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a b s t r a c t

Plants grown on sodic soils can suffer from macronutrient deficiencies, such as cal-
cium (Ca), magnesium (Mg), and potassium (K), reducing health and growth. Nutrient
concentrations in plant tissue could potentially provide a signal to identify cultivars
tolerant to sodic conditions. However, conventional approaches to diagnosing crop
nutrient and chlorophyll status involve determining total elemental content in plant
tissues. These methods are time-consuming, tedious, and expensive, requiring destruc-
tive sampling of plant parts and complex laboratory analyses. Here, we propose a
novel approach using hyperspectral sensing to determine macronutrient and chlorophyll
variations/deficiencies of 18 different wheat genotypes grown in moderately sodic (MS)
and highly sodic (HS) soil conditions in north-eastern Australia. Canopy reflectance
was measured using a handheld spectroradiometer close to flowering to compute red
edge spectral indices, such as normalized difference red edge index (NDRE), red edge
inflection point (REIP), and red edge chlorophyll index (Cl rededge). Plant Ca, Mg, and
K concentrations were also measured by destructive sampling of young mature leaves
followed by laboratory analysis. The maximum first derivative of reflectance spectra
for 18 wheat genotypes were observed at 722–728 nm and 719–725 nm for the MS
and HS site, respectively and was used to determine REIP for the genotypes using a
four-point linear interpolation method. Ca and Mg had a significant positive association
with both REIP and NDRE, with Ca more closely correlated than either Mg or K. REIP
was more closely associated with Ca (R2

= 0.72; RMSE=0.02 for the MS site and R
2

= 0.57; RMSE=0.02 for the HS site) than NDRE. This suggests that REIP has a great
potential to detect structural variations of wheat genotypes in sodic soil environment.
Furthermore, Ca was also significantly (p<0.0001) and positively correlated with Cl rededge
at both sites with R2

= 0.53 and 0.51 for the MS and HS site. This suggests that plant
structural variations in sodic soil can regulate leaf chlorophyll concentration and, in
turn, photosynthetic activities. Overall, results demonstrate that hyperspectral sensing
can be efficiently used to detect plant Ca, Mg, and chlorophyll concentrations. The study
improves understanding of genotypic nutrient variation for tolerance to different levels
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of sodic soil conditions using optical properties of plant structure and can be beneficial to
the plant science community for developing new approaches to study plant physiology.
CrownCopyright© 2022 Published by Elsevier B.V. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Sodic soils adversely affect 581 million ha of land worldwide, and Australia has the most extensive coverage of sodic
oils in the world (340 million ha) (Rengasamy, 2016). In Australia, soils are classified as sodic when exchangeable sodium
ercentage (ESP) in soil is >6%, and highly sodic when ESP is >15% (Northcote and Skene, 1972). Sodicity causes serious

soil structural degradation, aeration problems, and restricted water movement that can reduce root growth, plant water,
and nutrient uptake, and seedling emergence (Anzooman et al., 2018; Rengasamy, 2002). The co-occurrence of salinity in
sodic soils, particularly sodic subsoils, can also hinder plant nutrient uptake due to its osmotic effects and the presence
of toxic concentrations of ions, such as chloride (Cl), that reduce crop growth and yield (Dang et al., 2008).

Calcium (Ca), magnesium (Mg), and potassium (K) are important cationic elements responsible for structural develop-
ment, photosynthetic activity, and abiotic stress resistance of crops (Hasanuzzaman et al., 2018; Karley and White, 2009;
Tränkner and Jamali Jaghdani, 2019). Plants grown in sodic soil can suffer due to macronutrient deficiencies including Ca,
Mg, and K (Naidu and Rengasamy, 1993; Sugar Research Australia Ltd, 2020). Severe Ca deficiency (<1 mM) adversely
mpacts plant development, and especially cell wall structure, resulting in reduced plant growth with necrosis (spotted
eaves) (Dang et al., 2016; Reuter and Robinson, 1997), which may affect photosynthesis by reducing leaf chlorophyll
oncentration. Mg plays a vital role in plant metabolism including chlorophyll synthesis; therefore, deficiency of Mg could
educe leaf chlorophyll concentration (Karley and White, 2009; Tränkner and Jamali Jaghdani, 2019). A K deficit plant is
ore susceptible to abiotic stress (Cakmak, 2005; Hasanuzzaman et al., 2018). Thus, the adequacy of these macronutrients

n plant tissue is essential for crop healthy growth and productivity. Nutrient deficiency is one of the major constraints
o the growth and development of wheat in the sodic soil-dominated northern grains growing regions of Australia (Dang
t al., 2016).
Evaluation of plant nutrient concentrations before flowering and/or grain filling can provide useful insights into the

