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ABSTRACT

Crop and irrigation water use efficiencies may beproved by managing irrigation
application timing and volumes using physical agtbaomic principles. However, the
crop water requirement may be spatially variable tlu different soil properties and
genetic variations in the crop across the fieldaptive control strategies can be used to
locally control water applications in responsertdield temporal and spatial variability
with the aim of maximising both crop developmentd awater use efficiency. A
simulation framework ‘VARIwise’ has been createdaid the development, evaluation
and management of spatially and temporally vardaptve irrigation control strategies
(McCarthy et al., 2010). VARIwise enables altewetontrol strategies to be simulated
with different crop and environmental conditionsl @t a range of spatial resolutions.

An iterative learning controller and model predietcontroller have been implemented in
VARIwise to improve the irrigation of cotton. Thterative learning control strategy
involves using the soil moisture response to tlipus irrigation volume to adjust the
applied irrigation volume applied at the next iatign event. For field implementation
this controller has low data requirements as oallyreoisture data is required after each
irrigation event. In contrast, a model predictoantroller has high data requirements as
measured soil and plant data are required at a bitial resolution in a field
implementation. Model predictive control involvesing a calibrated model to determine
the irrigation application and/or timing which résuin the highest predicted yield or
water use efficiency. The implementation of thetategies is described and a case
study is presented to demonstrate the operatidheottrategies with various levels of
data availability. It is concluded that in sitwats of sparse data, the iterative learning
controller performs significantly better than a rabgredictive controller.

Keywords: adaptive control, automation, water use efficierspatial variability
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INTRODUCTION

Irrigation application and crop water use efficiesccan be improved by scheduling the
irrigation of crops using physical and agronomimg@ples (Evans 2006). The irrigation
management strategy determined using these pmsciphay be automatically
implemented on lateral move and centre pivot itrgga machines. Irrigation control
strategies can use historical or real-time quantéaneasurements of the crop, weather
and soil, either singly or in combination, to ausdically adjust the irrigation application.
Irrigation is traditionally applied uniformly ovemn entire field, although not all plants in
the field may require the amount of water at aryegitime. In these cases, differential
irrigation application to meet the plant requiretseat different positions in the field
would be required to improve operational perforngrwwever, as the plant response
and environmental conditions fluctuate throughdwg season, control strategies which
accommodate temporal and spatial variability in fiel and which locally modify the
control actions (irrigation amounts) need to beafatdse’ (McCarthy et al., 2010; Smith
et al., 2009).

Adaptive control systems automatically and contirslp re-adjust the controller to retain
the desired performance of the system and with dine of maximising both crop
development and water use efficiency (e.g. Warvli@R3). Similarly, adaptive control
strategies may be used to accommodate the vamwetslof data complexity normally
found in irrigation (i.e. for the various combirais of weather, soil and plant data
depending on data availability). Optimal adaptieentrol strategies to determine
irrigation volume and timing may be identified biynsilating alternate adaptive control
strategies in a simulation framework. A simulativamework ‘VARIwise’ has been
created to develop, simulate and evaluate adajtigation control strategies (McCarthy
et al., 2010). The cotton model OZCOT (Wells & Hgdl992) has been integrated into
VARIwise to provide feedback data in the contralattgy simulations. VARIwise
accommodates sub-field scale variations in all ifgarameters using a minimum £ m
cell size, and permits application of differing trh strategies within the field, as well as
differing irrigation amounts down to this scale.

CONTROL STRATEGIES IMPLEMENTED IN VARIWISE

Two adaptive irrigation control strategies haverbe@aplemented in VARIwise in the
simulation environment.

1. Iterative learning controller

Iterative Learning Control (ILC) can be used to tcohrepetitive processes (e.g. robot
arm manipulators, repetitive rotary systems, factmatch processes) (Ahn et al., 2007).
An irrigation system may be interpreted as a répgetprocess as the irrigation machine
iteratively passes over the field throughout trep@eason.

Each iteration of an ILC controller applied to gation management is an irrigation event
and the conditions may be approximately reset Imedaling the irrigations after a set
amount of crop water use. For a cotton crop, maiisture, leaf area index, square count
or boll count may be used as feedback to measersystem performance for a cotton
irrigation control system. These measurements Idhbe taken after a time delay to
ensure the soil or crop has responded to the iigavater. Moore and Chen (2006)
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demonstrated ILC for a centre pivot irrigation maehusing a soil model and soil
moisture as the feedback variable.

