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Annually resolved measurements of the radiocarbon
content in tree-rings have revealed rare sharp rises
in carbon-14 production. These ‘Miyake events’ are
likely produced by rare increases in cosmic radiation
from the Sun or other energetic astrophysical sources.
The radiocarbon produced is not only circulated
through the Earth’s atmosphere and oceans, but also
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absorbed by the biosphere and locked in the annual growth rings of trees. To interpret high-
resolution tree-ring radiocarbon measurements therefore necessitates modelling the entire
global carbon cycle. Here, we introduce ‘ticktack’ (https://github.com/SharmaLlama/
ticktack/), the first open-source Python package that connects box models of the carbon cycle
with modern Bayesian inference tools. We use this to analyse all public annual 14C tree data,
and infer posterior parameters for all six known Miyake events. They do not show a consistent
relationship to the solar cycle, and several display extended durations that challenge either
astrophysical or geophysical models.

1. Introduction
Radiocarbon dating is used to accurately determine the age of samples of biological material,
and is a fundamental tool of modern archaeology [1,2]. Thermal neutrons produced by
cosmic rays interact with 14N atoms in the upper atmosphere to produce radioactive 14C ,
or radiocarbon, which filters across the carbon cycle through the atmosphere, biosphere, and
marine environments. Libby et al. [3] demonstrated that the ratio of 14C to stable carbon isotope
abundances is approximately constant in the atmosphere over time: while living organisms
continually replenish 14C from the atmosphere, in dead organic matter this radiocarbon decays
with a 5700-year half life, and therefore can be used as a clock to date archaeological and
palaeontological samples.

In detail, this picture is complicated by variations in the radiocarbon production rate. The most
relevant source of variation in the context of this work is from the activity cycle of the Sun. At
low points in solar activity, reduced magnetic shielding means that the cosmic ray flux at Earth
is increased [4]; but also, shocks ahead of solar coronal mass ejections can accelerate energetic
particles that produce radiocarbon in Earth’s atmosphere. As a result, radiocarbon measurements
are not only important tools for archaeology, but also for historical studies of space weather, solar
and geomagnetic activity and the Earth’s climate dynamics [5].

For many species, tree-rings can be dated to the exact year of their formation, the science
of dendrochronology. Radiocarbon in tree-rings, appropriately adjusted for radioactive decay,
therefore offers a detailed record of radiocarbon concentrations over time. The existence of
variation from one year to the next was first shown by de Vries [6]. Using measurements on
North American bristlecone pine, Suess [7] revealed the scale of radiocarbon fluctuations over
millennial time scales, demonstrating the necessity for a ‘calibration curve’ for archaeological
dating. Such curves have attained increasing sophistication over time, and have in the last
decade attained high precision and annual resolution, for example IntCal13 [8] and IntCal20
[9–11].

These newly detailed curves revealed the long-suspected astrophysical influence of the solar
activity cycle on modulating radiocarbon production in individual solar cycles [12]. They also
yielded a surprise: Miyake et al. [13] discovered in Japanese cedar tree-rings a sudden single-year
jump in radiocarbon concentration around 774 CE. This was followed shortly by the discovery of
another spike in tree-rings from 993 CE [14], and further such spikes have been found in 660 BCE
[15], 5259 BCE [16], 5410 BCE [17] and 7176 BCE [16], for a total of six well-studied and accepted
radiocarbon spikes. These are often known as ‘Miyake events’, after their first discoverer. Other
spikes have been claimed from some tree-ring samples, but not replicated globally: one in 800 BCE
[18], and claimed but refuted in 3372 BCE [19,20]. Several small events are also proposed in 1052
CE, and 1261, 1268 and 1279 CE by Brehm et al. [21] and Miyahara et al. [22].

Detailed study of these events is important to determine their origin. Better data are available
for the two events in the Common Era, showing that the events of 774 and 993 CE are globally
coherent, including many trees in both the Northern and Southern Hemispheres [23]. Meanwhile,
although the other events show sharp single-year rises, the event of 660 BCE has a prolonged rise
over a couple of years, which could be due to a prolonged production or a succession of events
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[24]. For comparison, a decade-long rise in 5480 BCE, less than a century before the single-year
rise in 5410 BCE, is ascribed by multiradionuclide evidence to an unusual grand solar minimum
of very great depth and short duration [25,26]. No other sharp rises in �14C so far detected have
shown evidence of substructure in time.

