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ABSTRACT   

Crop and irrigation water use efficiencies may be improved by managing irrigation 
application timing and volumes using physical and agronomic principles.  However, the 
crop water requirement may be spatially variable due to different soil properties and 
genetic variations in the crop across the field.  Adaptive control strategies can be used to 
locally control water applications in response to in-field temporal and spatial variability 
with the aim of maximising both crop development and water use efficiency.  A 
simulation framework ‘VARIwise’ has been created to aid the development, evaluation 
and management of spatially and temporally varied adaptive irrigation control strategies 
(McCarthy et al., 2010).  VARIwise enables alternative control strategies to be simulated 
with different crop and environmental conditions and at a range of spatial resolutions.    

An iterative learning controller and model predictive controller have been implemented in 
VARIwise to improve the irrigation of cotton.  The iterative learning control strategy 
involves using the soil moisture response to the previous irrigation volume to adjust the 
applied irrigation volume applied at the next irrigation event.  For field implementation 
this controller has low data requirements as only soil moisture data is required after each 
irrigation event.  In contrast, a model predictive controller has high data requirements as 
measured soil and plant data are required at a high spatial resolution in a field 
implementation.  Model predictive control involves using a calibrated model to determine 
the irrigation application and/or timing which results in the highest predicted yield or 
water use efficiency.  The implementation of these strategies is described and a case 
study is presented to demonstrate the operation of the strategies with various levels of 
data availability.  It is concluded that in situations of sparse data, the iterative learning 
controller performs significantly better than a model predictive controller. 
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INTRODUCTION   

Irrigation application and crop water use efficiencies can be improved by scheduling the 
irrigation of crops using physical and agronomic principles (Evans 2006).  The irrigation 
management strategy determined using these principles may be automatically 
implemented on lateral move and centre pivot irrigation machines.  Irrigation control 
strategies can use historical or real-time quantitative measurements of the crop, weather 
and soil, either singly or in combination, to automatically adjust the irrigation application.  
Irrigation is traditionally applied uniformly over an entire field, although not all plants in 
the field may require the amount of water at any given time.  In these cases, differential 
irrigation application to meet the plant requirements at different positions in the field 
would be required to improve operational performance; however, as the plant response 
and environmental conditions fluctuate throughout the season, control strategies which 
accommodate temporal and spatial variability in the field and which locally modify the 
control actions (irrigation amounts) need to be ‘adaptive’ (McCarthy et al., 2010; Smith 
et al., 2009).   

Adaptive control systems automatically and continuously re-adjust the controller to retain 
the desired performance of the system and with the aim of maximising both crop 
development and water use efficiency (e.g. Warwick 1993).  Similarly, adaptive control 
strategies may be used to accommodate the various levels of data complexity normally 
found in irrigation (i.e. for the various combinations of weather, soil and plant data 
depending on data availability).  Optimal adaptive control strategies to determine 
irrigation volume and timing may be identified by simulating alternate adaptive control 
strategies in a simulation framework.  A simulation framework ‘VARIwise’ has been 
created to develop, simulate and evaluate adaptive irrigation control strategies (McCarthy 
et al., 2010).  The cotton model OZCOT (Wells & Hearn, 1992) has been integrated into 
VARIwise to provide feedback data in the control strategy simulations.  VARIwise 
accommodates sub-field scale variations in all input parameters using a minimum 1 m2 
cell size, and permits application of differing control strategies within the field, as well as 
differing irrigation amounts down to this scale.   

CONTROL STRATEGIES IMPLEMENTED IN VARIWISE   

Two adaptive irrigation control strategies have been implemented in VARIwise in the 
simulation environment.   

1. Iterative learning controller  

Iterative Learning Control (ILC) can be used to control repetitive processes (e.g. robot 
arm manipulators, repetitive rotary systems, factory batch processes) (Ahn et al., 2007).  
An irrigation system may be interpreted as a repetitive process as the irrigation machine 
iteratively passes over the field throughout the crop season.   