usceptibility and tolerance to sodic soil constraints (Dang et al., 2016). However, conventional approaches to diagnosing
rop nutrient and chlorophyll status involve determining total elemental content in plant tissues. These methods are
ime-consuming, tedious, and expensive, requiring destructive sampling of plant parts and laboratory analyses (Li et al.,
005). In contrast, high resolution remote sensing techniques may provide a promising approach for diagnosing plant
utrient status using optical properties of plant leaves, which is non-destructive, as well as time and labour efficient. A
tudy reported that red edge wavelengths (680–750 nm) can be useful to detect plant Ca deficiencies on non-sodic soils
Li et al., 2005). In addition, studies reported that healthier and well-structured plants have greater contrast in reflectance
n red edge wavelengths, creating an abrupt ascending slope between 680 and 750 nm and that can be used to detect
lant Ca concentration in non-sodic soils (Clevers et al., 2002; Tian et al., 2011). While a few studies have been reported
he utility of red edge wavelengths to understand crop health, structural variations, etc., this has increased the imperative
hat how these techniques can be used to detect genotypic macronutrient (Ca, Mg, and K) and chlorophyll variations and
hat too in a sodic soil environment where soil constraints may have variable genotypic impacts on health. Thus, there is
otential to use hyperspectral remote sensing to determine genotypic macronutrient and chlorophyll variations on sodic
oil.
A number of red edge parameters can be computed to critically examine crop condition, health, and structural

evelopment (Ju et al., 2010). A study used a red edge inflection point (REIP) as the maximum first derivative of reflectance
pectra to identify optical features from leaf reflectance that provides potential insights into leaf structural changes and
hlorophyll status for the detection of Ca deficiency on non-sodic soils (Li et al., 2005). The REIP describes the maximum
lope in reflectance of the red edge region (680–750 nm). When the REIP is shifted towards longer wavelengths, this
sually indicates healthy plants (Mutanga and Skidmore, 2007; Velichkova and Krezhova, 2019). Thus, REIP is considered
useful red edge parameter (Boochs et al., 2007; Li et al., 2005; Tian et al., 2011) that may be used to evaluate

enotypic macronutrient variations, in turn, variations in health, stress tolerance, photosynthetic activity, and structural
evelopment on sodic soils. In addition, studies report that a normalized red edge vegetation index (NDRE) and the red
dge chlorophyll index (Clred edge) can also be useful indicators to quantify vegetative health, physiological changes, and
hlorophyll concentration on non-sodic soils (Gitelson et al., 2005; Li et al., 2005; Micasense, 2014). Hence, these red edge
arameters can be comprehensively used to study genotypic macronutrients and chlorophyll variations and/or deficiencies
n constrained sodic soil environments.

The present study aimed to test whether hyperspectral remote sensing can be used to quantify macronutrient (Ca,
g, and K) and chlorophyll variations of different wheat genotypes grown on different levels of sodic soil constraints
nd improve our understanding of genotypic tolerance to sodic soil conditions by reducing the need for expensive,
abour-intensive, and tedious manual plant sampling to determine crop nutrients and chlorophyll. We experimented with
ighteen wheat genotypes on a moderately sodic (MS) and a highly sodic (HS) soil site in north-eastern Australia and used
2
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high resolution narrow-band hyperspectral sensing to examine genotypic nutrient and chlorophyll variations on sodic
soil. We hypothesized that sodic soil constraints can affect crop nutrients uptake, photosynthetic activity, and structural
development and if hyperspectral sensing could quantify the smallest differences in genotypic nutritional and chlorophyll
concentrations to the different levels of sodic soil conditions that may improve our understanding to study plant growth,
physiological properties, and tolerance to sodic soil using a non-invasive and non-destructive way. The specific objectives
of this study were: (1) to quantify the impact of sodic soil on crop nutrient status with relevance to structural development,
(2) to evaluate the performance of hyperspectral red edge spectral parameters in remote detection of crop macronutrient
(Ca, Mg, and K) and chlorophyll concentration on sodic soils, and (3) to differentiate wheat genotypes performance to
different levels of sodic soil constraints to help identify tolerant genotypes to soil constraints.

2. Materials and methods

2.1. Site selection and experimental setup

Two experiment sites were located on MS (28.15◦S and 150.22◦E) and HS (28.08◦S and 150.15◦E) soils near Goondi-
windi in north-eastern Australia (Das et al., 2021). The sites were located at an average elevation of 268 m from mean
sea level and have well-structured Gground samplesrey Vertisol soils with high clay content and good water holding
capacity. Both sites have adequate and mostly similar concentrations of soil nutrients from 0–150 cm depth (Das et al.,
2021), which is favourable for crop production. However, studies reported that the availability of these nutrients for crops
can be strongly restricted by sodic soil constraints, particularly in the presence of chloride (Cl) toxicity in the subsoil in
this region (Dang et al., 2008, 2019). In this region of Australia, the winter wheat cropping season is between May and
October. Seasonal (May to October 2018) air temperature varied between ∼5◦ and ∼35 ◦C for both the experiment sites
ith a similar seasonal mean air temperature of 14.7 ◦C and 14.9 ◦C and in-season rainfall of 86.2 and 85.6 mm for the
S and HS site, respectively (Das et al., 2021).
We used a randomized complete block design (RCBD) at both experiment sites, each with eight replications. Four

eplications (i.e., 72 plots) were designed for destructive sampling and plant biophysical measurements close to flowering,
10–112 days after sowing (DAS), and another four for grain yield (72 plots) measurements at maturity (152 DAS) (yield
ata not reported in this study). At each experiment site, 18 different wheat genotypes were tested (Supplementary Table
) (Das et al., 2021), making a total of 144 plots (4 columns and 36 rows) (Supplementary Figure 1). Each plot was 5 × 2 m
ith five planting rows and 30 cm spacing between each other. Crops were sown on 24th May 2018 and harvested on
nd November 2018.