Miyake events offer archaeologists a sharp radiocarbon signal, synchronized across the Earth,
which can be used to achieve single-year dates for tree-rings in samples otherwise beyond
the reach of dendrochronology [27]. For example, the historically significant eruption of the
Changbaishan volcano can be dated to 946 CE [28,29]. By dating the Uyghur site of Por-Bajin in
Russia to exactly 777 CE , it can be identified as a monastery built under the Uyghur Khaganate’s
short-lived conversion to Manichaeism [30]. These data have been most revolutionary for Viking
Age archaeology. The 774 CE event dates finds at Ribe, Denmark, and anchors interpretation
of their trade networks [31], while the 993 CE event securely dates the L’Anse aux Meadows
settlement to 1021 CE—the first evidence of European settlement in the Americas [32].

The sharp rise in radiation, with a simultaneous global onset, indicates that Miyake events
are of astrophysical origin, for which a variety of explanations have been offered (thoroughly
reviewed in [33]). Dying stars and their remnants are known to produce extremely intense bursts
of radiation, and are prima facie reasonable astrophysical sources. For instance, a sharp burst of
radiation could have been delivered by a Galactic gamma-ray burst [34,35] or nearby supernova,
though astronomical evidence of these is so far lacking. Dee et al. [36] have failed to find evidence
of a radiocarbon rise associated with any of the known historical supernovae, while Terrasi
et al. [37] find a 2σ increase in radiocarbon in 1055 CE after the Crab supernova. An alternative
proposal considers a magnetar burst from a nearby magnetized neutron star [38], which is
energetically plausible—but no sufficiently nearby or active neutron star is yet known from
conventional astronomical observations. Pavlov et al. [39] and Pavlov et al. [40] have suggested
prolonged events like 660 BCE and 5480 BCE are the result of enhanced Galactic cosmic ray flux
over several years after the heliosphere is compressed by dense clouds in the interstellar medium.
Closer to home, Liu et al. [41] suggest the 14C could be deposited into the atmosphere directly by
a passing comet; this interpretation is rejected by Usoskin & Kovaltsov [42], who argue that such
a comet would need to have been of a size (�100 km) that would have devastated the Earth.

The wide consensus of the literature is that these events have a solar origin, beginning with
Melott & Thomas [43]; Usoskin et al. [44]. For example, the events could represent a solar magnetic
collapse, a very brief grand solar minimum, with the reduced heliospheric shielding exposing the
Earth to an increase in Galactic cosmic rays [45]. Alternatively, and more popular in the literature,
the Miyake events could represent the extreme tail of a distribution of solar flares continuous
with those that are observed astrophysically on the modern Sun and other solar-like stars. We are
fortunate that 14C is not the only cosmogenic isotope that can trace these events: we see evidence
of the 774 CE and 993 CE events in time series of 10Be and 36Cl from ice cores [46,47], and because
the production of these isotopes depends on input particle energy, they can be used to infer a
particle energy spectrum similar to solar energetic protons [48]. Only the most energetic particles
produce 10Be , but 36Cl is expected to be produced at comparatively low energies and may
therefore shed light on other events as well [49]. Extreme solar flares or emissions are plausible
astrophysically: based on the findings of the Kepler Space Telescope [50], G dwarf stars (like the
Sun) are thought to produce superflares every few hundred to few thousand years [51], even old
and slowly rotating stars [52,53].

Nevertheless, even in light of the uncertainties in particle flux from the existing literature, an
event like the 774 CE event would need to be more than an order of magnitude larger than even
the Carrington event, the most significant coronal mass ejection and accompanying geomagnetic
storm ever observed in the instrumental era of science [54]. By considering possible beaming
angles and uncertainties in models of the carbon cycle, Neuhäuser & Hambaryan [55] argue that
the 774 CE event might be implausibly huge to be a single solar superflare. The solar proton event
of 1956 produced an estimated 3.04 × 106 atoms/cm−2 of 14C [56]; depending on assumptions
about its flare class and spectral hardness, the 774 CE event could correspond to an X-ray flare as
bright as X1800, nearly two orders of magnitude larger than any previously observed [57].
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Meanwhile, ice core nitrate records at 774 CE and 993 CE do not show any hint of a signal from
extreme solar activity [58,59]. At least some superflares observed from other stars are known in
fact to originate from unresolved M dwarf binary companions [60], which are much more active
than G dwarfs like the Sun and, because we do not have such a companion ourselves, could
not explain the radiocarbon bursts. Extreme geomagnetic storms preferentially occur around the
maxima of the solar cycle [61]. While the historical data on solar energetic particle events is far
more limited, it is reasonable to assume they follow a similar pattern [62], as both result from
energetic coronal mass ejections. Thus if Miyake events occur preferentially at solar maxima,
this would support a solar origin. The radiocarbon data themselves contain the 11-year solar
cycle, and several attempts have been made to determine its phase at the time of a Miyake event
[15,21,63–65]. In this paper, we will attempt a similar inference.