Each iteration of an ILC controller applied to irrigation management is an irrigation event 
and the conditions may be approximately reset by scheduling the irrigations after a set 
amount of crop water use.  For a cotton crop, soil moisture, leaf area index, square count 
or boll count may be used as feedback to measure the system performance for a cotton 
irrigation control system.  These measurements should be taken after a time delay to 
ensure the soil or crop has responded to the irrigation water.  Moore and Chen (2006) 
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demonstrated ILC for a centre pivot irrigation machine using a soil model and soil 
moisture as the feedback variable.     

ILC was implemented in VARIwise to calculate the irrigation application volumes for 
each cell.  Determining the timing and application volumes for the irrigations for ILC 
involve the following procedure: 

• Determine day of first irrigation.  The interval from commencement to the first 
irrigation is estimated to be:  

 
CET

rainfall Effective wateravailableReadily 
Days

+=  (1) 

where the effective rainfall is calculated on a daily time step basis taking into 
account the soil moisture deficit and ETC is the daily crop evapotranspiration.  
The data is obtained from the output of the crop model. 

• Calculate first irrigation volume.  The first irrigation application is calculated by 
aggregating the daily crop evapotranspiration (calculated using weather data 
(ETo) and the crop coefficient) since the crop was sown. 

• Check data availability. In the simulation environment the model output data are 
obtained for the cells and days specified by the user. This enables the performance 
of the control strategy to be evaluated with input data at different spatial and 
temporal resolutions. The currently available field data is kriged (i.e. spatially 
interpolated) spatially across the field to ascribe a value to each cell in the field.  

• Determine day of next irrigation. The irrigation events are scheduled when the 
crop has used a user-specified amount of water since the previous irrigation event. 
The method of calculating the crop water use depends on the data available, i.e. 
the differing temporal input of the field data, thus: 
– If soil data is used in the control strategy and update data is available, the crop 

water use is determined using the cumulated change in soil moisture.  
– If soil and weather data are used in the control strategy but update soil data is 

not available and update weather data is available, the crop water use is 
determined as the daily crop evapotranspiration (calculated using the weather 
data) and the cumulated crop water use since the previous irrigation. 

– If soil data is used but update data is not available, plus weather data is not 
available or not used, then the crop water use is determined using historically 
averaged weather data and the cumulated crop water use since the previous 
irrigation. 

• Determine subsequent irrigation volumes.  The irrigation volume applied to 
each cell in the field is calculated using an ILC algorithm. An ILC algorithm has 
the form: 

 ( )( )∑
=

+ −∆+×+=
n

i
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where uk(t) is the system input on iteration k at time t, γ is a learning gain, there 
are n variables, wi is the weighting of the i-th variable in the control strategy 
(where all weightings sum to zero); and for each variable, yi,k(t+∆) is the 
contribution to the system output after delay ∆ and yi,d(t)  is the desired response.   
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2. Model predictive controller  

Model Predictive Control (MPC) involves using a model to predict the optimal input 
signal at each time step over a finite fixed horizon (e.g. Kwon & Han, 2005).  Only the 
first optimal control action is implemented after each time step. MPC is applicable to 
irrigation since a soil-plant-atmosphere model may be used to evaluate the application of 
various irrigation volumes (i.e. input signals) on a fixed number of consecutive days; for 
example, the model may be used to, firstly, determine the best irrigation volume to apply 
on each cell for each of the next three days, and, secondly, determine which day resulted 
in the best overall performance.  The future process outputs used to evaluate the irrigation 
scheme may be predicted daily (e.g. boll counts, leaf area index) or at the end of the 
season (e.g. yield, water use efficiency).  

The requirement that the control be adaptive means that (at least) the model used by the 
MPC controller must be continuously re-calibrated using the currently available field 
data.  Park et al. (2009) developed two MPC systems for irrigation which both used 
measured soil and weather data to calibrate a process model.  Their first implementation 
used the calibrated model to determine the irrigation volumes which would fill the soil 
profile for irrigation events on fixed days; whereas their second implementation used the 
calibrated model to determine the irrigation timing for a fixed irrigation volume 
application which would fill the soil profile.   