ILC was implemented in VARIwise to calculate thegation application volumes for
each cell. Determining the timing and applicatiaumes for the irrigations for ILC
involve the following procedure:

» Determine day of first irrigation. The interval from commencement to the first
irrigation is estimated to be:

Readilyavailablewater+ Effectiverainfall
1)
ET.
where the effective rainfall is calculated on alyd@dme step basis taking into

account the soil moisture deficit and &6 the daily crop evapotranspiration.
The data is obtained from the output of the crogl®ho

Days=

» Calculate first irrigation volume. The first irrigation application is calculated by
aggregating the daily crop evapotranspiration (dated using weather data
(ETo) and the crop coefficient) since the crop s@sn.

* Check data availability. In the simulation environment the model outputdae
obtained for the cells and days specified by thex.ushis enables the performance
of the control strategy to be evaluated with ingata at different spatial and
temporal resolutions. The currently available fielata is kriged (i.e. spatially
interpolated) spatially across the field to ascabalue to each cell in the field.

« Determine day of next irrigation. The irrigation events are scheduled when the
crop has used a user-specified amount of watee sirecprevious irrigation event.
The method of calculating the crop water use dep@mdthe data available, i.e.
the differing temporal input of the field data, $hu

— If soil data is used in the control strategy andaip data is available, the crop
water use is determined using the cumulated chisng@l moisture.

— If soil and weather data are used in the contraktat)y but update soil data is
not available and update weather data is availabke,crop water use is
determined as the daily crop evapotranspiratiofctated using the weather
data) and the cumulated crop water use since thequs irrigation.

— If soil data is used but update data is not avkalaplus weather data is not
available or not used, then the crop water useterchined using historically
averaged weather data and the cumulated crop wa&esince the previous
irrigation.

« Determine subsequent irrigation volumes. The irrigation volume applied to
each cell in the field is calculated using an IUGoathm. An ILC algorithm has
the form:

Ueon () = U () + 1> (W x (4 8) — v, ) 0

i=1
whereug(t) is the system input on iteratidnat timet, y is a learning gain, there
are n variables,w; is the weighting of the-th variable in the control strategy
(where all weightings sum to zero); and for eachiade, yiy(t+A) is the
contribution to the system output after defagndy; 4(t) is the desired response.
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2. Model predictive controller

Model Predictive Control (MPC) involves using a rabdo predict the optimal input
signal at each time step over a finite fixed hamife.g. Kwon & Han, 2005). Only the
first optimal control action is implemented afteach time step. MPC is applicable to
irrigation since a soil-plant-atmosphere model rhayused to evaluate the application of
various irrigation volumes (i.e. input signals) atfixed number of consecutive days; for
example, the model may be used to, firstly, deteentihe best irrigation volume to apply
on each cell for each of the next three days, secondly, determine which day resulted
in the best overall performance. The future pre@egputs used to evaluate the irrigation
scheme may be predicted daily (e.g. boll countsf &&ea index) or at the end of the
season (e.g. yield, water use efficiency).

The requirement that the control be adaptive mézais(at least) the model used by the
MPC controller must be continuously re-calibratesing the currently available field
data. Park et al. (2009) developed two MPC systémsrrigation which both used
measured soil and weather data to calibrate a psaoedel. Their first implementation
used the calibrated model to determine the irrigatiolumes which would fill the soil
profile for irrigation events on fixed days; whesaaeir second implementation used the
calibrated model to determine the irrigation timifgr a fixed irrigation volume
application which would fill the solil profile.

The MPC controller implemented in VARIwise involvibe following procedure:

» Update measured and forecast weather datd&or each day of the crop season,
the weather data set is automatically obtainedherfarm’s location and starting
at the crop’s sowing date and for the following ry€id possible) using the
Australian Bureau of Meteorology SILO patched p@nvironmental data set. In
the simulation environment, predictive weather dmtagenerated by adding
random variation to the obtained weather data sethe corresponding days.
Only three days of the predictive weather data wsed due to the potential
unreliability of the forecast data past this timexipd. The weather data for the
remaining days of the crop season are createdKimygtéhe daily average of the
weather data over the crop season. The weathefiltais updated after the each
day has been simulated.

o Calibrate crop model. The integrated crop model is automatically and
continuously re-calibrated according to the cutseavailable weather, soil and
plant data. In the simulation environment theraasfield data to calibrate the
model, hence, the model calibration procedure nhestemulated. This is
achieved by utilising two crop models, each witHfedent crop and soil
properties. The output of one crop model (withdbtual field conditions) is used
to calibrate a second crop model (i.e. the ‘basadel) at the temporal and spatial
resolution specified by the user. The calibratasebmodel is used to optimise the
irrigation volumes and/or timing (as per next Stephilst the actual model is
used to determine the performance of the modeligireel control strategy after
the irrigation volumes and timing for the crop smakave been determined.