Unfortunately, there is fairly limited evidence in written historical accounts for unusual
astronomical phenomena coinciding with the radiocarbon spikes (for a comprehensive account,
see [66]). The Anglo-Saxon Chronicle reports a ‘red crucifix, after sunset’ in 774 CE [67]; if this is
an aurora, this is consistent with a massive solar flare, but it has been argued that the ‘crucifix’ is
simply a lunar optical halo (Neuhäuser & Neuhäuser [68], an interpretation rejected by Hayakawa
et al. [69]). An aurora is also reported in 775 CE from the Chinese chronicle Jiutangshu [70]. It
remains the case that other historical records have not conclusively been shown to refer to aurorae
in the year around this event.

Understanding the long-term behaviour of solar activity is of current interest in astrophysics.
A grand minimum in stellar activity has only been observed in one star other than the Sun [71,72],
and the Sun’s own dynamo may be unusual. Solar-like stars are born rapidly rotating and very
magnetically active, and their magnetized winds slow their rotation as they age—so that the age
of solar-like stars might be inferred from appropriately calibrated relations of ‘gyrochronology’
[73]. No single gyrochronology relation, however, fits the rotation periods of large samples of stars
determined with Kepler [74]. The emerging consensus is that weakened magnetic braking in older
stars causes the activity to diminish without commensurate reduction in rotation periods [75–77],
and this may be caused by a transition occurring at Rossby numbers of order unity between a
fast and a slow type of stellar magnetic dynamo [78,79]. Remarkably, not only is the Sun less
active than most solar-like stars [80], it so happens that our own Sun is at about the age and
Rossby number of the proposed transition—so that it may be atypical of field stars generally, and
long-term time series of its activity are of broad relevance in astrophysics.

If a Miyake event were to occur today, the sudden and dramatic rise in cosmic radiation could
be devastating to the biosphere and technological society. It is therefore concerning that we have
little understanding of how to predict their occurrence or effects. A solar proton event orders of
magnitude more powerful than any previously observed could cause an ‘internet apocalypse’
of prolonged outages by damaging submarine cables and satellites [81]. The direct effects of
energetic particles could even harm the health of passengers in high-altitude aircraft [82–84].
It is also likely that the 774 CE event would have caused a approximately 8.5% depletion in
global ozone coverage, with a significant but not catastrophic effect on weather [59]. The origin
and physics of these radiocarbon spikes are therefore important not just for astronomers and
archaeologists, but for risk planning and mitigation in general society.

(a) Carbon cycle models
A very short pulse of radiation striking the atmosphere leads to a sharp rise (approx. 1 year)
in measured �14C and slow decay (approximately decade timescale) as the new radiocarbon is
filtered through the global carbon cycle, finding its way into the biosphere, oceans, and sediments.
Therefore to interpret radiocarbon time-series astrophysically, it is necessary to model this carbon
cycle. The most popular way of doing this is using a Carbon Box Model (CBM; [85–89]), in which
the global carbon budget is partitioned between discrete reservoirs (e.g. the atmosphere, oceans
and biota, or subdivisions thereof). It is also common to include effects of atmospheric circulation
or geochemistry in other areas of geoscience and planetary science (e.g. [90,91]), but on the
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timescales and sensitivities relevant to Miyake events, these reservoirs are assumed to be coupled
to one another linearly. This leads to a system of first-order ordinary differential equations (ODEs):
a diffusion process, with an inhomogeneous driving term for atmospheric production.

While CBMs are essential for relating tree-ring time series to production rates, none of those
models applied to Miyake events in the literature are available open-source. As a consequence,
different analyses contain model-dependent systematic effects that are hard to reproduce or
calibrate.

In this paper, we introduce a fast Python framework for carbon box models, ticktack (https://
sharmallama.github.io/ticktack).1 The framework is designed to be flexible, allowing arbitrary
box models to be specified and modified. This is implemented in the high-performance Google
JAX library [92], which supports just-in-time compilation, automatic differentiation, and code
deployment to graphics processing unit (GPU)s. This code interfaces with the popular Bayesian
inference packages emcee [93] and JAXNS [94]. We use this to reproduce several recent CBMs
applied to radiocarbon time series: the 4-box model of Miyake et al. [25], the 11-box model of
Güttler et al. [95] and the 22-box models of Büntgen et al. [23] and Brehm et al. [21].

We apply these to all published annual tree-ring data on all six known Miyake events, and infer
posterior probability distributions for parametric and non-parametric models of the radiocarbon
production rate over time, including the timing and duration, amplitude, and relation to the solar
cycle. These posteriors determine a relationship to the solar cycle in 993 CE, 774 CE and 5410
BCE, though not for other events, and a range of total radiocarbon production delivering in a
single pulse the equivalent of 1–4 years of average production.

2. Methods: the ticktack carbon box model framework
Carbon box models are widely used in literature from archaeology to geophysics. They span
different levels of sophistication, from simple treatments of radiocarbon relative to carbon-12,
through to full models of global geochemistry since the beginning of the Earth (e.g. [90]).

