Expression of key genes associated with sucrose metabolism was influenced by genotype, organ type and elevated [CO₂]

637 Sucrose plays a critical role in plant growth, development, storage, signal transduction and support for plant acclimation to different environmental stresses (Jiang et al. 2015). Transfer 638 639 of sucrose from its source tissues to sink tissues is the main factor contributing towards the source and sink integration of the plant which finally determines plant growth and yield 640 641 (Bihmidine et al. 2013). In this study, there was a marked difference in expression of the genes, SPP1, SPS1 and SUS1 in different organs and CO₂ conditions (Table 5). Moreover, expression 642 of these genes was varied with wheat genotype. The correlation analysis between the change 643 of soluble sugar contents and the relative expression of sucrose metabolism genes showed that 644 there was a strong positive correlation between SPP1 and fructose concentration (r=0.783, 645 P<0.05, Supplementary Table S6). This indicates that regulation of sucrose metabolism genes 646 at elevated [CO₂] may be regulated through a sugar sensing mechanisms. 647

648

Sucrose Phosphate Synthase (SPS1) catalyzes the conversion of fructose-6-phosphate and 649 UDP-Glucose into Sucrose-6-Phosphate and is considered to be the major rate-limiting enzyme 650 of sucrose biosynthesis in plants (Lunn and MacRae 2003). This also plays a key role in 651 partitioning carbon between sucrose and starch in both photosynthetic and non-photosynthetic 652 tissues (MacRae and Lunn 2006; Hashida et al. 2016). In this study, it has been clearly 653 demonstrated that transcript abundance of SPS1 was increased at elevated [CO₂] across all the 654 organ types. Higher expression of SPS reflects the increased sucrose synthesis capacity of 655 plants under elevated [CO₂] leading to increased plant development (Pessarakli 1996). This 656 was further confirmed by the increased biomass accumulation and photosynthetic rates 657 observed for the RAC875 parental line and the same cultivar showed a higher expression for 658 SPS1 (Table 5). The higher expression of SPS1 under elevated [CO₂] may be due to the 659 660 allosteric nature of this enzyme (Yonekura et al. 2013), which is activated by glucose-6-

phosphate and inhibited by inorganic phosphate (Hashida et al. 2016). As the rate of inorganic 661 phosphate used by photosynthesis is higher at elevated [CO₂], the availability of inorganic 662 phosphate as an inhibitor of SPS1 gene is less under high CO₂ conditions. Thus, increased 663 availability of Glucose-6-Phosphate at elevated [CO₂] allosterically increases the activity of 664 SPS. The concentration of sucrose at elevated [CO₂] was also higher in RAC875 suggesting 665 that SPS1 could also facilitate carbon partitioning to sucrose over starch in leaf tissues (Huber 666 and Israel 1982; Huber 1983). In addition, SPS activity was found to be high in growing sink 667 tissues and similar results were reported in our study, particularly in growing leaves, the cell 668 elongation region and shoot meristem tissues (Table 5). High expression of SPS in major sink 669 tissues may be involved in re-synthesis of sucrose imported via apoplastic cleavage and may 670 help in redistribution within the sink tissue (Sturm and Tang 1999; Geigenberger et al. 1999). 671 The enzyme SPP catalyzes the final step of sucrose biosynthesis, irreversibly hydrolizing 672 Sucrose-6-Phosphate, produced by SPS, to sucrose (Jiang et al. 2015) and is usually expressed 673 674 in significant quantities in both vascular and non-vascular plants (Lunn 2003). In the current study, a higher expression of SPP1 compared to SPS1 and SUS1 was observed across all tissue 675 676 types in the two CO_2 treatments. It was suggested that maximum potential activity of SPS and SPP are similar to each other (Lunn 2003) in wheat, and that a multienzyme complex may form 677 between these two enzymes (Echeverria et al. 1997), suggesting that both SPS1 and SPP1 may 678 have worked together in the synthesis of sucrose under elevated [CO₂]. 679

680

Channeling sucrose into other metabolic activities, such as respiration, biosynthesis of cell wall 681 polysaccharides and storage reserve formation, require its cleavage by different enzymes 682 (Sturm and Tang 1999). The expression of SUS1 was examined since SUS is one of the main 683 sucrose-cleaving enzymes and activity of SUS1 was higher in cell elongation and shoot 684 meristem tissues when compared to the last fully expanded leaf (Table 5). The enzyme SUS 685 cleaves sucrose into UDP-Glucose and fructose (Jiang et al. 2015), where UDP-Glucose then 686 acts as the primary building block for cell wall synthesis (Verbančič et al. 2017). Since only 687 low levels of cell wall synthesis are required in the LFELB, the majority of the UDP-Glucose 688 produced will be directed to the synthesis of sucrose (Stitt, Lunn, and Usadel 2010) and then 689 transported to sink tissues (Sauer 2007) suggesting SUS gene mainly expressed in primary sink 690 tissues. Consistent with this proposition, results outlined in Table 5 showed that SUS1 691 expression was higher in meristematic tissues under both CO₂ treatments. However, these 692 expression patterns were even pronounced in plants grown at elevated [CO₂]. As elevated 693 [CO₂] induces high cell division and expansion rates in meristematic tissues (Gamage et al. 694

695 <u>2018</u>), most of the sucrose produced will be translocated to these tissues to be used in different
696 anabolic activities (<u>Sturm and Tang 1999</u>) and thus help to produce more tillers or secondary
697 shoots and increase leaf area development, consequently leading to high biomass and yield
698 production.

699

700 4.5 Organ-specific expression of nitrogen assimilation genes varied at elevated [CO₂]

Plant cells require both carbon and nitrogen for growth and development. Carbon is essential 701 702 to fuel metabolic processes while nitrogen availability is a key factor in maintaining protein turnover of cells (White et al. 2015). Glutamine Synthetase (GS) catalyzes the conversion of 703 704 glutamate to glutamine using ammonia as the substrate during nitrogen assimilation. The two classes of GS (GS1 and GS2) have organ-specific roles (Cren and Hirel 1999; Masclaux-705 706 Daubresse et al. 2010). The enzyme GS2 is predominantly found in leaves and catalyses the primary nitrogen assimilation of ammonia resulting from the reduction of nitrite in chloroplasts 707 708 and reassimilation of respiratory ammonia (Foyer and Zhang 2011). Consistent with this, the expression of GS2a, encoding one of the isoenzymes of the GS2 class, was found to be 709 significantly expressed in both LFELB and ELB of our study (Table 6). Further, this GS2a was 710 upregulated in both LFELB and ELB at elevated [CO₂] suggesting that increased nitrogen 711 assimilation occurs at elevated [CO₂], especially in the early development stages. The 712 expression of GS1 enzyme related genes, GS1a and GSr1 in leaf tissues was comparatively 713 lower than the GS2a expression. However, the expression of GS1a was significantly higher in 714 RAC875 at elevated [CO₂]. It has been previously reported that GS1 supports the 715 remobilization of nitrogen into the developing sink organs (Masclaux-Daubresse et al. 2006; 716 Pageau et al. 2005; Tabuchi, Abiko, and Yamaya 2007). These GS enzymes function together 717 with two distinct forms of GOGAT (glutamate synthase) to incorporate amino groups into 718 719 amino acid precursors required for protein synthesis (Masclaux-Daubresse et al. 2010). In our results, the expression of *Fd-GOGAT* was significantly higher compared to *NADH-GOGAT* in 720 the LFELB and ELB. These findings are consistent with Yamaya et al. (1992) as NADH-721 GOGAT is predominantly present in non-photosynthetic tissues of the plants while Fd-GOGAT 722 is primarily located in the chloroplasts of photosynthetic tissues (Suzuki and Knaff 2005). The 723 expression of Fd-GOGAT showed a substantial upregulation at elevated [CO₂] across both 724 parental cultivars while a notable upregulation of NADH-GOGAT was only observed in the 725 LFELB of RAC875. This might indicate that transcriptional regulation of these genes is 726 727 subjected to intra-specific variation, which may have contributed towards the different nitrogen

use efficiencies of these two cultivars. On the other hand, Bernard et al. (2008), also found that 728 expression of these genes increases as the leaf ages while GS2a, GS2b and Fd-GOGAT 729 expression decreases. For example, in RAC875, the expression of GS2a and Fd-GOGAT 730 increased in the ELB, while expression of GS1a, GSr1 and NADH-GOGAT was higher in the 731 LFELB (Table 6). As carbon and nitrogen status is critically balanced in the plants, up-732 regulation of GS2a, GS1a, Fd-GOGAT and NADH-GOGAT at elevated [CO₂] suggests that 733 high sugar supply indirectly stimulates production and mobilization of glutamine and 734 glutamate, which can donate amino groups to produce amino acids essential for cellular 735 736 activities (Zheng 2009). Further, increased amino acid biosynthesis facilitates production of different structural and metabolic proteins that are critical for optimum plant growth in a high 737 CO₂ environment. 738

739 4.6 Cell expansion and cell wall loosening were influenced by elevated [CO₂]

At elevated [CO₂], increased shoot elongation is more likely to depend on cell expansion rather 740 than cell proliferation (Taylor et al. 1994; Ranasinghe and Taylor 1996; Liu et al. 2007). 741 Expansins and Xyloglucan endotransglucosylase/hydrolases are extracellular proteins that play 742 a key role in relaxing the cell walls during cell division and elongation (Liu et al. 2007). Our 743 expression analysis revealed that the expression of *TaEXPA3* was prominent in the shoot apex 744 region at elevated [CO₂] in both cultivars (Table 7). Alpha-expansins have a distinct role in 745 leaf primordia formation (Reinhardt et al. 1998; Shin et al. 2005), and thus upregulation of 746 *TaEXPA3* is consistent with the growth stimulation at elevated $[CO_2]$. Several previous studies 747 revealed that β -expansin expression is generally higher at early vegetative stages of grasses 748 (Wu, Meeley, and Cosgrove 2001; Liu et al. 2007; McQueen-Mason and Rochange 1999). 749 Consistent with this, our study's results demonstrated a higher transcript abundance of β-750 751 expansin genes across different organs when compared to α -expansin expression (Table 7). In addition, most of the β -expansin genes tested in our study were upregulated at elevated [CO₂], 752 especially in the shoot apex and cell elongation regions of both parental cultivars. With high 753 sugar supply to these regions at elevated [CO₂], the activity of β -expansing may have been 754 upregulated and may positively contribute towards determining the internode elongation and 755 plant height (Lee and Kende 2001; Liu et al. 2007). A noteworthy expression was observed for 756 757 *TaEXPB23* among other β -expansing in both cultivary, with a higher upregulation at elevated

[CO₂] implying a possible significant role played by this gene at elevated [CO₂]. It has been previously found that higher expression of *TaEXPB23* in plants may result in accelerated leaf and internode growth at early development stages (Xing et al. 2009).

761

With reference to XTH genes, the highest expressions of TaXTH1, TaXTH2 and TaXTH3 was 762 763 observed in ELB indicating the significant role played by the XTH enzymes in cell wall loosening and expansion (Table 8). Similarly, Taylor et al. (1994) reported that XTH enzyme 764 activity is increased at elevated [CO₂], enabling cell walls to expand rapidly in response to 765 766 increased carbon supply. However, the expression level of XTH genes was less in the LFELB which is consistent with the relative maturity of these tissues. Further, higher expression of 767 XTH genes was reported in LCEZ and SAR at elevated [CO₂] (Table 8) presumably due to a 768 more rapid cell wall synthesis in these tissues which may have supported the increased cell 769 division and growth. According to our expression analysis, XTH expression showed a distinct 770 tissue/organ-specific expression pattern, implying that the expression of these genes is 771 influenced by plant development stage. These results were consistent with Liu et al. (2007) 772 773 who also demonstrated that XTH gene family perform tissue/organ-specific developmental roles that are not interchangeable in plant growth and development. 774

775

Overall, our results clearly showed that β -expansin genes showed higher expression than the 776 α -expansing at elevated [CO₂]. A similar pattern of expression of these genes was observed by 777 Liu et al. (2007) in wheat. This differential expression further suggests functional differences 778 in two groups of expansins: α -expansins are involved mainly in cell-specific functions whereas 779 β -expansions play a role in expansion-related functions, mainly the maintenance of cell wall 780 structure (Li, Jones, and McQueen-Mason 2003; Wu, Meeley, and Cosgrove 2001). In addition, 781 XTH genes had an even higher expression, which may be due to their nonsubstitutable specific 782 function in cell wall loosening (Liu et al. 2007; Yokoyama and Nishitani 2000). Most of the β-783 expansins and XTH genes tested in our study have been upregulated at elevated [CO₂], 784 implying the increased expression of these enzymes is required to support maximum growth at 785 elevated [CO₂]. The correlation analysis between the change of soluble sugar contents and the 786 relative expression of genes indicates that cell wall metabolism-related genes tend to show a 787 significant correlation with the soluble sugar concentration at elevated [CO₂]. For example, 788 TaXTH5 and TaEXPA1 showed a strong positive correlation with glucose content at elevated 789 [CO₂] (r=0.816, P<0.05; r=0.994, P<0.01, respectively, Supplementary Table 5). Also, 790 TaXTH3 showed a strong positive correlation with total sugar content at elevated $[CO_2]$ 791

(r=0.74, P<0.05). These results further suggest that the expression of these genes is influenced 792 by changes to the soluble sugar content of a particular tissue type and thus, is potentially 793 regulated by sugars. However, apart from these key genes, there are many gene regulatory 794 factors that influence on expression of genes associated with cell expansion and cell wall 795 extension. For example, in Arabidopsis, expression of GCCR motif is necessary for the 796 expression of cell cycle genes such as Cyclin (*CYCB1*;1) which is responsible for cell division 797 in shoot meristem (Li et al., 2005). Therefore, it is also necessary to study gene regulatory 798 factors for key genes tested in this study, as this will provide additional information on how 799 800 gene regualtory network modifies at elevated [CO₂].

801

4.7 Impact of expression of key genes related to photosynthesis, sucrose metabolism, nitrogen metabolism and cell wall expansion on source-sink interaction of wheat

804

The key results of this study and their impact on plant source and sink interactions is 805 summarized in Figure 4. Elevated $[CO_2]$ increases the CO_2/O_2 ratio at the site of CO_2 fixation 806 807 (Bowes, 1991). Therefore, the carboxylation efficiency of Rubisco is improved through the lowering of photorespiration. In the same time, the genes encoding for Rubisco large and small 808 809 subunits, *rbcL* and *rbcS* substantially upregulated in LFELB, the main source organ. These findings support our previous results that increased assimilations rates requires optimum 810 Rubisco to support the photosynthesis machinery. The chlorophyll fluorescence data supported 811 the higher efficiency of PSII, electron transport rate and photochemical quenching at elevated 812 [CO₂] which may have involved in producing more ATP and NADPH, to fulfil the higher 813 energy requirement to maintain photosynthesis at an optimum rate. This increased 814 photosynthesis at elevated $[CO_2]$ observed in all the wheat lines, and also likely to associated 815 with increased levels of sucrose. A higher expression of SPS1, SPP1 and SUS1, the key genes 816 in sucrose metabolism were observed in those lines at elevated [CO₂]. This increased level of 817 sucrose together with other photosynthetic products provide energy and carbon skeletons for 818 amino acid biosynthesis. Respiratory breakdown of sucrose generates 2-oxoglutarate (2-OG) 819 and this serves as the carbon skeleton for the synthesis of glutamate. In the process of NO₃⁻ 820 photo assimilation, conversion of NO_2^- to NH_4^+ by *NiR* showed an upregulation at elevated 821 [CO₂]. Consequently, the expression of GS2a, GS1a and GSr1 was significantly higher in 822 LFELB at elevated [CO₂]. Further genes encoding enzyme Fd-GOGAT and NADH-GOGAT 823 were substantially higher at elevated [CO₂] suggesting that nitrogen assimilation is efficient at 824 825 early stages of plant development.

In the early vegetative phase, ELB and the SAR can be considered as the major sink organs. In 826 SAR and ELB, sucrose translocated from LFELB is cleaved by sucrose synthase (SUS1), which 827 showed a strong upregulation in growing tissues at elevated [CO₂]. The resulting UDP-Glucose 828 plays an important role as a substrate for the re-synthesis of sucrose from available glucose and 829 fructose (Koch, 2004). Also, UDP-Glucose is an important component in cell wall biosynthesis 830 of dividing cells (Verbančič et al., 2017). Increased activity of cell wall metabolism was 831 evident from the higher expression of genes encoding β -expansins and Xyloglucan 832 endotransglucosylase/hydrolases. This implied that cell wall loosening, and expansion has been 833 834 promoted at elevated [CO₂]. High availability of glucose and fructose of SAR and ELB positively correlates with cell division (Koch, 2004). Therefore, in the SAR and ELB, active 835 utilization of carbohydrates and increased production and expansion of cells, may have 836 facilitated increased plant growth rates at elevated [CO₂]. 837

838 **5. Conclusion**

In this study, we investigated the early growth response of wheat under elevated [CO₂] with 839 the aim of understanding the underlying physiological and molecular mechanisms of plant 840 growth. Here we hypothesized that increased carbon assimilation at elevated [CO₂] may alter 841 the carbohydrate pools of plants and thereby influence the key metabolic processes that control 842 the growth of source and sink tissues of plants. We conclude that elevated [CO₂] stimulates the 843 early growth of wheat in a significant manner, but the magnitude of these responses is largely 844 845 varied between the two parental cultivars. The increased photosynthetic capacity was a key contributor towards this growth response, however, photosynthetic data alone could not explain 846 847 the growth response to elevated $[CO_2]$. Elevated $[CO_2]$ always promotes the soluble carbohydrate accumulation and allocation in an organ-specific manner. Consistently, a large 848 849 amount of carbohydrates was allocated to the sink tissues, particularly in expanding leaf, apical meristem and the cell elongation zone of the expanding leaf. These increased carbon pools 850 851 significantly influence other post-photosynthetic key metabolic processes, which include sucrose metabolism, nitrogen assimilation and cell elongation and expansion under elevated 852 [CO₂]. The expression of key genes associated with these metabolic processes showed 853 significant variation in different genotypes in an organ-specific manner. The strong positive 854 correlation between sucrose and SPP1 (sucrose biosynthesis) TaXTH5 and TaEXPA1 (cell wall 855 expansion) at elevated [CO₂] further indicated that sugar plays a significant role in altering 856 transcript level responses associated with sucrose metabolism and cell elongation and 857 expansion, and thereby facilitate enhanced plant growth under a CO₂ rich environment. 858 However, these relationships among soluble sugar concentrations and transcript abundance, 859 and their influence on plant growth at elevated [CO₂], are complex and varied even within the 860 same species, making it challenging to establish a generalized holistic mechanism for plant 861 862 growth responses to elevated [CO₂] across all plant species.

864

863 List of Figures and Supplementary Figures

- Figure 1 The effect of $[CO_2]$ on (a) above ground biomass accumulation , (b) leaf area development and (c) total soluble carbohydrate content of Kukri and RAC875 grown at ambient (400 µmol mol⁻¹) or elevated (700±10 µmol mol⁻¹) $[CO_2]$. Measurements were taken at 42 DAP. Summary of the ANOVA results is shown. Data presented are the mean from 3 replicates. Abbreviations: ns, not significant; *, P<0.05; **, P<0.01.
- 870

Figure 2 The effect of $[CO_2]$ on (a) rate of photosynthesis, (b) PSII operating efficiency (ϕ PSII), (c) electron transport rate (ETR), (d) photochemical quenching (q_P), (e) Nonphotochemical quenching (NPQ), (f) Maximum PSII efficiency (Fv⁻/Fm⁻) of Kukri and RAC875 grown at ambient (400 µmol mol⁻¹) or elevated (700±10 µmol mol⁻¹) [CO₂]. Measurements were taken at 42 DAP. Summary of the ANOVA results is shown. Data presented are the mean from 6 replicates. Abbreviations: ns, not significant; *, P<0.05; **, P<0.01.

878

Figure 3 The effect of $[CO_2]$ on total soluble sugar content of (a) last fully expanded leaf blade (LFELB), (b) expanding leaf blade (ELB) and (c) cell elongation region (CER) of Kukri and RAC875 grown at ambient (400 µmol mol⁻¹) or elevated (700±10 µmol mol⁻¹) [CO₂]. Measurements were taken at 42 DAP. Summary of the ANOVA results is shown. Data presented are the mean from 3 replicates. Abbreviations: ns, not significant; *, P<0.05; **, P<0.01.

885

Figure 4 Schematic diagram of key gene expression of source (last fully expanded leaf) and 886 sink (expanding leaf and shoot apex region) integration of wheat at elevated [CO₂] in early 887 vegetative stage of wheat. A: photosynthesis rate, PSII: photosystem II, ETR: electron transport 888 rate, qP- photochemical quenching, Glc: glucose, Fru: fructose, Suc: sucrose, F6P- fructose 6 889 phosphate, UDP-Glc: UDP glucose, Suc6P: sucrose 6 phosphate, G1P: glucose 1 phosohate, 890 UTP: uridine triphosphate, AA- amino acids synthesis & metabolism, rbcL - ribulose 1,5 -891 bisphosphate carboxylase/oxygenase (large sub unit); rbcS - ribulose 1,5 -bisphosphate 892 carboxylase/oxygenase (small sub unit); SPP- Sucrose Phosphate Phosphatase; SPS- Sucrose 893 Phosphate Synthase; SUS - Sucrose Synthase type 1; NiR - Ferredoxin Nitrite Reductase; Fd-894 GOGAT - Putative ferredoxin-dependent glutamate synthase; GS2a - Glutamine Synthetase 895 (Plastidial), NADH-GOGAT - Putative NADH-dependent glutamate synthase; GS1a -896

- 897 Glutamine synthetase (cytosolic); GSr1 Glutamine synthetase (cytosolic) TaEXPB β -
- 898 expansins *TaXTH* Xyloglucan endotransglucosylase/hydrolases
- 899
- 900 Supplementary Figure S1. The effect of [CO₂] on sucrose content of (a) last fully expanded
- 901 leaf blade (LFELB), (b) expanding leaf blade (ELB) and (c) cell elongation region (CER);
- glucose content of (d) LFELB, (e) ELB, (f) CER; fructose content of (g) LFELB, (h) ELB, (f)
- 903 CER of Kukri and RAC875 grown at ambient (400 μ mol mol⁻¹) or elevated (700 \pm 10 μ mol mol⁻
- ⁹⁰⁴ ¹) [CO₂]. Measurements were taken at 42 DAP. Summary of the ANOVA results is shown.
- Data presented are the mean from 3 replicates. Abbreviations: ns, not significant; *, P<0.05;
- 906 **, P<0.01.

907

909

908 List of Tables and Supplementary Tables

- Table 1. List of selected genes and primer sequences used for the RT-qPCR based gene
 expression analysis (LFEL: Last fully expanded leaf; EL: expanding leaf; CE: cell elongation
 region; SA: shoot apex region).
- 913

Table 2. The effect of $[CO_2]$ on aboveground biomass accumulation, below ground biomass accumulation, total soluble sugar content, total leaf area per plant and photosynthesis rate of different wheat lines selected from doubled haploid mapping population of Kukri and RAC875 grown at ambient $[CO_2]$ (a $[CO_2]$,400 µmol mol⁻¹) or elevated $[CO_2]$ (e $[CO_2]$, 700±10 µmol mol⁻¹). Measurements were taken at 42 DAP. Summary of the ANOVA results is shown. Data presented are the mean from n=3 replicates. Abbreviations: ns, not significant; *, P<0.05; **, P<0.01.

921

Table 3. The effect of $[CO_2]$ on organ-specific sucrose, glucose and fructose concentrations of different wheat lines selected from a doubled haploid mapping population of Kukri and RAC875 grown at ambient $[CO_2]$ (a $[CO_2]$, 400 µmol mol⁻¹) or elevated $[CO_2]$ (e $[CO_2]$, 700±10 µmol mol⁻¹). Summary of the ANOVA results is shown. Data presented are the mean from n=3 replicates. Abbreviations: LFELB, last fully expanded leaf blade; ELB, expanding leaf blade; CER- cell elongation region; ns, not significant; *, P<0.05; **, P<0.01.

928

Table 4. Heatmap for transcript abundance of *rbcL and rbcS* genes related to photosynthesis regulation in last fully expanded leaf (LFELB), expanding leaf (ELB), cell elongation region (LCEZ) and shoot apex region (SAR) of Kukri and RAC875 grown at ambient (a[CO₂], 400 μ mol mol⁻¹) or elevated (e[CO₂], 700±10 μ mol mol⁻¹) [CO₂]. Data presented are the mean values of gene expression. Fold change of transcript relative abundance at elevated [CO₂] are presented in Log₂ scale.