.2. Soil sampling

A relatively uniform area for soil constraints was selected for the experiments at both MS and HS sites based on
cquired apparent electrical conductivity (ECa) readings. Soil samples were collected prior to sowing from a minimum of
ight locations within each selected area to determine soil moisture availability (Das et al., 2021). At each sampling point,
olumetric water content was determined from a 50-mm diameter soil sample collected to 150 cm using a hydraulic
oil sampling rig (Dang et al., 2019; Das et al., 2021). The soil samples were dried at 40 ◦C and ground to pass through
2 mm sieve. In a 1:5 soil water suspension, pH, electrical conductivity (EC), and Cl were measured using standard
ethodology (ISO, 2005). The EC of saturated extract (ECse) was computed from EC 1:5 and clay content ratio (Shaw,

1997). Exchangeable Na+ and cation exchange capacity (CEC) were measured using a 1 M NH4Cl (pH 8.5) extraction
solution (Tucker, 1985) and ESP was calculated from exchangeable Na+ relative to CEC. The volumetric moisture content
n percentage was calculated by multiplication of gravimetric soil moisture content with bulk density (BD) of the soil (Das
t al., 2021). The soil physico-chemical characteristics for the MS and HS sites are illustrated in our earlier studies (Das
t al., 2021; Roy Choudhury et al., 2021).

.3. Plant biophysical measurements

Plant Ca, Mg, Na, and K concentrations were determined from destructively sampled youngest mature leaf (YML) at
lose to flowering (110–112 DAS). Earlier studies reported that a close to the flowering is the most crucial time to measure
lant biophysical, spectral, and nutrient concentrations in sodic soil environments that can be used to differentiate
rop/cultivars relative performance (Dang et al., 2019, 2016; Das et al., 2021; Roy Choudhury et al., 2019). A minimum of
0 young leaves was sampled from the middle three rows (3 × 0.5 m area) of each destructive sampling plot (72 plots)
Supplementary Figure 2). These leaves were washed with deionized water before oven drying at 70 ◦C and grinding to
<0.5 mm. The ground samples were digested in a mixture of nitric (HNO3 and perchloric (HClO4) acids before measuring
element concentrations using an inductively coupled plasma spectroscopy (ICP) (Munns et al., 2010; Svensson, 2017).
A SPAD chlorophyll metre (SPAD-502, Minolta Co. Ltd., Osaka, Japan) was also used to measure plot-wise relative leaf
chlorophyll concentrations close to flowering (110–112 DAS) on the destructive sampling plots. The readings were taken
from the young mature leaves, with a minimum of 10 measurements taken in each plot to derive a plot average.
3



M. Roy Choudhury, J. Christopher, S. Das et al. Environmental Technology & Innovation 27 (2022) 102469
2.4. Canopy reflectance measurements and data processing

Canopy reflectance was measured using a hyperspectral spectroradiometer (ASD FieldSpec
®

HandHeld 2, Malvern
Panalytical Ltd, USA) under the cloud-free, low wind, and sunny conditions between 9:00 and 15:00 hrs. Weekly in-situ
monitoring of crop development was used to identify a date near flowering (110–112 DAS). A date near flowering was
chosen since this is the most crucial time before grain filling when the canopy is most fully developed and likely to modify
the reflectance most efficiently. The instrument was calibrated using a standard white spectralon calibration panel at each
time of point shoot to reduce the effects of background reflectance on canopy spectral measurements. The continuous
spectra were recorded in VIS to NIR from 325 nm to 1075 nm with ±1 nm accuracy and a resolution of <3 nm for each
spectrum. In each plot, five spectral measurements of 0.4 m diameter area of the canopy were recorded from the middle
three rows by locating the sensor in a horizontal position 0.5 m above the canopy cover. The measured canopy reflectance
data was then exported into an ASCII file using ViewSpec Pro, an integrated package with RS3 spectral acquisition software
(Analytical Spectral Devices Inc., Colorado, USA) (Suarez et al., 2017). Subsequently, the raw data was exported into the R
Studio statistical software platform and converted into hyperspectral data by using the hyperSpec package (Beleites, 2015).
The pre-processing (‘cleaning’) was carried out using an excel spreadsheet program. Based on this, the bands introducing
excessive variation into the data (901–1050 nm) and very short wavelength bands (325–399 nm) were excluded. Further,
we performed a Savitzky–Golay derivative filter with the spectroscopic data at 400–900 nm in MATLAB R2020a (The
Mathworks

®
Inc., USA) software platform for smoothening and removing noise from the data (King et al., 1999). Finally,

the various spectral indices were derived from hyperspectral data for further analyses as described below.