On the timescales that are relevant to single-year spikes of radiation, it is sufficient to consider
only the dynamics of radiocarbon against a fixed background of equilibrium carbon flows. The
overall properties of these models are specified by the reservoirs into which carbon is partitioned;
the stable carbon content of each reservoir N12

i , and the stable carbon flows specified in Gt/yr or
in residence times (yr), F12

ij ; the reservoirs in which radiocarbon is produced by cosmic rays, and
in what proportions, Vi; and the long-term average production rate of radiocarbon q0.

The radiocarbon flux between reservoirs is then computed as

F14
ij =

(
m14

m12N12
i

F12
ij − λ

)
︸ ︷︷ ︸

≡Mij

·N14
i , (2.1)

where λ is the radioactive decay constant for 14C and Mij is a static transfer matrix. This allows
us to simplify the CBM model for a radiocarbon state vector y ≡ [N14

i ] and vector of production
coefficients V ≡ [Vi] as a linear, first-order ODE

dy
dt

= My + Q(t)V, (2.2)

where the inhomogeneous term Q(t) is the radiocarbon production rate. For constant Q(t) = q0
this has a steady state solution y0 = M−1q0. For computational reasons, we reparameterize the
ODE to the form

d(y − y0)
dt

= M(y − y0) + (Q(t) − q0)V, (2.3)

which can be efficiently solved with a range of adaptive step-size algorithms. The results also
depend to some extent on assumptions made in matching model outputs to data, including the

1Named for the Malvina Reynolds song, Little Boxes (1962), in which little boxes are all made out of ticky-tacky/And they all look
just the same.
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growth seasons of trees and any short-term atmospheric dynamics; and in fitting these models to
data, the algorithms used for optimization and inference.

We have developed an open-source, object-oriented Python package, ticktack, for
specifying and running arbitrary CBMs. A user can input a series of Box and Flow objects
with a numerical value for the reservoir or flow, units, and metadata (e.g. Northern or Southern
Hemisphere, or the fraction of radiocarbon production in this box) and then compiles this to
a CarbonBoxModel object; or they can load a pre-saved object. The user can then specify an
equilibrium production condition—either directly a radiocarbon production rate, or it can find
the production rate by gradient descent to reach a target 14C quantity in a particular reservoir.

This CarbonBoxModel then has a method run which uses the JAX Dormand-Prince (DP5;
[96]) algorithm as implemented in the Diffrax differential equation library [97] to solve the CBM
ODE for a specified initial condition, production rate, and timesteps. Because this is implemented
in Google JAX [92], this can be compiled, executed on GPUs, and is automatically differentiable,
allowing for use in gradient descent optimization and Hamiltonian Monte Carlo [98].

We have followed the descriptions of four models used in the literature which are sufficiently
well-described in terms of carbon reservoirs and flows to be emulated in ticktack, and which
have been applied to Miyake event analysis: the 11-box Güttler et al. [95] and 4-box Miyake et al.
[25], and 22-box Büntgen et al. [23], and Brehm et al. [21]. The 22-box models represent similar,
but slightly different, partitions into two hemispheres of the global carbon cycle described in the
11-box model. All four models are available as default pre-saved models in ticktack.

ticktack is not a replacement for detailed models of the climate cycle, but rather for fast
reconstruction of production from tree-ring data. Open source alternatives such as pyhector

[99], Pymagicc [100] or the Simple Carbon Project (SCP-M; [91]) are geared towards climate
modelling, for which our model is not sufficiently accurate, but are not fast enough to couple to
Bayesian inference of radiocarbon production. SCP-M couples ocean dynamics to a carbon cycle
model, with approximately 30 s runtime for 10 ky; we need to achieve � 1 s runtime for Markov
Chain Monte Carlo (MCMC; [101]). We also do not aim to perform radiocarbon date calibration,
for which there are several open-source libraries already available such as OxCal [102,103], BCal
[104], MatCal [105] or ChronoModel [106].

(a) Parametric inference
We can use this model in forwards-mode to simulate time series of 14C or �14C ; and therefore
also to solve the inverse problem of reconstructing radiocarbon production rates from data. We
can load a tree-ring �14C time series together with a CBM as a SingleFitter class object in
ticktack, which has methods for parametric and non-parametric Bayesian inference of the
production rate, or by direct inversion of the ODE. In this paper, we adopt a parametric model for
production rate Q(t), given steady state q0, including three components

Q(t) = q0 + A� q0 sin
(

2π t
11 yr

+ φ

)
+ S(t, t0, �t) + m · t, (2.4)

where the solar cycle has an amplitude A� and phase φ; there is a long-term trend with gradient
m. The Miyake event spike profile S(t) is represented as a normalized super-Gaussian with start
date t0, duration �t, and amplitude S0:

