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We have introduced a set of coupled fractional reaction-diffusion equations to model a multi-
species system undergoing anomalous subdiffusion with linear reaction dynamics. The model equa-
tions are derived from a mesoscopic continuous time random walk formulation of anomalously dif-
fusing species with linear mean field reaction kinetics. The effect of reactions is manifest in reaction
modified spatio-temporal diffusion operators as well as in additive mean field reaction terms. One
consequence of the non-separability of reaction and subdiffusion terms is that the governing evolu-
tion equation for the concentration of one particular species may include both reactive and diffusive
contributions from other species. The general solution is derived for the multi-species system and
some particular special cases involving both irreversible and reversible reaction dynamics are ana-
lyzed in detail. We have carried out Monte Carlo simulations corresponding to these special cases
and we find excellent agreement with theory.

PACS numbers: 05.40.-a,02.70.Bf,82.39.Rt,82.33.-z

I. INTRODUCTION

In recent years numerous physical and biological sys-
tems have been reported in which the diffusion rates of
species cannot be characterized by the single parameter
of the diffusion constant. Instead, the (anomalous) dif-
fusion is characterized by a scaling parameter γ as well
as a diffusion coefficient D(γ) and the mean square dis-
placement of diffusing species 〈r2(t)〉 scales as a nonlin-
ear power law in time, i.e., 〈r2(t)〉 ∼ tγ [1]. The case of
subdiffusion 0 < γ < 1 is particularly prevalent in biolog-
ical systems [2–10] and is generic in media with obstacles
[11, 12] or binding sites [13].

Anomalous subdiffusion has been successfully mod-
elled mesoscopically using Continuous Time Random
Walks (CTRWs) [14, 15], or Generalised Master Equa-
tions (GMEs), with a long-tailed waiting-time density [1].
This leads to a macroscopic formulation as a fractional
subdiffusion equation (see e.g., [1, 16, 17]) with a tempo-
ral fractional order derivative acting on the spatial Lapla-
cian operator. Fractional variants of the Fokker-Planck
equation have also been derived in the case of anomalous
subdiffusion in an externally applied force field [16, 18–
20].

A fundamental question that has arisen in recent years
is how to incorporate reaction terms correctly when
the particles involved are undergoing anomalous subd-
iffusion. Earlier model formulations utilized fractional
reaction-diffusion equations where a temporal fractional
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derivative operated either solely on the spatial Laplacian
term [21–25], or upon both the Laplacian and the reac-
tion terms [26–30]. However, in the simple case of linear
reaction dynamics, it was shown [25] that the equation

∂n

∂t
= Dγ

∂1−γ

∂t1−γ

∂2n

∂x2
− kn (1)

breaks down to give physically unrealistic negative solu-
tions, and the equation

∂n

∂t
= Dγ

∂1−γ

∂t1−γ

∂2n

∂x2
−
∂1−γ

∂t1−γ
kn (2)

only applies to subdiffusion with instantaneous removals.

In the above equations ∂1−γ

∂t1−γ is a Riemann-Liouville frac-
tional derivative [31]. Neither of the above equations de-
scribes subdiffusion with a constant (in time) per capita
removal of species. Proceeding from a mesoscopic CTRW
description with a long tailed waiting-time density and
with a reduction in particle concentration driven by con-
stant per capita linear reaction dynamics, it has been
shown that the appropriate fractional reaction-diffusion
equation to model this process is [25]

∂n

∂t
= Dγe

−kt ∂
1−γ

∂t1−γ

(

ekt ∂
2n

∂x2

)

− kn. (3)

The effect of linear reactions is thus manifest in a reac-
tion modified spatio-temporal diffusion operator as well
as in the additive mean field reaction term. An equiva-
lent result, using a slightly different formalism, has also
been derived by balancing reaction and diffusion fluxes
in a CTRW description [32] and this result has been gen-
eralized to two species with irreversible linear reaction
kinetics [32, 33]. An example is the two-species system
in which the concentration of one species, A, decays at
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a constant per capita rate and the concentration of an-
other species, B, increases at the same rate (i.e., A→ B)
[32, 33]. The governing evolution equations for the con-
centrations can be written as