935

Table 5. Heatmap for transcript abundance of *SPP1*, *SPS1* and *SUS1* genes of sucrose metabolism in last fully expanded leaf (LFELB), expanding leaf (ELB), cell elongation region (LCEZ) and shoot apex region (SAR) of Kukri and RAC875 grown at ambient (a[CO₂], 400 μ mol mol⁻¹) or elevated (e[CO₂], 700±10 μ mol mol⁻¹) [CO₂]. Data presented are the mean values of gene expression. Fold change of transcript relative abundance at elevated [CO₂] are presented in Log₂ scale. Table 6. Heatmap for transcript abundance of *NiR*, *GS2a*, *GS2b*, *Fd-GOGAT* genes of nitrogen metabolism in last fully expanded leaf (LFELB) and expanding leaf (ELB) of Kukri and RAC875 grown at ambient (a[CO₂], 400 μ mol mol⁻¹) or elevated (e[CO₂], 700±10 μ mol mol⁻¹) [CO₂]. Data presented are the mean values of gene expression. Fold change of transcript relative abundance at elevated [CO₂] are presented in Log₂ scale.

Table 7. Heatmap for transcript abundance of α and β expansin genes of cell wall metabolism in last fully expanded leaf (LFELB), expanding leaf (ELB), cell elongation region (LCEZ) and shoot apex region (SAR) of Kukri and RAC875 grown at ambient (a[CO₂], 400 µmol mol⁻¹) or elevated (e[CO₂], 700±10 µmol mol⁻¹) [CO₂]. Data presented are the mean values of gene expression. Fold change of transcript relative abundance at elevated [CO₂] are presented in Log₂ scale.

953

Table 8. Heatmap for transcript abundance of Xyloglucan endotransglucosylase/hydrolase genes of cell wall metabolism in last fully expanded leaf (LFELB), expanding leaf (ELB), cell elongation region (LCEZ) and shoot apex region (SAR) of Kukri and RAC875 grown at ambient (a[CO₂], 400 μ mol mol⁻¹) or elevated (e[CO₂], 700±10 μ mol mol⁻¹) [CO₂]. Data presented are the mean values of gene expression. Fold change of transcript relative abundance at elevated [CO₂] are presented in Log₂ scale.

960

Supplementary Table S1. CO₂ responsiveness of the selected wheat lines of the double
 haploid mapping population in the previous experimental trials.

963

Supplementary Table S2. Controlled environmental conditions provided to the Reach-in plant
 growth chambers throughout the experimental period.

966

967 Supplementary Table S3. List of primer sequences of selected genes for the RT-PCR analysis.968

Supplementary Table S4. The effect of $[CO_2]$ on growth-related traits, photosynthetic parameters and chlorophyll fluorescence parameters of Kukri and RAC875 grown at ambient $[CO_2]$ (a $[CO_2]$, 400 µmol mol⁻¹) or elevated $[CO_2]$ (e $[CO_2]$, 700±10 µmol mol⁻¹). Measurements were taken at 42 DAP. Summary of the ANOVA results is shown. Data presented are the mean from n=3 and 6 replicates. Abbreviations: ns, not significant; *, P<0.05; **, P<0.01.

- 975 **Supplementary Table S5.** Summary of the Analysis of Variance (ANOVA) results for the 976 effect of $[CO_2]$ on different genes tested for two parental lines, Kukri and RAC875 grown at 977 ambient (400 µmol mol⁻¹) or elevated (700±10 µmol mol⁻¹) $[CO_2]$. Abbreviations: ns, not 978 significant; *, P<0.05; **, P<0.01.
- 979

Supplementary Table S6. Coefficients of correlation (r) between the response of sugar content and gene expression to elevated [CO₂]. Data used were the relative change of sugar content between ambient and elevated [CO₂] and the relative expression for each gene under elevated [CO₂]. Measurements were collected from Kukri and RAC875 42 DAP. Significant data are indicated in bold; *, P < 0.05; **, P < 0.01.

Ambient [CO₂] Elevated [CO₂]

Figure 1

Cultivars

Ambient [CO₂]

Elevated [CO₂]

Figure 2

Figure 3

Figure 4

Table 1. List of selected genes and primer sequences used for the RT-qPCR based gene expression analysis (LFELB: Last fully expanded leaf;ELB: expanding leaf; LCEZ: cell elongation region; SAR: shoot apex region).

Metabolism	Accession	Name of the gene	Gene	Tissue
	No.		abbreviation	
Photosynthesis	AY328025	Ribulose 1,5 –bisphosphate carboxylase/oxygenase (large sub unit)	rbcL	LFELB, ELB,
	AB020957	Ribulose 1,5 –bisphosphate carboxylase/oxygenase (small sub unit)	rbcS	LCEZ, SAR
Carbon metabolism	AF321556	Sucrose Phosphate Phosphatase 1	SPP1	LFELB, ELB,
	AF310160	Sucrose Phosphate Synthase 1	SPS1	LCEZ, SAR
	AF321556	Sucrose Synthase type 1	SUS1	
Nitrogen metabolism	FJ527909	Ferredoxin Nitrite Reductase	NiR	
	TC394038	Putative ferredoxin-dependent glutamate synthase	Fd-GOGAT	
	DQ124212	Glutamine Synthetase (Plastidial) – GS2	GS2a	
	DQ124213	Glutamine Synthetase (Plastidial) – GS2	GS2b	LFELB, ELB
	TC387834	Putative NADH-dependent glutamate synthase	NADH-GOGAT	
	DQ124209	Glutamine synthetase (cytosolic) – GS1	GS1a	
	AY491968	Glutamine synthetase (cytosolic) – GS1	GSrl	
Cell wall metabolism	AY589583	α – expansin A1	TaEXPA1	LCEZ, SAR
	AY692477	α – expansin A3	TaEXPA3	LFELB, ELB,
				LCEZ, SAR
	AY589578	β – expansin B1	TaEXPB1	LCEZ, SAR
	AY589579	β – expansin B2	TaEXPB2	
	AY589580	β – expansin B3	TaEXPB3	
	AY692478	β – expansin B6	TaEXPB6	LFELB, ELB,
	AY260547	β – expansin B23	TaEXPB23	LCEZ, SAR
	AY589585	Xyloglucan endotransglucosylase/hydrolase 1	TaXTH1	
	AY589586	Xyloglucan endotransglucosylase/hydrolase 2	TaXTH2	
	AY589586	Xyloglucan endotransglucosylase/hydrolase 3	TaXTH3	
	AY589586	Xyloglucan endotransglucosylase/hydrolase 4	TaXTH4	
	AY589586	Xyloglucan endotransglucosylase/hydrolase 5	TaXTH5	

Table 2. The effect of $[CO_2]$ on aboveground biomass accumulation, below ground biomass accumulation, total soluble sugar content, total leaf area per plant and photosynthesis rate of different wheat lines selected from doubled haploid mapping population of Kukri and RAC875 grown at ambient $[CO_2]$ (a $[CO_2]$,400 µmol mol⁻¹) or elevated $[CO_2]$ (e $[CO_2]$, 700±10 µmol mol⁻¹). Measurements were taken at 42 DAP. Summary of the ANOVA results is shown. Data presented are the mean from n=3 replicates. Abbreviations: ns, not significant; *, P<0.05; **, P<0.01.

Trait	Mean CO ₂ effect			Mean genotype effect	Interaction effect [CO ₂]x Cultivar	Mean Responsiveness to e[CO ₂] (%)		
	a[CO ₂]	e[CO ₂]	ANOVA result	ANOVA result	ANOVA result	High responsive lines	Low responsive lines	
Above ground biomass (mg/plant)	142.80	294.13	**	**	**	225.38	31.30	
Below ground biomass (mg/plant)	44.73	81.69	**	**	**	175.67	34.74	
Total soluble sugar content (mg/g)	71.88	84.56	**	**	**	19.75	14.96	
Total leaf area (cm ² /plant)	43.37	44.19	ns	**	**	27.58	-17.99	
Photosynthesis rate $(\mu mol CO_2 m^{-2} s^{-1})$	14.97	15.25	ns	**	*	8.82	-12.16	

Table 3. The effect of $[CO_2]$ on organ-specific sucrose, glucose and fructose concentrations of different wheat lines selected from a doubled haploid mapping population of Kukri and RAC875 grown at ambient $[CO_2]$ (a $[CO_2]$, 400 µmol mol⁻¹) or elevated $[CO_2]$ (e $[CO_2]$, 700±10 µmol mol⁻¹). Summary of the ANOVA results is shown. Data presented are the mean from n=3 replicates. Abbreviations: LFELB, last fully expanded leaf blade; ELB, expanding leaf blade; CER- cell elongation region; ns, not significant; *, P<0.05; **, P<0.01.

		Mean	CO ₂ effec	t					ANOVA results					
	E	a[CO ₂] e[CO ₂]				[CO ₂] Genotype Organ [CO ₂]x Cultivar						Cultivar 2	x Organ	
Line	Plant orga	Sucrose	Glucose	Fructose	Sucrose	Glucose	Fructose	Responsive to e[CO2] (Sucrose	Glucose	Fructose	Sucrose	Glucose	Fructose
H_1	LFELB	5.88	16.26	3.94	3.57	13.53	2.45							
	ELB	0.77	12.42	6.64	2.88	9.28	10.49	31.50	**	**	**	**	**	**
	CER	6.59	13.17	11.32	8.54	27.22	14.72	_						
H_2	LFELB	5.10	16.31	3.51	15.74	10.64	9.20							
	ELB	0.79	14.75	2.78	5.97	10.57	9.12	25.05	**	**	**	**	**	**
	CER	9.62	19.04	5.69	4.38	33.02	9.02	_						
H ₃	LFELB	3.11	14.99	2.50	11.62	11.59	7.10							
	ELB	1.54	15.60	3.63	1.81	9.23	9.85	- 3.74	**	**	**	**	**	**
	CER	5.55	12.97	9.65	5.01	20.88	4.78	_						
H_4	LFELB	6.54	13.06	3.55	6.74	9.46	4.15							
	ELB	2.93	11.67	4.67	3.98	10.77	3.96	1.77	**	**	**	**	**	**
	CER	5.15	18.42	6.51	6.27	18.00	7.66	_						
L ₁	LFELB	3.08	14.52	1.74	16.75	9.35	9.07							
	ELB	2.33	13.87	5.02	2.57	7.21	10.85	-5.48	**	**	**	**	**	**
	CER	7.61	12.67	12.17	3.53	21.00	4.53	_						

L_2	LFELB	3.14	13.24	2.60	11.70	11.17	6.27							
	ELB	2.09	13.55	5.24	3.02	9.40	10.40	2.90	**	**	**	**	**	**
	CER	6.14	15.93	9.10	5.73	22.02	3.54							
L ₃	LFELB	0.58	13.58	1.07	10.64	9.16	6.23							
	ELE	2.30	13.18	6.28	3.24	8.76	10.04	0.90	**	**	**	**	**	**
	CER	3.95	20.83	4.40	3.90	23.01	2.58							
L_4	LFELB	3.17	14.02	2.53	8.49	9.58	4.82							
	ELB	3.16	13.03	5.62	5.88	10.67	8.61	4.63	**	**	**	**	**	**
	CER	3.22	22.60	2.40	3.07	22.85	2.18							

Table 4. Heatmap for transcript abundance of *rbcL and rbcS* genes related to photosynthesis regulation in last fully expanded leaf (LFELB), expanding leaf (ELB), cell elongation region (LCEZ) and shoot apex region (SAR) of Kukri and RAC875 grown at ambient (a[CO₂], 400 μ mol mol⁻¹) or elevated (e[CO₂], 700±10 μ mol mol⁻¹) [CO₂]. Data presented are the mean values of gene expression. Fold change of transcript relative abundance at elevated [CO₂] are presented in Log₂ scale.

	G	Gene expression l	evel	Log ₂ fold change			
Organ type	Gene Name	Kukri		RAC875		Kukri	RAC875
		a[CO ₂]	e[CO2]	a[CO ₂]	e[CO ₂]	e[CO2]/a[CO2]	
I FEI B	rbcL	1.73	3.62	4.25	6.21	1.06	0.55
LFELB	rbcS	0.26	2.38	1.88	4.61	3.22	1.29
FIB	rbcL	2.70	3.69	1.40	3.12	0.45	1.16
	rbcS	1.26	2.65	1.42	2.00	1.07	0.49
I CEZ	rbcL	3.67	2.79	1.87	2.78	-0.40	0.57
LCEZ	rbcS	2.01	2.41	1.44	2.75	0.26	0.94
SAD	rbcL	0.73	1.53	0.55	1.69	1.06	1.61
SAK	rbcS	3.68	3.77	4.35	9.09	0.04	1.06

Table 5. Heatmap for transcript abundance of *SPP1*, *SPS1* and *SUS1* genes of sucrose metabolism in last fully expanded leaf (LFELB), expanding leaf (ELB), cell elongation region (LCEZ) and shoot apex region (SAR) of Kukri and RAC875 grown at ambient (a[CO₂], 400 μ mol mol⁻¹) or elevated (e[CO₂], 700±10 μ mol mol⁻¹) [CO₂]. Data presented are the mean values of gene expression. Fold change of transcript relative abundance at elevated [CO₂] are presented in Log₂ scale.

	Cono		Gene expre	Log ₂ fold change			
Organ type	Nomo	K	ukri	RAC	C875	Kukri	RAC875
	Ivallic	a[CO2]	e[CO2]	a[CO ₂]	e[CO2]	e[CO2]/	a[CO ₂]
	SPP1	6.84	5.78	8.42	45.78	-0.24	2.44
LFELB	SPS1	1.51	5.57	3.70	17.76	1.88	2.26
	SUS1	0.32	0.82	1.09	2.18	1.36	1.01
	SPP1	4.47	4.48	3.48	10.32	0.00	1.57
ELB	SPS1	0.95	1.50	1.26	1.27	0.65	0.02
	SUS1	0.43	1.81	0.56	1.50	2.07	1.43
	SPP1	0.34	0.27	0.12	0.62	-0.32	2.38
LCEZ	SPS1	1.86	2.22	2.61	6.06	0.25	1.21
	SUS1	4.27	3.91	1.66	3.63	-0.13	1.13
	SPP1	0.05	0.23	0.07	0.22	2.18	1.58
SAR	SPS1	0.91	1.69	0.71	1.72	0.89	1.27
	SUS1	5.05	14.08	3.53	9.31	1.48	1.40

Table 6. Heatmap for transcript abundance of *NiR*, *GS2a*, *GS2b*, *Fd-GOGAT* genes of nitrogen metabolism in last fully expanded leaf (LFELB) and expanding leaf (ELB) of Kukri and RAC875 grown at ambient (a[CO₂], 400 μ mol mol⁻¹) or elevated (e[CO₂], 700±10 μ mol mol⁻¹) [CO₂]. Data presented are the mean values of gene expression. Fold change of transcript relative abundance at elevated [CO₂] are presented in Log₂ scale.

			Gene expre		Log ₂ fold change		
Organ type	Gene Name	Ku	kri	RA	AC875	Kukri	RAC875
		a[CO2]	e[CO2]	a[CO2]	e[CO2]	e[CO ₂]/a[CO2]
	NiR	0.07	0.65	0.21	0.60	3.30	1.54
	Fd-GOGAT	2.91	11.92	8.45	21.39	2.04	1.34
	GS2a	0.89	5.23	1.69	2.76	2.56	0.71
LFELB	GS2b	0.00	0.02	0.02	0.05	2.44	1.73
	GS1a	3.96	3.56	4.84	41.50	-0.15	3.10
	GSrl	0.14	0.57	0.16	3.37	2.05	4.39
	NADH-GOGAT	0.10	0.15	0.19	1.79	0.56	3.26
	NiR	0.30	0.56	0.41	1.19	0.89	1.55
	Fd-GOGAT	13.24	29.92	15.61	28.57	1.18	0.87
	GS2a	24.98	46.56	14.65	26.80	0.90	0.87
ELB	GS2b	0.09	0.15	0.11	0.32	0.70	1.49
	GS1a	3.36	4.28	3.15	4.26	0.35	0.44
	GSr1	0.33	0.68	0.25	0.27	1.04	0.12
	NADH-GOGAT	0.29	0.71	0.26	0.26	1.31	0.04

Table 7. Heatmap for transcript abundance of α and β expansin genes of cell wall metabolism in last fully expanded leaf (LFELB), expanding leaf (ELB), cell elongation region (LCEZ) and shoot apex region (SAR) of Kukri and RAC875 grown at ambient (a[CO₂], 400 µmol mol⁻¹) or elevated (e[CO₂], 700±10 µmol mol⁻¹) [CO₂]. Data presented are the mean values of gene expression. Fold change of transcript relative abundance at elevated [CO₂] are presented in Log₂ scale.

Organ			Gene expres	Log ₂ fold change			
Organ	Gene Name	Ku	kri	RA	C875	Kukri	RAC875
type		a[CO2]	e[CO2]	a[CO2]	e[CO2]	e[CO2]/	a[CO2]
	TaEXPA3	0.01	0.03	0.46	0.95	1.31	1.05
LFELB	TaEXPB6	0.05	0.05	0.76	0.74	0.17	-0.03
	TAEXPB23	0.01	0.05	0.11	0.38	2.48	1.82
	TaEXPA3	1.32	1.23	1.77	5.48	-0.10	1.63
ELB	TaEXPB6	6.11	7.51	7.46	17.14	0.30	1.20
	TAEXPB23	11.55	28.49	13.23	13.55	1.30	0.03
	TaEXPA1	0.03	0.02	0.04	0.06	-0.80	0.57
	TaEXPA3	0.06	0.39	0.38	0.44	2.71	0.20
	TAEXPB1	0.10	0.13	0.17	0.23	0.36	0.41
LCEZ	TAEXPB2	0.76	2.43	0.84	1.74	1.68	1.04
	TAEXPB3	0.46	0.73	0.60	1.37	0.68	1.20
	TAEXPB6	0.64	1.82	3.15	6.19	1.51	0.98
	TAEXPB23	2.65	10.46	3.58	8.43	1.98	1.24
	TaEXPA1	0.05	0.03	0.02	0.03	-0.63	0.69
	TaEXPA3	1.19	2.65	2.94	4.91	1.16	0.74
SAR	TAEXPB1	4.99	3.32	1.19	5.58	-0.59	2.23
	TAEXPB2	0.52	2.94	0.88	3.94	2.50	2.16
	TAEXPB3	0.28	1.57	0.65	2.30	2.50	1.83

TAEXPB6	4.10	5.12	6.25	9.33	0.32	0.58
TAEXPB23	3.40	9.94	3.98	14.82	1.55	1.90

Table 8. Heatmap for transcript abundance of Xyloglucan endotransglucosylase/hydrolase genes of cell wall metabolism in last fully expanded leaf (LFELB), expanding leaf (ELB), cell elongation region (LCEZ) and shoot apex region (SAR) of Kukri and RAC875 grown at ambient (a[CO₂], 400 μ mol mol⁻¹) or elevated (e[CO₂], 700±10 μ mol mol⁻¹) [CO₂]. Data presented are the mean values of gene expression. Fold change of transcript relative abundance at elevated [CO₂] are presented in Log₂ scale.

			Gene expr	Log ₂ fold change			
Organ type	Gene Name	Ku	kri	RA	C875	Kukri	RAC875
		a[CO ₂]	e[CO ₂]	a[CO2]	e[CO ₂]	e [CO ₂]	/a[CO ₂]
	TaXTH1	0.63	0.65	5.83	5.33	0.04	-0.13
	TaXTH2	2.26	2.10	4.32	5.90	-0.11	0.45
LFELB	TaXTH3	0.78	0.40	1.71	2.04	-0.96	0.25
	TaXTH4	0.01	0.01	0.16	0.03	-0.60	-2.64
	TaXTH5	0.05	2.12	0.12	0.45	5.42	1.96
	TaXTH1	39.54	46.23	23.16	66.77	0.23	1.53
	TaXTH2	36.34	65.60	46.83	94.22	0.85	1.01
ELB	TaXTH3	26.76	8.70	4.31	36.13	-1.62	3.07
	TaXTH4	0.61	0.40	0.88	1.92	-0.60	1.12
	TaXTH5	1.94	2.58	0.94	2.44	0.42	1.37
	TaXTH1	10.53	16.27	30.98	36.44	0.63	0.23
	TaXTH2	4.75	6.75	9.68	17.91	0.51	0.89
LCEZ	TaXTH3	0.91	1.30	1.82	6.77	0.52	1.90
	TaXTH4	0.17	1.12	3.19	2.67	2.75	-0.26
	TaXTH5	2.28	5.29	2.49	6.38	1.22	1.36
	TaXTH1	5.00	6.91	3.46	21.07	0.47	2.60
	TaXTH2	6.60	4.49	3.90	13.09	-0.55	1.75
SAR	TaXTH3	2.40	1.87	0.87	3.24	-0.36	1.89
	TaXTH4	2.04	1.87	9.46	17.23	-0.12	0.86
	TaXTH5	46.11	46.87	17.38	61.97	0.02	1.83

828 References

- Ainsworth, Elizabeth A, Claus Beier, Carlo Calfapietra, Reinhart Ceulemans, Mylene Durand Tardif, Graham D Farquhar, Douglas L Godbold, George R Hendrey, Thomas Hickler,
 and Jörg Kaduk. 2008. 'Next generation of elevated [CO₂] experiments with crops: a
 critical investment for feeding the future world', *Plant, Cell & Environment*, 31: 1317 24.
- Ainsworth, Elizabeth A, and Daniel R Bush. 2011. 'Carbohydrate export from the leaf: a highly
 regulated process and target to enhance photosynthesis and productivity', *Plant Physiology*, 155: 64-69.
- Ainsworth, Elizabeth A, and Alistair Rogers. 2007. 'The response of photosynthesis and
 stomatal conductance to rising [CO₂]: mechanisms and environmental interactions',
 Plant, Cell & Environment, 30: 258-70.
- Ainsworth, Elizabeth A, Alistair Rogers, Randall Nelson, and Stephen P Long. 2004. 'Testing
 the "source–sink" hypothesis of down-regulation of photosynthesis in elevated [CO₂]
 in the field with single gene substitutions in Glycine max', *Agricultural and Forest Meteorology*, 122: 85-94.
- Ainsworth, Elizabeth A, Alistair Rogers, Lila O Vodkin, Achim Walter, and Ulrich Schurr.
 2006. 'The effects of elevated CO₂ concentration on soybean gene expression. An
 analysis of growing and mature leaves', *Plant Physiology*, 142: 135-47.
- Alonso, Aitor, Pilar Pérez, and Rafael Martínez-Carrasco. 2009. 'Growth in elevated CO₂
 enhances temperature response of photosynthesis in wheat', *Physiologia plantarum*,
 135: 109-20.
- Aranjuelo, Iker, Gorka Erice, Alvaro Sanz-Sáez, Cyril Abadie, Françoise Gilard, Erena GilQuintana, Jean-Christophe Avice, Christiana Staudinger, Stefanie Wienkoop, and Jose
 L Araus. 2015. 'Differential CO₂ effect on primary carbon metabolism of flag leaves in
 durum wheat (Triticum durum Desf.)', *Plant, Cell & Environment*, 38: 2780-94.
- Bennett, Dion, Ali Izanloo, James Edwards, Haydn Kuchel, Ken Chalmers, Mark Tester,
 Matthew Reynolds, Thorsten Schnurbusch, and Peter Langridge. 2012. 'Identification
 of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in
 a bread wheat (Triticum aestivum L.) population adapted to southern Australian
 conditions', *Theoretical and Applied Genetics*, 124: 697-711.
- Bennett, Dion, Matthew Reynolds, Daniel Mullan, Ali Izanloo, Haydn Kuchel, Peter
 Langridge, and Thorsten Schnurbusch. 2012. 'Detection of two major grain yield QTL
 in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential
 environments', *Theoretical and Applied Genetics*, 125: 1473-85.
- Bernard, Stéphanie M, Anders Laurell Blom Møller, Giuseppe Dionisio, Thomas Kichey,
 Thomas P Jahn, Frederic Dubois, Marcela Baudo, Marta S Lopes, Thérese TercéLaforgue, and Christine H Foyer. 2008. 'Gene expression, cellular localisation and
 function of glutamine synthetase isozymes in wheat (Triticum aestivum L.)', *Plant molecular biology*, 67: 89-105.
- Bihmidine, Saadia, Charles T Hunter III, Christine E Johns, Karen E Koch, and David M
 Braun. 2013. 'Regulation of assimilate import into sink organs: update on molecular
 drivers of sink strength', *Frontiers in plant science*, 4: 177.
- Bloom, Arnold J. 2015. 'Photorespiration and nitrate assimilation: a major intersection between
 plant carbon and nitrogen', *Photosynthesis research*, 123: 117-28.
- Bowes, George. 1993. 'Facing the inevitable: plants and increasing atmospheric CO₂', *Annual review of plant biology*, 44: 309-32.
- 875 Brestic, Marian, Marek Zivcak, Hazem M Kalaji, Robert Carpentier, and Suleyman I 876 Allakhverdiev. 2012. 'Photosystem II thermostability in situ: environmentally induced