S(t, t0, �t) ≡ S0

�t
exp

(
− t − (t0 + �t/2)

1/1.93516 �t

16
)

. (2.5)

The super-Gaussian form is chosen to approximate a top-hat function, but with differentiable
sides more amenable to optimizers and ODE solvers. The numerical factor of 1.93516 is the
integral of the unit super-Gaussian exp (−t16), and is used for normalization. The amplitudes
of any of these coefficients can optionally be fixed at zero to disable each component of the
production model.
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This forwards model can be used with Bayesian tools to infer posterior probability
distributions over the values of any of these parameters. We assume a Gaussian distribution for
each �14C sample with mean di and uncertainty σi, so that the log-likelihood of a parameter
vector θ is

logL(θ ) =
∑

i

di − Q(θ )i

σi
, (2.6)

and adopt uniform priors over phase and start date with reasonable limits, and log-uniform
Jeffreys priors over all other parameters.

The SingleFitter class has methods for sampling from this posterior using MCMC as
implemented in the affine-invariant ensemble sampler emcee [93,107], and nested sampling as
implemented in JAXNS [94,108].

(b) Non-parametric inference
It is also possible to infer radiocarbon production rates per year directly from a �14C time series,
using either a direct inverse to the ODE, or by a forwards model with a flexible, high-dimensional
parameterization.

The ODE can be solved exactly for a box i with non-zero production and measured data, such
as from a tree-ring time series in the troposphere, by rearranging equation (2.2) to the form

Q = ẏi − (My)i

Vi
, (2.7)

except that the flow term My depends on the radiocarbon state in all boxes simultaneously, so
that it is also necessary to infer the missing components of the state vector.

To implement this inverse solver, Brehm et al. [21] take annual-cadence data, interpolate this
to a continuous fine grid (for example to 12-month sampling), and in a finite-difference form
of the CBM ODE to iteratively find the production rate at each timestep to reach the required
tropospheric �14C measurement at the next time step.

In ticktack, we implement an alternative non-iterative approach, by interpolating yi(t)
linearly, and using JAX to differentiate this to obtain ẏi(t). We can then obtain the full state history
y(t) by solving the ODE with the production term from equation (2.7) and an initial steady state
y0, and then use this completed state history to obtain Q(t). This is exact for a finely sampled
completed model, and in practice is a good approximation for data binned over a growth season
if the time stamps are taken to be the middle of each growth season.

Because this inverse solver method relies on differentiation, when the signal-to-noise ratio is
low it has the tendency to amplify noise on short timescales. In order to find a reconstruction
that is more tolerant to noise, we want to use a Bayesian method as described above in §a, but
choose a very flexible high-dimensional parameterization for Q(t). Here, we will use a set of
control points—a large but finite grid of points q ≡ [q(ti)]—as parameters, and use a Matérn–
3/2 Gaussian process (GP; [109]) both to interpolate these to a smooth function of time, and
also use the GP likelihood to penalize spurious short-timescale variations. We implement this GP
calculation using the tinygp library [110], which is written in JAX and can therefore be compiled
and differentiated along with the rest of ticktack .

While we do not attempt to do so here, it is also possible to solve this problem in the
Fourier domain. The impulse response function of the carbon cycle to a pulse of radiation can
be analytically determined as the matrix exponential

g(t) = V exp (−M t), (2.8)

and an arbitrary time series in box i generated by the convolution gi(t) � Q(t). The Fourier
transform of gi(t) is a frequency response function that can be used as a linear filter in the Fourier
domain, which Usoskin & Kromer [111] use as an alternative to iterative solution, but which is
not implemented in ticktack in this study.
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(c) Tree-ring data
We apply this code to an analysis of all publicly available �14C data for the six events previously
identified in the literature, gathering the COSMIC network data from many sites across both
hemispheres for 774 CE and 993 CE from Büntgen et al. [23]; additional data, including early and
late wood data, for 774 CE from Uusitalo et al. [112], and Danish oak over 993 CE from Fogtmann-
Schulz et al. [64]; English oak over 993 CE from Rakowski et al. [113]; the discovery data for
7176 BCE and 5259 BCE from Brehm et al. [16]; earl tree-rings over 660 BCE from Park et al. [15],
and early and late wood over 660 BCE from Sakurai et al. [24]; and data from the decades leading
up to 5410 BCE from Miyake et al. [25]. We exclude the Japanese cedar from Miyake et al. [114], as
it shows a delayed rise compared to the other 993 CE datasets, and for the purposes of the present
work, we await a consensus on how to interpret this.