The MPC controller implemented in VARIwise involves the following procedure: 

• Update measured and forecast weather data. For each day of the crop season, 
the weather data set is automatically obtained for the farm’s location and starting 
at the crop’s sowing date and for the following year (if possible) using the 
Australian Bureau of Meteorology SILO patched point environmental data set.  In 
the simulation environment, predictive weather data is generated by adding 
random variation to the obtained weather data set on the corresponding days.  
Only three days of the predictive weather data are used due to the potential 
unreliability of the forecast data past this time period.  The weather data for the 
remaining days of the crop season are created by taking the daily average of the 
weather data over the crop season.  The weather data file is updated after the each 
day has been simulated. 

• Calibrate crop model. The integrated crop model is automatically and 
continuously re-calibrated according to the currently available weather, soil and 
plant data.  In the simulation environment there is no field data to calibrate the 
model, hence, the model calibration procedure must be emulated.  This is 
achieved by utilising two crop models, each with different crop and soil 
properties.  The output of one crop model (with the actual field conditions) is used 
to calibrate a second crop model (i.e. the ‘base’ model) at the temporal and spatial 
resolution specified by the user.  The calibrated base model is used to optimise the 
irrigation volumes and/or timing (as per next Step), whilst the actual model is 
used to determine the performance of the model predictive control strategy after 
the irrigation volumes and timing for the crop season have been determined. 

• Optimise irrigation volume for each cell. Optimal irrigation volumes are 
determined by iteratively simulating the application of sixteen different irrigation 
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volumes (i.e. 0-15 mm) on each cell in the field.  For each irrigation volume 
applied, a performance index (PI) is calculated by determining the difference 
between the measured and desired values.  The predicted process outputs used to 
calculate the PI are taken one day after the irrigation application.  The optimal 
irrigation volume for each cell is the irrigation volume with the highest PI; 
however, if more than one irrigation volume has the same PI then a water-
efficient approach is taken, i.e. the optimal irrigation volume is the lowest 
quantitative volume that achieved the maximum PI.  The irrigations can occur at 
any frequency; however, in this paper the irrigations are initiated daily if the 
optimisation procedure determines that more than 15% of the cells in the field 
require irrigation.   

 
CASE STUDY ON THE IRRIGATION OF COTTON WITH SPARSE DATA INPUT  

In a real-time field implementation of an irrigation control strategy, measured field data 
may not be available for each cell in the field.  It is anticipated that the performance of 
each control strategy will vary depending on the properties of the controller.  For 
example, ILC uses only soil moisture data input, whilst MPC requires soil, plant and 
weather data input to calibrate the crop model.  Simulations of these control strategies 
introduced in the previous section are compared in this case study with sparse input data.     

Methodology 

In a simulation, cotton was sown on a 400 m diameter centre pivot-irrigated field on 4 
October and was irrigated until 14 March of the following year.  Nitrogen application was 
250 kg/ha at the start of the season and a cell size of 2900 m² was specified (i.e. cells 
were approximately 50 m wide and 60 m long).  The soil moisture deficit at the start of 
the season was the plant available water content and the irrigation machine capacity was 
15 mm/day.  The spatially varied soil properties (i.e. plant available water content) 
produced the underlying variability for the simulations presented in this case study 
(Figure 1).   

 

Figure 1. Underlying soil variability for the ILC versus MPC case study. 
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For ILC, the irrigations were initiated after 40 mm of crop water use and the irrigation 
volumes were varied to target a soil moisture deficit of 80 mm after each irrigation.  The 
feedback soil moisture data was obtained from the OZCOT model one day after each 
irrigation event.  For MPC, the irrigations occurred daily and the final crop yield 
predicted by the model was maximised.  The daily weather profile used was obtained 
from the Australian Bureau of Meteorology SILO data (QNRM 2009) for 2004/2005.   

Simulations of the two control strategies were conducted using different levels of input 
data (i.e. one, three, ten and all cells in the field).  For ILC, soil moisture data was 
available for these cells, whilst for MPC, soil moisture data and plant information (i.e. 
leaf area index, square count, boll count) were available for these cells.  Ten replicates of 
each spatial resolution have been simulated with the cells selected randomly across the 
field.   