- acclimation and genotype-specific reactions in Triticum aestivum L', *Plant Physiology and Biochemistry*, 57: 93-105.
- Kren, Michèle, and Bertrand Hirel. 1999. 'Glutamine synthetase in higher plants regulation of
 gene and protein expression from the organ to the cell', *Plant and Cell Physiology*, 40:
 1187-93.
- Bert G, Miquel A Gonzàlez-Meler, and Steve P Long. 1997. 'More efficient plants: a
 consequence of rising atmospheric CO₂?', *Annual review of plant biology*, 48: 609-39.
- Echeverria, Ed, Michael E Salvucci, Pedro Gonzalez, Gaston Paris, and Graciela Salerno. 1997.
 Physical and kinetic evidence for an association between sucrose-phosphate synthase
 and sucrose-phosphate phosphatase', *Plant Physiology*, 115: 223-27.
- Eveland, Andrea L, and David P Jackson. 2011. 'Sugars, signalling, and plant development',
 Journal of Experimental Botany, 63: 3367-77.
- Foyer, Christine, and Hanma Zhang. 2011. Annual Plant Reviews, Nitrogen Metabolism in
 Plants in the Post-genomic Era (John Wiley & Sons).
- Gamage, Dananjali, Michael Thompson, Mark Sutherland, Naoki Hirotsu, Amane Makino, and
 Saman Seneweera. 2018. 'New insights into the cellular mechanisms of plant growth at
 elevated atmospheric carbon dioxide', *Plant, Cell & Environment*, 41(6): 1233-46.
- Geigenberger, Peter, Ralph Reimholz, Uta Deiting, Uwe Sonnewald, and Mark Stitt. 1999.
 'Decreased expression of sucrose phosphate synthase strongly inhibits the water stressinduced synthesis of sucrose in growing potato tubers', *The Plant Journal*, 19: 119-29.
- Geiger, M, V Haake, F Ludewig, U Sonnewald, and M Stitt. 1999. 'The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco', *Plant, Cell & Environment*, 22: 1177-99.
- Gibson, Susan I. 2005. 'Control of plant development and gene expression by sugar signaling',
 Current opinion in plant biology, 8: 93-102.
- Gutiérrez, Diego, Elena Gutiérrez, Pilar Pérez, Rosa Morcuende, Angel L Verdejo, and Rafael
 Martinez-Carrasco. 2009. 'Acclimation to future atmospheric CO₂ levels increases
 photochemical efficiency and mitigates photochemistry inhibition by warm
 temperatures in wheat under field chambers', *Physiologia plantarum*, 137: 86-100.
- Hashida, Yoichi, Tatsuro Hirose, Masaki Okamura, Ken-ichiro Hibara, Ryu Ohsugi, and
 Naohiro Aoki. 2016. 'A reduction of sucrose phosphate synthase (SPS) activity affects
 sucrose/starch ratio in leaves but does not inhibit normal plant growth in rice', *Plant Science*, 253: 40-49.
- Huber, Steven C. 1983. 'Role of sucrose-phosphate synthase in partitioning of carbon in leaves',
 Plant Physiology, 71: 818-21.
- Huber, Steven C, and Daniel W Israel. 1982. 'Biochemical basis for partitioning of
 photosynthetically fixed carbon between starch and sucrose in soybean (Glycine max
 Merr.) leaves', *Plant Physiology*, 69: 691-96.
- IPCC. 2014. 'Recent increase and projected changes in CO2 concentrations', Data distribution
 centre, IPCC, Accessed 13th December.
- Izanloo, Ali, Anthony G Condon, Peter Langridge, Mark Tester, and Thorsten Schnurbusch.
 2008. 'Different mechanisms of adaptation to cyclic water stress in two South
 Australian bread wheat cultivars', *Journal of Experimental Botany*, 59: 3327-46.
- Jiang, Shu-Ye, Yun-Hua Chi, Ji-Zhou Wang, Jun-Xia Zhou, Yan-Song Cheng, Bao-Lan
 Zhang, Ali Ma, Jeevanandam Vanitha, and Srinivasan Ramachandran. 2015. 'Sucrose
 metabolism gene families and their biological functions', *Scientific reports*, 5: 17583.
- Jitla, D.S., G.S. Rogers, S.P. Seneweera, Amarjit S. Basra, Ron J. Oldfield, and J.P. Conroy.
 1997. 'Accerlerated early growth of rice at elevated CO₂', *Plant Physiology*, 115: 15 22.

- Kimball, Bruce A. 2016. 'Crop responses to elevated CO₂ and interactions with H₂O, N, and
 temperature', *Current opinion in plant biology*, 31: 36-43.
- Koch, Karen. 2004. 'Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development', *Current opinion in plant biology*, 7: 235-46.
- Koch, KE. 1996. 'Carbohydrate-modulated gene expression in plants', *Annual review of plant biology*, 47: 509-40.
- Körner, Christian. 2015. 'Paradigm shift in plant growth control', *Current opinion in plant biology*, 25: 107-14.
- Lee, Yi, and Hans Kende. 2001. 'Expression of β-expansins is correlated with internodal elongation in deepwater rice', *Plant Physiology*, 127: 645-54.
- Li, Yi, Louise Jones, and Simon McQueen-Mason. 2003. 'Expansins and cell growth', *Current opinion in plant biology*, 6: 603-10.
- Liu, Yong, Dongcheng Liu, Haiying Zhang, Hongbo Gao, Xiaoli Guo, Daowen Wang, Xiangqi
 Zhang, and Aimin Zhang. 2007. 'The α-and β-expansin and xyloglucan
 endotransglucosylase/hydrolase gene families of wheat: Molecular cloning, gene
 expression, and EST data mining', *Genomics*, 90: 516-29.
- Lunn, John E. 2003. 'Sucrose-phosphatase gene families in plants', *Gene*, 303: 187-96.
- Lunn, John E, and Elspeth MacRae. 2003. 'New complexities in the synthesis of sucrose',
 Current opinion in plant biology, 6: 208-14.
- MacRae, E.A., and J.E. Lunn. 2006. 'Control of sucrose biosynthesis.' in W.C. Plaxton and
 M.T. McManus (eds.), *Advances in Plant Research* (Blackwell).
- Makino, Amane, Masayo Harada, Tetsuya Sato, Hiromi Nakano, and Tadahiko Mae. 1997.
 'Growth and N allocation in rice plants under CO₂ enrichment', *Plant Physiology*, 115: 199-203.
- Makino, Amane, and Tadahiko Mae. 1999. 'Photosynthesis and plant growth at elevated levels
 of CO2', *Plant and Cell Physiology*, 40: 999-1006.
- Martin, Thomas, Oliver Oswald, and Ian A Graham. 2002. 'Arabidopsis seedling growth,
 storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:
 nitrogen availability', *Plant Physiology*, 128: 472-81.
- Masclaux-Daubresse, Céline, Françoise Daniel-Vedele, Julie Dechorgnat, Fabien Chardon,
 Laure Gaufichon, and Akira Suzuki. 2010. 'Nitrogen uptake, assimilation and
 remobilization in plants: challenges for sustainable and productive agriculture', *Annals of Botany*, 105: 1141-57.
- Masclaux-Daubresse, Céline, Michele Reisdorf-Cren, Karine Pageau, Maud Lelandais, Olivier
 Grandjean, Joceline Kronenberger, Marie-Hélène Valadier, Magali Feraud, Tiphaine
 Jouglet, and Akira Suzuki. 2006. 'Glutamine synthetase-glutamate synthase pathway
 and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in
 tobacco', *Plant Physiology*, 140: 444-56.
- Masle, J. 2000. 'The effects of elevated CO₂ concentrations on cell division rates, growth
 patterns, and blade anatomy in young wheat plants are modulated by factors related to
 leaf position, vernalization, and genotype', *Plant Physiology*, 122.
- McQueen-Mason, SJ, and F Rochange. 1999. 'Expansins in plant growth and development: an
 update on an emerging topic', *Plant biology*, 1: 19-25.
- Murchie, Erik H, and Tracy Lawson. 2013. 'Chlorophyll fluorescence analysis: a guide to good
 practice and understanding some new applications', *Journal of Experimental Botany*,
 64: 3983-98.
- Nikolau, Basil J, and Daniel F Klessig. 1987. 'Coordinate, organ-specific and developmental
 regulation of ribulose 1, 5-bisphosphate carboxylase gene expression in Amaranthus
 hypochondriacus', *Plant Physiology*, 85: 167-73.

- Pageau, Karine, Michèle Reisdorf-Cren, Jean-François Morot-Gaudry, and Céline MasclauxDaubresse. 2005. 'The two senescence-related markers, GS1 (cytosolic glutamine
 synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen mobilization,
 are differentially regulated during pathogen attack and by stress hormones and reactive
 oxygen species in Nicotiana tabacum L. leaves', *Journal of Experimental Botany*, 57:
 547-57.
- Paul, Matthew J, and Christine H Foyer. 2001. 'Sink regulation of photosynthesis', *Journal of Experimental Botany*, 52: 1383-400.
- Paul, Matthew J, and Till K Pellny. 2003. 'Carbon metabolite feedback regulation of leaf
 photosynthesis and development', *Journal of Experimental Botany*, 54: 539-47.
- 986 Pessarakli, Mohammad. 1996. Handbook of photosynthesis (CRC Press).
- Pfaffl, Michael W. 2001. 'A new mathematical model for relative quantification in real-time
 RT–PCR', *Nucleic acids research*, 29: e45-e45.
- Ranasinghe, S., and G. Taylor. 1996. 'Mechanism for increased leaf grwoth in elevated CO₂',
 Journal of Experimental Botany, 47: 349-58.
- Rasineni, Girish Kumar, Anirban Guha, and Attipalli Ramachandra Reddy. 2011. 'Elevated
 atmospheric CO2 mitigated photoinhibition in a tropical tree species, Gmelina arborea',
 Journal of Photochemistry and Photobiology B: Biology, 103: 159-65.
- Reinhardt, Didier, Franz Wittwer, Therese Mandel, and Cris Kuhlemeier. 1998. 'Localized
 upregulation of a new expansin gene predicts the site of leaf formation in the tomato
 meristem', *The Plant Cell*, 10: 1427-37.
- Rosa, Mariana, Carolina Prado, Griselda Podazza, Roque Interdonato, Juan A González, Mirna
 Hilal, and Fernando E Prado. 2009. 'Soluble sugars: Metabolism, sensing and abiotic
 stress: A complex network in the life of plants', *Plant signaling & behavior*, 4: 388-93.
- Ruijter, JM, C Ramakers, WMH Hoogaars, Y Karlen, O Bakker, MJB Van den Hoff, and AFM
 Moorman. 2009. 'Amplification efficiency: linking baseline and bias in the analysis of
 quantitative PCR data', *Nucleic acids research*, 37: e45-e45.
- Sasaki, Yukiko, Yosuke Nakamura, and Ryuichi Matsuno. 1987. 'Regulation of gene
 expression of ribulose bisphosphate carboxylase in greening pea leaves', *Plant molecular biology*, 8: 375-82.
- Sauer, Norbert. 2007. 'Molecular physiology of higher plant sucrose transporters', *FEBS letters*,
 581: 2309-17.
- Schmittgen, Thomas D, and Kenneth J Livak. 2008. 'Analyzing real-time PCR data by the
 comparative C T method', *Nature protocols*, 3: 1101.
- Sekhar, Kalva Madhana, Rachapudi Venkata Sreeharsha, and Attipalli Ramachandra Reddy.
 2015. 'Differential responses in photosynthesis, growth and biomass yields in two
 mulberry genotypes grown under elevated CO₂ atmosphere', *Journal of Photochemistry and Photobiology B: Biology*, 151: 172-79.
- Seneweera, Saman P, and Jann P Conroy. 2005. 'Enhanced leaf elongation rates of wheat at
 elevated CO₂: is it related to carbon and nitrogen dynamics within the growing leaf
 blade?', *Environmental and experimental botany*, 54: 174-81.
- Seneweera, SP, Oula Ghannoum, Jann Conroy, Ken Ishimaru, Masumi Okada, Mark
 Lieffering, Han Yong Kim, and Kazuhiko Kobayashi. 2002. 'Changes in source–sink
 relations during development influence photosynthetic acclimation of rice to free air
 CO₂ enrichment (FACE)', *Functional Plant Biology*, 29: 947-55.
- Shin, Jun-Hye, Dong-Hoon Jeong, Min Chul Park, and Gynheung An. 2005. 'Characterization
 and Transcriptional Expression of the α-Expansin Gene Family in Rice', *Molecules & Cells (Springer Science & Business Media BV)*, 20.

- Smeekens, Sjef, Jingkun Ma, Johannes Hanson, and Filip Rolland. 2010. 'Sugar signals and
 molecular networks controlling plant growth', *Current opinion in plant biology*, 13:
 273-78.
- Stitt, Mark, John Lunn, and Björn Usadel. 2010. 'Arabidopsis and primary photosynthetic
 metabolism-more than the icing on the cake', *The Plant Journal*, 61: 1067-91.
- 1029 Sturm, Arnd, and Guo-Qing Tang. 1999. 'The sucrose-cleaving enzymes of plants are crucial 1030 for development, growth and carbon partitioning', *Trends in plant science*, 4: 401-07.
- Suzuki, Akira, and David B Knaff. 2005. 'Glutamate synthase: structural, mechanistic and
 regulatory properties, and role in the amino acid metabolism', *Photosynthesis research*,
 83: 191-217.
- Suzuki, Y, A Makino, and T Mae. 2001. 'Changes in the turnover of Rubisco and levels of
 mRNAs of rbcL and rbcS in rice leaves from emergence to senescence', *Plant, Cell & Environment*, 24: 1353-60.
- Suzuki, Yuji, TOMONORI KIHARA-DOI, Tetsu Kawazu, Chikahiro Miyake, and Amane
 Makino. 2010. 'Differences in Rubisco content and its synthesis in leaves at different
 positions in Eucalyptus globulus seedlings', *Plant, Cell & Environment*, 33: 1314-23.
- Suzuki, Yuji, Takeaki Miyamoto, Ryuichi Yoshizawa, Tadahiko Mae, and Amane Makino.
 2009. 'Rubisco content and photosynthesis of leaves at different positions in transgenic
 rice with an overexpression of RBCS', *Plant, Cell & Environment*, 32: 417-27.
- Tabuchi, Mayumi, Tomomi Abiko, and Tomoyuki Yamaya. 2007. 'Assimilation of ammonium
 ions and reutilization of nitrogen in rice (Oryza sativa L.)', *Journal of Experimental Botany*, 58: 2319-27.
- Tans, Pieter, and Ralph Keeling. 2018. 'Trends in atmospheric carbon dioxide', NOAA/ESRL
 (www.esrl.noaa.gov/gmd/ccgg/trends/) Accessed 4th February.
- Tausz, Michael, Sabine Tausz-Posch, Robert M Norton, Glenn J Fitzgerald, Marc E Nicolas,
 and Saman Seneweera. 2013. 'Understanding crop physiology to select breeding targets
 and improve crop management under increasing atmospheric CO₂ concentrations',
 Environmental and experimental botany, 88: 71-80.
- Taylor, Gail, Sananthanie Ranasinghe, Creana Bosac, S.D.L. Gardner, and Rachel Ferris. 1994.
 'Elevated CO2 and plant growth: cellular mechanisms and responses of whole plants', *Journal of Experimental Botany*, 45: 1761-74.
- Thilakarathne, Chamindathee L, Sabine Tausz-Posch, Karen Cane, Robert M Norton, Glenn J
 Fitzgerald, Michael Tausz, and Saman Seneweera. 2015. 'Intraspecific variation in leaf
 growth of wheat (Triticum aestivum) under Australian Grain Free Air CO₂ Enrichment
 (AGFACE): is it regulated through carbon and/or nitrogen supply?', *Functional Plant Biology*, 42: 299-308.
- Thilakarathne, Chamindathee L, Sabine Tausz-Posch, Karen Cane, Robert M Norton, Michael
 Tausz, and Saman Seneweera. 2013. 'Intraspecific variation in growth and yield
 response to elevated CO2 in wheat depends on the differences of leaf mass per unit
 area', *Functional Plant Biology*, 40: 185-94.
- Thompson, Michael, Dananjali Gamage, Naoki Hirotsu, Anke Martin, and Saman Seneweera.
 2017. 'Effects of Elevated Carbon Dioxide on Photosynthesis and Carbon Partitioning:
 A Perspective on Root Sugar Sensing and Hormonal Crosstalk', *Frontiers in Physiology*, 8: 578.
- 1068 Verbančič, Jana, John Edward Lunn, Mark Stitt, and Staffan Persson. 2017. 'Carbon supply
 1069 and the regulation of cell wall synthesis', *Molecular plant*.
- Vicente, Rubén, Pilar Pérez, Rafael Martínez-Carrasco, Björn Usadel, Svetla Kostadinova, and
 Rosa Morcuende. 2015. 'Quantitative RT–PCR Platform to Measure Transcript Levels
 of C and N Metabolism-Related Genes in Durum Wheat: Transcript Profiles in Elevated
- 1073 [CO2] and High Temperature at Different Levels of N Supply', *Plant and Cell* 1074 *Physiology*, 56: 1556-73.
- White, Angela C, Alistair Rogers, Mark Rees, and Colin P Osborne. 2015. 'How can we make
 plants grow faster? A source–sink perspective on growth rate', *Journal of Experimental Botany*, 67: 31-45.
- Wu, Yajun, Robert B Meeley, and Daniel J Cosgrove. 2001. 'Analysis and expression of the αexpansin and β-expansin gene families in maize', *Plant Physiology*, 126: 222-32.
- Xing, S-C, F Li, Q-F Guo, D-R Liu, X-X Zhao, and W Wang. 2009. 'The involvement of an
 expansin geneTaEXPB23 from wheat in regulating plant cell growth', *Biologia plantarum*, 53: 429.
- Yamaya, Tomoyuki, Toshihiko Hayakawa, Keisuke Tanasawa, Kazunari Kamachi, Tadahiko
 Mae, and Kunihiko Ojima. 1992. 'Tissue distribution of glutamate synthase and
 glutamine synthetase in rice leaves: occurrence of NADH-dependent glutamate
 synthase protein and activity in the unexpanded, nongreen leaf blades', *Plant Physiology*, 100: 1427-32.
- Yang, Jennifer T, Alyssa L Preiser, Ziru Li, Sean E Weise, and Thomas D Sharkey. 2016.
 'Triose phosphate use limitation of photosynthesis: short-term and long-term effects', *Planta*, 243: 687-98.
- Yokoyama, R, and K Nishitani. 2000. 'Functional diversity of xyloglucan-related proteins and
 its implications in the cell wall dynamics in plants', *Plant biology*, 2: 598-604.
- Yonekura, Madoka, Naohiro Aoki, Tatsuro Hirose, Kiyoshi Onai, Masahiro Ishiura, Masaki
 Okamura, Ryu Ohsugi, and Chikara Ohto. 2013. 'The promoter activities of sucrose
 phosphate synthase genes in rice, OsSPS1 and OsSPS11, are controlled by light and
 circadian clock, but not by sucrose', *Frontiers in plant science*, 4: 31.
- Zheng, Zhi-Liang. 2009. 'Carbon and nitrogen nutrient balance signaling in plants', *Plant signaling & behavior*, 4: 584-91.
- 1099 1100

135

Supplementary Data

Supplementary Figure S1. The effect of $[CO_2]$ on sucrose content of (**a**) last fully expanded leaf blade (LFELB), (**b**) expanding leaf blade (ELB) and (**c**) cell elongation region (CER); glucose content of (**d**) LFELB, (e) ELB, (f) CER; fructose content of (**g**) LFELB, (h) ELB, (f) CER of Kukri and RAC875 grown at ambient (400 μ mol mol⁻¹) or elevated (700±10 μ mol mol⁻¹) [CO₂]. Measurements were taken at 42 DAP. Summary of the ANOVA results is shown. Data presented are the mean from 3 replicates. Abbreviations: ns, not significant; *, P<0.05; **, P<0.01.

Supplementary Table S1.	CO_2 responsiveness of the selected wheat li	ines of the double haploid map	ping population in the prev	vious experimental
trials.				

	Reference	Double haploid ID	CO ₂ responsiveness of aboveground	CO ₂ responsiveness of below ground
	name		biomass accumulation	biomass accumulation
High	H_1	DH_R241	260.53%	305.94%
responsive	H ₂	DH_R281	281.58%	335.77%
wheat lines	H ₃	DH_R181	364.09%	284.60%
	H_4	DH_R186	281.98%	352.34%
Less	L_1	DH_R092	55.87%	55.19%
responsive	L_2	DH_R009	40.86%	41.26%
wheat lines	L ₃	DH_R215	30.39%	-4.73%
	L_4	DH_R220	52.75%	51.67%

Supplementary Table S2. Controlled environmental conditions provided to the Reach-in plant growth chambers throughout the experimental period.

Time Period	Temperature	Relative humidity	[CO ₂] concentration	[CO ₂] concentration	
			Ambient [CO ₂]	Elevated [CO ₂]	
06:00 hrs	15°C	70%	400 µmolmol ⁻¹	$700 \ \mu molmol^{-1}$	Partial (40%)
08:00 hrs	20°C	70%	400 µmolmol ⁻¹	$700 \ \mu molmol^{-1}$	Partial (40%)
11:00 hrs	23°C	70%	400 µmolmol ⁻¹	$700 \ \mu molmol^{-1}$	Partial (40%)
15:00 hrs	20°C	70%	400 µmolmol ⁻¹	$700 \ \mu molmol^{-1}$	Partial (40%)
18:00 hrs	15°C	70%	400 µmolmol ⁻¹	$700 \ \mu molmol^{-1}$	Partial (40%)
20:00 hrs	13°C	70%	400 µmolmol ⁻¹	$700 \ \mu molmol^{-1}$	Partial (40%)

Metabolism	Accession	Gene	Forward prim	er sequence	(5'-3'	Reverse	primer	sequence	(5'-3'	Reference
	No.	abbreviation	sequence)			sequence)				
Photosynthesis	AY328025	rbcL	GGCTGCAGTA	GCTGCCGAA	TCT	TCCCCA	GCAACA	GGCTCGA	TGT	Vicente et
	AB020957	rbcS	AGCCTCAGCAG	GCGTCAGCAA	Т	CGTGGA	TAGGGG	TGGCAGGT	TAAGA	al, 2015
Carbon	AF321556	SPP1	GCGCACGGGA	AGGAGTTTTT	CTTCT	GACCTC	CGTAGAG	CATCATCCA	AGCCC	Vicente et
metabolism	AF310160	SPS1	AGAAGGCTCTC	GCCTCCCATT	TGGTC	AGGATCA	ATCGGCT	TGTGCGG	GTT	al, 2015
	AF321556	SUS1	GTATGTTCACC	AGGGCAAGG	GCA	GGCGTC	AAACTCA	GCAAGCA	GC	
Nitrogen	FJ527909	NiR	AACCTCCTCTC	CTCCTACATC	^C A	CCTAGG	AAGGTTC	GGTGATGG	С	Vicente et
metabolism	TC394038	Fd-GOGAT	CGGCAATGGA	GGCTGAGCAA	CA	TGAGCC	TGCTCGA	ATGGTCAC	TGT	al, 2015
	DQ124212	GS2a	CTCATGGTGTG	TTGCGAACC		GGTCCT	CCAGGTA	ATCCTTTGC		
	DQ124213	GS2b	TGAAGGAAACC	GAGCGGAGAG		CTCG	CCCCAC	ACGAATAG	AG	
	TC387834	NADH-	GCCATTGAATC	AGTTCCAGG	GCCAC	GCCAGC	ACCTGA	GCTTTCCT	GATG	
		GOGAT								
	DQ124209	GS1a	AGGTCATCGTC	GGATGCCGTG	GA	TTTGCGA	ACGCCCC	CAGCTGAA		
	AY491968	GSr1	AAGGGCTACTT	CGAGGACCG	² CA	ATGATCT	GGCGGG	CGGTAGGC	ΈAT	Liu et al,
Cell wall	AY589583	TaEXPA1	CCACCAACAAC	GCAGTTCTCTT	TAATT	CATACAT	CCCCAC	'AAAAAAAG	GAC	2007
metabolism	AY692477	TaEXPA3	GTCTGTGTGTTGG	TGTGTTTTTC	'CC	AACCATO	CACCTCT	TTACCCTA	ATCA	
	AY589578	TaEXPB1	TACAGATCCCT	GGTCCAGTT	CG	CATCATA	GGTAGA	ACAAGACC	GACGA	
	AY589579	TaEXPB2	CTCCATCGTCC	AGTACAGCT	GA	CATGATT	CCAAAT	GATGAGTT	CG	
	AY589580	TaEXPB3	CTGCTGGCTAC	CGATTAATTGO	CTC	CCCACG	CAAAATA	CAAAAGAT	TAAA	
	AY692478	TaEXPB6	TGCCTTATGTA	GCAGGGTGA	GAC	GTACAC	GATGGAG	CGACGACA	CTA	
	AY260547	TaEXPB23	CATGCGCATCA	CCAACGAGT		TGGACG	ATGGAG	CGGTAGAA	G	Yang Han
										et al 2012
	AY589585	TaXTH1	CGAGAGCAAG	TACATGTCCT	ACGA	GAAAGG	AAGAAAA	CTGATGGA	CGAT	Liu et al,
	AY589586	TaXTH2	ATCCAGCGTCA	ATTCCTTCCT	Т	TCGAATO	CGAATGO	GACAAACAA	G	2007
	AY589586	TaXTH3	CGAGAGCAAG	TACATGTCCT	ACGA	AAGAAA	GGAAGAA	ATTTGATGA	TGGA	
	AY589586	TaXTH4	TCATTGATTAA	TTCTTCCGTT	TGCT	AAGATG	GGATGAA	CAAGAAGA	AACAA	
	AY589586	TaXTH5	CCGTCATCTGA	GATGTGTTTT	GTT	CATTTAC	CACCATC	CGACAGAG	GCT	

Supplementary Table S3. List of primer sequences of selected genes for the RT-PCR analysis.