Before examining the modelled outputs in detail, some general observations should be made
about the reliability and sensitivity of the underlying data. The apparent congruence of the sets
of �14C results, in both timing and amplitude, is especially remarkable given the data come from
trees of various genera and species that grew in a wide range of different habitats. In reality, every
individual tree is subject to its own specific environment and the biotic and abiotic disturbances
that it poses, such as insect outbreaks, fungal diseases and climate anomalies [23]. As well as
this, the physiology of each species determines the way it uses and/or reuses carbohydrates for
growth-ring construction. This latter consideration lies at the core of an ongoing debate about
whether whole rings or only late wood fractions should be analysed to achieve the highest quality
data [64,115,116]. Furthermore, at per mille precisions intra-annual fluctuations in atmospheric
radiocarbon concentrations also become significant, and in particular the coincidence of annual
maxima and minima with the growing seasons of different species at different locations [117].
Finally, each laboratory employs its own celluose extraction technique, sometimes tailoring it to
the individual species at hand. Such methodological differences have been shown to produce
variations in data quality, even on samples of the same tree-rings [118].

Given all these complications, it is unsurprising that differences can be seen across the
full suite of radiocarbon profiles. Nonetheless, there is one particular pattern which defies
simple explanation, and may have some as yet unknown physical origin. Some 774 CE datasets
exhibit an instantaneous uplift between 774 and 775 CE, while others show a more gradual
rise over several years. The split between such sharp and prolonged rises in �14C exists
between different trees from similar environments, and even between trees of the same
species from similar environments, as discussed in §4a. It is unclear whether this effect is
astrophysical, environmental, to do with unknown tree-growth dynamics, or a systematic in the
measurements.

3. Results

(a) Parametric fits
We used the workflow scheduling package Snakemake [119] to automatically execute and
reproducibly log parametric fits as described in §2a to all six events, with the 774 CE event
split into sharp and prolonged rise subsets. While we had the option to apply nested
sampling, we used the affine-invariant ensemble MCMC sampler emcee exclusively in this
section.

We infer the start data, duration, spike amplitude, phase and amplitude of the solar
cycle, and a long-term linear trend, with the model initialized in steady state with the solar
cycle.

Posterior ensembles of models overlaid on data, together with corresponding radiocarbon
production histories, are displayed in figure 1, and they show overall excellent agreement
with data. Corner plots of the parameter posteriors are available in electronic supplementary
material.
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Figure 1. Results of MCMC fitting of a parametric Miyake event model to all six known events. Each is presented in a pair of
panels. Top: the tree-ring data (individual trees in grey, mean in black) overlaid with colour-coded curves drawn at random
fromMCMC posterior samples for all three CBMs; they are in excellent agreement with one another and with the data. Bottom:
radiocarbon production rate models drawn from the corresponding MCMC posterior samples, with the same colour bars. The
663 BCE event and a subset of the 774 CE event are consistent only with a production spike taking longer than a year. The 774 CE
event is presented split into subsets of data showing a prolonged rise, and a sudden rise, which are incompatible in our models
and analysed separately. (Online version in colour.)
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(b) Non-parametric retrieval of production rates
In addition to the parametric fits displayed above, we applied both the GP and inverse solver non-
parametric retrievals to the same datasets, and visualize the output similarly in figure 2. We again
obtain a good fit to data, with the events occurring in the expected years, though now without the
possibility of deconvolving structure at very short timescales. The GP and inverse solver produce
results that are consistent with one another.

As an extension for future work, it is feasible to apply the inverse solver to the entire IntCal20
history, and use this as an initialization point for the reservoirs and production history of
parametric fits at any particular point in time; this is a plausible strategy for making like-for-like
comparison in absolute radiocarbon production between events occurring at times with different
baseline production rates. We have elected not to do so here, to avoid introducing spurious
transients in our sinusoidal production model, and without knowing a straightforward way to
resolve this tension.

4. Discussion
We find excellent agreement between the three carbon box models emulating Güttler et al. [95],
Brehm et al. [21], Büntgen et al. [23], with a closer agreement between the latter two models which
are partitioned into northern and southern hemispheres. By contrast, as noted by Usoskin et al.
[44], Miyake et al. [25] has a different normalization2 and excludes the substantial carbon reservoir
of the deep ocean, and we have excluded this from plots.

(a) Timing of 774 CE event
The 774 CE event occurs almost synchronously across the range of species and locations involved.
However, there is some variation in the rate at which the increase is expressed. Broadly, there are
two types of increases. About half of the datasets support a sharp rise—an anomalous jump in
the data within 1 year—and the other half a more prolonged rise over 2–3 years. Furthermore,
the latter group includes trees of the same species, in similar locations, measured at the same
laboratories.