2.4.1. Red edge inflection point (REIP)
The present study used a four-point linear interpolation technique (Guyot et al., 1992) to extract REIP from hyperspec-

tral red edge wavelengths (680–750 nm) for 18 genotypes over two experimental sites. Previous studies have considered
the four-point linear interpolation using four spectral bands (670, 700, 740, and 780 nm) as the most promising and simple
approach to compute REIP (Baret et al., 1987; Cho and Skidmore, 2006; Velichkova and Krezhova, 2019). To determine
the REIP in this study, the first derivative of reflectance spectra was determined first using Eq. (1) (Dawson and Curran,
1998). The maximum first derivative of reflectance spectrum in red edge region is used to determine REIP (Li et al., 2005).
Therefore, using the maximum first derivative of reflectance for all the genotypes at both sites, we realized the REIP 1
using a four-point linear interpolation (Eq. (2)) might be more useful than REIP 2 or 3 for the current study. The REIP 1
using a range of hyperspectral wavebands (700, 740, and 780 nm) was also suggested to be a strong indicator of nitrogen
status of winter wheat in non-sodic soil environments (Prey and Schmidhalter, 2019).

Dλ(i) =
(
Rλ(j+1) − Rλ(j)

)
/∆λ (1)

REIP = (700 nm + 40) ×

[( 670 nm + 780 nm
2

)
− 700 nm

(740 nm − 700 nm)

]
(2)

where Dλ(i) represents the first-difference transformation at wavelength i midpoint between j and (j + 1). Rλ(j) and Rλ(j+1)
are the reflectance at wavelength j and (j + 1), respectively, and ∆λ is the difference in wavelengths between j and (j + 1).

2.4.2. Normalized difference red edge index (NDRE)
The NDRE was derived using near-infrared and red edge wavelengths from hyperspectral data using Eq. (3) (Fitzgerald

et al., 2006). The range of NDRE values for vegetation canopies varies between 0 and +1, with a higher value indicating
favourable greenness, chlorophyll concentration, and structural development of the plants.

NDRE =
(R790 − R720)
(R790 + R720)

(3)

where R790 and R720 are the reflectances of wheat genotypes for the respective wavelengths of 790 nm (NIR) and 720 nm
(red edge).

2.4.3. Red edge chlorophyll index (Clred edge)
Clred edge was calculated using Eq. (4) from hyperspectral data (Gitelson et al., 2005) and correlated with ground-

measured SPAD chlorophyll data to check the association between them.

Clred edge = (R750/R710) − 1 (4)

where R and R are the reflectances of wheat genotypes for the respective wavelengths of 750 and 710 nm.
750 710

4
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2.5. Statistical analyses

Various statistical analyses including t-test, analysis of variance (ANOVA), principal component analysis, and stepwise
regression were performed in RStudio 3.6.2 (RStudio, PBC) and MATLAB R2020a (The Mathworks

®
Inc., USA) software

latforms.
A paired sample t-test was used to understand whether any significant differences exist between the soil constraints

nd the site means of Na, Ca, Mg, and K concentrations at the MS and HS sites. A two-way ANOVA was performed to
etermine if there are any significant interactions between the genotypes at MS and HS sites based on REIP, NDRE, and
utrient concentrations. The testing of significant differences between levels within each factor was performed using
isher’s protected least significant difference (LSD) test at the 5% significance level. The variables were treated as nested
ffects, while replicate was fitted as a random effect.
We performed principal component analysis (PCA) to reduce data redundancy between response (plant nutrients) and

redictor (red edge spectral parameters) variables before performing stepwise regression analysis. A stepwise regression
nalysis was performed using ‘n’ standardization with a 5% significance level to test for correlations between red edge
pectral parameters and plant nutrient concentrations in the leaves. A 10-fold cross-validation method was used to
alidate the results in the regression analysis. A test of significance at p < 0.05 from ‘0’ was used to compare the results
etween variables. The accuracy of the regression models was assessed using the coefficient of determination (R2) and
oot mean square error (RMSE) in the cross-validation.

. Results and discussion

.1. Impacts of sodic soil constraints on plant nutrient concentration

The depth-wise distribution of soil physico-chemical constraints suggested that both sites have higher ESP in the
ubsoil (18%–20% for the MS and 23%–27% for the HS site at 100–150 cm) than the surface soil (ESP of 2.7% for the
S and 14% for the HS site at 0–10 cm). The profile ESP of the HS site was also significantly higher (p < 0.05) than the
S site. In addition, both sites have a high Cl concentration in the subsoil at 100–150 cm depth, with concentrations
ubstantially higher (p < 0.001) at the HS site (>2300 mg/kg) compared to the MS site (700–750 mg/kg). High ESP and
l concentrations can restrict nutrient uptake by roots, by reducing the rooting depth (Dang et al., 2008, 2019). It would
e anticipated that the higher subsoil ESP and Cl at the HS site would have a greater impact on nutrient uptake by crops
han at the MS site. However, crops at both sites might have grown with restricted nutrient availability.