Reference genes	ADP- ribosylation factor	GCTCTCCAACAACATTGCCAAC	GCTTCTGCCTGTCACATACGC	Vicente et al, 2015
	a – Tubulin	TCTCATGTACCGTGGTGATGTTG	AACTGAATAGTGCGCTTGGTCTT	Liu et al, 2007

Supplementary Table S4. The effect of $[CO_2]$ on growth-related traits, photosynthetic parameters and chlorophyll fluorescence parameters of Kukri and RAC875 grown at ambient $[CO_2]$ (a $[CO_2]$, 400 µmol mol⁻¹) or elevated $[CO_2]$ (e $[CO_2]$, 700±10 µmol mol⁻¹). Measurements were taken at 42 DAP. Summary of the ANOVA results is shown. Data presented are the mean from n=3 and 6 replicates. Abbreviations: ns, not significant; *, P<0.05; **, P<0.01.

Trait	Mean CO ₂ effect			Mean culti	var effect		Interaction effect (ANOVA results)
	a[CO ₂]	e[CO ₂]	ANOVA result	Kukri	RAC875	ANOVA result	[CO ₂]x Cultivar
Growth-related traits							
Above ground biomass (mg/plant)	242.96	353.70	**	278.8	317.86	ns	**
Total soluble sugar content (mg/g)	56.38	86.38	**	74.68	68.09	**	**
Total leaf area (cm ² /plant)	39.08	48.49	**	35.48	52.09	**	ns
Photosynthesis parameters							
Photosynthesis rate $(\mu mol CO_2 m^{-2} s^{-1})$	14.15	20.85	**	15.61	19.38	**	*
g_{s} (mol H ₂ O m ⁻² s ⁻¹)	0.31	0.22	ns	0.26	0.27	ns	*
C_i (µmol CO ₂ mol ⁻¹)	295.50	524.33	**	411.33	408.5	ns	ns
Transpiration rate (mmol H ₂ O m ⁻² s ⁻¹)	4.46	3.75	ns	3.89	4.33	ns	*
Chlorophyll fluorescence pa	rameters						

PSII operating efficiency	0.28	0.34	**	0.27	0.34	**	ns
(\$PSII)							
Electron transport rate	122.27	152.72	**	122.70	152.29	**	ns
(ETR)							
Photo-chemical quenching	0.49	0.61	**	0.50	0.60	**	ns
(q _P)							
Non-photochemical	2.34	2.28	ns	2.25	2.37	ns	ns
quenching (NPQ)							
Maximum PSII efficiency	0.56	0.56	ns	0.55	0.57	ns	ns
(Fv´/Fm´)							

Supplementary Table S5. Summary of the Analysis of Variance (ANOVA) results for the effect of $[CO_2]$ on different genes tested for two parental lines, Kukri and RAC875 grown at ambient (400 µmol mol⁻¹) or elevated (700±10 µmol mol⁻¹) $[CO_2]$. Abbreviations: ns, not significant; *, P<0.05; **, P<0.01.

Metabolism	Name of the	Cultivar effect	[CO ₂] effect	Organ effect	Cultivar x [CO2]	Cultivar x [CO ₂]
	gene					x Organ
Photosynthesis	rbcL	ns	**	**	ns	ns
	rbcS	**	**	**	ns	**
Carbon	SPP1	ns	**	**	ns	ns
metabolism	SPS1	**	**	**	ns	ns
	SUS1	ns	**	**	ns	ns
Nitrogen	NiR	*	**	*	ns	ns
metabolism	Fd-GOGAT	*	**	*	ns	ns
	GS2a	ns	**	*	*	**
	GS2b	*	**	*	ns	ns
	NADH-GOGAT	*	**	ns	ns	ns
	GS1a	*	**	*	*	**
	GSr1	ns	**	ns	ns	ns
Cell wall	TaEXPA1	ns	ns	ns	ns	ns
metabolism	TaEXPA3	*	**	**	ns	ns
	TaEXPB1	ns	ns	**	*	*
	TaEXPB2	ns	**	ns	ns	ns
	TaEXPB3	*	**	ns	ns	ns
	TaEXPB6	*	**	**	ns	ns
	TaEXPB23	*	**	**	ns	ns
	TaXTH1	*	**	**	ns	ns
	TaXTH2	*	**	**	*	ns
	TaXTH3	*	**	**	*	
	TaXTH4	ns	ns	**	ns	*
	TaXTH5	*	**	**	ns	*

Supplementary Table S6. Coefficients of correlation (*r*) between the response of sugar content and gene expression to elevated [CO₂]. Data used were the relative change of sugar content between ambient and elevated [CO₂] and the relative expression for each gene under elevated [CO₂]. Measurements were collected from Kukri and RAC875 42 DAP. Significant data are indicated in bold; *, P < 0.05; **, P < 0.01.

	SPP1							TaXTH	TaXTH	TaXTH	TaXTH	TaXTH
		TaEXP	TaEXP	TaEXP	TaEXP	TaEXP	TaEXP	1	2	3	4	5
		A1	<i>B1</i>	<i>B2</i>	<i>B3</i>	B6	<i>B23</i>					
Sucrose	-0.354	0.994*	0.701	-0.444	-0.55	0.90	-0.74*	0.72	0.142	0.156	-0.043	0.044
Glucose	-1.38	0.994*	0.701	-0.444	-0.55	0.625	-0.307	0.606	0.578	0.512	-0.207	0.816*
Fructose	0.783*	0.994*	0.701	-0.444	-0.55	-0.382	0.571	-0.45	-0.71	0.243	0.186	-0.472
Total	0.093	0.994*	0.701	-0.444	-0.55	-0.45	0.553	0.553	0.500	0.740*	-0.109	0.420
sugar												

Chapter 5

Leaf proteome responses of wheat (*Triticum aestivum* L.) to elevated atmospheric carbon dioxide during early vegetative growth

In this study, a comparative proteomics analysis was performed to identify differentially expressed proteins under elevated [CO₂]. This chapter aims to provide information on the most active metabolic proteins, regulatory enzymes and other biomolecules involved in key metabolic processes and thus, will be beneficial in dissecting the growth mechanism of plants in a high CO₂ environment. The experiments in this chapter were conducted with the parental lines of the doubled haploid mapping population used in the previous chapters. Comparative proteomics analysis was conducted for the expanding leaf blades of young wheat seedlings to develop an understanding of which metabolic processes are more active in the growing tissues when exposed to elevated [CO₂]. Protein expression at elevated [CO₂] on the regulation of protein levels. Proteins of key metabolic processes that showed significant change at elevated [CO₂] are reported in this chapter. This chapter has been prepared as a research article to be submitted to "Journal of Experimental Botany".

Gamage D, Thompson M, Dehigaspitiya P, Faou P, Rajapaksha KH, Downs R, Sutherland M.W., Hirotsu N, Seneweera S, Leaf proteome responses of wheat (*Triticum aestivum* L.) to elevated atmospheric carbon dioxide during early vegetative growth (Prepared for publication)

1 Article title:

- 2 Leaf proteome responses of wheat (*Triticum aestivum* L.) to elevated atmospheric carbon
- 3 dioxide during early growth
- 4 **Running title:** Leaf proteome responses to elevated [CO₂]
- 5 Authors:
- 6 Dananjali Gamage^{1&4}, Michael Thompson¹, Prabuddha Dehigaspitiya¹, Pierre Faou², Kolin
- 7 Harinda Rajapaksha², Rachael Downs² Mark W. Sutherland¹, Naoki Hirotsu^{1&3}, Saman
- 8 Seneweera^{1,4&5*}

9 Author affiliations:

- ¹⁰ ¹Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350,
- 11 Australia.
- ¹² ²Department of Biochemistry and Genetics, La Trobe Institute for Molecular Life Science, La
- 13 Trobe University, Bundoora, Australia
- ¹⁴ ³Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-
- 15 0193, Japan.
- ¹⁶ ⁴Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna,
- 17 Kamburupitiya 81 100, Sri Lanka.
- ¹⁸ ⁵ National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka
- 19

20 ***Corresponding author:**

- 21 Saman Seneweera,
- 22 E-mail <u>Saman.Seneweera@usq.edu.au</u>, Tel: +61746315525

23 Abbreviations:

- 24 [CO₂] Carbon dioxide concentration
- 25 Rubisco Ribulose 1,5-bisphosphate carboxylase/oxygenase
- 26 LFELB Last fully expanded leaf blade
- 27 ELB Expanding leaf blade
- 28 CE cell elongation region

29 Highlight:

Elevated [CO₂] alters protein expression related to synthesis and respiratory breakdown of carbohydrates, protein synthesis, cell division and cell elongation and thereby influence plant growth at early vegetative stages.

33

34 Abstract

The impact of rising atmospheric carbon dioxide $[CO_2]$ on the proteome of the growing leaf 35 36 blade was investigated using two winter wheat cultivars: Kukri and RAC875, focusing on the early vegetative stage. Two wheat genotypes were grown at ambient (400 µmol mol⁻¹) and 37 elevated (700 µmol mol⁻¹) [CO₂] in controlled environmental conditions. Elevated [CO₂] 38 increased the rate of photosynthesis and biomass production in Kukri by 16.4 and 32.6%, 39 respectively, when compared with 20 and 48% in RAC875. The nitrogen and protein 40 41 concentrations in the expanding leaf blades of both cultivars were high; however, RAC875 showed the highest nitrogen percentage (56.3%). Results of the comparative proteomics 42 analysis showed that leaf proteome responses at elevated [CO₂] were genotype dependent and 43 the proteome composition was altered at elevated [CO₂]. Most of the differentially expressed 44 45 proteins at elevated [CO₂] belonged to carbon metabolism, energy pathways, protein synthesis and cell cycle functions. Additionally, several proteolytic enzymes involved in post-46 translational modifications of proteins, antioxidant enzymes and molecular chaperones showed 47 a noteworthy upregulation at elevated [CO₂] in both cultivars. These findings suggest that 48 photosynthetic stimulation and lower stomatal conductance are not the only factors governing 49 plant growth at elevated $[CO_2]$. In response to increased sugar supply to developing leaves at 50 elevated $[CO_2]$, other key regulatory processes such as cell cycle function, protein and cell 51 redox homeostasis tend to be modified, significantly altering growth responses at the whole 52 plant level. 53

54 Keywords: Carbon metabolism, Expanding leaf blade, Leaf proteome, Plant growth, Protein

55 Introduction

The rapid increase in industrialization and population growth has led to significant increases in 56 carbon dioxide concentrations ($[CO_2]$) in the atmosphere. The current atmospheric $[CO_2]$ has 57 already exceeded 400 µmol mol⁻¹ (Tans and Keeling, 2018) and is predicted to double by the 58 end of this century (IPCC, 2014). As one of the prominent greenhouse gases, this increase in 59 [CO₂] leads to changes in the global climate, causing significant changes in temperature and 60 precipitation patterns and subsequently influencing agricultural productivity (Ainsworth et al., 61 2008; Solomon et al., 2007). On the other hand, increasing [CO₂] is beneficial for plants as it 62 is the primary substrate for photosynthesis. Therefore, elevated [CO₂] could potentially offset 63 64 losses in agricultural production caused by increased drought and high-temperature incidences (Ainsworth *et al.*, 2008). However, it will be highly challenging to capitalize CO₂ enrichment 65 for crop improvement because of the complex relationships among elevated [CO₂], 66 photosynthesis, plant growth and yield responses (Gamage et al., 2018; Thompson et al., 2017). 67 68 This has led researchers to investigate the underlying physiological and molecular mechanisms of plant growth responses to elevated [CO₂] as the first step in gaining a better understanding 69 of maximizing future crop production in a changing climate. 70

The effect of elevated $[CO_2]$ is more pronounced in C_3 crops, including critical cereal crops 71 such as rice and wheat, stimulating their growth and yield (Seneweera, 2011; Seneweera and 72 Conroy, 2005; Thilakarathne et al., 2013). Generally, plants respond to elevated [CO₂] through 73 increased photosynthesis and reduced stomatal conductance (Ainsworth and Rogers, 2007). 74 These two primary processes are central to all the other effects observed in plant communities 75 in response to high CO₂ conditions. The increase in photosynthesis of C₃ crops is mainly due 76 to the increased carboxylation of Ribulose 1,5- bisphosphate carboxylase/oxygenase 77 (Rubisco), which is not saturated under current CO₂ partial pressure (Lorimer, 1981; Makino 78 79 and Mae, 1999). The higher availability of CO₂ at the site of fixation also suppresses photorespiration, which facilitates Rubisco carboxylation (Makino and Mae, 1999). 80 81 Theoretically, photosynthesis of a mature sunlit leaf will increase by approximately 38% at elevated [CO₂] (Long *et al.*, 2004). Conversely, stomatal conductance of both C₃ and C₄ crops 82 83 tend to decrease at elevated [CO₂], which significantly reduces plant evapotranspiration and leads to improvements in plant water use efficiency (Ainsworth and Long, 2005; Leakey et al., 84 85 2009).

86

The direct effects of elevated [CO₂], mainly the stimulation of photosynthesis, provides the 87 fundamental basis for modifications to key post-photosynthetic metabolic pathways associated 88 with plant growth and development (Pritchard et al., 1999; Taylor et al., 1994). 89 Carbon/nitrogen metabolism, cell cycle and cell wall metabolism, along with hormonal 90 regulation, are the main metabolic networks involved in plant growth responses at elevated 91 [CO₂] (Gamage *et al.*, 2018). For any organism to maximize its fitness in response to different 92 environmental conditions, precise regulation and coordination of these metabolic networks to 93 a particular environment is necessary (Gaudinier et al., 2015). Thus, in response to 94 95 environmental stimuli, such as elevated [CO₂], plants tend to change their transcriptional and translational regulation, which thereby affects protein synthesis that governs plant growth and 96 development. This protein network governing plant growth at elevated [CO₂] involves a 97 complex interplay of different regulatory enzymes, components of signal transduction 98 mechanisms and other important biomolecules, such as plant growth regulators, which 99 100 collectively function in response to external environmental stimulation (Bokhari *et al.*, 2007). 101

102 The CO_2 responsiveness of C_3 plants is generally higher during the early growth stages and is affected by the plants' sink capacity and nutritional status (Li et al., 2008; Makino and Mae, 103 104 1999; Seneweera et al., 2002). In the early growth stages, plants are able to generate more sink organs to utilize the increased carbon supply at elevated [CO₂] (Jitla et al., 1997; Thilakarathne 105 et al., 2015). Higher relative growth rates and higher net assimilation rates have been observed 106 for rice (Jitla et al., 1997; Makino and Mae, 1999) and wheat (Hikosaka et al., 2005; Neales 107 and Nicholls, 1978) in the early growth stages at elevated $[CO_2]$. In general, it has been reported 108 that even a 10% increase in the RGR of plants grown at elevated [CO₂] can translate into an 109 absolute growth increment of up to 50% during the exponential growth phase of plants 110 (Kirschbaum, 2010). Therefore, understanding how plants respond to elevated $[CO_2]$, 111 particularly during the early growth stages, is essential for breeding crops for a future CO₂ rich 112 atmosphere. 113

114

A number of research studies have investigated the underlying physiological (For a review:
<u>Poorter and Nagel, 2000; Poorter and Navas, 2003</u>) and molecular mechanisms (For a review:
<u>Gamage et al., 2018</u>) of plant growth responses to elevated [CO₂]. The physiological responses
of crops, including wheat (Seneweera, 2011; Seneweera and Conroy, 2005; Thilakarathne et al., 2015; Thilakarathne et al., 2013), have been extensively studied to gain an understanding
of how plants adapt to the high CO₂ environment. Despite the importance of understanding the

regulatory mechanisms of plant growth response to elevated CO₂, the activity of different 121 regulatory enzymes and other proteins involved in these physiological processes have not been 122 thoroughly investigated (Bokhari et al., 2007). Without this information, it is very difficult to 123 develop a complete understanding of the interplay of protein networks among key metabolic 124 pathways and how they determine plant growth responses to external environmental signals 125 such as elevated [CO₂]. Therefore, a fundamental understanding of proteome-wide responses 126 of plants to elevated [CO₂] will provide a unique opportunity to unravel the mechanisms of 127 how plants respond to elevated [CO₂] (Hashiguchi et al., 2010; Hossain et al., 2011). 128

129

The array of proteins within a cell or an organ, their interactions and modifications, hold the 130 key to understanding the responses of a particular biological system under stressed or non-131 stressed conditions (Salekdeh and Komatsu, 2007). With recent technological advances in 132 proteomic science, it is relatively easy to identify proteins, expression profiles, post-133 translational modifications and protein-protein interactions under different environmental 134 conditions (Hashiguchi et al., 2010). Further, proteomic analysis highly beneficial in 135 136 identifying the possible candidate genes that can be used as genetic markers in breeding crops for future climate (Ahmad et al., 2016). 137

149

In this study, we investigated the proteome-wide changes in young wheat leaves (Triticum 150 *aestivum* L.) in order to understand the underlying molecular mechanisms of plant growth 151 responses to elevated $[CO_2]$. To the best of our knowledge, there has been no published report 152 to date using a comparative proteomic approach to study the growth responses of wheat to 153 elevated [CO₂] focusing on the early vegetative stage. Our study mainly focused on 154 155 understanding the functions of sink tissues of plants at elevated [CO₂] during the early growth stages. Further, the expression patterns of the differentially expressed proteins identified at both 156 157 elevated and ambient [CO₂], and their physiological implications, are discussed with a mechanistic perspective in this paper. 158

159

160 Materials and methods

161

162 Plant materials and environmental conditions

A solution culture experiment was carried out using two wheat (Triticum aestivum L.) cultivars, 163 Kukri and RAC875, under ambient (400 µmol mol⁻¹) and elevated [CO₂] (700±10 µmol mol⁻¹) 164 ¹) in two identical controlled environment growth chambers (Reach in growth chambers, PGC-165 105, Percival, USA) at the University of Southern Queensland, Australia. These two cultivars 166 are the parental lines of a doubled haploid mapping population with contrasting water use 167 efficiencies, nitrogen use efficiencies and growth characteristics to elevated [CO₂]. Plants were 168 provided with a 14-hour photoperiod with a day and night temperature of 23°C and 13°C, 169 respectively. The relative humidity of both chambers was maintained at 70% throughout the 170 experiment and the light intensity was maintained at 1000 µmolm⁻²s⁻¹ at midday throughout 171 the growing period. 172

173

174 Seedling growth

Seeds from wheat (Triticum aestivum L.) cultivars, Kukri and RAC875, were surface sterilized 175 using 2.6% NaClO for 1 minute and washed thoroughly using Milli-Q water. The sterilized 176 seeds were then allowed to germinate on moistened filter papers (Whatmann, Sigma Aldrich, 177 USA) in Petri dishes. After four days of germination, seedlings were transferred to floating 178 nets placed on 40L opaque basins filled with an aerated nutrient solution as described in 179 Fernando *et al.* (2017) and grown at either ambient [CO₂] (400 µmol mol⁻¹) or elevated [CO₂] 180 (700±10 µmol mol⁻¹) for 42 days. Macro and micronutrients included in the solution culture 181 182 were adapted from (Makino and Osmond, 1991) and Fernando et al. (2017) (Supplementary Table S1). The nutrient solution was replenished once a week maintaining the pH at 6-6.5. 183 184 Basins were re-randomized weekly within each chamber and swapped between chambers fortnightly to minimize location and chamber effect. 185

186

187 Physiological trait measurements and sample collection

At 42 days after planting (DAP), one set of wheat seedlings was carefully harvested to determine the total dry mass of the two cultivars from both CO₂ treatments. Another set of plants was harvested and separated into last fully expanded leaf blades (LFELB) and expanding leaf blade (ELB), cell elongation and shoot apex region (CE) in order to determine the carbon
and nitrogen concentrations of each cultivar in two different CO₂ conditions.

To determine total dry mass, harvested plants were oven dried for 48 hours at 65°C and measurements were taken when a constant weight was reached. Samples were oven dried and ground in a ball mill (Tissue Lyser II, QIAGEN, Australia) to a fine powder of ~100 μ m to determine carbon and nitrogen concentration. Finely ground samples of LFELB, ELB and CE of the two cultivars were analyzed for total carbon and nitrogen content using a CN analyzer (Leco CN628, USA).

Gas exchange measurements for Kukri and RAC875 were carried out at 42 DAP using a 199 portable photosynthesis system (LI-6400XT, LI-COR, USA), as described in Seneweera et al. 200 (2002). The net photosynthetic rate (P_n), stomatal conductance (G_s), intercellular [CO₂] (C_i) 201 and rate of transpiration were measured between 10:00 to 13:00 hours for each cultivar in each 202 CO₂ treatment. A red and blue light source was used to supply chamber irradiance and the light 203 intensity was maintained at 1500 µmol quanta m⁻²s⁻¹. Relative humidity was maintained 204 between 50-70%. Measurements were taken using LFELB of each cultivar and leaves were 205 allowed to reach a steady state photosynthesis before taking spot measurements. 206

For comparative proteomics analysis, the ELB of seedlings of each cultivar grown at both ambient (control) and elevated $[CO_2]$ (treated) was collected at the same time each day. Upon collection, samples were securely packed and immediately immersed in liquid N₂ and stored at -80°C for subsequent protein extraction.

211

212 Leaf protein extraction

213 (i) Total soluble protein extraction

For the extraction of total leaf protein, 300mg of the sample was ground to a fine powder using liquid N₂. This leaf powder was homogenated in 500 μ l of modified RIPA solubilizing buffer [10mM Tris-HCl (pH 8.0, 1mM EDTA, 0.5% sodium deoxycholate, 0.1% SDS, 140mM NaCl and 1mM PMSF]. The homogenate was then alternatively vortexed and sonicated three times and allowed to incubate at 37°C with shaking for 30 minutes. The samples were then centrifuged at 18,000*g* for 10 minutes and the supernatant was carefully transferred to a clean Eppendorf tube. Extracted total proteins were quantified using the microplate bicinchoninic acid (BCA) protein assay kit (Thermo Fisher Scientific, USA) according to the manufacturer's
 instructions.

223

224

(ii) Rubisco precipitation and protein purification

Since Rubisco comprises a large percentage of total proteins, it tends to hinder the detection of 225 other important low abundance signaling and regulatory proteins (Gupta et al., 2015). As the 226 roles and fates of most of the high abundance proteins such as Rubisco are well established to 227 date, in this study, we attempted to focus more on identifying low abundance proteins which 228 may play a significant role in plant growth at elevated [CO₂] (Gupta et al., 2015). Therefore, 229 to the supernatant fraction of total proteins, Protamine Sulfate (PS) solution was added to a 230 final concentration of 0.1 %, as described in Gupta and Kim (2015) and Kim et al. (2013). This 231 was incubated in ice for 30 minutes allowing sufficient time to precipitate Rubisco. The 232 samples were centrifuged at 12,000g for 5 min at 4°C to pellet the precipitated Rubisco. 233 234 Immediately, the supernatant was transferred to a clean Eppendorf tube and the samples were further purified using Zeba spin desalting columns to desalt the protein samples. 235

236

237 (iii) Protein precipitation

To precipitate protein, 400 µl of methanol was added to 100 µl of a soluble protein fraction and 238 mixed thoroughly followed by centrifuging for 10 seconds at 9000 g. Then, 100 µl of 239 chloroform was added to 100 µl of protein samples and centrifuged for 10 s at 9000 g. 240 Afterward, 300 µl of double-distilled H₂O was added to 100 µl of sample, mixed thoroughly 241 and again centrifuged at 9000 g for 1 minute. After this step, three clear phases were obtained: 242 an upper H₂O-methanol phase, a protein interphase and a lower chloroform phase. The upper 243 phase was carefully removed without disturbing or touching the protein interphase. Then 300 244 μ l of methanol was added to the remaining phases, mixed thoroughly and centrifuged for 2 245 minutes at 9000 g to pellet the proteins. The resultant supernatant was removed carefully and 246 the protein pellet was allowed to dry until no chloroform smell was detectable. Protein pellets 247 at room temperature were sent to Comprehensive Proteomics Platform, La Trobe Institute for 248 Molecular Science, La Trobe University, Australia for mass spectrometry analysis. 249

250 Leaf proteome analysis

Leaf proteome analysis was carried out using liquid chromatography-mass spectrometry (LC-MS/MS) as described in Lowe *et al.* (2015). Comparative proteomics analysis was carried out at Comprehensive Proteomics Platform, La Trobe Institute for Molecular Science, La Trobe University, Australia. The procedure for analysis is outlined below.