* Optimise irrigation volume for each cell. Optimal irrigation volumes are
determined by iteratively simulating the applicatiof sixteen different irrigation
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volumes (i.e. 0-15 mm) on each cell in the fiel&or each irrigation volume
applied, a performance indeflf is calculated by determining the difference
between the measured and desired values. Thecf@girocess outputs used to
calculate thePl are taken one day after the irrigation applicatiorhe optimal
irrigation volume for each cell is the irrigatiorolume with the highesPl;
however, if more than one irrigation volume has #HanePl then a water-
efficient approach is taken, i.e. the optimal @atign volume is the lowest
guantitative volume that achieved the maximBm The irrigations can occur at
any frequency; however, in this paper the irrigadicare initiated daily if the
optimisation procedure determines that more tha % the cells in the field
require irrigation.

CASE STUDY ON THE IRRIGATION OF COTTON WITH SPARSE DATA INPUT

In a real-time field implementation of an irrigati@ontrol strategy, measured field data
may not be available for each cell in the field.islanticipated that the performance of
each control strategy will vary depending on theperties of the controller. For
example, ILC uses only soil moisture data inputjlsthMPC requires soil, plant and
weather data input to calibrate the crop modelnuBtions of these control strategies
introduced in the previous section are compardtigicase study with sparse input data.

Methodology

In a simulation, cotton was sown on a 400 m diamegatre pivot-irrigated field on 4
October and was irrigated until 14 March of thédwing year. Nitrogen application was
250 kg/ha at the start of the season and a cdl&2900 m? was specified (i.e. cells
were approximately 50 m wide and 60 m long). T rmoisture deficit at the start of
the season was the plant available water contehthanirrigation machine capacity was
15 mm/day. The spatially varied soil propertie®.(iplant available water content)
produced the underlying variability for the simidats presented in this case study

(Figure 1).
60 Clay loam AA"..‘
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Figure 1. Underlying soil variability for the ILGCevsus MPC case study.
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For ILC, the irrigations were initiated after 40 nohcrop water use and the irrigation
volumes were varied to target a soil moisture aedit80 mm after each irrigation. The
feedback soil moisture data was obtained from tE&€OT model one day after each
irrigation event. For MPC, the irrigations occureaily and the final crop yield
predicted by the model was maximised. The dailativer profile used was obtained
from the Australian Bureau of Meteorology SILO d&@NRM 2009) for 2004/2005.

Simulations of the two control strategies were amteld using different levels of input

data (i.e. one, three, ten and all cells in thé&dfie For ILC, soil moisture data was

available for these cells, whilst for MPC, soil stoire data and plant information (i.e.

leaf area index, square count, boll count) werelavia for these cells. Ten replicates of
each spatial resolution have been simulated wighcttls selected randomly across the
field.

Results

lterative learning control (ILC) strategy perforncan

The simulated yield and water use efficiency (Tablevas generally consistently high
using ILC and with all three scales of spatial dafaut. The highest average yield was
obtained using input from three, ten or all datanfsoin the field. ILC was sensitive to
the location of the point used with a single datanp input (i.e. as the yields of
simulations 4, 6 and 8 are significantly lower thihe other simulations). However, with
three or ten data input points ILC was less sersith the unmeasured spatial variability
of the soil properties as a high crop yield wasegelty maintained. This is because the
soil moisture in the cells without measured datas vestimated using the spatial
interpolation procedure. Any error between thénestied soil moisture status and actual
soil moisture status in the unmeasured cells didgeaerally affect the crop yield. This
error would have caused the ILC algorithm to mamgadifferent soil moisture deficit to
that specified (80 mm). However, this error did oause the crop to be water stressed.
The standard error (i.e. spatial variability) oé tyield was also low for all simulations.