A similar late rise is found in Japanese cedar for the 993 CE event by Miyake et al. [114], who
interpret this as being affected by global atmospheric circulation patterns in different latitudinal
Radiocarbon Zones, and an oceanic versus continental distinction. By contrast, in the ensemble
of tree rings over 774 CE, prolonged and sharp rises are seen across these categories: there are
trees showing both phenomenologies from Zones 0-2, continental or oceanic regions, different
growth speeds and altitudes. It is therefore not completely clear what is the cause of this split in
774 CE phenomenologies. In future work, there may be insights from global circulation models of
the atmosphere, together with improved precision and sample size for tree-ring data over these
events.

(b) Miyake event amplitude and duration
In order to investigate the astrophysical origin of the Miyake events, it is of primary importance
to determine their fundamental parameters—especially their size and duration. Posterior
distributions of spike production relative to the steady state are displayed in figure 3.

Because we work with �14C rather than absolute 14C , we report the integrated spike
radiocarbon production in units of equivalent years of steady state production: i.e. a spike
amplitude of 1 in these units indicates a total production of 1 q0 yr. In these units, the smallest
event is 5410 BCE, with a total production a shy of 1 q0 yr, followed by 993 CE at around 2 q0 yr

2In Miyake [120], it is explained that an equilibrium production rate is assumed over a πR2
⊕ Earth cross-sectional area, as

opposed to a 4πR2
⊕ isotropic area, and this leads to a different assumption about equilibrium production rates.
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Figure2. Results ofMCMCfittingof a non-parametric control-points radiocarbonproduction ratemodel to all six knownevents.
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Figure 3. Marginal posterior probability distributions for the total radiocarbon production inferred for all six known Miyake
events. This is calculated as the area under a spike, irrespective of its duration, minus the steady state, in units of equivalent
years of steady-state production. Different events are denoted by colour, and different CBMs by solid [95], dashed [23] and
dotted [21] lines. The datasets showing a short or prolonged rise for 774 CE are shown separately. (Online version in colour.)

and 663 BCE at around 2.5 q0 yr. The 775 CE and 7176 BCE events are in excess of 3 q0 yr, and the
largest of all is 5259 BCE at around 4 q0 yr.

We are intentionally wary of attempting a conversion of this to absolute kg14C, which would
bring in the more-uncertain q0 at the time of each event, or of correcting this for the geomagnetic
field, as this requires assumptions about the origin and spectrum of particles. Nevertheless, it is
interesting that in these units the spike amplitudes are all of order unity—as might be expected
from a change of order unity to heliospheric shielding of Galactic cosmic rays, for a duration of
order 1 year.

The marginal posterior distributions for duration are displayed in figure 4, showing that while
7176 BCE, 5259 BCE, and a subset of 775 CE data are consistent with durations of <1 yr, the
duration of 5410 BCE is very poorly constrained, a subset of 775 CE data indicate a duration of
around 2 years (for these trees, 100% of posterior samples have durations >1 yr, and approx.
15% > 2 yr), and 663 BCE has a duration of 2–3 years. There is a somewhat extended tail in
the posterior for 993 CE, with 20% of samples showing durations >6 months, although only
approx. 4% > 1 yr. These are all covariant with start date, as seen in the corner plots in the
electronic supplementary material: an early start and a long duration, or a late start and a brief
duration, are both compatible with the data due to the 1-year sampling limitation. This is marginal
evidence against a model of the Miyake events arising from a single short impulse; this can
only be confirmed with multi-isotopic data, such as from ice cores where finer time sampling
is achievable, and from a better understanding of the systematics induced by growth seasons and
geography in tree-ring time series.

(c) Relation to the solar cycle
High solar magnetic field strength gives rise to low 14C production, because the solar magnetic
field shields the Earth from galactic cosmic rays. Therefore, we can define solar maxima to be
the minima of the 11-year sinusoidal component of 14C production. Our Bayesian posteriors for
solar cycle phase φ show no consistent pattern. Moreover, our histograms of the event timing,
relative to solar cycle in figure 5, also show no obvious connection. We find that 5410 BCE occurs
at or shortly before solar minimum, 5259 CE a couple of years after, while 774 CE occurs 2 years
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before maximum. The 993 CE event is more difficult to resolve. The increase seems to occur at a
solar minimum in some runs, but the analysis is currently lacking in sufficient data for any firm
conclusions. As a result, this event is excluded from figure 5 but further data will undoubtedly
improve on this outcomes. With regard to the 7176 BCE event, Paleari et al. [121] believe the 10Be
evidence supports its occurrence at a solar minimum. In contrast to that study as well as Scifo
et al. [65] and Miyake et al. [17], our findings show no clear relationship between the appearance
of one of these events and the phase of the solar cycle, though with only three examples so far we
cannot statistically reject any dependence.