255

256 (i) Sample preparation - Trypsin digestion

Each protein sample (50 μ g) was first resuspended in 100 μ l of 8 M urea (pH=8.3). The protein solution was then reduced for 5 hours with 1 μ l of 200 mM tris (2-carboxyethyl) phosphine (TCEP). Samples were then alkylated for 1 hour at 25°C in the dark with 4 μ l of 1 M iodoacetamide (IAA). Digestions were performed overnight (37°C) by adding 1 μ g of trypsin (Promega, Madison WI, USA) and 900 μ L of 50 mM Tris (pH=8.3) followed by a second digestion step with 1 μ g trypsin and an additional incubation of 4 hours at 37°C.

263

264

4 (ii) Solid phase extraction clean-up of tryptic peptides

The digested solution was collected and dried using SpeedVac centrifugation. Digested 265 proteins were resuspended in 100 µl of 1% (v/v) formic acid and centrifuged at 14,000 rpm for 266 2 minutes. The solid phase extraction was performed with Empore reversed-phase extraction 267 disks (SDB-XC reversed-phase material, 3M) according to Ishihama et al. (Ishihama et al., 268 2006) with the following modifications: the membrane was conditioned with 50 μ l of 80% 269 (v/v) acetonitrile (ACN), 0.1% (w/v) trifluoroacetic acid (TFA), then washed with 50 µl of 270 0.1% TFA before the tryptic peptides were bound to the membrane. The bound peptides were 271 eluted by 50 µL 80% (v/v) ACN, 0.1% (w/v) TFA, and dried in a SpeedVac centrifuge. 272

273

274 (iii) LC-MS/MS analysis

Peptides (2 μ g) were reconstituted in a final volume of 10 μ l 0.1% TFA and 2% ACN (buffer A), then loaded and washed onto a trap column (C18 PepMap 100 μ m i.d. × 2 cm trapping column, Thermo-Fisher Scientific) at 5 μ l/min for 6 min before switching the precolumn in line with the analytical column (Easy-Spray 75 μ m i.d. × 50 cm, Thermo-Fisher Scientific). The separation of peptides was performed at 250 nl/min using a linear ACN gradient of two buffers: buffer A (0.1% formic acid, 2% ACN) and buffer B (0.1% formic acid, 80% ACN),
starting from 5% buffer B and increasing to 60% over 300 minutes.

Data were collected on an Orbitrap Elite (Thermo-Fisher Scientific) in Data-Dependent 282 Acquisition mode using m/z 300–1500 as MS scan range. Collision-induced dissociation (CID) 283 MS/MS spectra were collected for the 20 most intense ions. The dynamic exclusion parameters 284 used were: repeat count 1, duration 90 s and the exclusion list size was set at 500 with early 285 expiration disabled. Other instrument parameters for the Orbitrap were as follows: MS scan at 286 120 000 resolution, maximum injection time 150 ms, automatic gain control (AGC) target $1 \times$ 287 10⁶, CID at 35% energy for a maximum injection time of 150 ms with AGT target of 5000. 288 289 The Orbitrap Elite was operated in dual analyzer mode with the Orbitrap analyzer being used for MS and the linear trap being used for MS/MS. 290

291

292

(iv) Database search and quantitation

Spectra analysis was performed using the MaxQuant software (version 1.6). Proteins were identified and quantified using the Andromeda peptide search engine integrated into the MaxQuant environment using the *Triticum aestivum* proteome downloaded from the UniProt database. A total of three biological replicates were used for each of the two wheat genotypes to determine the proteome response to elevated [CO₂].

298

299 Statistical analysis

Treatment and interaction effects of growth and photosynthesis parameters were determined through ANOVA and standard errors of differences. Differences were considered significant at P<0.05. All the data were analyzed using SPSS statistical software version 23 (IBM, Armonk, NY, USA). Statistical analysis for proteomics data was carried out using the statistical programming language R. All the graphical representations were carried out using GraphPad Prism scientific software version 5.01 (GraphPad Software, San Diego, CA).

306 **Results**

307 Effect of elevated [CO₂] on biomass accumulation, the rate of photosynthesis and 308 carbon/nitrogen concentrations of two cultivars

309 The effects of $[CO_2]$ was significant for above ground biomass accumulation (P ≤ 0.01) and rate

of photosynthesis ($P \le 0.01$) of the two wheat cultivars tested (Figure 1a & 1c). Biomass accumulation (P < 0.05) and photosynthesis (P < 0.01) also varied significantly between the two

accumulation (P<0.05) and photosynthesis (P<0.01) also varied significantly between the two cultivars (Figure 1). Elevated [CO₂] increased photosynthesis rate and above-ground dry mass

- by 16.4 and 32.6% respectively for Kukri compared with 20 and 48% for RAC875. Stomatal
- 314 conductance of both varieties showed a considerable reduction at elevated [CO₂] (Figure 1b).
- 315

Carbon and nitrogen analysis of LFELB, ELB and CE region of the two cultivars showed 316 significant interactions between $[CO_2]$ and cultivar for nitrogen (P ≤ 0.01 , Figure 2) and protein 317 concentration (P≤0.01, Figure 2). Nitrogen and protein concentrations of LFELB were greatly 318 reduced at elevated [CO₂] (Figure 2a & 2b). In contrast, nitrogen concentration of ELB 319 significantly increased at elevated [CO₂], with 30.9% and 56.3% for Kukri and RAC875, 320 respectively (Figure 2c & 2d). In addition, the nitrogen concentration of the CE region was 321 also significantly higher at elevated [CO₂], with Kukri showing the highest response (Figure 322 3e & 3f). The effect of [CO₂] on carbon concentration was significant (P<0.01) and 323 significantly varied among the organ types (P<0.01) of the two cultivars. At elevated [CO₂], 324 there was a reduction in the carbon concentration of the different organ types and ELB showed 325 the highest decline in both cultivars (Supplementary Figure S2). 326

327

Responses of expanding leaf proteome to elevated [CO₂]

Overall, 1123 and 982 proteins were identified to be differentially expressed in Kukri and 329 RAC875, respectively, at elevated [CO₂]. However, significant changes in protein expression 330 at elevated [CO₂] were only observed for 61 and 76 proteins in Kukri and RAC875, 331 respectively. Among these proteins, many (67.2% in Kukri and 67.9% in RAC875) were 332 classified as uncharacterized proteins, as their structure and functions are not yet confirmed. 333 The rest of the characterized proteins belonged to different key metabolic processes, that are 334 essential for maintaining healthy growth and development of plants (Figure 3). The major 335 proteins that showed a statistical significance from Kukri and RAC875 are listed in Table 1 336 and Table 2, respectively. 337

In Kukri (Table 1), three main enzymes involved in carbohydrate metabolism were 338 differentially expressed at elevated [CO₂], with UDP-glucose 6-hydrogenase showing a fold 339 increase of 4.68 (P≤0.01). The expression of glucose-6-phosphate isomerase and Beta-amylase 340 enzymes were significantly reduced in the ELB of Kukri at elevated $[CO_2]$ (P ≤ 0.05). Further, 341 it was observed that specific proteins and enzymes related to protein synthesis, processing and 342 transport were significantly positively changed at elevated [CO₂]. Among them, 40S ribosomal 343 protein SA, heat shock protein 90 and clathrin heavy chain proteins were prominent at elevated 344 $[CO_2]$ with fold increases of 4.02 (P \leq 0.05), 8.43 (P \leq 0.01) and 5.43 (P \leq 0.05), respectively. In 345 346 addition, proteins related to cell proliferation and differentiation, such as Tubulin alpha chain (fold increase of 5.97, P \leq 0.05) and Tubulin beta chain (fold increase of 4.48, P \leq 0.05), were 347 upregulated at elevated [CO₂]. Along with these proteins, it was observed that several key 348 proteins related to the energy generation pathway, were also upregulated. For example, ATP 349 synthase subunit D (mitochondrial) and pyruvate kinase showed the highest fold increases of 350 6 (P \leq 0.01) and 3.9 (P \leq 0.05), respectively at elevated [CO₂]. 351

352

353 In RAC875 (Table 2), significant upregulation of the sucrose synthase enzyme was observed with a fold increase of 2.42 at elevated [CO₂] (P≤0.01). Several proteins related to protein 354 355 synthesis, such as elongation factor G (mitochondrial, P≤0.05), 40S ribosomal protein S15a $(P \le 0.01)$ and S12 $(P \le 0.05)$, were also upregulated at elevated [CO₂]. Further, significant 356 upregulation of several proteolysis related proteins involved in post-translational modifications 357 of proteins were identified in RAC875. For example, ATP-dependent Clp protease proteolytic 358 subunit (fold increase of 2.02, $P \le 0.01$) and beta-type proteasome subunit (fold increase of 2.65, 359 P≤0.05) were highly expressed at elevated [CO₂]. Cell proliferation and differentiation-related 360 proteins, such as translationally controlled tumor protein homolog (fold increase of 1.01, 361 $P \le 0.05$) and alpha-type proteasome subunit (fold increase of 2.05, $P \le 0.05$), showed higher fold 362 increases at elevated [CO₂]. Several proteins related to photosynthesis such as oxygen-evolving 363 enhancer protein 1 (chloroplastic, $P \le 0.05$) and uroporphyrinogen decarboxylase ($P \le 0.05$), 364 involved in chlorophyll synthesis, were also upregulated at elevated [CO₂]. 365

366

In both cultivars, several anti-oxidant enzymes, such as peroxidases, catalases and superoxide dismutases (Cu-Zn), were differentially expressed at elevated [CO₂] (Table 1 and 2). Among them, cell wall peroxidases; W5ANF5 in Kukri and A0A1D6BEM4 in RAC875 showed a 2.6 and 1 fold increase at elevated [CO₂]. In addition, catalase was upregulated by 4.4-fold increase in Kukri (Table 1, P<0.05), while all the superoxide dismutases (Cu-Zn) were down-regulated at elevated [CO₂] in RAC875 (Table 2, P \leq 0.05). In addition, some of the important proteins related to signal transduction and cell homeostasis maintenance, namely calmodulin TaCaM1-1 (Ca²⁺ signaling) and calmodulin (P \leq 0.05), were upregulated in RAC875 at elevated [CO₂] (Table 2).

376

377 Genotypic differences in the expanding leaf blade proteome responses to elevated [CO₂]

There was a noteworthy difference between the protein expression in the ELB of the two 378 379 cultivars both at ambient and elevated [CO₂] conditions. Overall, 3359 proteins were identified as differentially expressed proteins between RAC875 and Kukri at elevated [CO2]. Out of them, 380 381 only 44 proteins showed a significant difference between the two cultivars. Among them, 59% were uncharacterized proteins and other significant characterized proteins are listed in Table 3. 382 383 There was a significant increase in UT-glucose-1-phosphate uridylyltransferase in RAC875 compared to Kukri at elevated [CO₂], with a fold increase of 4.2 ($P \le 0.01$). Along with this, 384 385 proteins related to energy generation, ATP synthase subunit D (mitochondrial) and fructose biphosphate aldolase, increased by 6.35 (P≤0.01) and 2.17 (P≤0.05), respectively, at elevated 386 [CO₂]. Further, tubulin alpha chain (5.34, P \leq 0.05), TSK1 protein (1.5, P \leq 0.05) and 387 phospholipase (2.07, ($P \le 0.05$) proteins related to cell cycle functions were also more highly 388 expressed in RAC875 than in Kukri. Protein translation and processing related proteins were 389 highly expressed in RAC875 with elongation factor 1-alpha and heat shock protein 90 showing 390 the highest fold increase $(7.85:P \le 0.01 \text{ and } 7.29;P \le 0.01, \text{ respectively})$ when compared to Kukri. 391 In addition, expression of proteolytic enzymes such as aminopeptidase and carboxypeptidase 392 were also higher in RAC875 at elevated [CO₂] (Table 3). 393

394

In addition, the protein expression of two cultivars also differed under ambient [CO₂]. Under 395 396 ambient [CO₂], carbohydrate metabolism of RAC875 was comparatively higher than Kukri (Supplementary Table S2). For example, RAC875 showed a substantial increase in key 397 398 enzymes involved in carbohydrate metabolism such as sucrose synthase and UTP-glucose-1phosphate uridylyltransferase by fold increases of 2.86 ($P \le 0.01$) and 3.28 ($P \le 0.01$), than that 399 of Kukri. Consistent with this, Rubisco large subunit protein expression was also higher in 400 RAC875 than in Kukri (P≤0.01). Furthermore, proteins related to cell proliferation and 401 differentiation such as alpha type proteasome subunit and beta-glucanase in RAC875 were 2.4 402 $(P \le 0.01)$ and 1.5 $(P \le 0.05)$ fold higher than Kukri (Supplementary Table S2). 403

- 404 **Discussion**
- 405

406 Physiological mechanisms regulating growth responses at elevated [CO₂]

The stimulated growth response of C_3 species, including wheat, to elevated [CO₂] during the early developmental stages is mainly characterized by the dynamics of leaf growth. Accelerated leaf area production at elevated [CO₂] results from a faster leaf elongation rate (LER) and is strongly correlated with higher relative growth rates, total biomass and final grain yield production (Jitla *et al.*, 1997; Seneweera and Conroy, 2005). Therefore, understanding the underlying mechanisms of plant growth responses to elevated [CO₂] is essential to adapt to rising atmospheric CO₂ concentration.

414

415 Enhanced rates of photosynthesis and lower stomatal conductance are the key strategies that support plant growth at elevated [CO₂] (Ainsworth and Rogers, 2007). Improving 416 417 photosynthesis rate per given leaf area has been identified as one of the main targets for improving crop productivity in the 21st century (Parry et al., 2010). Therefore, elevated 418 atmospheric [CO₂] provides a natural way to increase the photosynthesis and thereby the crop 419 productivity. For this task, a fundamental understanding of crop responses to elevated [CO₂] 420 is essential. In our study, elevated [CO₂] increased photosynthesis rates in both the cultivars 421 studied. Of the two cultivars, RAC875 showed the highest response to elevated $[CO_2]$. The 422 photosynthetic response of RAC875 was 22% higher than Kukri at elevated [CO₂] (Figure 1). 423 Stomatal conductance of Kukri and RAC875 was reduced by 20 and 15% at elevated [CO₂] 424 (Figure 1), indicating that both cultivars benefitted from the improved water use efficiency at 425 elevated [CO₂]. Similar intraspecific variations in photosynthesis rates at elevated [CO₂] have 426 been observed in many studies (Thilakarathne et al., 2015; Thilakarathne et al., 2013). Such 427 changes in photosynthetic rates and stomatal conductance is likely to contributed towards the 428 variability in biomass accumulation observed in the tested cultivars. The above ground biomass 429 430 accumulation was significantly higher in both Kukri and RAC875, but this response was genotype dependent, suggesting that there is a fine genetic controlling mechanism for biomass 431 accumulation in response to elevated [CO₂]. 432

433

Plant growth is tightly coordinated by plant carbon and nitrogen metabolism; leaf level investments of these nutrients is central to whole plant growth (Zheng, 2009). Our study clearly indicated that growth at elevated $[CO_2]$ alters the dynamics of carbon and nitrogen at the plant

organ level. We observed a reduction in nitrogen concentration in the LFELB of both Kukri 437 and RAC875 at elevated $[CO_2]$, with Kukri showing the highest reduction (35%, Figure 2). 438 Similarly, the protein concentration of Kukri was less than RAC875 at elevated [CO₂]. The 439 reduction in leaf nitrogen concentration may be due to the dilution of nitrogen by the increased 440 biomass observed at early growth stages (Thilakarathne et al., 2015). Further, this could have 441 been due to the changes in the concentrations of enzymes that contain high nitrogen 442 concentrations such as Rubisco (Seneweera et al., 2011). However, the nitrogen and protein 443 concentrations of the ELB and the CE region were significantly higher at elevated [CO₂]. This 444 445 may be due to the increased partitioning of nitrogen into the growing sink tissues such as expanding leaf blade and shoot apex region where more nitrogen is needed to produce proteins 446 required for the production of new cells (Seneweera and Conroy, 2005). In a previous study by 447 Thilakarathne et al. (2015), it was reported that higher nitrogen concentrations in ELB at 448 elevated [CO₂]. Perhaps, such increased nitrogen in ELB could be linked to rapid protein 449 synthesis, due to increases in cell division, synthesis of photosynthetic proteins and regulation 450 of cell pressure potential that govern cell expansion (Radin and Boyer, 1982). 451

452

Together with nitrogen, carbon is also required for amino acid biosynthesis. At elevated [CO₂], 453 a reduction in carbon concentration was observed across all the organ types with the highest 454 455 reduction observed in the ELB of RAC875. Such reductions could be due to the breakdown of carbohydrates to provide biochemical energy for leaf expansion and growth at elevated [CO₂] 456 (Ainsworth et al., 2006). On the other hand, it has also been demonstrated that sugar 457 accumulation at elevated [CO₂] depends on the species and growth conditions (Nakano et al., 458 1997; Rogers et al., 1996). Carbohydrate analysis of RAC875 and Kukri (unpublished data) 459 showed that total soluble carbohydrate concentration at elevated $[CO_2]$ was higher across both 460 the cultivars, however RAC875 showing a higher soluble sugar accumulation in expanding 461 leaves than Kukri at elevated [CO₂] (Supplementary Figure S3(a)). The sucrose content of the 462 ELB in Kukri and RAC875 showed a fold increase of 3.2 and 8.7, respectively, at elevated 463 [CO₂] (Supplementary Figure S1(b)). Similarly, glucose content of the two cultivars was also 464 significantly increased at elevated [CO₂] with a fold increase of 1.4 for Kukri and 2.3 for 465 RAC875 (Supplementary Figure S1(c)). Therefore, high sucrose availability, together with 466 increased nitrogen partitioning to ELB, may have contributed positively towards accelerated 467 LER observed under elevated [CO₂]. The higher nitrogen content in ELB was observed in a 468 study conducted by Thilakarathne *et al.* (2015) at elevated [CO₂]. An increase in nitrogen may 469 have supported rapid rates of protein synthesis required for cell division, synthesis of 470

photosynthetic proteins and regulation of cell pressure potential that govern cell expansion
(Radin and Boyer, 1982). Together with the carbon skeletons provided by sucrose and glucose,
and ammonium provided by nitrogen partitioning, synthesis of amino acids takes place in the
expanding leaf blades. These amino acids and resultant proteins govern the growth and
development of the leaf blades.

476

477 Leaf proteome responses to elevated [CO₂] is genotypically varied

This study is the first attempt in investigating changes in the leaf proteome of wheat in response 478 to elevated [CO2]. Protein expression of RAC875 and Kukri varied under high [CO2] with 479 RAC875 showing a higher number of significantly affected proteins than Kukri. These findings 480 suggest that the proteome changes observed in leaves under elevated [CO₂], also depend on the 481 genotype. Similarly, in a study conducted by Arachchige et al. (2017), grain proteome 482 responses of wheat to elevated [CO₂] also genotypically varied. Overall, characterized proteins 483 484 could be categorized into those associated with photosynthesis, carbohydrate metabolism, cell division, cell wall metabolism, energy pathways, protein synthesis and processing, post-485 translational modifications (PTM), key anti-oxidant enzymes, signal transduction, nitrogen and 486 amino acid metabolism, lipid metabolism, hormonal metabolism and other intermediate 487 metabolic proteins that are involved in several metabolic activities (Figure 3). A similar 488 expression of proteins was observed using rice seedlings grown at elevated [CO₂] in a study 489 conducted by Bokhari et al. (2007). 490

491

492 Elevated [CO₂] shuffles the carbohydrate metabolism

493 Increased photosynthesis capacity at elevated [CO₂] contributes to the greater accumulation of soluble carbohydrates and starch, which causes a major shift in plant carbon metabolism 494 495 (Makino and Mae, 1999). Despite a large number of proteins being differentially expressed at elevated [CO₂], oxygen-evolving enhancer protein 1 (chloroplastic) was the only protein 496 497 showing a significant upregulation (Table 2). This protein is responsible for photosystem II assembly and stabilization (Ali et al., 2018), and hence, upregulation of this protein may 498 499 contribute towards improving the efficiency of photosynthesis light-dependent reactions. At elevated $[CO_2]$, upregulation of Uroporphyrinogen decarboxylase, a key enzyme in chlorophyll 500 501 biosynthesis was also observed (Table 2). Generally, higher chlorophyll production at elevated [CO₂] contributes to improved efficiency in harvesting light and subsequent energy conversion 502 in the light reaction of photosynthesis. 503

In RAC875, increased abundance of sucrose synthase at elevated [CO₂], one of the key 504 enzymes involved in sucrose metabolism, was observed (Table 2). Sucrose synthase is capable 505 of cleaving sucrose into UDP-Glucose and fructose and channeling them into multiple 506 pathways involved in metabolic, structural and storage functions (Jiang et al., 2015; Sturm and 507 Tang, 1999). Sucrose synthase did not only increase at the protein level, the transcript 508 abundance of SUS1 (sucrose synthase 1) gene in ELB of RAC875 also showed a fold increase 509 of 1.43 at elevated [CO₂] when compared to ambient [CO₂] (unpublished data, Table 4). 510 Similarly, in RAC875, UTP-glucose-1-phosphate uridylyltransferase enzyme was upregulated 511 512 by 4 folds higher than Kukri at elevated [CO₂] (Table 3). This is the key enzyme that synthesizes UDP-glucose from glucose-1-phosphate and Uridine Triphosphate (UTP) 513 (Kleczkowski et al., 2010). UDP-glucose is one of the key substrates to produce sucrose-6-514 phosphate, from which sucrose is produced in plant cells (Jiang et al., 2015; Koch, 2004). High 515 sucrose availability in RAC875 at elevated [CO₂] could be due to the increased expression of 516 UTP-glucose-1-phosphate uridylyltransferase which provides more UDP-glucose as a 517 substrate to produce sucrose. On the other hand, UDP-glucose is the primary building block 518 for cell wall synthesis (Wai et al., 2017) and thus, more substrate would be available for 519 biosynthesis of cell wall polysaccharides for the dividing cells in the ELB. Generally, UDP-520 521 Glucose is highly available in the growing sink tissues such as meristems and developing leaves where the majority of cell wall synthesis takes place (Verbančič et al., 2017). Higher 522 availability of sucrose and glucose in the expanding leaves of RAC875 and Kukri could be due 523 to increased expression of these proteins at elevated [CO₂]. 524

525

In Kukri, glucose-6-phosphate isomerase, which is involved in the respiratory breakdown of 526 carbohydrates, was down-regulated at elevated [CO₂] (Table 1), suggesting the facilitation of 527 carbohydrate anabolism over catabolism in a high CO₂ environment. In addition, beta-amylase, 528 the main enzyme responsible for starch granule breakdown in leaves was down-regulated in 529 Kukri at elevated [CO₂]. Therefore, less degradation of starch to sucrose could be the reason 530 531 for the difference in total soluble carbohydrate concentration of Kukri observed at elevated [CO₂]. However, UDP-glucose 6-dehydrogenase, a key enzyme involved in the synthesis of 532 UDP-glucuronic acid (Kärkönen et al., 2005; Klinghammer and Tenhaken, 2007), a common 533 precursor in the formation of pectin and hemicellulose in the plant's primary cell wall, was 534 upregulated at high [CO₂] (Table 1). Upregulation of this enzyme at elevated [CO₂] suggests 535 that cell wall biosynthesis is accelerated at elevated [CO₂]. 536

High energy demand at elevated [CO₂] supported by the induction of proteins in the energy metabolism pathway

Enhanced rates of photosynthesis at elevated [CO₂] demands a greater energy input in the form 539 of ATP (Gonzalez-Meler et al., 2004). Exposure to elevated [CO₂] induced the expression of 540 ATP synthesizing enzymes in our study. A similar pattern in the upregulation of ATP 541 synthesizing enzymes was observed by Bokhari et al. (2007) under elevated [CO₂]. In Kukri, 542 ATP synthase subunit d (mitochondrial) and pyruvate kinase enzyme involved in ATP 543 544 synthesis was highly expressed suggesting that ATP synthesis is higher at elevated [CO₂] (Table 1). At elevated [CO₂], expression of ATP synthase subunit d (mitochondrial) and 545 546 Fructose bi-phosphate aldolase was 6 and 3 folds higher in RAC875 than in Kukri (Table 3). These findings suggest that protein expression related to energy metabolism is largely cultivar 547 548 dependent. Expression of proteins related to energy generation implies that apart from carbohydrate synthesis, elevated [CO₂] also stimulates the respiratory breakdown of the 549 550 carbohydrates in order to obtain sufficient energy for leaf expansion and carbon skeletons required for further anabolic purposes (Ainsworth et al., 2006). 551

552

553 Cell wall metabolism and cell division related proteins were upregulated by elevated554 [CO2]

Cell cycle functions tend to change as a result of increased sugar supply to the growing sink 555 tissues at elevated $[CO_2]$ (Gamage *et al.*, 2018). It has been demonstrated that cell division, cell 556 expansion and cell wall loosening increased at elevated [CO₂] and results in increased growth 557 (Masle, 2000; Ranasinghe and Taylor, 1996). Consistent with the above findings, upregulation 558 559 of proteins related to these cell cycle functions was observed at elevated [CO₂]. In RAC875, a translationally controlled tumor protein homolog that stabilizes microtubules during cell 560 561 division (Toscano-Morales et al., 2015) was prominently upregulated (Table 2). Essential components in cell microtubules such as α and β chains of tubulin, that facilitate chromosome 562 segregation during cell division (Hashimoto, 2015) were upregulated in Kukri at elevated 563 [CO₂] (Table 1). Important nucleosome proteins (GTP-binding nuclear protein and histone H4 564 protein) involved in chromatin formation and condensation during cell cycle processes 565 (Bischoff et al., 1999; Loginova and Silkova, 2017) were differentially expressed at elevated 566 567 $[CO_2]$ (Table 1 and 2). Additionally, α type proteasome subunit was found to be highly expressed in highly proliferating cells (Genschik et al., 1994) and was upregulated at elevated 568 [CO₂] in RAC875 (Table 3). This protein performs an important proteolytic activity in cell 569

570 cycle-related proteins involved in the progression of the cell cycle and thereby facilitating 571 growth and development of the plant.