As the number of sampling points in the field irased the following general
observations were made:

» the average yield increased,;
» the irrigation volume applied decreased;

» the crop water use efficiency increased signifilyapétween one and there points
but not between three and ten or all points; thdicates that using three data
inputs is as useful as all inputs for ILC; and

* the consistency of the average yield and irrigatapplied across the field
improved. This indicates that the crop yield andgation applied are less
sensitive to the location of the input data pointghe field as the number of data
points increases.
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Table 1. Output of iterative learning control sé@t with different numbers of sampling
points. The table shows the average and standard errbedfitmulated outputs for ten
replications of simulations; and within columns tlse of matching superscripts (a, b, ... )
indicates no significant difference (at the 95%n#igance level) within the replications. The
table also shows the average and standard erearchf set of simulations with a different number
of sampling points (in rows with ‘Av’) and the sithation using all data points; and within the
columns the use of matching superscripts (A, B;).indicates significant difference (at the 95%
significance level) between the sets of replicatiand the simulation with input from all data
points.

Number Total
of water Irrigation CWuUI IWUI
sampling Yield applied applied (bales/ (bales/

D points Rep (baIeS/ ha) (ML total) (ML irriqgted) ML total) ML irriqgted)
1 1 | 109+0.% 126 88 1.1% 1.6
2 2 10.3+0.1 139 107 0.9° 1.3
3 3 11.1+0.2 114 76 1.2° 1.8
4 4 9.3+0.2 147 108 0.8° 1.1
5 5 | 109+0.% 126 87 1.1% 1.6
6 One 6 8.3+0.F 159 1206 0.7 0.9
7 7 | 106+0.% 123 84 1.1% 1.6
8 8 9.6+0.f 143 1058 0.8¢ 1.2
9 9 | 102+0.% 145 106' 0.9° 1.2
10 10 | 10.7+0.2 139 107 1.0° 1.3
Nil Av | 10.0+0.3" | 136+4 98+4 |0.98+0.0% | 1.36+0.09
11 1 11.2+0.2 116 77 1.2° 1.8
12 2 | 105+0.2 125 87 1.1% 1.5
13 3 105+0.% 139 100 0.9° 1.3
14 4 | 10.7+0.3 131 92 1.0% 1.2
15 5 | 104+0.2 110 77 1.2 1.8
16 |  Three 6 10.4+0.3 110 71 1.2 1.8
17 7 10.4+0.2 110 71 1.2 1.8
18 8 | 11.2+02 116 77 1.2 1.8
19 9 | 104+0.8 110 77 1.2 1.8
20 10 | 10.7+0.2 131 92 1.0% 1.5
Nil Av | 104+0.3 | 120+3 81+3 | 1.12+0.0%| 1.63+0.07
21 1 | 10.3+0.2 131 92 1.0% 1.4
22 2 | 104+0.2 132 94 1.0% 1.4
23 3 | 108+0.2 124 85 1.1% 1.6
24 4 11.0+0.2 123 84 1.1% 1.6
25 5 | 11.0+0.} 123 84 1.1% 1.6
26 Ten 6 | 10.6+0.2 133 9F 1.0 1.4
27 7 | 11.1+02 122 84 1.1% 1.7
28 8 | 109+0.2 125 86" 1.1% 1.6
29 9 | 10.8+0.2 124 85 1.1% 1.6
30 10 | 11.3+0.2 122 83 1.2 1.7
Nil Av | 106+0.3 | 126+1 87+% | 1.09+0.02 | 1.56 +0.04
31| 44(Al) | NA| 107+0.2 | 123 84 1.2° 1.7
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Model predictive control (MPC) strategy performance

The MPC controller was simulated with the inputdaita from the same random data
points in the field as the ILC controller (Table 2As the spatial scale of input data
reduced (i.e. the number of input data points a®ed), the following general
observations were made:

» the crop and irrigation water use efficiencies éased,;
* theirrigation volume application reduced; and

» as per ILC, the consistency of the average yieldl iamgation applied across the
field improved.

The location of the data points in the field afeztthe yield and water use efficiency.
This effect was the greatest in the simulationsre data input in the field. For example,
the use of one point of data input led to yieldd arater use efficiencies higher than
several simulations using three or ten data pdets simulation 38), while also leading
to the lowest yield and water use efficiency of talk simulations (i.e. simulation 35).
Hence, the location of the point in the field limmihe performance of MPC.