∂a

∂t
= Dγe

−kt ∂
1−γ

∂t1−γ

(

ekt ∂
2a

∂x2

)

− ka (4)

∂b

∂t
=

∂1−γ

∂t1−γ

∂2b

∂x2
+ ka

+

[

∂1−γ

∂t1−γ
− e−kt ∂

1−γ

∂t1−γ

(

ekt
)

]

∂2a

∂x2
(5)

where a and b denote the concentration of species A and
B.

The evolution equation for species A is identical to
Eq. (3) but the evolution equation for species B involves a
linear combination of both pure fractional diffusive terms
as well as reaction modified fractional diffusive terms in-
volving species A. A CTRW formulation of two-species
reversible reactions with heavy tailed waiting-time den-
sities was also provided in [33] but no corresponding for-
mulation as a fractional reaction-diffusion equation was
obtained for this case. In related work, a set of integro-
differential equations has been introduced to model a
multi-species system with anomalous subdiffusion and
nonlinear reaction dynamics [34, 35]. This set of equa-
tions, which was derived from a CTRW formulation with
aged walkers, also has coupling between the diffusive
terms and the reaction terms. However in contrast to the
evolution equations reported in [32, 33] and those derived
below, there is no coupling between diffusive terms from
different species,

In this paper we have derived a set of coupled frac-
tional reaction-diffusion equations to describe the evolu-
tion in the concentrations of n species undergoing anoma-
lous subdiffusion with reactions described by the linear
mean-field reaction equations

∂n

∂t
= Rn (6)

where R is a constant reaction rate matrix and n is a
vector of species concentrations. Starting with a meso-
scopic CTRW description and assuming that the walkers
composing each species are governed by the same step-
length densities and the same waiting-time densities we
derive the following balance equation

∂n

∂t
= Dγe

Rt ∂
1−γ

∂t1−γ

(

e−Rt ∂
2
n

∂x2

)

+Rn, (7)

which is a generalization of Eq. (3) for multi-species. In
the above equation eRt is a matrix exponential. This
system of equations includes the possibility of diffusive
contributions between species and thus differs from the
evolution equations of [34, 35] (when restricted to linear
reaction dynamics).

The remainder of this paper is organized as follows.
In Section II we present the mesoscopic CTRW formu-
lation for a multi-species system undergoing anomalous

subdiffusion with linear mean field reaction dynamics.
The macroscopic fractional reaction-diffusion equations
for this model system, Eq.(7), are derived in Section
III. The general solution is also obtained in this section.
In Section IV we analyze examples involving two-species
with irreversible and reversible reactions. The results are
compared with Monte Carlo simulations. In Section V we
describe a generalization of the formalism allowing for
species whose jumps are governed by different waiting-
time densities. The CTRW formulation in this case does
not reduce, in general, to a system of fractional reaction-
diffusion equations. Finally the models and results are
discussed in Section VI.

II. CONTINUOUS TIME RANDOM WALK

FORMULATION

Here we consider n reacting particle species satisfying
the linear mean-field reaction equation in Eq. (6) where
each species undergoes anomalous subdiffusion with the
same waiting-time, ψ(t), and jump-length, λ(x), prob-
ability densities. In the following we use the CTRW
approach of [25, 33] with decoupled jump-length and
waiting-time densities. The master equation for the prob-
ability, q(x, t), that the particle arrives at the position x
at time t taking into account Eq. (6) is

q (x, t) = δ (t)q (x, 0) +

∫ ∞

−∞

λ(x − x
′

)

∫ t

0

ψ(t− t
′

)eR(t−t
′

)
q(x

′

, t
′

) dt
′

dx
′

. (8)