572

Beta-galactosidase, identified in both Kukri and RAC875, is an important enzyme related to 573 cell wall expansion in growing tissues, however, the expression of this protein was found to be 574 downregulated in our study (Table 2). On the other hand, upregulation of cell wall peroxidases 575 at elevated [CO₂] was prominent in both cultivars (Table 1 and 2). Peroxidases favor cell 576 elongation either by generating reactive oxygen species (ROS) and/or by regulating the 577 apoplastic concentrations of H₂O₂ (Passardi et al., 2004). Reactive oxygen species play an 578 important role in cell wall loosening by cleaving cell wall components such as xyloglucans and 579 pectins (Passardi et al., 2004). This allows other cell wall loosening enzymes such as 580 xyloglucan endotransglucosylase/endohydrolases (XTHs) to act on xyloglucans to loosen the 581 plant cell wall permitting cell elongation (Van Sandt et al., 2007). Consistent with this, 582 expression of XTH gene members was found to be upregulated at elevated [CO₂] which may 583 have facilitated increased leaf elongation at high [CO₂] (unpublished data, Table 4). However, 584 the mechanism by which ROS mediate leaf development still remains unclear (Schmidt et al., 585 2016). 586

587

588 Protein synthesis, processing and transport respond to elevated [CO₂]

Several important proteins involved as structural constituents of ribosomes were upregulated 589 at elevated $[CO_2]$ (Table 1 and 2). Increased photosynthesis rates observed at elevated $[CO_2]$ 590 requires a corresponding increase in other cellular proteins, including structural (i.e. light 591 harvest protein complexes, components in electron transport chain and thylakoids) and 592 metabolic proteins (i.e. carbon assimilating enzymes such as Rubisco). Thus, a sufficient 593 594 turnover of these proteins is constantly required to provide the building blocks for these structural components and maintain their related enzymatic activities (Lawlor, 2002). Further, 595 596 significant ribosome biosynthesis is required to support increased cytoplasmic growth and cell proliferation occurring in the expanding leaf blade (Ainsworth et al., 2006; Sugimoto-Shirasu 597 and Roberts, 2003). Increased protein turnover in the ELB could be due to the increased 598 nitrogen partitioning observed at elevated [CO₂]. This is further confirmed by the high 599 transcript abundance of the key nitrogen assimilation genes (GS2b, Fd-GOGAT and NADH-600 GOGAT) in both cultivars under high $[CO_2]$ conditions (unpublished data, Table 4). 601

602

A number of molecular chaperone proteins that facilitate proper folding of the polypeptide 603 chains and process proteins, were identified at elevated [CO₂] in this study. Of them, heat shock 604 protein 90 was a highly expressed protein found in both cultivars (Table 1 and 3). This protein 605 plays an important role in maintaining cellular homeostasis through protein folding, assembly 606 and translocation (Park and Seo, 2015). Along with these, a significant upregulation of clathrin 607 heavy chain proteins (5 fold higher than ambient [CO₂]) was observed at elevated [CO₂] (Table 608 1), which facilitates intra-cellular protein transport required for proper cell division and 609 functioning (Popova et al., 2013). 610

611

Post-translational modifications (PTM) of proteins improves the functional diversity of a 612 proteome increasing protein responsiveness to external factors (Friso and van Wijk, 2015). 613 Proteolysis is one of the PTMs in plants which is critical in maintaining cellular protein 614 concentrations within a cell (Vierstra, 1996). Several proteolytic proteins such as alpha type 615 proteasome subunits and ATP-dependent Clp protease subunit were upregulated in RAC875 at 616 elevated [CO₂]. Expression of Aminopeptidase differed in the two cultivars. Kukri showed an 617 upregulation while RAC875 showed a down-regulation at elevated $[CO_2]$ (Table 1 and 2). 618 These proteolytic enzymes and components are responsible for cleaving polypeptide bonds for 619 different cellular activities, removing unassembled protein subunits or misfolded proteins from 620 the cell and thereby controlling cell metabolism. 621

622

623 Signal transduction proteins were upregulated at elevated [CO₂]

Since plants change their morphologies in response to environmental cues, different signaling 624 pathways interact together to co-ordinate biochemical and physiological responses, such as 625 photosynthetic regulation, with plant growth responses (Mulligan et al., 1997). Our results 626 showed an upregulation of Calmodulin (Table 2), a ubiquitous Ca²⁺ binding protein which 627 mediates control of various ion channels, transcription factors, protein kinases and other 628 metabolic enzymes (Zeng et al., 2015). The cytosolic Ca²⁺ concentration changes in response 629 to environmental stimuli (Zhu et al., 2014) including elevated [CO₂]. For example, one of the 630 main mechanisms driving stomatal conductance at elevated [CO₂] involves the interaction of 631 CO_2 with the guard cell membranes, which operate largely via Ca^{2+} signaling pathway 632 (Brodribb and McAdam, 2013). Up-regulation of S-formylglutathione hydrolase (Table 2), the 633 key enzyme that catalyzes the production of glutathione, indicates its increased production at 634 elevated [CO₂]. Glutathione has been shown to participate in several signaling processes 635

636 including protein synthesis, amino acid transport and control of cell division (Hossain *et al.*, 637 2017). In addition, phospholipases (PL), which are often regulated by external factors such as 638 Ca^{2+} concentration, have also been upregulated at elevated [CO₂] (Table 3, Singh *et al.*, 2015). 639 This enzyme was suggested to be involved in various metabolic and cell signaling networks 640 and subsequent phosphatidic production by PL. It is suggested that such changes are likely to 641 determine plant growth responses under a particular environmental condition (Singh *et al.*, 642 2015).

Apart from these proteins, there were many uncharacterized proteins that showed a differential 643 expression at elevated [CO2]. Some of the uncharacterized proteins were present in both 644 cultivars and showed a similar pattern of expression. For example, W5H8Z0 uncharacterized 645 protein showed a significant upregulation in both the cultivars at elevated $[CO_2]$, suggesting 646 647 that this might play a role in moderating plant metabolism in a high CO₂ environment. Since, the whole proteome of wheat is not completely interpreted, developing a complete 648 649 understanding of the protein network associated with growth responses to elevated [CO₂] is a great challenge, but it is essential in order to adapt to increasing $[CO_2]$ in the atmosphere. 650

651

652 Conclusion

We investigated the physiological and proteomic-wide responses of the ELB of two winter wheat cultivars to elevated $[CO_2]$ in order to understand the underlying molecular mechanisms of plant growth responses to elevated $[CO_2]$. Elevated $[CO_2]$ increases the sugar accumulation and affects different regulatory mechanisms, which results in altered protein expression to maintain plant carbon and nitrogen metabolism and cell homeostasis.

658

We conclude that elevated [CO₂] increases the rate of carbon assimilation and carbohydrate 659 metabolism in a significant manner. At the same time, the respiratory breakdown of 660 carbohydrates is upregulated to meet the high energy demand required for maximum leaf 661 growth and elongation at elevated [CO₂]. Consistent with the increased sugar and nitrogen 662 supply to the ELB, proteins including cell wall loosening, expansion and cell proliferation 663 increase at elevated [CO₂], which contributes to the accelerated growth of plants. There was a 664 notable increase in the molecular chaperones and PTM through proteolytic proteins, implying 665 the plants' ability to improve the functionality of their proteome in response to environmental 666 667 stimuli such as elevated $[CO_2]$. This evidence clearly suggests that enhanced plant growth at

elevated $[CO_2]$ is not only due to the direct effect of $[CO_2]$ on photosynthesis and stomatal conductance. Variations in other associated key metabolic processes such as carbon/nitrogen metabolism and cell cycle functions also contribute to plant growth responses to elevated $[CO_2]$. However, protein expression between the two genotypes significantly varied at elevated $[CO_2]$ suggesting a significant genetic variation for CO_2 responsiveness. Therefore, identification of genotypes that can thrive at elevated $[CO_2]$ is essential to improve the crop productibility under a CO_2 enriched environment.

675

676

677 **Conflict of interest**

The authors declare no conflict of interest.

679 Acknowledgment

This study was funded by the Strategic Research Fund of the University of Southern Queensland, Australia. The parental lines of the doubled haploid mapping population were obtained from the Australian Centre for Plant Functional Genomics, University of Adelaide, Australia to carry out the research. The proteomics analysis was conducted by La Trobe Comprehensive Proteomics Platform (La Trobe University, Melbourne, Australia).

685 List of Figures and Supplementary Figures

686

Figure 1. (a) rate of photosynthesis, (b) stomatal conductance, (c) above ground biomass accumulation of Kukri and RAC875 grown at ambient (400 μ mol mol⁻¹) or elevated (700±10 μ mol mol⁻¹) [CO₂]. Data presented are the mean (±SE) of n=3. P values indicate the significance: *, P<0.05; **, P<0.01; ns, not significant.

691

Figure 2. Total nitrogen and total protein concentration of (**a**) & (**b**) Last fully expanded leaf blades (LFELB), (**c**) & (**d**) expanding leaf blades (ELB), and (**e**) & (**f**) cell elongation and shoot apex regions of Kukri and RAC875 grown at ambient (400 μ mol mol⁻¹) or elevated (700±10 μ mol mol⁻¹) [CO₂]. Data presented are the mean (±SE) of n=3. P values indicate the significance: *, P<0.05; **, P<0.01; ns, not significant.

697

Figure 3. Ven diagram showing percentages of the identified proteins belonging to different
categories in (a) Kukri and (b) RAC875 in response to elevated (700±10 µmol mol⁻¹) [CO₂].
Data are presented as percentages. A-photosynthesis, B-carbohydrate metabolism, C-cell
division and cell wall metabolism, D-energy pathway, E-protein synthesis and processing, Fproteins involved in Post-translational modifications (PTM), G-anti oxidant enzymes, HSignal transduction proteins, I-nitrogen and amino acid metabolism, J-lipid metabolism, Khormonal metabolism, L- other intermediate metabolic proteins.

705

Supplementary Figure S1. (a) Total soluble sugar content, (b) sucrose content, (c) glucose content and (d) fructose content in expanding leaf blades of Kukri and RAC875 grown at ambient (400 μ mol mol⁻¹) or elevated (700±10 μ mol mol⁻¹) [CO₂]. Data presented are the mean (±SE) of n=3. P values indicate the significance: *, P<0.05; **, P<0.01; ns, not significant.

710

Supplementary Figure S2. Total carbon concentration of (a) Last fully expanded leaf blades (LFELB), (b) expanding leaf blades (ELB), and (c) cell elongation region of Kukri and RAC875 grown at ambient (400 μ mol mol⁻¹) or elevated (700±10 μ mol mol⁻¹) [CO₂]. Data presented are the mean (±SE) of n=3. P values indicate the significance: *, P<0.05; **, P<0.01; ns, not significant. 717

7 List of Tables and Supplementary Tables

718

Table 1. Leaf proteome response of Kukri in response to elevated $[CO_2]$ (e $[CO_2]$) (Protein expression relative to Kukri proteome at ambient $[CO_2]$, Fold change is given in Log₂ transformation, ** P<0.01, * P<0.05).

722

Table 2. Leaf proteome response of RAC875 in response to elevated $[CO_2]$ (e $[CO_2]$) (Protein expression relative to RAC875 proteome at ambinet $[CO_2]$, fold change is given in Log₂ tranformation, **P<0.01, * P<0.05).

726

Table 3. Comparison of leaf proteome response of RAC875 relative to Kukri at elevated $[CO_2]$ (Protein expression relative to Kukri proteome at elevated $[CO_2]$, fold change is given in Log₂ transformation, **P<0.01, * P<0.05).

730

Table 4. Heatmap for transcript abundance of key genes in carbon, nitrogen and cell wall metabolism in Kukri and RAC875 grown at ambient (a[CO₂], 400 μ mol mol⁻¹) or elevated (e[CO₂], 700±10 μ mol mol⁻¹) [CO₂]. Data presented are the mean values of gene expression. Fold change of transcript abundance at elevated [CO₂] are presented in Log₂ scale.

735

Supplementary Table S1. Concentration of macro and micronutrients in the growing solution
provided during wheat growth during early vegetative stage. Half strength nutrient solution
was provided. Adapted from (Fernando *et al.*, 2017; Makino *et al.*, 1983).

739

740 Supplementary Table S2. Comparison of leaf proteome response of RAC875 relative to Kukri

at ambient [CO₂] (Protein expression relative to Kukri proteome at ambient [CO₂], fold change

is given in Log₂ transformation, **P<0.01, *P<0.05).

Figure 1

Figure 3

Table 1. Leaf proteome response of Kukri in response to elevated [CO2] (e[CO2]) (Protein expression relative to Kukri proteome at ambient [CO2],Fold change is given in Log2 transformation, ** P<0.01, * P<0.05).</td>

Accession No	Protein Name	Fold change	Molecular	P value							
	Cash alas da sa stabalism	at e[CO ₂]	weight (KDa)								
	Carbonydrate metabolism										
A0A1D5S2P8	Glucose-6-phosphate isomerase	-1.64	62.308	*							
A0A1D6DBP9	Beta-amylase	-2.20	56.102	*							
A0A1D5ZJB9	UDP-glucose 6-dehydrogenase	4.68	51.527	**							
	Energy pathway										
W5BEP1	ATP synthase subunit D, mitochondrial	6.00	19.548	**							
A0A1D5UPJ6	Pyruvate kinase	3.92	35.432	*							
C7AE91	Blue copper protein	3.28	17.393	*							
Cell proliferation and differentiation											
A0A1D5SQY8	Tubulin alpha chain	5.97	45.863	*							
A0A1D5Z8I6	Histone H4	5.72	16.412	*							
A0A1D6BQY9	Tubulin beta chain	4.48	50.211	*							
	Protein synthesis										
Q5I7K5	Ribosomal protein P1	-0.89	11.193	*							
W5E2W7	40S ribosomal protein SA	4.02	33.271	*							
	Protein processing and transport										
Q0Q0I7	Heat shock protein 90	8.43	80.460	**							
W5D5R6	Cold-induced protein	-1.33	16.199	*							
A0A1D5ZA24	Clathrin heavy chain	5.43	189.889	*							
	Post-translational modifications – Proteolytic enzyn	nes									
A0A1D6B0C9	Aminopeptidase	2.10	98.207	*							
	Anti-oxidant enzymes – responds to ROS										
A0A1D5SM88	Dihydrolipoyl dehydrogenase	-2.50	52.795	*							
W5C5X0	Peroxidase	-1.93	33.077	*							
W5ANF5	Peroxidase	2.67	37.449	*							

F1DKC1	Catalase	4.47	56.883	*
	Signal transduction			
W5CUZ3	FVE	-1.18	50.298	*
A0A1D6CA52	4-hydroxy-4-methyl-2-oxoglutarate aldolase	1.74	16.581	*
A0A1D6RJH6	Plasma membrane ATPase	8.49	102.253	*

Table 2. Leaf proteome response of RAC875 in response to elevated [CO2] (e[CO2]) (Protein expression relative to RAC875 proteome at ambinet[CO2], fold change is given in Log2 tranformation, **P<0.01, * P<0.05).</td>

Accession No	Protein Name	Fold change at e[CO2]	Molecular weight (kDa)	P value
	Photosynthesis			
A0A1D6BXL7	FerredoxinNADP reductase, chloroplastic	-2.06	39.843	*
P27665	Oxygen-evolving enhancer protein 1, chloroplastic	2.66	34.740	*
	Porphyrin biochemical pathway – Chlorophyll S	ynthesis		
W5DYL0	Uroporphyrinogen decarboxylase	0.96	42.951	*
A0A1D5VZ17	Uroporphyrinogen decarboxylase	0.61	45.934	*
	Carbohydrate metabolism			
W5I774	Sucrose synthase	2.42	92.400	**
	Energy pathway			
P20858	ATP synthase subunit beta, chloroplastic	-1.96	53.857	*
	Cell proliferation and differentiation			
Q8LRM8	Translationally-controlled tumor protein homolog	1.01	18.806	*
A0A1D5RY72	GTP-binding nuclear protein	0.77	19.912	*
W5C3H4	Proteasome subunit alpha type	2.05	25.828	*
	Cell wall metabolism			
A0A1D6RX96	Beta-galactosidase	-0.87	87.227	*
A0A1D6CMU1	Beta-galactosidase	-0.93	75.744	*
	Protein synthesis			
E2F3W4	40S ribosomal protein S15a	1.40	14.790	**
A0A1D5UFM0	40S ribosomal protein S12	1.22	15.235	*
A0A1D5T990	Elongation factor G, mitochondrial	1.18	72.841	*
	Post translation modifications – Proteolytic enz	zymes		
A0A1D6B0C9	Aminopeptidase	-1.50	98.207	**
A0A1D5TF03	ATP-dependent Clp protease proteolytic subunit	1.95	27.092	**

W5F826	Proteasome subunit beta type	2.65	24.333	*					
A0A1D6AKZ2	ATP-dependent Clp protease proteolytic subunit	2.02	32.197	*					
	Amino acid metabolism								
A0A1D6S822	S-adenosylmethionine synthase	-2.37	42.827	*					
Anti-oxidant enzymes – responds to ROS									
A0A1D5XAW6	Superoxide dismutase [Cu-Zn]	-1.13	16.576	*					
H9NAV6	Superoxide dismutase [Cu-Zn]	-1.26	15.092	*					
A0A1D6BEM4	Peroxidase	1.06	33.623	*					
A0A1D6CM42	Superoxide dismutase [Cu-Zn]	-0.95	19.325	**					
W5AS89	Peroxidase	-0.73	36.521	*					
W5BAV5	Peroxidase	-0.69	33.724	*					
Signal transduction									
Q7DMG9	Calmodulin TaCaM1-1 (Ca ²⁺ signalling)	1.08	16.832	*					
P04464	Calmodulin	0.91	16.847	*					
W5D6S5	S-formylglutathione hydrolase	1.70	31.599	*					

Table 3. Comparison of leaf proteome response of RAC875 relative to Kukri at elevated $[CO_2]$ (Protein expression relative to Kukri proteome at elevated $[CO_2]$, fold change is given in Log₂ transformation, **P<0.01, * P<0.05).

Accession No	Protein Name	Fold change at e [CO2] relative to Kukri	Molecular weight (kDa)	P value
	Carbohydrate metabolism			
A0A1D6S518	UTP-glucose-1-phosphate uridylyltransferase	4.20	51.664	**
	Energy pathway			
W5BEP1	ATP synthase subunit D, mitochondrial	6.35	19.548	**
W5D5L4	Fructose bi-phosphate aldolase	2.17	38.810	*
A0A1D6AQV8	Aconitate hydratase	-0.42	106.306	*
	Cell proliferation and differentiation			
A0A1D5SQY8	Tubulin alpha chain	5.34	45.863	**
A0A173FEH2	TSK1 protein	1.50	19.059	*
A0A1D5VHL0	Phospholipase	2.07	92.062	*
	Protein synthesis			
A0A1D5YL72	Elongation factor 1-alpha	7.85	47.806	**
W5E2W7	40S ribosomal protein SA	2.11	33.271	*
A0A1D6C4Q5	60S acidic ribosomal protein PO	3.73	33.770	*
	Protein processing			
Q0Q0I7	Heat shock protein 90	7.29	80.460	**
	Post-translational modifications – Proteolytic enzy	mes		
A0A1D6S4L2	Carboxypeptidase	1.77	51.327	*
A0A1D6B0C9	Aminopeptidase	2.15	98.207	*
D2KZ08	Aminotransferase	0.77	55.546	*
A0A1D5TM94	Carboxypeptidase	1.31	55.914	*
	Amino acid metabolism			
A0A1D5XQ85	AlaninetRNA ligase	1.94	109.594	*
A0A1D6B308	S-adenosylmethionine synthase	2.12	42.766	*

	Signal transduction			
A0A1D5ZA24	Clathrin heavy chain	4.64	189.889	**
A0A1D5VHL0	Phospholipase	2.07	92.062	*
	Nitrogen assimilation	L		
A0A1D6AQV8	Aconitate hydratase	-0.42	106.306	*

Table 4. Heatmap for transcript abundance of key genes in carbon, nitrogen and cell wall metabolism in Kukri and RAC875 grown at ambient $(a[CO_2], 400 \,\mu\text{mol mol}^{-1})$ or elevated $(e[CO_2], 700 \pm 10 \,\mu\text{mol mol}^{-1})$ [CO₂]. Data presented are the mean values of gene expression. Fold change of transcript abundance at elevated [CO₂] are presented in Log₂ scale.