There was no significant difference between theraye yield or water use of the
simulations using data from three and ten pointthan field. However, the yield and
water use efficiency of the simulations using daban ten points was greater than those
of the simulations using data from one or threentsoi This indicates that the input of
data from one or three points in the field doesprovide sufficient spatial information to
accurately calibrate the crop model. The greatestage yield and water use efficiency
was provided with input from all data points in fiedd.

The standard error of the yield for the simulatienth ten data input points was higher
those those with one or three data iput pointsis Thbecause the number of cells with
known properties — and hence accurately optimiseld y increased, leading to a more
accurate spatial interpolation of the cell progerti The cells with estimated soil and crop
properties have lower yields than the cells thaehaeasured properties because of the
errors in the estimated properties used to optithiseyield.

Comparison of iterative learning and model prede&tontrol strategies

The ILC controller produced higher yields and watee efficiencies than the MPC
controller for all scales of spatial data input;nbe, in low data situations ILC
outperformed MPC. When a complete data set watahlafor each cell in the field, the
simulated yield and water use efficiency was higbeithe MPC controller than the ILC
controller.

Kriging was effective for estimating the soil maist in the unknown data points for ILC,
whilst kriging was less effective for estimatingethoil and crop properties of the crop
model in each cell for MPC.
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Table 2. Output of model predictive control strgtegth different numbers of sampling
points.The table shows the average and standard errbedfitnulated outputs for ten
replications of simulations; and within columns tlse of matching superscripts (a, b, ... )
indicates no significant difference (at the 95%n#igance level) within the replications. The
table also shows the average and standard erearchf set of simulations with a different number
of sampling points (in rows with ‘Av’) and the sitation using all data points; and within the
columns the use of matching superscripts (A, B;).indicates significant difference (at the 95%
significance level) between the sets of replicaiand the simulation with input from all data
points.

Number Total
of water | Irrigation CWuUI IWUI
sampling Yield applied | applied (bales/ (bales/

ID points Rep | (bales/ ha) (ML) (ML) ML total) ML irigated)
32 1 41+0.% 119 819 0.49 0.6
33 2 3.1+0.2 105 67 0.49 0.6
34 3 25+0.72 97 60" 0.3" 0.5
35 4 2.0+0.2 93 56" 0.3 0.5
36 5 51+0.1 141 102 0.5Y 0.6
37 One 6 52+0.1 134 96 0.5¢ 0.7
38 7 58+0.2 125 87 0.6 0.8
39 8 4.4+0f% 124 86 0.49 0.6
40 9 57+0.3 128 89 0.6 0.8
41 10 | 2.3+0.2 89 52 0.3 0.6
Nil Av | 39+03 | 116+6| 78+6 | 0.42+0.0® | 0.63+0.03
42 1 35+01 101 62 0.49 0.7
43 2 34+02 110 72 0.49 0.6
44 3 4.4+0f% 117 78 0.59 0.7
45 4 3.8+0.3 117 79 0.49 0.6
46 5 41+0.% 117 78 0.49 0.7
47 |  Three 6 43+03 110 71 0.59 0.8
48 7 3.9+03 109 70 0.59 0.7
49 8 3.9+0.% 115 76 0.49 0.6
50 9 3.4+02 110 72 0.49 0.6
51 10 3.4+0.2 103 64 0.49 0.7
Nil Av | 37+02° | 111+2| 72+2 | 0.43+0.0P | 0.67+0.02
52 1 6.2+0.6 117 78 0.7° 1.0
53 2 52+0.6 110 77 0.6 0.9
54 3 57+0.5 105 67 0.7° 1.1
55 4 6.1+0.5 116 77 0.7° 1.0
56 5 58+0.6 105 67 0.7° 1.1
57 Ten 6 52+0.6 101 63 0.6 1.0
58 7 54 +0.6 111 73 0.6 0.9
59 8 50+0.6 109 71 0.6 0.9
60 9 4.9+0.6 96 58" 0.6 1.1
61 10 59+0.6 115 76° 0.6 1.0
Nil Av | 54+06° | 109+2| 70+2 | 0.64+0.0f | 1.00+0.02
62| 44(Al) | NJA| 143+04 117 78 1.5 2.3
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CONCLUSION

Iterative learning and model predictive control attgies were implemented and
simulated for irrigation optimisation of a cottorop. The strategies were compared for
robustness to sparse data input. The iterativailegcontroller outperformed the model
predictive controller in low data situations, whilthe model predictive controller
produced higher yield and water use efficiency ttheniterative learning controller with
a full data set.
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