The greater impact of the conditions at the HS site on plant growth was supported by a paired sample t-test, which
howed that leaf Na, Ca, Mg, and K concentration (%) were significantly different (p < 0.0001) between the MS and HS
ites (Fig. 1). The mean leaf Na concentration for the HS site (∼0.05%) was significantly higher than the MS site (∼0.02%)
Fig. 1a). The previous study has shown the accumulation of Na concentration in the leaf tissue of Australian wheat
enotypes is <0.1% (Liu et al., 2000), with Na > 0.1% adversely impacting plant physiology (Dang et al., 2019; Munns
t al., 1988). Therefore, our results indicate that Na toxicity was unlikely to be limiting wheat growth at either site. The
ean Ca concentration in the leaf tissue at the MS site was ∼0.35% and at the HS site was ∼0.27% (Fig. 1b). Most of the
enotypes at the HS site had <0.25% Ca, which is below the critical limit (0.25%) of leaf Ca concentration (Dang et al.,
019, 2016), suggesting inadequate structural development of crops was likely to have developed on the HS site due to
a deficiency.
The mean Mg concentration in the leaf tissue at both sites was adequate and higher than the critical limit (>0.15%)

Snowball and Robson, 1991). We observed that most of the wheat genotypes at the MS site had >0.22% Mg in their
eaf tissue (Fig. 1c), which was significantly higher (p < 0.0001) than the HS site (∼0.17%). Considering the role of Mg
n plant metabolism including chlorophyll synthesis (Karley and White, 2009; Tränkner and Jamali Jaghdani, 2019), the
esults suggest that wheat genotypes at the MS site might have grown with greater chlorophyll concentrations and thus,
hotosynthetically more active compared to the HS site. The mean K concentrations in the leaf tissue were ∼2.5% and
1.7% for the MS and HS sites, respectively (Fig. 1d), with the genotypes at the MS site having a significantly higher K
ptake than the HS site. Most of the genotypes at the HS site had K concentrations in the leaf tissue of <1.5%, which is
elow the critical limit (Snowball and Robson, 1991). This suggests that wheat genotypes grown at the HS site might be
ore susceptible to abiotic stress compared to the MS site due to poor K uptake (Hasanuzzaman et al., 2018). Coskun
t al. (2017) suggested K deficiency also interrupts other nutrients, including Ca and Mg translocation and source–sink
elationship. A recent study also demonstrated that high sodic soil constraints can significantly reduce wheat K uptake
han a moderately sodic soil that increased plant water stress (Das et al., 2021). Overall, this study demonstrates that high
evels of sodic soil constraints can significantly reduce the availability of essential plant nutrients by reducing uptake.

.2. Spectral signature curve analysis of wheat genotypes on sodic soils

Spectral reflectance curves of the wheat genotypes at the MS and HS sites using the far red to NIR wavelengths (650–
00 nm) (Fig. 2a and b) showed variations among the genotypes. A steep ascending reflectance slope was clearly observed

n the red edge region (680–750 nm). Well-structured genotypes reflect more to create a maximum slope and shift towards

5
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Fig. 1. Site interactions of the mean leaf nutrient concentrations of 18 wheat genotypes between a moderately sodic and highly sodic soil for leaf
nutrients; Na (a), Ca (b), Mg (c), and K (d) in (%). The error bars represent the standard deviation of the mean of 72 plots (18 genotypes with 4
replications each). A significant difference between the site means is shown using different letters (A,B).

onger wavelengths (>750 to 900 nm). Although by visual observation, the mean spectra of some of the wheat genotypes
howed some overlaps, especially between 690 and 720 nm, furthermore, ANOVA results showed significant differences
p < 0.05) in spectral reflectance of all the genotypes between 710 to 900 nm at the MS and 723 to 900 nm at the HS
ite. Overall, we identified that Lancer, Mitch, Janz, and Gregory strongly reflected in red edge and NIR regions, and Flanker,
allup, and Emu Rock had a comparatively weaker reflectance.
Significant differences in reflectance spectra of rice genotypes and grapevine species from red edge to NIR region have

lso been reported on non-sodic soils (Das et al., 2018; Maimaitiyiming et al., 2016). Our results showed a relatively less
teep reflectance slope created by the genotypes at the HS site than at the MS site. Thus, significant differences occurred
etween the genotypes at the HS site at longer wavelengths (>723 nm) compared to the MS site (710 nm). Overall,
enotypic spectral observation supports the suggestion that wheat genotypes grown at the HS had comparatively weaker
eflectance than those at the MS site, likely due to the adverse impacts of high soil constraints. Hence, to quantify the
mpacts of variable sodic soil constraints on genotypic nutrient concentration and structural development, we further
nalysed genotypic response in red edge spectral indices at both sites (below in Section 3.3).