(d) Dependence on latitude
In the case of an extreme solar event, a greater particle flux and therefore radiocarbon production
is expected near the poles than the equator. Both Büntgen et al. [23] and Uusitalo et al. [112] claim
that the amplitude of the events as recorded by northern hemisphere tree rings is increased closer
to the North Pole. In order to examine this possible trend, we fit every tree individually for
spike amplitude, timing and duration, while holding parameters of the solar cycle constant at
the ensemble mean. We then used emcee to fit a line and infer parameter uncertainties, including
an additional term for underestimated error bars. Our outputs provide no convincing evidence
for this effect. With our larger sample of trees, we find the slope to be (9.8 ± 8.8) × 10−3 steady-
state years per degree north, with a 13% probability the slope is less than zero. In the main, this
possible latitudinal trend largely goes away because of the scatter observed in the array of data
available from mid-latitudes, see figure 6.

5. Conclusion
In this work, we have combined fast CBM models with modern Bayesian inference tools, and
applied them to the ensemble of existing data on Miyake events. From the posterior parameter
distributions we infer, we find no clear relation in timing to the solar cycle, or in amplitude to
latitude as has previously been claimed; and we find some evidence of extended duration not
only in 663 BCE, but also in 775 and to some extent in 993 CE. This can be interpreted either
as a real astrophysical non-zero duration, or as a noise floor on time resolution owing to the

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 S

ep
te

m
be

r 
20

23
 



14

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220497

..........................................................

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
–4 –2 0 2 4 6 8

start date relative to solar maximum (yr)

775 CE

5259 BCE
5410 BCE

de
ns

ity
Güttler et al. [97]: 11-box
Büntgen et al. [23]: 22-box
Brehm et al. [21]: 22-box

Figure 5. Marginal posterior probability distributions for the timing relative to the Solar Cycle of three Miyake events for which
significant solar cycles are detected: 774 CE, 5259 BCE and 5410 BCE . Assuming the minimum of solar activity corresponds to a
maximum of radiocarbon production rate, we find that 5259 BCE and 5410 BCE occur at or shortly before solar minima, while
774 CE occurs 2 years beforemaximum. Different events are denoted by colour, and different CBMs by solid [95], dashed [23] and
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growth conditions and biology of the trees, model uncertainties in the preindustrial carbon cycle,
and/or to atmospheric dynamics not captured by the carbon box model. In order to resolve this
question, in future work, we will want to obtain larger samples of high-precision, annual-cadence
tree-rings over these well-studied events; multiradionuclide time series, including subannually
resolved 36Cl and 10Be from ice-cores; and systematically compare CBM implementations to
global circulation models that accurately capture the latitudinal and stratosphere–troposphere
exchange of radiocarbon.

If the measured extended durations are reproduced, and are owing to biological or
atmospheric processes, these will impose a precision floor of order approximately 1 year on
radiocarbon dating with these Miyake events (such as done for L’Anse aux Meadows by [32]).
On the other hand, if the prolonged radionuclide production has an astrophysical origin, this will
be hard to reconcile with an impulsive production model of one large energetic particle burst,
whether of solar energetic particles or from a stellar remnant. In light of this, we recommend
that it is important to obtain improved multiradionuclide data across the 5480 BCE decade-long
radiocarbon rise, and the 3-year 663 BCE event, as they may form a continuum in duration with
the other shorter radiation bursts.

There is very significant scope to improve open-source software for carbon isotope analysis.
ticktack can emulate the parameters of a range of existing CBMs: future work would also
systematically compare the different CBM parameters to one another and to data in a range of
contexts, including varying the stratosphere-to-troposphere production coefficients. ticktack

is also extensible to connect to other inference tools: because the solver is implemented in JAX, it
would be straightforward to implmement a Hamiltonian Monte Carlo sampler for very large or
complex models using the probabilistic programming language numpyro [122], including a more
sophisticated treatment of priors. A project beyond ticktack would solve for multiple isotopes,
and include effects of atmospheric dynamics and geochemistry. In the long term, it would be
worth applying MCMC to more complex models for a variety of applications, including inferring
the parameters of the preindustrial carbon cycle directly from radiocarbon data, or inferring
growth seasons and timing of different trees. We expect that there will be many applications for
fast, differentiable carbon cycle models connected to modern Bayesian frameworks across geo-
and astro-physics.

Data accessibility. In the interests of open science, we have made the ticktack code available under an MIT
open source license at github.com/sharmallama/ticktack, with documentation provided at sharmallama.
github.io/ticktack. The Snakemake workflow used to analyse the data is available at github.com/
qingyuanzhang3/radiocarbon_workflow. We encourage and welcome other scientists to replicate, apply and
extend our work. The data are provided in electronic supplementary material [123].
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Google JAX [92]; ChainConsumer [128]; emcee [93]; JAXNS [94]; and we emulate the models of Güttler et al.
[95], Miyake et al. [25], Büntgen et al. [23] and Brehm et al. [21].
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