To find the corresponding probability, n(x, t), of being at
x at some time t we use the convolution as in [25]

n (x, t) =

∫ t

0

Φ(t− t
′

)eR(t−t
′

)
q(x, t

′

) dt
′

. (9)

Here the change in concentrations due to reactions
is taken into account through the matrix exponential,
which operates on those walkers that have arrived at ear-
lier times t

′

and then survived without jumping for a time

t−t
′

according to the survival probability Φ
(

t− t
′

)

. The

survival probability is defined by

Φ (t) = 1 −

∫ t

0

ψ(t
′

) dt
′

. (10)

Equation (8) and Eq. (9) can be combined by first
multiplying both equations by e−Rt to find

e−Rt
q (x, t) = e−Rtδ (t)q (x, 0) +

∫ ∞

−∞

λ(x − x
′

)

∫ t

0

ψ(t− t
′

)e−Rt
′

q(x
′

, t
′

) dt
′

dx
′

(11)
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and

e−Rt
n (x, t) =

∫ t

0

Φ(t− t
′

)e−Rt
′

q(x, t
′

) dt
′

(12)

where we have used the identity [36]

e−RteR(t−t
′

) = e−Rt
′

. (13)

Now using Laplace transforms, as in [25], we obtain

e−Rt
n (x, t) = Φ (t)n (x, 0) +

∫ ∞

−∞

λ(x− x
′

)

∫ t

0

ψ(t− t
′

)e−Rt
′

n(x
′

, t
′

) dt
′

dx
′

(14)

or by multiplying by eRt we yield the master equation

n (x, t) = Φ (t) eRt
n (x, 0) +

∫ ∞

−∞

λ(x− x
′

)

∫ t

0

ψ(t− t
′

)eR(t−t
′

)
n(x

′

, t
′

) dt
′

dx
′

. (15)

We note that the above equation can be rewritten using a
Caputo fractional deriviative (see [37]) if a Mittag-Leffler
density is used for ψ(t) [38, 39] but there is no advantage
to do so in this case.

The two species system considered in [33] with (I) ir-
reversible linear reactions (A → B) and (II) reversible
linear reactions (A ⇋ B) corresponds to a two-species
reduction of Eq. (15) with the mean field reaction matri-
ces

RI =

[

−k 0
k 0

]

and RII =

[

−k1 k2

k1 −k2

]

(16)

respectively. The reaction matrices are diagonalisable in
these examples. In the next section we show that with the
introduction of a long-tailed waiting-time density, ψ(t),
we can simplify Eq. (15) to a general system of fractional
reaction-diffusion equations.

III. FRACTIONAL REACTION-DIFFUSION

EQUATION

To find the corresponding system of fractional
reaction-diffusion equations we first multiply Eq. (15) by
e−Rt to give

e−Rt
n(x, t) = Φ(t)n(x, 0) +

∫ ∞

−∞

λ
(

x− x
′

)

∫ t

0

ψ
(

t− t
′

)

e−Rte
R

“

t−t
′
”

n(x
′

, t
′

) dt
′

dx
′

. (17)

Now upon setting

y(x, t) = e−Rt
n(x, t), (18)

noting n(x, 0) = y(x, 0), and using Eq. (13), we have that
Eq. (17) simplifies to

y(x, t) = Φ(t)y(x, 0)+
∫ ∞

−∞

λ
(

x− x
′

)

∫ t

0

ψ
(

t− t
′

)

y(x
′

, t
′

) dt
′

dx
′

. (19)

If ψ(t) is a long-tailed waiting-time density then Eq.(19)
is a multi-species representation of the well known CTRW
master equation for anomalous subdiffusion which leads
to the macroscopic fractional subdiffusion equation [1],
now written in vector form,

∂y

∂t
= Dγ

∂1−γ

∂t1−γ

∂2
y

∂x2
. (20)