.3. Genotypic response in red edge spectral indices on sodic soils

The REIP of the 18 wheat genotypes varied between 722–728 nm at the MS site and 719–725 nm at the HS site (Fig. 3a).
ignificant differences (p < 0.05) were observed between fifteen wheat genotypes based on REIP at site interactions
etween MS and HS sites. However, wheat genotypes Flanker, Trojan, and Wallup were not significantly different (p >
.05). The first derivative of reflectance spectra for 18 genotypes showed a first prominent and maximum peak at ∼729 nm
or the MS site and ∼718 nm for the HS site (Supplementary Figure 3). The maximum first derivative spectra, indicating
EIP, divides the entire red edge area by far red (670 nm) and NIR (760 nm) lines (Supplementary Figure 3), suggesting
6



M. Roy Choudhury, J. Christopher, S. Das et al. Environmental Technology & Innovation 27 (2022) 102469
Fig. 2. The spectral signature curve for 18 wheat genotypes at moderately sodic (a) and highly sodic (b) sites. The data shows the mean reflectance
of each genotype with four replications for each of 670–900 nm, including red edge and NIR wavebands.

a significant shift of healthier genotypes towards longer wavelengths. A first derivative reflectance peak at a relatively
higher wavelength at the MS site than the HS site, clearly suggests that more shifting of healthier genotypes towards
longer wavelengths. A greater REIP position at the MS site than the HS site may also indicate a greater accumulation of
leaf chlorophyll concentrations and photosynthetic activities by the genotypes.

Previous studies have found the effectiveness of red edge position to determine heavy metal contamination in river
flood plains, leaf chlorophyll, and/or chlorophyll fluorescence (Clevers et al., 2010; Ju et al., 2010; Zarco-Tejada et al., 2003).
Studies also found REIP as a useful indicator of leaf chlorophyll concentration on non-sodic soils (Filella and Penuelas,
7
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0

2
e

Fig. 3. Least significant (LS) means of REIP (a) and NDRE (b) for 18 wheat genotypes for a moderately sodic and highly sodic site measured close
to flowering. The error bars show the standard error of the mean for genotype with four replications in each. A significant difference between the
sites for each genotype is shown using different letters (A,B) and the probability of their interactions was indicated using asterisks at p < 0.01**, <

.05*

007; Li et al., 2005). Our study demonstrates that REIP can be used to differentiate genotypic responses in sodic soil
nvironments.
The NDRE also indicated that the wheat genotypes at the MS site were healthier (mean NDRE = ∼0.46) and significantly

better (p < 0.05) than those at the HS site (mean NDRE = ∼0.27) (Fig. 3b). Researchers suggested that NDRE can be more
useful indicator than a normalized difference vegetation index (NDVI) to determine leaf chlorophyll status since red edge
can penetrate deeper into the leaves than visible ‘red’ wavelength, therefore pigments detection sensitivity is higher than
NDVI (Fitzgerald et al., 2006; Li et al., 2014). NDRE also overcomes the saturation problems of NDVI and is less sensitive
to background reflectance (Li et al., 2014; Nguy-Robertson et al., 2012). Eitel et al. (2010) found the usefulness of red
edge spectral variables to estimate leaf chlorophyll content (R2 > 0.73) on non-sodic soils. Overall, results indicate that
wheat genotypes; Flanker, Gladius, Gregory, Lancer, Mace, Trojan, and Sunco had a greater response in both REIP and NDRE
compared to the others and suggest that the REIP and NDRE may further be used to determine crop structural, nutritional,
and chlorophyll variations on sodic soils.

3.4. Determination of crop nutrient concentrations using hyperspectral red edge parameters

PCA results showed a positive association between REIP and NDRE with Ca, Mg, and K concentrations for both the MS
and HS sites (Fig. 4a and b). A PCA was tested against five components (PC1 to PC5) at each experimental site. At the
MS site, the first two principal components PC1 and PC2 contributed with 70.7% and 15.9%, respectively, which together
explained 86.6% of the data variability in the model. The eigenvalues were 3.53 and 0.79 for PC1 and PC2, respectively.
Whereas, at the HS site, PC1 and PC2 contributed with 59.9% and 17.1%, respectively, which together explained 77.0% of
the data variability in the model. The eigenvalues were 2.99 and 0.85 for PC1 and PC2, respectively. The high proportion
of data variability explained in PC1 and PC2 (>75%) at both sites suggests that the variability of crop nutrients data can
further be effectively explained as a function of red edge spectral parameters using a linear and/or stepwise regression
model.