Results 

Iterative learning control (ILC) strategy performance 

The simulated yield and water use efficiency (Table 1) was generally consistently high 
using ILC and with all three scales of spatial data input.  The highest average yield was 
obtained using input from three, ten or all data points in the field.  ILC was sensitive to 
the location of the point used with a single data point input (i.e. as the yields of 
simulations 4, 6 and 8 are significantly lower than the other simulations).  However, with 
three or ten data input points ILC was less sensitive to the unmeasured spatial variability 
of the soil properties as a high crop yield was generally maintained.  This is because the 
soil moisture in the cells without measured data was estimated using the spatial 
interpolation procedure.  Any error between the estimated soil moisture status and actual 
soil moisture status in the unmeasured cells did not generally affect the crop yield.  This 
error would have caused the ILC algorithm to maintain a different soil moisture deficit to 
that specified (80 mm).  However, this error did not cause the crop to be water stressed.  
The standard error (i.e. spatial variability) of the yield was also low for all simulations.   

As the number of sampling points in the field increased the following general 
observations were made: 

• the average yield increased;  

• the irrigation volume applied decreased;  

• the crop water use efficiency increased significantly between one and there points 
but not between three and ten or all points; this indicates that using three data 
inputs is as useful as all inputs for ILC; and 

• the consistency of the average yield and irrigation applied across the field 
improved. This indicates that the crop yield and irrigation applied are less 
sensitive to the location of the input data points in the field as the number of data 
points increases. 
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Table 1. Output of iterative learning control strategy with different numbers of sampling 
points.  The table shows the average and standard error of the simulated outputs for ten 
replications of simulations; and within columns the use of matching superscripts (a, b, … l) 
indicates no significant difference (at the 95% significance level) within the replications.  The 
table also shows the average and standard error of each set of simulations with a different number 
of sampling points (in rows with ‘Av’) and the simulation using all data points; and within the 
columns the use of matching superscripts (A, B, ... F) indicates significant difference (at the 95% 
significance level) between the sets of replications and the simulation with input from all data 
points. 

ID 

Number 
of 

sampling 
points Rep 

Yield 
(bales/ ha) 

Total 
water 

applied 
(ML total) 

Irrigation 
applied 

(ML irrigated) 

CWUI 
(bales/ 
ML total) 

IWUI 
(bales/ 

ML irrigated) 
1 1 10.9 ± 0.1 a 126 88 a 1.1 a 1.6 
2 2 10.3 ± 0.1 a 139 101 b 0.9 b 1.3 
3 3 11.1 ± 0.2 b 114 76 c 1.2 c 1.8 
4 4 9.3 ± 0.2 c 147 108 d 0.8 d 1.1 
5 5 10.9 ± 0.1 a 126 87 a 1.1 a 1.6 
6 6 8.3 ± 0.1 d 159 120 e 0.7 e 0.9 
7 7 10.6 ± 0.1 a 123 84 a 1.1 a 1.6 
8 8 9.6 ± 0.1 c 143 105 d 0.8 d 1.2 
9 9 10.2 ± 0.1 a 145 106 d 0.9 b 1.2 
10 10 10.7 ± 0.2 a 139 101 b 1.0 b 1.3 
Nil  

One 

Av 10.0 ± 0.3 A 136 ± 4 98 ± 4 A 0.98 ± 0.05 A 1.36 ± 0.09 
11 1 11.2 ± 0.2 b 116 77 c 1.2 c 1.8 
12 2 10.5 ± 0.2 a 125 87 a 1.1 a 1.5 
13 3 10.5 ± 0.1 a 139 100 b 0.9 b 1.3 
14 4 10.7 ± 0.3 a 131 92 a 1.0 a 1.2 
15 5 10.4 ± 0.2 a 110 71 f 1.2 f 1.8 
16 6 10.4 ± 0.3 a 110 71 f 1.2 f 1.8 
17 7 10.4 ± 0.2 a 110 71 f 1.2 f 1.8 
18 8 11.2 ± 0.2 b 116 77 c 1.2 f 1.8 
19 9 10.4 ± 0.3 a 110 71 f 1.2 f 1.8 
20 10 10.7 ± 0.2 a 131 92 a 1.0 a 1.5 
Nil  