The governing evolution equation for the concentrations
n is now obtained by combining Eq. (18) and Eq. (20).
Explicitly, after substituting Eq. (18) into Eq. (20), eval-
uating the first order time derivative, and rearranging,
we find

∂n

∂t
= eRtRe−Rt

n + eRtDγ

∂1−γ

∂t1−γ

(

e−Rt ∂
2
n

∂x2

)

. (21)

The final form of the fractional reaction diffusion equa-
tion is then

∂n

∂t
= Rn + eRtDγ

∂1−γ

∂t1−γ

(

e−Rt ∂
2
n

∂x2

)

. (22)

where we have used the identity [40]

eRtR = ReRt. (23)

Equation (22) is the main result of this paper. It is
clear from this equation that the reaction terms and diffu-
sion terms are coupled when the particles are undergoing
anomalous subdiffusion (see also [33]). Note too that as a
consequence of the matrix multiplication in this equation,
the governing evolution equation for the concentration of
one species will in general involve not only diffusive terms
for this species but also diffusive terms corresponding to
other particle species. In the Markovian case, γ = 1, the
system Eq. (22) reduces to the familiar form

∂n

∂t
= Rn +D1

∂2
n

∂x2
, (24)

and, in contrast to the anomalous subdiffusion case, the
reaction and diffusive terms are no longer coupled.

The solution to the system in Eq. (22) can readily be
found from the equivalent coupled system described by
Eq. (18) and Eq. (19). The general solution to the initial
value problem is given by

n(x, t) =
1

√

4πDγtγ

∫ ∞

−∞

Gγ(x
′

, t) etR
n(x

′

, 0) dx
′

(25)
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where Gγ(x, t) is the Green’s solution of the fractional
subdiffusion equation [1]. Explicitly,

Gγ(x, t) =
1

√

4πDγtγ
H2,0

1,2

[

x2

4Dγtγ

∣

∣

∣

∣

(

1 − γ
2 , γ

)

(0, 1)
(

1
2 , 1

)

]

,

(26)
whereH is a Fox function [31, 37] which can be evaluated
using the method in [1] if γ is a rational number.

The multi-species fractional reaction diffusion system,
Eq. (22), can be simplified further in special cases. First
note that if all particles are initially located at the origin
then n(x, 0) = δ(x)no and the convolution in Eq. (25)
yields the solution

n(x, t) = Gγ(x, t)etR
no. (27)

Secondly note that if the matrix R can be diagonalised
Eq. (22) can be transformed into a system of linearly
independent subdiffusion-reaction equations by setting

w(x, t) = Pn (28)

where P is matrix whose columns are eigenvectors cor-
responding to the eigenvalues of R [41]. The governing
system of evolution equations in this case decouples to

∂w

∂t
= Dw + eDtDγ

∂1−γ

∂t1−γ

(

e−Dt ∂
2
w

∂x2

)

. (29)

whereD is a diagonal matrix composed of the eigenvalues
of R.

IV. TWO-SPECIES FRACTIONAL REACTION

DIFFUSION EXAMPLES

In this section we present explicit forms and solutions
of Eq. (22) for two-particle systems with linear reaction
systems described by the coefficient matrices in Eq. (16)
and we compare the analytic solutions with Monte Carlo
simulations. A brief description of the Monte Carlo sim-
ulations is given in the appendix. The cases that we con-
sider were considered previously by [33] using a different
formulation and here we demonstrate how our general
multi-species system, Eq. (22), encompasses these spe-
cial cases. For ease of notation we denote the concentra-
tions of the two species by A and B. In these illustrative
examples the reaction coefficient matrix, R, is diagonalis-
able but the general system described by Eq. (22) can be
applied to anomalous subdiffusion with any linear mean-
field reaction kinetics.