The REIP showed a relatively closer association with leaf nutrients compared to NDRE for both sites with R2
= 0.72 and

0.57 for Ca; R2
= 0.50 and 0.34 for Mg; and R2

= 0.15 and 0.10 for K at the MS and HS sites, respectively (Fig. 5). Moreover,
stepwise regression results (Table 1) showed that leaf Ca was closely and significantly (p < 0.01) correlated with both
REIP and NDRE for both sites. Mg was also significantly correlated with REIP at both sites, however, the correlation with
NDRE was only significant at the MS site. Further, leaf K concentration was not significantly associated (p > 0.05) with
8
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Fig. 4. PCA biplot with active observations (genotypes) and variables (NDRE, REIP, Ca, Mg, and K) showing the association between the variables
and observations for the first two principal components (PC1 and PC2); n = 72 (four replicates of 18 wheat genotypes); (a) moderately sodic site
nd (b) highly sodic site.

Table 1
Stepwise regression variables and cross-validation between red edge parameters and leaf nutrient concentrations at the moderately sodic and highly
sodic sites.
Sites Variables Ca (%) Mg (%) K (%)

RMSE (%) F p-value RMSE (%) F p-value RMSE (%) F p-value

MS REIP 0.02 52.7 <0.0001 0.02 16.0 0.001 0.3 4.1 0.06
NDRE 0.03 28.6 <0.0001 0.02 8.8 0.004 0.4 0.29 0.58

HS REIP 0.02 42.4 <0.0001 0.02 20.6 <0.0001 0.1 3.5 0.07
NDRE 0.03 9.6 0.003 0.03 0.34 0.56 0.1 0.36 0.55

Values in bold are different from ‘0’ with a significance level alpha <0.05; n = 72.

DRE or REIP at either site. The results suggest that of the parameters tested, REIP is the superior indicator of variations
n crop nutrient concentration, particularly Ca and Mg, with closer association with Ca in a sodic soil environment. As Ca
s an important driving factor of the structural development of crops, REIP, thus, has a strong potential to detect structural
ariations of genotypes on sodic soil.
Estimates of leaf Ca concentration were derived from a linear function of REIP data and were compared between sites.

urthermore, the ANOVA results (Fig. 6), indicate that leaf Ca concentration of most of the wheat genotypes at the MS site
as significantly higher (p < 0.05) than those at the HS site. These results confirm the adverse impacts of high sodic soil
9
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Fig. 5. Relationship between red edge parameters with leaf nutrient concentrations at moderately sodic (a) and highly sodic (b) sites; n = 72. The
matrix shows the coefficient of determination (R2) values between the variables below the diagonal as well as indicated by colour scale (above the
diagonal). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Least significant (LS) means of estimates of leaf Ca concentration predicted using a linear function of REIP at a moderately sodic and highly
odic site during close to flowering. The error bars show the standard error of the mean for four replications of each of 18 genotypes. A significant
ifference between the sites for each genotype is shown using different letters (A,B) and the probability of their interactions was indicated using
sterisks at p < 0.01**, < 0.05*

onstraints on genotypic macronutrient concentrations in plant tissue, especially Ca availability and/or deficiency and also
emonstrate the potential of red edge position or REIP to detect the smallest differences of genotypic structural variations
ue to the changes in leaf Ca to different levels of soil sodicity.

.5. Relationship between crop structural variation and chlorophyll concentrations on sodic soil

We derived Clred edge from hyperspectral red edge wavelengths and then related these with leaf Ca concentrations. The
orrelations between Clred edge and REIP, and Clred edge and Ca both showed significant (p < 0.05) positive associations for
oth sites (Fig. 7). For REIP, R2 was 0.43 for the MS site, and 0.38 for the HS site (Fig. 7a and b), while for Ca, R2was 0.53 for
he MS site and 0.51 for the HS site (Fig. 7c and d). In addition, hyperspectral derived Clred edge index was closely correlated
p < 0.001) with ground measured SPAD chlorophyll data for both sites with R2 of 0.54 for the MS site and 0.49 for the
S site. A previous study also identified a good association between Cl red edge and canopy chlorophyll concentrations
or a wheat crop (R2

= 0.85; n = 24) on non-constrained soil (Wu et al., 2009). Further, Zhang et al. (2011) found a
easonable positive correlation between SPAD values and a hyperspectral red edge reflectance index (R2

∼ 0.5) for rice
rop on non-sodic soils. In this study, although the correlation between Clred edge index and SPAD values was reasonable
nd statistically significant for both the sites, we could not achieve a R2 of >0.55. This might be site-specific and/or
10
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Fig. 7. Relationship between Clred edge index with REIP and leaf Ca concentrations at a moderately sodic site (a) and (c); and a highly sodic site (b)
and (d). Histograms indicate the distribution of data of X and Y variables in the graph; n = 72.

environment-specific or could be due to the variations in data points used for the correlation between earlier studies and
our current study. It was also observed that the hyperspectral derived Clred edge index was slightly better correlated with
leaf Ca concentrations (R2

= 0.53 and 0.51 for the MS and HS site, respectively) (Fig. 7c and d) than ground measured
SPAD chlorophyll data (R2