Dlant			Gene expr	Log ₂ fold change			
Flaint	Gene Name	Ku	kri	RAC875		Kukri	RAC875
metabolism		a[CO ₂]	e[CO ₂]	a[CO ₂]	e[CO ₂]	e[CO	2]/a[CO ₂]
Dhtotogymtogia	rbcL	2.70	3.69	1.40	3.12	0.45	1.16
Fillolosymesis	rbcS	1.26	2.65	1.42	2.00	1.07	0.49
Carbon	SPP1	4.47	4.48	3.48	10.32	0.00	1.57
Carbon	SPS1	0.95	1.50	1.26	1.27	0.65	0.02
metabolism	SUS1	0.43	1.81	0.56	1.50	2.07	1.43
	NiR	0.30	0.56	0.41	1.19	0.89	1.55
	Fd-GOGAT	13.24	29.92	15.61	28.57	1.18	0.87
	GS2a	24.98	46.56	14.65	26.80	0.90	0.87
Nitrogen	GS2b	0.09	0.15	0.11	0.32	0.70	1.49
metabolism	GS1a	3.36	4.28	3.15	4.26	0.35	0.44
	GSr1	0.33	0.68	0.25	0.27	1.04	0.12
	NADH-						
	GOGAT	0.29	0.71	0.26	0.26	1.31	0.04
	TaEXPA3	1.32	1.23	1.77	5.48	-0.10	1.63
	TaEXPB6	6.11	7.51	7.46	17.14	0.30	1.20
	TAEXPB23	11.55	28.49	13.23	13.55	1.30	0.03
Cell wall	TaXTH1	39.54	46.23	23.16	66.77	0.23	1.53
metabolism	TaXTH2	36.34	65.60	46.83	94.22	0.85	1.01
	TaXTH3	26.76	8.70	4.31	36.13	-1.62	3.07
	TaXTH4	0.61	0.40	0.88	1.92	-0.60	1.12
	TaXTH5	1.94	2.58	0.94	2.44	0.42	1.37

742 **References**

- 743
- Ahmad P, Latef A, Arafat A, Rasool S, Akram NA, Ashraf M, Gucel S. 2016. Role of
 proteomics in crop stress tolerance. *Frontiers in plant science* 7, 1336.
- Ainsworth EA, Beier C, Calfapietra C, Ceulemans R, Durand-Tardif M, Farquhar GD,
 Godbold DL, Hendrey GR, Hickler T, Kaduk J. 2008. Next generation of elevated
 [CO₂] experiments with crops: a critical investment for feeding the future world. *Plant, Cell & Environment* 31, 1317-1324.
- Ainsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO₂
 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis,
 canopy properties and plant production to rising CO2. *New Phytologist* 165, 351-372.
- Ainsworth EA, Rogers A. 2007. The response of photosynthesis and stomatal conductance to
 rising [CO2]: mechanisms and environmental interactions. *Plant, Cell & Environment* 30, 258-270.
- Ainsworth EA, Rogers A, Vodkin LO, Walter A, Schurr U. 2006. The effects of elevated
 CO₂ concentration on soybean gene expression. An analysis of growing and mature
 leaves. *Plant Physiology* 142, 135-147.
- Ali A, Goswami S, Kumar RR, Singh K, Singh JP, Kumar A, Kumari A, Sakhrey A, Rai
 GK, Praveen S. 2018. Wheat Oxygen Evolving Enhancer Protein: Identification and
 Characterization of Mn-Binding Metalloprotein of Photosynthetic Pathway Involved in
 Regulating Photosytem II Integrity and Network of Antioxidant Enzymes under Heat
 Stress. Int. J. Curr. Microbiol. App. Sci 7, 177-192.
- Arachchige PMS, Ang C-S, Nicolas ME, Panozzo J, Fitzgerald G, Hirotsu N, Seneweera
 S. 2017. Wheat (Triticum aestivum L.) grain proteome response to elevated [CO₂]
 varies between genotypes. *Journal of Cereal Science* 75, 151-157.
- Bischoff F, Molendijk A, Rajendrakumar C, Palme K. 1999. GTP-binding proteins in plants. *Cellular and Molecular Life Sciences CMLS* 55, 233-256.
- Bokhari SA, Wan X-Y, Yang Y-W, Zhou L, Tang W-L, Liu J-Y. 2007. Proteomic response
 of rice seedling leaves to elevated CO2 levels. *Journal of proteome research* 6, 4624 4633.
- Brodribb TJ, McAdam SA. 2013. Unique responsiveness of angiosperm stomata to elevated
 CO₂ explained by calcium signalling. *PloS one* 8, e82057.
- Fernando N, Hirotsu N, Panozzo J, Tausz M, Norton RM, Seneweera S. 2017. Lower grain
 nitrogen content of wheat at elevated CO₂ can be improved through post-anthesis NH4+
 supplement. *Journal of Cereal Science* 74, 79-85.
- Friso G, van Wijk KJ. 2015. Posttranslational protein modifications in plant metabolism.
 Plant Physiology 169, 1469-1487.
- Gamage D, Thompson M, Sutherland M, Hirotsu N, Makino A, Seneweera S. 2018. New
 insights into the cellular mechanisms of plant growth at elevated atmospheric carbon
 dioxide. *Plant, Cell & Environment* 41(6), 1233-1246.
- Gaudinier A, Tang M, Kliebenstein DJ. 2015. Transcriptional networks governing plant
 metabolism. *Current Plant Biology* 3, 56-64.
- 784Genschik P, Jamet E, Phillips G, Parmentier Y, Gigot C, Fleck J. 1994. Molecular785characterization of a β-type proteasome subunit from Arabidopsis thaliana co-786expressed at a high level with an α -type proteasome subunit early in the cell cycle. *The*787*Plant Journal* 6, 537-546.
- Gonzalez-Meler MA, Taneva L, Trueman RJ. 2004. Plant respiration and elevated atmospheric CO₂ concentration: cellular responses and global significance. *Annals of Botany* 94, 647-656.

- Gupta R, Kim ST. 2015. Depletion of RuBisCO protein using the protamine sulfate
 precipitation method. *Proteomic Profiling*: Springer, 225-233.
- Gupta R, Wang Y, Agrawal GK, Rakwal R, Jo IH, Bang KH, Kim ST. 2015. Time to dig
 deep into the plant proteome: a hunt for low-abundance proteins. *Frontiers in plant science* 6, 22.
- Hashiguchi A, Ahsan N, Komatsu S. 2010. Proteomics application of crops in the context of
 climatic changes. *Food Research International* 43, 1803-1813.
- Hashimoto T. 2015. Microtubules in plants. *The Arabidopsis Book/American Society of Plant Biologists* 13.
- Hikosaka K, Onoda Y, Kinugasa T, Nagashima H, Anten NP, Hirose T. 2005. Plant
 responses to elevated CO₂ concentration at different scales: leaf, whole plant, canopy,
 and population. *Forest Ecosystems and Environments*: Springer, 3-13.
- Hossain MA, Mostofa MG, Diaz-Vivancos P, Burritt DJ, Fujita M, Tran L-SP. 2017.
 Glutathione in Plant Growth, Development, and Stress Tolerance: Springer.
- Hossain Z, Nouri M-Z, Komatsu S. 2011. Plant cell organelle proteomics in response to
 abiotic stress. *Journal of proteome research* 11, 37-48.
- **IPCC**. 2014. Recent increase and projected changes in CO₂ concentrations. *Carbon dioxide: Projected emissions and concentrations* Vol. 2015. Online Data distribution centre,
 IPCC.
- Ishihama Y, Rappsilber J, Mann M. 2006. Modular stop and go extraction tips with stacked
 disks for parallel and multidimensional Peptide fractionation in proteomics. *J Proteome Res* 5, 988-994.
- Jiang S-Y, Chi Y-H, Wang J-Z, Zhou J-X, Cheng Y-S, Zhang B-L, Ma A, Vanitha J,
 Ramachandran S. 2015. Sucrose metabolism gene families and their biological
 functions. *Scientific reports* 5, 17583.
- Jitla DS, Rogers GS, Seneweera SP, Basra AS, Oldfield RJ, Conroy JP. 1997. Accerlerated
 early growth of rice at elevated CO₂. *Plant Physiology* 115, 15-22.
- Kärkönen A, Murigneux A, Martinant J-P, Pepey E, Tatout C, Dudley BJ, Fry SC. 2005.
 UDP-glucose dehydrogenases of maize: a role in cell wall pentose biosynthesis.
 Biochemical Journal 391, 409-415.
- Kim YJ, Lee HM, Wang Y, Wu J, Kim SG, Kang KY, Park KH, Kim YC, Choi IS,
 Agrawal GK. 2013. Depletion of abundant plant R u B is CO protein using the
 protamine sulfate precipitation method. *Proteomics* 13, 2176-2179.
- Kirschbaum MU. 2010. Does Enhanced Photosynthesis Enhance Growth? Lessons Learnt
 From CO₂ Enrichment Studies. *Plant Physiology*, pp. 110.166819.
- Kleczkowski LA, Kunz S, Wilczynska M. 2010. Mechanisms of UDP-glucose synthesis in plants. *Critical Reviews in Plant Sciences* 29, 191-203.
- Klinghammer M, Tenhaken R. 2007. Genome-wide analysis of the UDP-glucose
 dehydrogenase gene family in Arabidopsis, a key enzyme for matrix polysaccharides
 in cell walls. *Journal of Experimental Botany* 58, 3609-3621.
- Koch K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing
 and plant development. *Current opinion in plant biology* 7, 235-246.
- Lawlor DW. 2002. Carbon and nitrogen assimilation in relation to yield: mechanisms are the
 key to understanding production systems. *Journal of Experimental Botany* 53, 773-787.
- Leakey AD, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR. 2009. Elevated
 CO₂ effects on plant carbon, nitrogen, and water relations: six important lessons from
 FACE. *Journal of Experimental Botany* 60, 2859-2876.
- Li JY, Liu XH, Cai QS, Gu H, Zhang SS, Wu YY, Wang CJ. 2008. Effects of Elevated CO₂
 on Growth, Carbon Assimilation, Photosynthate Accumulation and Related Enzymes

- in Rice Leaves during Sink-Source Transition. *Journal of integrative plant biology* 50,
 723-732.
- Loginova D, Silkova O. 2017. H3Ser10 histone phosphorylation in plant cell division. *Russian Journal of Genetics: Applied Research* 7, 46-56.
- Long SP, Ainsworth EA, Rogers A, Ort DR. 2004. Rising atmospheric carbon dioxide: plants
 FACE the Future*. *Annu. Rev. Plant Biol.* 55, 591-628.
- Lorimer GH. 1981. The carboxylation and oxygenation of ribulose 1, 5-bisphosphate: the
 primary events in photosynthesis and photorespiration. *Annual review of plant physiology* 32, 349-382.
- Lowe RG, McCorkelle O, Bleackley M, Collins C, Faou P, Mathivanan S, Anderson M.
 2015. Extracellular peptidases of the cereal pathogen Fusarium graminearum. *Frontiers in plant science* 6, 962.
- Makino A, Mae T. 1999. Photosynthesis and plant growth at elevated levels of CO₂. *Plant and Cell Physiology* 40, 999-1006.
- Makino A, Mae T, Ohira K. 1983. Photosynthesis and ribulose 1, 5-bisphosphate carboxylase
 in rice leaves changes in photosynthesis and enzymes involved in carbon assimilation
 from leaf development through senescence. *Plant Physiology* 73, 1002-1007.
- Makino A, Osmond B. 1991. Effects of nitrogen nutrition on nitrogen partitioning between
 chloroplasts and mitochondria in pea and wheat. *Plant Physiology* 96, 355-362.
- Masle J. 2000. The effects of elevated CO₂ concentrations on cell division rates, growth
 patterns, and blade anatomy in young wheat plants are modulated by factors related to
 leaf position, vernalization, and genotype. *Plant Physiology* 122.
- Mulligan RM, Chory J, Ecker JR. 1997. Signaling in plants. *Proceedings of the National Academy of Sciences* 94, 2793-2795.
- Nakano H, Makino A, Mae T. 1997. The effect of elevated partial pressures of CO₂ on the
 relationship between photosynthetic capacity and N content in rice leaves. *Plant Physiology* 115, 191-198.
- Neales T, Nicholls A. 1978. Growth Responses on Young Wheat Plants to a Range of Ambient
 CO₂ Levels. *Functional Plant Biology* 5, 45-59.
- Park C-J, Seo Y-S. 2015. Heat shock proteins: a review of the molecular chaperones for plant
 immunity. *The plant pathology journal* 31, 323.
- Parry MA, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, Zhu X-G, Price GD,
 Condon AG, Furbank RT. 2010. Raising yield potential of wheat. II. Increasing
 photosynthetic capacity and efficiency. *Journal of Experimental Botany* 62, 453-467.
- Passardi F, Penel C, Dunand C. 2004. Performing the paradoxical: how plant peroxidases
 modify the cell wall. *Trends in plant science* 9, 534-540.
- Poorter H, Nagel O. 2000. The role of biomass allocation in the growth response of plants to
 different levels of light, CO₂, nutrients and water: a quantitative review. *Functional Plant Biology* 27, 1191-1191.
- Poorter H, Navas ML. 2003. Plant growth and competition at elevated CO₂: on winners, losers
 and functional groups. *New Phytologist* 157, 175-198.
- Popova N, Deyev I, Petrenko A. 2013. Clathrin-mediated endocytosis and adaptor proteins.
 Acta Naturae (англоязычная версия) 5.
- Pritchard S, Rogers H, Prior SA, Peterson C. 1999. Elevated CO₂ and plant structure: a
 review. *Global Change Biology* 5, 807-837.
- Radin JW, Boyer JS. 1982. Control of leaf expansion by nitrogen nutrition in sunflower
 plants: role of hydraulic conductivity and turgor. *Plant Physiology* 69, 771-775.
- Ranasinghe S, Taylor G. 1996. Mechanism for increased leaf grwoth in elevated CO₂. *Journal of Experimental Botany* 47, 349-358.

- Rogers G, Milham P, Gillings M, Conroy J. 1996. Sink strength may be the key to growth
 and nitrogen responses in N-deficient wheat at elevated CO₂. *Functional Plant Biology* 23, 253-264.
- Salekdeh GH, Komatsu S. 2007. Crop proteomics: aim at sustainable agriculture of tomorrow. *Proteomics* 7, 2976-2996.
- Schmidt R, Kunkowska AB, Schippers JH. 2016. Role of reactive oxygen species during
 cell expansion in leaves. *Plant Physiology* 172, 2098-2106.
- Seneweera S. 2011. Effects of elevated CO₂ on plant growth and nutrient partitioning of rice
 (Oryza sativa L.) at rapid tillering and physiological maturity. *Journal of Plant Interactions* 6, 35-42.
- Seneweera S, Ghannoum O, Conroy J, Ishimaru K, Okada M, Lieffering M, Kim HY,
 Kobayashi K. 2002. Changes in source–sink relations during development influence
 photosynthetic acclimation of rice to free air CO2 enrichment (FACE). *Functional Plant Biology* 29, 947-955.
- Seneweera S, Makino A, Hirotsu N, Norton R, Suzuki Y. 2011. New insight into
 photosynthetic acclimation to elevated CO₂: The role of leaf nitrogen and ribulose-1,
 5-bisphosphate carboxylase/oxygenase content in rice leaves. *Environmental and experimental botany* 71, 128-136.
- 907 Seneweera SP, Conroy JP. 2005. Enhanced leaf elongation rates of wheat at elevated CO₂: is
 908 it related to carbon and nitrogen dynamics within the growing leaf blade?
 909 Environmental and experimental botany 54, 174-181.
- Singh A, Bhatnagar N, Pandey A, Pandey GK. 2015. Plant phospholipase C family:
 Regulation and functional role in lipid signaling. *Cell Calcium* 58, 139-146.
- Solomon S, Qin D, Manning R. 2007. Technical summary.Climate Change 2007: The
 Physical Science Basis. In: Solomon S, Qin D, Manning M, Z. Chen, Marquis M,
 Averyt KB, Tignor M, Miller HL, eds. Contribution of Working Group I to the Fourth
 Annual Assessment Report of the Intergovernmental Panel on Climate Change.
 Cambridge University Press, Cambridge, UK/New York, NY, USA., 996.
- Sturm A, Tang G-Q. 1999. The sucrose-cleaving enzymes of plants are crucial for
 development, growth and carbon partitioning. *Trends in plant science* 4, 401-407.
- Sugimoto-Shirasu K, Roberts K. 2003. "Big it up": endoreduplication and cell-size control
 in plants. *Current opinion in plant biology* 6, 544-553.
- 921 Tans P, Keeling R. 2018. Trends in atmospheric carbon dioxide. Vol. 2018: NOAA/ESRL
 922 (www.esrl.noaa.gov/gmd/ccgg/trends/)
- Taylor G, Ranasinghe S, Bosac C, Gardner SDL, Ferris R. 1994. Elevated CO₂ and plant
 growth: cellular mechanisms and responses of whole plants. *Journal of Experimental Botany* 45, 1761-1774.
- Thilakarathne CL, Tausz-Posch S, Cane K, Norton RM, Fitzgerald GJ, Tausz M,
 Seneweera S. 2015. Intraspecific variation in leaf growth of wheat (Triticum aestivum)
 under Australian Grain Free Air CO₂ Enrichment (AGFACE): is it regulated through
 carbon and/or nitrogen supply? *Functional Plant Biology* 42, 299-308.
- Thilakarathne CL, Tausz-Posch S, Cane K, Norton RM, Tausz M, Seneweera S. 2013.
 Intraspecific variation in growth and yield response to elevated CO₂ in wheat depends
 on the differences of leaf mass per unit area. *Functional Plant Biology* 40, 185-194.
- Thompson M, Gamage D, Hirotsu N, Martin A, Seneweera S. 2017. Effects of Elevated
 Carbon Dioxide on Photosynthesis and Carbon Partitioning: A Perspective on Root
 Sugar Sensing and Hormonal Crosstalk. *Frontiers in Physiology* 8, 578.
- Toscano-Morales R, Xoconostle-Cázares B, Cabrera-Ponce JL, Hinojosa-Moya J, Ruiz Salas JL, Galván-Gordillo VS, Guevara-González RG, Ruiz-Medrano R. 2015.

- AtTCTP2, an Arabidopsis thaliana homolog of Translationally Controlled Tumor Protein, enhances in vitro plant regeneration. *Frontiers in plant science* **6**, 468.
- Van Sandt VS, Suslov D, Verbelen J-P, Vissenberg K. 2007. Xyloglucan
 endotransglucosylase activity loosens a plant cell wall. *Annals of Botany* 100, 1467 1473.
- Verbančič J, Lunn JE, Stitt M, Persson S. 2017. Carbon supply and the regulation of cell
 wall synthesis. *Molecular plant*.
- Vierstra RD. 1996. Proteolysis in plants: mechanisms and functions. *Post-Transcriptional Control of Gene Expression in Plants*: Springer, 275-302.
- Wai CM, Zhang J, Jones TC, Nagai C, Ming R. 2017. Cell wall metabolism and hexose
 allocation contribute to biomass accumulation in high yielding extreme segregants of a
 Saccharum interspecific F₂ population. *BMC genomics* 18, 773.
- Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah B. 2015. Involvement of calmodulin and
 calmodulin-like proteins in plant responses to abiotic stresses. *Frontiers in plant science* 6, 600.
- **Zheng Z-L**. 2009. Carbon and nitrogen nutrient balance signaling in plants. *Plant signaling & behavior* 4, 584-591.
- 255 Zhu X, Taylor A, Zhang S, Zhang D, Feng Y, Liang G, Zhu J-K. 2014. Measuring spatial
 and temporal Ca²⁺ signals in Arabidopsis plants. *Journal of visualized experiments:* 257 *JoVE*.

Supplementary Data

For all the variables - Cultivar - P≤0.01, [CO₂]- P≤0.01, Cultivar x [CO₂]- P≤0.01

Supplementary Figure S1. (a) Total soluble sugar content, (b) sucrose content, (c) glucose content and (d) fructose content in expanding leaf blades of Kukri and RAC875 grown at ambient (400 μ mol mol⁻¹) or elevated (700±10 μ mol mol⁻¹) [CO₂]. Data presented are the mean (±SE) of n=3. P values indicate the significance: *, P<0.05; **, P<0.01; ns, not significant.

Cultivar - ns, [CO2]- P<0.01, Organ- P<0.01, Cultivar x [CO2] x Organ- ns

Supplementary Figure S2. Total carbon concentration of (a) Last fully expanded leaf blades (LFELB), (b) expanding leaf blades (ELB), and (c) cell elongation region of Kukri and RAC875 grown at ambient (400 μ mol mol⁻¹) or elevated (700±10 μ mol mol⁻¹) [CO₂]. Data presented are the mean (±SE) of n=3. P values indicate the significance: *, P<0.05; **, P<0.01; ns, not significant.

Supplementary Table S1. Concentration of macro and micronutrients in the growing solution provided during wheat growth during early
 vegetative stage. Half strength nutrient solution was provided. Adapted from (Fernando *et al.*, 2017; Makino *et al.*, 1983).

Chemical given in the reference	Available form	Element	Full strength of inal solution (mM)	Molecular weight (g/mol)	Nutirent concenteation in final solution (X)	Final concentration in the solution (mM)	Stock solution oncentration (mM)	Amount of chemicals to be dissolved in stock solution (g/L)	Volume of stock solution per litre of final solution (ml)	Half strength solution (ml)	Volume of stock solution per litre of inal solution (mM)
			-		Macronutri	onts	C		•		9 2 4
NH4NO3	NH ₄ NO ₂	N	1	80.04	1000	0.5	500	40.02	1	0.25	0.5
KH ₂ PO ₄	KH ₂ PO ₄	K	0.8	00.04					1	0.25	0.5
		P	0.8	- 136.09	1000	0.8	800	108.87	1	0.4	0.5
CaCl ₂ .2H ₂ O	CaCl ₂ .2H ₂ O	Ca	0.6	147.00	1000	0.0	(00	00.01			
		Cl	1.2	- 147.02	1000	0.6	0.6 600	88.21	1	0.3	0.5
MgSO ₄	MgSO ₄ .7H ₂ O	S	0.5	246.48	1000	0.5	500	123.24			
		Mg	0.5	240.48	1000	0.5	300	125.24	1	0.25	0.5
					Micronutri	ents					
Fe-EDTA	$C_{10}H_{12}FeNaO_8$	Fe	0.05	367.05	1000	0.05	50	18.35	1	0.025	0.5
H ₃ BO ₃	H_3BO_3	В	0.04	61.83	10000	0.04	400	24.73	0.1	0.02	0.05
MnSO ₄	MnSO ₄ .H ₂ O	Mn	0.007	169.02	10000	0.007	70	11.83	0.1	0.0035	0.05
ZnSO ₄	ZnSO ₄ .7H ₂ O	Zn	0.0005	287.54	10000	0.0005	5	1.44	0.1	0.00025	0.05
CuSO ₄	CuSO ₄ .5H ₂ O	Cu	0.0002	249.69	10000	0.0002	2	0.49	0.1	0.0001	0.05
Na ₂ MoO ₄	Na ₂ MoO ₄ .2H ₂ O	Mo	0.0001	241.95	10000	0.0001	1	0.24	0.1	0.00005	0.05

Supplementary Table S2. Comparison of leaf proteome response of RAC875 relative to Kukri at ambient [CO₂] (Protein expression relative to Kukri proteome at ambient [CO₂], fold change is given in Log₂ transformation, **P<0.01, * P<0.05).

Accession No	Protein Name	Fold change at a[CO2] relative to Kukri	Molecular weight (kDa)	P value							
Carbohydrate metabolism											
A0A1D6S518	UTP-glucose-1-phosphate uridylyltransferase	3.28	51.664	**							
A0A1D6DCS0	Ribokinase	1.63	36.971	**							
Q1XIR9	4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl glucoside beta-D-glucosidase 1a, chloroplastic	-3.24	64.508	**							
W5I774	Sucrose synthase	2.86	92.400	**							
A0A1D5XY50	Glyceraldehyde-3-phosphate dehydrogenase	0.32	46.858	*							
	Post-translational modifications										
A0A1D6AKZ2	ATP-dependent Clp protease proteolytic subunit	3.00	32.197	**							
W5F826	Proteasome subunit beta type	2.20	24.333	**							
W5D591	Small ubiquitin-related modifier	0.36	11.101	**							
A9EEM6	Triticain beta 2	-0.08	50.417	*							
W5ERM8	Proteasome subunit beta type	1.75	23.198	*							
A0A1D6B0C9	Aminopeptidase	-1.22	98.207	*							
	Amino acid metabolism										
A0A1D5TXK5	Histidinol dehydrogenase, chloroplastic	0.29	46.697	**							
A0A1D5VKI1	Cysteine synthase	1.33	40.934	**							
P38076	Cysteine synthase	1.50	34.114	**							
A0A1D5YM24	Cysteine synthase	0.81	40.452	**							
A0A1D6RR58	Glutamate decarboxylase	1.27	53.899	*							
W5GBW4	S-adenosylmethionine synthase	-0.75	43.252	*							
A0A1D5SPT9	Branched-chain-amino-acid aminotransferase	-0.83	34.435	*							
W5GE58	Aspartate aminotransferase	0.23	47.328	*							
	Cell proliferation and differentiation										

W5EMA7	Proteasome subunit alpha type	2.39	27.436	**						
A0A173FEH2	TSK1 protein	0.42	19.059	*						
W5C3H4	Proteasome subunit alpha type	1.82	25.828	*						
W5H3N4	Proteasome subunit alpha type	1.53	31.311	*						
A0A1D5SZ32	(1,31,4) beta glucanase	1.49	31.492	*						
Anti-oxidant enzymes										
A0A1D6CV93	Peroxidase	2.13	38.416	**						
R9W6A6	ER molecular chaperone	1.52	73.186	**						
A0A1D5UU04	Peroxidase	-0.78	35.388	**						
Q43206	Catalase-1	0.92	56.808	*						
A0A1D6BEM4	Peroxidase	1.09	33.623	*						
	Energy pathway									
W5C3E3	Pyruvate dehydrogenase E1 component subunit alpha	0.50	45.927	**						
W5D0E3	Fructose-bisphosphate aldolase	1.13	38.895	**						
A0A1D5SM88	Dihydrolipoyl dehydrogenase	1.15	52.795	*						
A3KLL4	Malate dehydrogenase	-0.36	35.486	*						
A0A1D5WER2	Isocitrate dehydrogenase [NADP]	0.09	50.575	*						
A0A1D6AQ51	Pyruvate dehydrogenase E1 component subunit alpha	0.13	42.569	*						
A0A1D6BYZ7	ATP-dependent 6-phosphofructokinase	1.02	48.041	*						
	Photosynthesis									
P11383	Ribulose bisphosphate carboxylase large chain	1.89	52.851	**						
	Cell wall metabolism									
A0A1D5XZ43	Beta-galactosidase	-0.47	92.126	**						
	Signal transduction									
A0A1D5ST71	Gamma-glutamyl hydrolase	-0.04	41.489	**						
I3RN54	Inorganic pyrophosphotase	1.90	24.287	**						
	Protein synthesis									
A0A1D6C4Q5	60S acidic ribosomal protein P0	2.39	33.770	*						
Q5I7K5	Ribosomal protein P1	1.02	11.193	*						

W5FWT6	Aldehyde dehydrogenase 7B1	1.55	54.361	*			
	Gene expression						
Q2QKB4	Splicing factor U2af large subunit B	0.32	60.586	*			
	Hormone biosynthesis						
Q69G22	Pyridoxal kinase	0.82	34.241	*			
Nitrogen assimilation							
A0A1D5WER2	Isocitrate dehydrogenase [NADP]	0.09	24.287	*			

Chapter 6

Discussion, Conclusions and Future Directions

Optimization of crop responses to rising atmospheric carbon dioxide concentration ([CO₂]) is considered as one of the best strategies to achieve future food production targets in a changing climate (Tausz *et al.*, 2013). The atmospheric carbon dioxide concentration ([CO₂]) now exceeds 400 μ molmol⁻¹ (Tans & Keeling, 2018) and is predicted to reach up to 1020 μ molmol⁻¹ by the end of this century (IPCC, 2014). As [CO₂] is the primary substrate for photosynthesis, crops are benefited by this increase resulting in greater biomass accumulation, growth and thereby the final yield (Ainsworth *et al.*, 2008). These improvements in biomass and growth are higher in C₃ crops such as wheat and rice, as C₃ biochemistry is not photosynthetically saturated at the current [CO₂] concentration (Ainsworth & Rogers, 2007). The magnitude of plant responses to elevated [CO₂], varies even within the same species suggesting that there is a significant genetic variation in CO₂ responsiveness (Thilakarathne *et al.*, 2015).