A. Irreversible reaction A → B

The reaction coefficient matrix in this case is given by
RI in Eq. (16). The matrix exponential in Eq. (22) can
readily be evaluated resulting in

∂a

∂t
= e−ktDγ

∂1−γ

∂t1−γ

(

ekt ∂
2a

∂x2

)

− ka, (30)

for species A (similar to the single species case described
by Eq. (3)), and

∂b

∂t
= Dγ

∂1−γ

∂t1−γ

∂2 (a+ b)

∂x2
+ ka

− e−ktDγ

∂1−γ

∂t1−γ

(

ekt ∂
2a

∂x2

)

(31)

for species B. In this case we recover the fractional re-
action diffusion equations derived in [32, 33]. Diffusive
terms corresponding to both species appear in the evo-
lution equation for species B. The solutions of Eq. (30)
and Eq. (31) with initial conditions a(x, 0) = aoδ(x) and
b(x, 0) = boδ(x), can be obtained from Eq. (27), yielding

a(x, t) = aoe
−ktGγ(x, t), (32)

and

b(x, t) =
(

bo + ao

(

1 − e−kt
))

Gγ(x, t), (33)

similar to [32].
Solutions for the two-species irreversible reactions with

anomalous subdiffusion are compared with the results of
Monte Carlo simulations in Fig. 1 for parameter values
ao = bo = 1/2, k = 0.1, γ = 1/2, and Dγ = 0.892.
The analytic solutions are in excellent agreement with
the Monte Carlo simulations at times t = 1 and t = 2,
for both species A and B. The Monte Carlo simulations
do not match as closely at shorter times t = 0.01, but
there are two reasons for this. Firstly, the analytic results
are for a delta function initial condition that is infinite
at t = 0 whereas the Monte Carlo simulations necessarily
use a finite initial condition at t = 0. Secondly our Monte
Carlo simulations employ a Pareto Law for the waiting-
time density and the macroscopic fractional subdiffusion
equation Eq. (22) was only derived from CTRWs in the
long-time asymptotic limit [1, 25] for this density.
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a(x,t)

–4 –3 –2 –1 1 2 3 4

x
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0.2

0.3

b(x,t)

–4 –3 –2 –1 1 2 3 4

x

FIG. 1: (Color online) Comparison of the Green’s function so-
lution (solid lines) and the Monte Carlo simulations (symbols)
for species A (left) and B (right) with two-species irreversible
reactions (Eqs. (30) and (31)) at the times t = 0.1 (red ◦),
t = 1.0 (blue ⋄), and t = 2.0 (black �) with the parameters
k = 0.1 and τ = 0.1. The Monte Carlo results were obtained
from an ensemble average over 50 simulations.
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B. Reversible reaction A ⇋ B

The reaction coefficient matrix in this case is given by
RII in Eq. (16) and the resulting evolution equations are

∂a

∂t
= ρ2Dγ

∂1−γ

∂t1−γ

∂2(a+ b)

∂x2
− k1a+ k2b

+ e−k∗tDγ

∂1−γ

∂t1−γ

(

ek∗t ∂
2(ρ1a− ρ2b)

∂x2

)

, (34)

and

∂b

∂t
= ρ1Dγ

∂1−γ

∂t1−γ

∂2(a+ b)

∂x2
+ k1a− k2b

− e−k∗tDγ

∂1−γ

∂t1−γ

(

ek∗t ∂
2(ρ1a− ρ2b)

∂x2

)

(35)

where k∗ = k1 + k2, ρ1 = k1/k
∗, and ρ2 = k2/k

∗.
We observe here, due to the albeit linear interaction be-
tween the two species, that both equations have subd-
iffusive (standard fractional and reaction modified frac-
tional) contributions for both species.