Three 

Av 10.4 ± 0.3 B 120 ± 3 81 ± 3 B 1.12 ± 0.03 B 1.63 ± 0.07 
21 1 10.3 ± 0.2 a 131 92 a 1.0 a 1.4 
22 2 10.4 ± 0.2 a 132 94 a 1.0 a 1.4 
23 3 10.8 ± 0.2 a 124 85 a 1.1 a 1.6 
24 4 11.0 ± 0.2 b 123 84 a 1.1 a 1.6 
25 5 11.0 ± 0.1 b 123 84 a 1.1 a 1.6 
26 6 10.6 ± 0.2 a 133 94 a 1.0 a 1.4 
27 7 11.1 ± 0.2 b 122 84 a 1.1 a 1.7 
28 8 10.9 ± 0.2 a 125 86 a 1.1 a 1.6 
29 9 10.8 ± 0.2 a 124 85 a 1.1 a 1.6 
30 10 11.3 ± 0.2 b 122 83 a 1.2 f 1.7 
Nil  

Ten 

Av 10.6 ± 0.3 B 126 ± 1 87 ± 1 B 1.09 ± 0.02 B 1.56 ± 0.04 
31 44 (All) N/A 10.7 ± 0.2 B 123 84 B 1.2 C 1.7 
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Model predictive control (MPC) strategy performance 

The MPC controller was simulated with the input of data from the same random data 
points in the field as the ILC controller (Table 2).  As the spatial scale of input data 
reduced (i.e. the number of input data points increased), the following general 
observations were made: 

• the crop and irrigation water use efficiencies increased;  

• the irrigation volume application reduced; and 

• as per ILC, the consistency of the average yield and irrigation applied across the 
field improved. 

The location of the data points in the field affected the yield and water use efficiency.  
This effect was the greatest in the simulations of one data input in the field.  For example, 
the use of one point of data input led to yields and water use efficiencies higher than 
several simulations using three or ten data points (e.g. simulation 38), while also leading 
to the lowest yield and water use efficiency of all the simulations (i.e. simulation 35).  
Hence, the location of the point in the field limits the performance of MPC.   

There was no significant difference between the average yield or water use of the 
simulations using data from three and ten points in the field.  However, the yield and 
water use efficiency of the simulations using data from ten points was greater than those 
of the simulations using data from one or three points.  This indicates that the input of 
data from one or three points in the field does not provide sufficient spatial information to 
accurately calibrate the crop model.  The greatest average yield and water use efficiency 
was provided with input from all data points in the field. 

The standard error of the yield for the simulations with ten data input points was higher 
those those with one or three data iput points.  This is because the number of cells with 
known properties – and hence accurately optimised yield – increased, leading to a more 
accurate spatial interpolation of the cell properties.  The cells with estimated soil and crop 
properties have lower yields than the cells that have measured properties because of the 
errors in the estimated properties used to optimise the yield.   

Comparison of iterative learning and model predictive control strategies 

The ILC controller produced higher yields and water use efficiencies than the MPC 
controller for all scales of spatial data input; hence, in low data situations ILC 
outperformed MPC.  When a complete data set was available for each cell in the field, the 
simulated yield and water use efficiency was higher for the MPC controller than the ILC 
controller.   

Kriging was effective for estimating the soil moisture in the unknown data points for ILC, 
whilst kriging was less effective for estimating the soil and crop properties of the crop 
model in each cell for MPC.    
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Table 2. Output of model predictive control strategy with different numbers of sampling 
points. The table shows the average and standard error of the simulated outputs for ten 
replications of simulations; and within columns the use of matching superscripts (a, b, … l) 
indicates no significant difference (at the 95% significance level) within the replications.  The 
table also shows the average and standard error of each set of simulations with a different number 
of sampling points (in rows with ‘Av’) and the simulation using all data points; and within the 
columns the use of matching superscripts (A, B, ... F) indicates significant difference (at the 95% 
significance level) between the sets of replications and the simulation with input from all data 
points. 