Increase in photosynthesis capacity and reduction in stomatal conductance are the two fundamental factors influencing the enhanced plant growth observed at elevated [CO₂] (Ainsworth & Rogers, 2007). Increases in photosynthesis rate in the exponential growth phase of plants could translate into higher absolute growth enhancements (Kirschbaum, 2010). Therefore, elevated $[CO_2]$ provides a unique opportunity to increase crop productivity in a changing climate. Growth stimulation at elevated [CO₂] cannot be explained only by changes in photosynthesis rates alone. Modifications in other post-photosynthetic processes; carbon, nitrogen metabolism, cell cycle functions and hormonal regulation are also crucial in moderating plant growth responses to elevated [CO₂] (Gamage et al., 2018). Many research studies to date have focused on characterizing photosynthetic responses, whilst paying little attention to the changes in post-photosynthetic processes in response to elevated [CO₂]. Characterizing this post-photosynthetic response will be beneficial in dissecting the physiological and molecular mechanisms of how plants respond to elevated [CO₂]. To that end, this study focussed on investigating the molecular basis of several key areas of postphotosynthetic processes likely to be linked with the control of growth responses at elevated [CO₂] using wheat (*Triticum aestivum* L.). As the CO₂ responsiveness of plants is high during the early vegetative growth stages, this study mainly focused on characterizing the early growth responses of wheat to elevated $[CO_2]$.

In this research project, quantitative trait loci (QTL) associated with plant growth traits at the early vegetative stage were mapped with the purpose of identifying potential genetic components associated with plant growth responses in a CO_2 rich atmosphere. We then narrowed down our study to understand the transcriptome level changes of key genes associated with carbon, nitrogen metabolism and cell cycle functions in response to increased carbohydrate generation at elevated [CO_2] and their relationship with plant growth responses at elevated [CO_2]. Finally, we investigated the changes in leaf proteome to examine the interplay of different regulatory metabolic processes that may have contributed towards growth enhancement at elevated [CO_2]. Each of these objectives contributes to the advancement of our knowledge in the underlying molecular mechanisms of plant growth responses in a high CO_2 world.

6.1 Significant findings of the study

In the first experimental chapter (Chapter 03), QTL for shoot and root biomass accumulation, root to shoot dry weight ratio, total biomass accumulation, seedling height, leaf elongation rate and leaf width were determined in a doubled haploid (DH) population of wheat grown at elevated [CO₂] (700 µmolmlol⁻¹). Parental line characterization results indicated that the two parental cultivars, Kukri and RAC875 showed different responses at elevated [CO₂]. For both cultivars, elevated [CO₂] substantially increased biomass accumulation, the rate of photosynthesis and different growth parameters. Consistent with this, the DH lines of the mapping population also showed a differential response to all the growth traits tested when grown under elevated [CO₂]. These results suggested that QTL mapped from this data would be of value for further detailed analysis. Overall, in this study we mapped 28 putative QTL under elevated [CO₂] and 24 putative QTL CO₂-response QTL for the above mentioned nine growth traits. Amongst the CO₂-response QTL, three QTL identified on chromosome 2A, 1B and 4B showed an increased responsiveness for biomass accumulation at elevated [CO₂]. Interestingly, the QTL on 2A and 4B also contributed to the increase in shoot dry weight under high [CO₂]. This suggests that these three QTL may play a significant role in increasing biomass accumulation at elevated [CO₂] and impact on the genetic component of phenotypic variation of a particular genotype. Overall, the identification of different QTL for growth traits at ambient and elevated [CO₂] further implied that there might be a differential genetic control for plant growth at elevated [CO₂]. To the best of our knowledge, this study is the first report

to identify genomic regions in wheat, which may influence plant growth traits at elevated [CO₂], focusing on early vegetative growth stages.

Chapter 4 of this thesis focussed on examining the changes in elevated CO₂ mediated gene expression related to photosynthetic and several post-photosynthetic processes and their potential association with growth responses during the early vegetative stage. Physiological analysis of different DH lines selected based on the CO₂ responsiveness of biomass accumulation along with Kukri and RAC875 (parental lines) showed that biomass accumulation, leaf area production and carbohydrate generation are genotypically varied at elevated [CO₂]. This intraspecific variation in response to elevated [CO₂] is of great importance as this opens the way for the selection of higher yielding genotypes under future climate conditions (Tausz et al., 2013). Gene expression analysis of key genes related to photosynthesis, carbon/nitrogen metabolism and cell-wall metabolism further indicates that CO₂ responsiveness among different genotypes varied even at the transcript level. In particular, differential expression of genes in carbon (SPS1 and SUS1) and cell-wall metabolism (gene members of β -expansins and Xyloglucan endotransglucosylase/hydrolases) was observed in response to elevated [CO₂]. Of the two parental cultivars, RAC875 showed higher transcript abundance for most of the genes examined in this study. Any change related to the key metabolic processes (carbon/nitrogen, cell cycle functions) at transcript level would affect the subsequent protein synthesis and thereby influence plant growth at elevated [CO₂]. Further, the differential expression of key genes related to different metabolic processes is organ-specific and expression is closely linked with the availability of soluble carbohydrate of a particular organ. This organ-specific gene expression pattern may be the key controlling force of carbon and nitrogen partitioning to different plant organs and thereby maintain carbohydrate production in source organs (e.g. last fully expanded leaf) and utilization demand in sink organs (i.e expanding leaf and shoot apex region). This source and sink integration will then contribute to the growth of an organ and thereby the whole plant.

In the final experimental chapter (Chapter 5), a comparative proteomic approach was employed to investigate the changes in leaf proteome in response to elevated $[CO_2]$. Since, Chapter 4 results indicated that there are significant transcriptome level responses of key metabolic processes, a proteomic analysis would be able to investigate changes in protein turnover in response to elevated $[CO_2]$. Proteome changes were investigated using the expanding leaf blades of Kukri and RAC875 (parental cultivars of the DH population) because of the high

nitrogen concentration observed at elevated [CO₂]. Due to the elimination of Rubisco, the most abundant protein in C_3 crops, we were able to examine the changes of other less abundant proteins under high CO₂ conditions. Results of this study showed that most of the differentially expressed proteins at elevated [CO₂] belong to carbon metabolism (sucrose synthase), energy generation, synthesis and processing of proteins (mainly ribosomal proteins), cell cycle proteins (histones) and cell wall loosening enzymes (cell wall peroxidases). This indicates that along with carbohydrate synthesis through increased photosynthetic carbon fixation, elevated [CO₂] also stimulates the breakdown of carbohydrates through respiration to provide sufficient energy for leaf expansion and growth. Ribosomal protein synthesis was significantly higher at elevated [CO₂], which may have facilitated increased cell proliferation and cytoplasmic content, thereby enhancing leaf expansion. Also, differential expression of anti-oxidant enzymes was observed under elevated [CO₂] suggesting a change in reactive oxygen species (ROS) within the plant. It is possible that these ROS together with cell wall peroxidases perform a noteworthy role in cell wall expansion. In addition to these, several signaling proteins involved in the Ca²⁺ signaling pathway, control of cell division/ signaling and protein synthesis were differentially expressed at elevated $[CO_2]$. This differential expression of proteins in our study was similar to a proteomics analysis conducted by Bokhari et al. (2007) using ten day old rice seedlings under high [CO₂]. To our knowledge, this is the first study to investigate the wheat leaf proteome changes in response to elevated $[CO_2]$ focusing on the early growth stage.

6.2 Proposed mechanism for early growth stimulation of wheat at elevated [CO₂]

The proposed mechanism of growth responses of wheat to elevated [CO₂] during early vegetative stage is represented in Figure 1.

In the source tissues, primarily in the last fully expanded leaf blades (LFELB) at the early vegetative stage, elevated [CO₂] increases the CO₂/O₂ ratio at the site of CO₂ fixation. Therefore, the efficiency of the carboxylation efficiency of Rubisco is promoted through the lowering of photorespiration. The genes encoding Rubisco large and small subunits, *rbcL* and *rbcS* substantially upregulated at early vegetative stage (Chapter 4) supporting optimum Rubisco synthesis to utilize the increased [CO₂]. The higher efficiency of PSII, electron transport rate and photochemical quenching correlated with the increased photosynthesis rate at elevated [CO₂] (Chapter 4) and this may have been involved in producing ATP and NADPH, the vital energy components required to maintain photosynthesis at an optimum rate. This increased photosynthesis capacity at elevated [CO₂], then leads to high levels of sucrose

production in the source leaves (Chapter 4). The key genes encoding primary enzymes of sucrose metabolism, sucrose phosphate synthase (SPS1) and sucrose phosphate phosphatase (SPP1) were markedly upregulated in the LFELB to facilitate sucrose production (Chapter 4). Sucrose and other photosynthetic products provide energy and carbon skeletons for amino acid biosynthesis (Zheng, 2009). Respiratory breakdown of sucrose generates 2-oxoglutarate (2-OG) and this serves as the carbon skeleton for the synthesis of glutamate (Zheng, 2009). In the process of NO₃⁻ photo assimilation, conversion of NO₂⁻ to NH₄⁺ by *NiR* showed an upregulation at elevated [CO₂]. However, this expression was less when compared with the expression of genes encoding the GS/GOGAT pathway (Chapter 4). NH₄⁺ from this primary nitrogen metabolism is then incorporated to glutamate, which is catalysed, by glutamine synthetase (GS) and results in glutamine production (Stitt & Krapp, 1999). The expression of GS2a that encode plastidial GS and GS1a and GSr1, which encode cytosol, GS was significantly higher in LFELB at elevated [CO₂] (Chapter 4). Further genes encoding enzyme Fd-GOGAT and NADH-GOGAT were substantially higher at elevated [CO₂] indicating efficient nitrogen assimilation in the early vegetative stage of the plants. Glutamine and glutamate serve as the NH4⁺ donors to the synthesis of other amino acids required for protein synthesis (Stitt & Krapp, 1999). The sucrose and the amino acids generated in the LFELB would then be translocated to sink organs via the phloem.

In the early vegetative phase, expanding leaf blades (ELB) and the shoot apex region (SAR) can be considered as the major sink organs. In SAR, sucrose translocated from LFELB will be cleaved by sucrose synthase (SUS1), which showed a higher upregulation in growing tissues at elevated [CO₂] (Chapter 4). The resulting UDP-Glucose plays an important role as a substrate for the re-synthesis of sucrose from available glucose and fructose (Yong et al., 2000, Koch, 2004). Also, UDP-Glucose is an important component in cell wall biosynthesis of dividing cells (Verbančič et al., 2017). Increased activity of cell wall metabolism was evident from the expression of higher genes encoding β-expansins Xyloglucan and endotransglucosylase/hydrolases (Chapter 4). This implied that cell wall loosening, and expansion has been promoted at elevated [CO₂]. High availability of glucose and fructose of SAR positively correlates with cell division (Koch, 2004). Therefore, in the shoot apex region, active utilization of carbohydrates and increased production and expansion of cells may have facilitated increased growth rates at elevated [CO₂].

A similar pattern for sucrose metabolism was observed in the ELB of wheat at elevated [CO₂]. The results of proteomics analysis showed that SUS enzyme was significantly upregulated at elevated $[CO_2]$ resulting in the production of UDP-Glucose. Other than this, UTP-glucose-1phosphate uridylyltransferase, the enzyme that produces UDP-Glucose from Glucose 1 phosphate and UTP had been significantly upregulated (Chapter 5) indicating a higher production of UDP-Glucose in the ELB at elevated $[CO_2]$. This may have contributed for increased UDP-Glucose production which is an essential substrate for sucrose and cell wall biosynthesis of growing tissues. The increased sucrose supply from LFELB and resynthesizes of sucrose within the tissue increases the sucrose concentration of ELB. This increased sugar supply then promotes expression of proteins related to cell division such as tubulin and protein synthesis such as ribosomal proteins required for cytoplasmic growth (Chapter 5). As a result of these metabolic changes, increased cell proliferation and expansion takes place within the ELB and thus, increases the leaf elongation rate at elevated $[CO_2]$. The increased photosynthetic capacity at elevated $[CO_2]$ remains high until the sink utilization of carbohydrate supply remains high. In the early vegetative stages, plants' plasticity to develop sink organs is relatively high and thus, higher growth stimulation can be observed at elevated $[CO_2]$.

However, this growth stimulation observed under elevated $[CO_2]$ varied significantly between wheat cultivars indicating a noticeable intraspecific variability. The CO₂ responsiveness of wheat is genetically determined (Chapter 3), and this may be depending on the plants' ability to expand their sink capacity in response to increased sugar supply at elevated $[CO_2]$. This intraspecific variability in plant responses to elevated $[CO_2]$ was observed even at transcript (Chapter 4) and proteomic level (Chapter 5). These variable responses are of great importance for selecting the best genotypes that can thrive well in a high CO₂ world.

Figure 1. Schematic diagram of molecular changes of source (last fully expanded leaf) and sink (expanding leaf and shoot apex region) integration of wheat at elevated $[CO_2]$ in early vegetative stage of wheat. Circles with light orange colour represent the transcript level changes of relevant genes at elevated $[CO_2]$. Green diamonds represent the differential protein expression of relevant metabolic activities at elevated $[CO_2]$. Blue colour rectangles

A: photosynthesis rate, PSII: photosystem II, ETR: electron transport rate, q_P- photochemical quenching, Glc: glucose, Fru: fructose, Suc: sucrose, F6P- fructose 6 phosphate, UDP-Glc: UDP glucose, Suc6P: sucrose 6 phosphate, G1P: glucose 1 phosohate, UTP: uridine triphosphate, AA- amino acids synthesis & metabolism, UTP-G1PU: UTP-glucose-1-phosphate uridylyltransferase *rbcL* - ribulose 1,5 –bisphosphate carboxylase/oxygenase (large sub unit); *rbcS* - ribulose 1,5 –bisphosphate carboxylase/oxygenase (small sub unit); *SPP*- Sucrose Phosphate Phosphates; *SPS*- Sucrose Phosphate Synthase; *SUS* - Sucrose Synthase type 1; *NiR* - Ferredoxin Nitrite Reductase; *Fd-GOGAT* - Putative ferredoxin-dependent glutamate synthase; *GS2a* - Glutamine Synthetase (Plastidial), *NADH-GOGAT* - Putative NADH-dependent glutamate synthase; *GS1a* - Glutamine synthetase (cytosolic); *GSr1* - Glutamine synthetase (cytosolic) *TaEXPB* - β – expansins *TaXTH* - Xyloglucan endotransglucosylase/hydrolases

6.3 Future directions

The experiments discussed in this thesis employed a multidisciplinary approach to further elucidate the molecular mechanisms of plant growth responses to elevated atmospheric $[CO_2]$. The study attempted to dissect the underlying mechanisms of plant growth at the genomic, transcriptomic and proteomic level focusing on the early vegetative growth stage. More research is required both to confirm these initial observations and to establish in much more detail the regulation of growth responses under elevated $[CO_2]$. This will be beneficial for developing climate-smart wheat genotypes for the future high CO_2 world.

The results of our QTL mapping experiment indicated several putative QTL that might potentially play a significant role in determining biomass accumulation at elevated [CO₂]. However, in our study we could not further validate the QTL to confirm their reproducibility. Before using them in marker-assisted breeding, these QTL regions have to be validated to rule out possible errors associated with QTL mapping. Therefore, re-running the QTL mapping using the same DH mapping population in different locations, especially under field conditions and in different years to test whether the same QTL effect can be detected even under different environmental conditions is necessary. For this purpose, Near-Isogenic lines (NIL) can be selected for a particular trait or molecular marker through a series of backcrosses to a recurrent parent, which does not express the trait of interest. Phenotypic differences between the parental lines and the NIL lines will allow investigation of phenotypic differences due to the QTL of interest. If the identified QTL are good enough to be used in the breeding programmes, these QTL can be combined into the same line through pyramiding and can be used in breeding crops for future CO₂ enriched atmosphere. Further, in-depth analysis of these QTL regions is necessary to identify candidate genes that may be essential for plant growth and adaptation to future CO₂ levels. Our study was limited to the identification of QTL regions during the early vegetative growth stage. Therefore, this study can be further extended to elucidate the CO₂ responsive genomic regions associated with other key developmental stages of wheat.

The results of the second study implied that elevated $[CO_2]$ significantly influences plant transcriptome level changes and organ-specific expression patterns of key genes might play a role in determining source-sink integration under high CO_2 levels. Our study only investigated a few selected key genes related to photosynthesis, carbon/nitrogen metabolism and cell-wall metabolism. To obtain a more complete picture, it is better to conduct an in-depth analysis of

transcript level changes of each metabolic process at elevated $[CO_2]$, which could be possibly achieved through microarray analysis. Therefore, comparative analysis of mature and growing organs using a microarray analysis might provide a more complete overview regarding changes at transcriptome level to elevated $[CO_2]$. Further in our study, we did not investigate the change of key genes related to hormonal regulation, though this plays a major role in moderating plant growth responses. Hence, studies into the investigation of transcript level changes of genes related to hormonal metabolism would assist in improving our understanding of the underlying molecular mechanisms at elevated $[CO_2]$. The transcript abundance during the vegetative stage and in the transition to reproductive stage will indicate the plants' transcriptome level changes to elevated $[CO_2]$ and their relation to the source-sink integration of a plant.

Results of the comparative proteomics analysis revealed that key regulatory enzymes, intermediate metabolic proteins/biomolecules and signal transducing proteins were differentially expressed under elevated [CO₂]. The changes in the proteome of expanding leaves allowed us to identify more proteins related to carbohydrate utilization, protein synthesis, cell division and expansion. Similarly, a comparative proteomic analysis of the shoot apex region will give a more complete picture of how cell cycle functions change in response to elevated [CO₂] as Chapter 4 results indicated that cell cycle functions are likely to be more responsive to elevated [CO₂]. Of all the identified proteins, a significant proportion was uncharacterized proteins; the functionality of these proteins is not yet confirmed. There were a few uncharacterized proteins that showed significant differential expression in both cultivars. Studies into annotation and curation of these uncharacterized proteins will be beneficial in unravelling the underlying mechanisms of plant growth responses to elevated [CO₂]. Overall, out of two parental cultivars of the DH mapping population used in this thesis, RAC875 showed a noteworthy CO₂ responsiveness both at the transcriptome and proteome level. Thus, possibilities to use RAC875 as a potential breeding line for crop breeding programmes designed for a future CO₂ enriched atmosphere need to be investigated.

6.4 Conclusion

It is crucial to understand the underlying molecular mechanisms of plant growth responses to elevated [CO₂] in order to develop effective crop breeding strategies for a future CO₂ enriched world. Each of the experimental chapters of this thesis, contributed to elucidating the molecular mechanism of how plants respond to elevated [CO₂] at the genomic, transcriptomic and proteomic level using wheat, focusing on the early vegetative growth stages. In Chapter 3, three main CO₂-response QTL for biomass accumulation were identified on chromosome 2A, 1B and 4B, of which QTL on chromosome 2A and 4B also contributed to increasing shoot dry weight at elevated [CO₂]. These QTL can be validated and used for further in-depth analysis to identify the candidate genes involved in moderating plant adaptations to elevated [CO₂]. The results of Chapter 4 indicated that plants show an organ-specific expression pattern for key genes associated with photosynthesis and post-photosynthetic processes at elevated [CO₂]. Carbon metabolism, nitrogen metabolism and cell-wall metabolism are highly influenced by increased sugar supply under high CO₂ conditions and of them, several genes related to cellwall metabolism showed strong positive correlations with the soluble carbohydrate content. These changes in the transcriptome may have influenced protein synthesis that governs plant growth and development. Results of Chapter 5 showed that proteins involved in carbohydrate synthesis and respiratory breakdown, protein synthesis and processing, cell division and cellwall metabolism significantly changed their expression at elevated [CO₂] and are likely to be involved in enhanced leaf elongation observed in the high CO₂ environment. Overall, this project contributes to the lessening of the knowledge gaps in our understanding of molecular mechanisms of plant growth responses to elevated [CO₂] and yet more work is required to develop a more refined mechanism of how elevated [CO₂] regulates plant growth. However, in the real world, elevated [CO₂] closely interacts with other climatic parameters such as increased temperatures and prolonged drought conditions. Therefore, elucidation of the underlying mechanisms of plant growth responses to elevated [CO₂] is very challenging under this triple whammy of challenges (elevated CO₂, high temperature and water scarcity) anticipated in the future.

6.5 References

- Ainsworth E.A., Beier C., Calfapietra C., Ceulemans R., Durand-Tardif M., Farquhar G.D., Godbold D.L., Hendrey G.R., Hickler T. & Kaduk J. (2008) Next generation of elevated [CO₂] experiments with crops: a critical investment for feeding the future world. *Plant, cell & environment*, **31**, 1317-1324.
- Ainsworth E.A. & Rogers A. (2007) The response of photosynthesis and stomatal conductance to rising [CO₂]: mechanisms and environmental interactions. *Plant, cell & environment*, 30, 258-270.
- Bokhari S.A., Wan X.-Y., Yang Y.-W., Zhou L., Tang W.-L. & Liu J.-Y. (2007) Proteomic response of rice seedling leaves to elevated CO₂ levels. *Journal of proteome research*, 6, 4624-4633.
- Gamage D., Thompson M., Sutherland M., Hirotsu N., Makino A. & Seneweera S. (2018) New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide. *Plant, cell & environment*, **41(6)**, 1233-1246.
- IPCC (2014) Recent increase and projected changes in CO₂ concentrations. In: *Carbon dioxide: Projected emissions and concentrations*. Data distribution centre, IPCC, Online
- Kirschbaum M.U. (2010) Does Enhanced Photosynthesis Enhance Growth? Lessons Learnt From CO2 Enrichment Studies. *Plant physiology*, pp. 110.166819.
- Koch K. (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. *Current opinion in plant biology*, **7**, 235-246.
- Stitt M. & Krapp A. (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. *Plant, Cell & Environment*, **22**, 583-621.
- Tans P. & Keeling R. (2018) Trends in atmospheric carbon dioxide. NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/)
- Tausz M., Tausz-Posch S., Norton R.M., Fitzgerald G.J., Nicolas M.E. & Seneweera S. (2013) Understanding crop physiology to select breeding targets and improve crop management under increasing atmospheric CO₂ concentrations. *Environmental and Experimental Botany*, 88, 71-80.
- Thilakarathne C.L., Tausz-Posch S., Cane K., Norton R.M., Fitzgerald G.J., Tausz M. & Seneweera S. (2015) Intraspecific variation in leaf growth of wheat (Triticum aestivum) under Australian Grain Free Air CO₂ Enrichment (AGFACE): is it regulated through carbon and/or nitrogen supply? *Functional Plant Biology*, **42**, 299-308.
- Verbančič J., Lunn J.E., Stitt M. & Persson S. (2017) Carbon supply and the regulation of cell wall synthesis. *Molecular plant*.
- Yong J.W.H., Wong S.C., Letham D.S., Hocart C.H. & Farquhar G.D. (2000) Effects of elevated CO₂ and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton. *Plant Physiology*, **124**, 767-779.
- Zheng Z.-L. (2009) Carbon and nitrogen nutrient balance signaling in plants. *Plant Signaling & Behavior*, **4**, 584-591.