As an aside we note that the above two equations can
be written in the form

∂(a+ b)

∂t
= Dγ

∂1−γ

∂t1−γ

∂2(a+ b)

∂x2
(36)

for a+ b and

∂(ρ1a− ρ2b)

∂t
= −k∗(ρ1a− ρ2b)

+ e−k∗tDγ

∂1−γ

∂t1−γ

(

ek∗t ∂
2(ρ1a− ρ2b)

∂x2

)

(37)

for ρ1a− ρ2b.
The solution of Eqs (34) and (35) again with the initial

conditions a(x, 0) = aoδ(x) and b(x, 0) = boδ(x), are

a(x, t) = ao(ρ2 + ρ1e
−k∗t)Gγ(x, t)

+ boρ2(1 − e−k∗t)Gγ(x, t) (38)

b(x, t) = aoρ1(1 − e−k∗t)Gγ(x, t)

+ bo(ρ1 + ρ2e
−k∗t)Gγ(x, t). (39)

These solutions are compared with the results of Monte
Carlo simulations in Figure 2 and again there is excellent
agreement. The parameter values used in the simulations
were as follows; ao = 1, bo = 0, k1 = k2 = 0.1, γ = 1/2
and Dγ = 0.892.

V. DIFFERENT WAITING-TIME DENSITIES

In the previous examples and in the CTRW formula-
tion leading to Eq. (22) we assumed that the waiting-time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a(x,t)

–4 –3 –2 –1 1 2 3 4

x

0.01

0.02

0.03

0.04

0.05

0.06

b(x,t)

–4 –3 –2 –1 1 2 3 4

x

FIG. 2: (Color online) Comparison of the Green’s function
solution (solid lines) and the Monte Carlo simulations (sym-
bols) for species A (left) and B (right) for the two-species
reversible reaction (Eqs. (38) and (39)) at the times t = 0.1
(red ◦), t = 1.0 (blue ⋄), and t = 2.0 (black �). The pa-
rameters are k1 = 0.1, k2 = 0.1, and τ = 0.1. The Monte
Carlo results were obtained from an ensemble average over 50
simulations.

densities are the same for each species. Here we consider
the possibility in which the subdiffusion of each species
is governed by a different waiting time density. We have
not developed a general theory for this case but we have
obtained interesting results in the case of two species irre-
versible reactions A → B, with the anomalous exponent
for species A set to γa = 1/2 and standard diffusion for
species B, (i.e., γb = 1), that point the way to a more
general theory. Here we do not expect the results for
species A to change compared with the previous irre-
versible simulations, as its concentration is not coupled
to B in Eq. (6) with R = RI . However since particles of
type A are transformed into particles of type B and the
waiting-time densities differ, we expect a change in the
behaviour of the concentration of species B.

A possible generalization of the above is to write
Eqs. (8) and (9) as

q (x, t) = δ (t)n (x, 0) +

∫ ∞

−∞

λ(x− x
′

)

∫ t

0

eR(t−t
′

)Ψ(t− t
′

)q(x
′

, t
′

) dt
′

dx
′

(40)

and

n (x, t) =

∫ t

0

eR(t−t
′

)Θ(t− t
′

)q(x, t
′

) dt
′

(41)

where

Ψ(t) =

[

ψ1(t) 0
0 ψ2(t)

]

and Θ(t) =

[

φ1(t) 0
0 φ2(t)

]

.

(42)
Unfortunately it is not possible to reduce these equations
into the form of Eq. (15) except in special cases such as
when the waiting times are identical ψ1(t) = ψ2(t) or the
reaction coefficient matrix R is diagonal. However the
equations can, in this case, be reduced to a system of
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fractional reaction-diffusion equations. The equation for
the concentration of particles of type A is again given by
Eq. (30), and its solution by Eq. (32), but now with γa

and Dγa
replacing γ and Dγ . The equation for particles

of type B is

∂b

∂t
= Dγb

∂1−γb

∂t1−γb

∂2 (a+ b)

∂x2
+ ka

−Dγb

∂γa−γb

∂tγa−γb

[

e−kt ∂
1−γa

∂t1−γa

(

ekt ∂
2a

∂x2

)]

(43)

which differs from Eq. (31) mainly due to the presence of

the fractional derivative, ∂γa−γb

∂tγa−γb
, operating on the second

term. The solution of this equation can be shown to be

b(x, t) =
(

ao

(

1 − e−kt
)

+ bo
)

Gγb
(x, t) +

aoe
−kt

√

4πDγb
tγb

∞
∑

l=1

∞
∑

m=1

(kt)l

l!