= 0.38 and 0.33 for the MS and HS site, respectively) (Supplementary Figure 4).
Previous studies report that the variable positions of REIP and shifting of leaf chlorophyll concentration with the

changes of REIP, i.e. ∼700 nm (low chlorophyll content), ∼720 nm, ∼725 nm, and ∼735 nm (high chlorophyll content) on
on-sodic soils (Boochs et al., 2007; Cho and Skidmore, 2006; Clevers et al., 2010; Tian et al., 2011). Likewise, we observed
hat a higher chlorophyll concentration was associated with the shifting of REIP to longer wavelengths on constrained
odic soils. A reasonable to good inter-relationship between plant Mg and chlorophyll concentrations were acknowledged
y previous studies for crops, such as wheat, sunflower, and strawberry in non-sodic soil environments (Choi and Latigui,
008; Tränkner and Jamali Jaghdani, 2019). Here, we also observed a significant positive (p < 0.05) correlation between
g and chlorophyll concentrations of wheat on sodic soils (R2

= 0.32 and 0.30 for the MS and HS site, respectively)
Supplementary Figure 5). This study, further indicated that plant Ca availability and variations can also have a significant
nd even slightly greater influence on leaf chlorophyll concentrations than Mg in sodic soil environments. As Ca plays
key role in the structural development of crops, it is, thus, determined that leaf chlorophyll concentrations and/or
hotosynthetic activities on sodic soil can be heavily reliant on crop structural growth. This also suggests likely differences
n potential photosynthetic activities between different levels of sodic soil constraints, although this was not directly
easured.
Overall, results suggest that a higher level of sodic soil constraints can significantly reduce plant nutrient and

hlorophyll concentrations and restricted structural development and photosynthetic activities, more than a moderately
odic soil. As photosynthesis is related to primary productivity, it is thus clear that the primary productivity of crops in
sodic soil environment can be highly restricted by soil constraints. The results also indicated that hyperspectral red
dge wavelengths have the potential to detect plant nutrients, especially Ca and Mg, and chlorophyll concentrations,
uggesting there might be a reduced need for ground-measured and laboratory-based expensive, labour-intensive, and
edious process of determining plant nutrients and chlorophyll concentrations. The approach used here was sensitive to
he effect of high levels of sodic soil constraints, which significantly reduce crop nutrient uptake from the soil, relative
11
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to moderately sodic soil, which leads to reduced crop development. Although the study successfully demonstrated the
potential of narrow-band hyperspectral sensing and red edge wavelengths to provide insights into wheat genotypic
chlorophyll and nutritional variations/deficiencies and their inter-relationships in sodic soil environments, using a greater
diversity of crops and/or cultivars with multiple environments including non-sodic soils may provide more comprehensive
outcomes while determining plant chlorophyll and nutritional properties.

4. Conclusions

This study aimed to test whether hyperspectral remote sensing can be used to determine macronutrient and chloro-
hyll variations of wheat genotypes grown on sodic soils and thus, improves our understanding of genotypic differences
nd tolerance to different levels of sodic soil constraints by reducing the need for expensive, labour-intensive, and tedious
anual plant sampling to determine crop nutrients, chlorophyll, and health.
The study considered the elemental composition and chlorophyll concentrations of wheat genotypes grown on sodic

oils, and demonstrated that hyperspectral sensing can be used to accurately detect and quantify variation in leaf nutrient,
articularly Ca, Mg, and chlorophyll concentrations. Results support the proposition that observing red edge shift position
owards longer wavelengths and quantifying genotypic responses to that shifting is useful to differentiate plant structural,
utritional, and chlorophyll concentration using plant optical properties. In addition, REIP, as a red edge variable was
dentified to be a strong indicator of leaf Ca and chlorophyll in sodic soil environments. Follow-up studies should focus
n implementing these techniques with a greater diversity of genotypes and a greater number of sodic sites to extend
hese results.

Overall, this study offers a promising, remote sensing-based approach to improve understanding of genotypic variations
n sodic soil environments due to the variations in nutrient and chlorophyll concentrations in plant tissue, and structural
evelopment using optical properties of plant structure in a non-destructive way. The study can be beneficial to the
esearchers, working on the development of new approaches to advance the science of plant physiology using remote
ensing techniques and may assist farmers and breeders in selecting cultivars tolerant to sodic soil constraints.
The key findings of this research are the following:

• Hyperspectral sensing could detect the reduction in wheat Ca, Mg, and chlorophyll concentrations resulting from
sodic soil constraints.

• The REIP, as a red edge parameter, was more closely associated with leaf nutrients and chlorophyll concentrations
than the NDRE on sodic soils.

• Leaf Ca concentration was more closely associated with red edge parameters than either Mg and K.
• Reduced structural development and leaf Ca correlation were both associated with reduced chlorophyll absorption.

This suggests a possible reduction in potential photosynthetic activity and the primary productivity of the plants on
highly sodic soil.
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