ID 

Number 
of 

sampling 
points Rep 

Yield 
(bales/ ha) 

Total 
water 

applied 
(ML) 

Irrigation 
applied 
(ML) 

CWUI 
(bales/ 
ML total) 

IWUI 
(bales/ 

ML irrigated) 
32 1 4.1 ± 0.1 e 119 81 g 0.4 g 0.6 
33 2 3.1 ± 0.2 f 105 67 f 0.4 g 0.6 
34 3 2.5 ± 0.2 g 97 60 h 0.3 h 0.5 
35 4 2.0 ± 0.2 h 93 56 h 0.3 i 0.5 
36 5 5.1 ± 0.1 i 141 103 b 0.5 g 0.6 
37 6 5.2 ± 0.1 i 134 96 a 0.5 g 0.7 
38 7 5.8 ± 0.2 j 125 87 a 0.6 j 0.8 
39 8 4.4 ± 0.1 k 124 86 a 0.4 g 0.6 
40 9 5.7 ± 0.3 j 128 89 a 0.6 j 0.8 
41 10 2.3 ± 0.2 g 89 52 i 0.3 i 0.6 
Nil  

One 

Av 3.9 ± 0.3 C 116 ± 6 78 ± 6 C 0.42 ± 0.03 D 0.63 ± 0.03 
42 1 3.5 ± 0.1 l 101 62 f 0.4 g 0.7 
43 2 3.4 ± 0.2 l 110 72 f 0.4 g 0.6 
44 3 4.4 ± 0.1 k 117 78 c 0.5 g 0.7 
45 4 3.8 ± 0.2 e 117 79 c 0.4 g 0.6 
46 5 4.1 ± 0.1 e 117 78 c 0.4 g 0.7 
47 6 4.3 ± 0.2 k 110 71 f 0.5 g 0.8 
48 7 3.9 ± 0.2 e 109 70 f 0.5 g 0.7 
49 8 3.9 ± 0.1 e 115 76 c 0.4 g 0.6 
50 9 3.4 ± 0.2 l 110 72 f 0.4 g 0.6 
51 10 3.4 ± 0.2 l 103 64 f 0.4 g 0.7 
Nil  

Three 

Av 3.7 ± 0.2 C 111 ± 2 72 ± 2 C 0.43 ± 0.01 D 0.67 ± 0.02 
52 1 6.2 ± 0.6 j 117 78 c 0.7 e 1.0 
53 2 5.2 ± 0.6 i 110 71 f 0.6 j 0.9 
54 3 5.7 ± 0.5 j 105 67 f 0.7 e 1.1 
55 4 6.1 ± 0.5 j 116 77 c 0.7 e 1.0 
56 5 5.8 ± 0.6 j 105 67f 0.7 e 1.1 
57 6 5.2 ± 0.6 i 101 63 f 0.6 j 1.0 
58 7 5.4 ± 0.6 i 111 73 f 0.6 j 0.9 
59 8 5.0 ± 0.6 i 109 71 f 0.6 j 0.9 
60 9 4.9 ± 0.6 i 96 58 h 0.6 j 1.1 
61 10 5.9 ± 0.6 j 115 76  c 0.6 j 1.0 
Nil  

Ten 

Av 5.4 ± 0.6 D 109 ± 2 70 ± 2 C 0.64 ± 0.01 E 1.00 ± 0.02 
62 44 (All) N/A 14.3 ± 0.4 E 117 78 C 1.5 F 2.3 
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CONCLUSION   

Iterative learning and model predictive control strategies were implemented and 
simulated for irrigation optimisation of a cotton crop.  The strategies were compared for 
robustness to sparse data input.  The iterative learning controller outperformed the model 
predictive controller in low data situations, whilst the model predictive controller 
produced higher yield and water use efficiency than the iterative learning controller with 
a full data set. 
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