[

Dγa
tγa

Dγb
tγb

]m

{

H3,0
2,3

[

x2

4Dγb
tγb

∣

∣

∣

∣

(

1 − γb

2 + l + (γa − γb)m, γb

) (

1 − γb

2 − γbm, γb

)

(0, 1)
(

1
2 , 1

) (

l + 1 − γb

2 − γbm, γb

)

]

−
Dγb

tγb

Dγa
tγa

H3,0
2,3

[

x2

4Dγb
tγb

∣

∣

∣

∣

(

1 − γb

2 + l + (γa − γb) (m− 1), γb

) (

1 − γb

2 − γb + γa − γbm, γb

)

(0, 1)
(

1
2 , 1

) (

l + 1 − γb

2 − γb + γa − γbm, γb

)

]}

. (44)

The solution reduces to the solution in Eq. (33) when
γa = γb = γ and Dγa

= Dγa
= Dγ .

We have compared the above solutions with Monte
Carlo simulations in Fig. 3 and we find excellent agree-
ment except in the short time behaviour of species B
(t = 0.1). Again this may be due to the approximate
delta function initial conditions that we used in the sim-
ulations, as Eq. (44) matches the simulations extraordi-
narily well at later times. However it is also possible that
Eq. (44) has the same long-time asymptotic behaviour as
the correct solution, but the short-time behaviour is not
correct.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

a(x,t)

–4 –3 –2 –1 1 2 3 4

x

0.05

0.1

0.15

0.2

b(x,t)

–4 –3 –2 –1 1 2 3 4

x

FIG. 3: (Color online) Comparison of the Green’s function so-
lution (solid lines) and the Monte Carlo simulations (symbols)
for the two-species irrreversible reaction (Eqs. (32) and (44))
at the times t = 0.1 (red ◦), t = 1.0 (blue ⋄), and t = 2.0
(black �) with the parameters k = 0.1, τ = 0.1, γa = 0.5,
and γb = 1. The Monte Carlo results were obtained from an
ensemble average over 50 simulations.

VI. SUMMARY AND DISCUSSION

In this paper we have considered a general multi-
species system undergoing anomalous subdiffusion with
linear reaction dynamics. Starting from a mesoscopic
CTRW model formulation with the same waiting-time
and jump-length densities for each species we have de-
rived a system of fractional reaction-diffusion equations
for linear reactions described by a general reaction coeffi-
cient matrix. The resulting system of equations in vector
form is similar to the analogous single particle case [25]
but with a matrix exponential replacing the exponential
in the modified fractional derivative temporal operator.
This work extends the one and two particle results of
[25, 32, 33] to the n particle case.

One of the consequences of anomalous subdiffusion
on the form of the fractional equations is that reaction
term and diffusion terms are no longer independent but
are instead coupled as in the single species case. Fur-
ther, due to the presence of the matrix exponential the
governing equation for one species may involve diffusive
contributions from other species. This differs from the
work of [34, 35] where the diffusive contributions are re-
stricted to the one species. The reason behind the ex-
tra diffusive terms, as mentioned in [33], is linked to
the non-Markovian nature of anomalous subdiffusion. In
essence, the newly created particles remember the dif-
fusive behaviour of their reactant ancestors because of
the waiting-time probability density function. The cou-
pling of concentrations in the mean-field reaction equa-
tions then results in the additional diffusive contributions
due to other species. However, no extra contributions will
arise if there is no coupling to the other species.
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We assessed the validity of our fractional reaction-
diffusion equations by comparing solutions with Monte
Carlo simulations and we found excellent agreement for
the cases tested except at very short times. We also in-
vestigated the possibility of different waiting-time den-
sities for different species. Here the CTRW formulation
could not be reduced to a system of fractional reaction-
diffusion equations except in certain special cases. We
carried out Monte Carlo simulations and found that the
concentrations of species with different waiting-time den-
sities could be represented as a linear combination of the
Green’s functions of the relevant fractional subdiffusion
equations.

The results of this paper provide a useful platform
for developing robust models for multi-species systems
undergoing anomalous subdiffusion with nonlinear reac-
tions. In the case of linear reaction dynamics it was

shown that the formulation of the appropriate fractional
reaction-diffusion equations requires careful considera-
tion of the reaction dynamics and how they effect dif-
fusive contributions for a given species. We expect that
these considerations will be even more delicate with non-
linear reactions. With the numbers of reports of biolog-
ical systems displaying anomalous subdiffusion rapidly
increasing, this remains an important area for future re-
search.
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APPENDIX: MONTE CARLO SIMULATIONS

The Monte Carlo simulations were conducted on a one-
dimensional discrete grid with periodic boundaries where
the particles performed jumps to their nearest neighbours
in an unbiased manner after waiting a random amount
of time.

For our purposes, we used the Pareto law used by [28]

ψ (t) =
γ/τ

(1 + t/τ)
1+γ

(A.1)

to generate the random waiting-times. The parameters
γ and τ are the anomalous exponent and the character-
istic time respectively. This probability density function
was chosen for ease of calculation and because it has the
required long-time asymptotic scaling

ψ (t) ∼
γ

τ

(

t

τ

)−1−γ

(A.2)

needed by the CTRW theory.
For comparison of analytic and Monte Carlo simula-

tions we require an estimate of the diffusion coefficient.
Using the appropriate jump-length density for nearest-
neighour jumps and the waiting-time density, Eq. (A.1),
it can be shown that the diffusion coefficient is given by

Dγ =
∆x2

2τγΓ (1 − γ)
(A.3)

where ∆x is the grid-spacing. Note, in the case of the
Mittag-Leffler density [39], or when γ = 1, the term
Γ (1 − γ) does not appear in this expression. We note
a method for evaluating Mittag-Leffler distributed devi-
ates using two uniform random numbers is available in
[42, 43] but was not used in this paper.

In general, the outline of the simulation process is given
in the following. Each simulation run begins with as-
signing the initial position for every particle and their

corresponding jump-times. Initially the jump times are
simply the random times generated using Eq. (A.1) as
described in [44].

After the initial set-up, the simulation then cycles
through the following steps. First the particle with min-
imum jump-time is found and the elapsed time, T , since
the last jump is evaluated. The reaction probability for
both species is then evaluated. For example, in the re-
versible reaction simulation runs, the reaction probability
is (1− exp(−k1T )) for species A and (1− exp(−k2T )) for
species B. Analogous probabilities for the irreversible re-
action case are found for both species by setting k1 = k
and k2 = 0. Every particle of each species is then tested
for deletion by comparing a random number against the
relevant reaction probability. If the test for particle dele-
tion is successful, then the particle in question is deleted.
A corresponding particle of the other species is created
to replace the deleted particle at the same grid point. If
the jumping particle is not deleted, then the particle is
moved one lattice site to the left or right (a jump) and
a new jump-time for the particle is obtained by adding
a random waiting-time to the jumping particle’s current
jump-time. The process then repeats through the pre-
vious steps until the total time for the simulation run is
exceeded.

Output is saved at regular time intervals of the simula-
tion run and used to average over a number of simulation
runs.

For each figure in this paper, unless otherwise stated,
simulation runs began with 100,000 particles of type A
and of type B released from the origin to mimic a delta
function initial condition. The characteristic time of the
waiting-time density, ψ(t), were set to τ = 0.1 and the
exponent, γ = 0.5. The results given were averaged over
50 simulation runs.


