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Abstract: The use of expert knowledge to quantify a Bayesian Network (BN) is necessary when
data is not available. This however raises questions regarding how opinions from multiple experts
can be used in a BN. Linear pooling is a popular method for combining probability assessments
from multiple experts. In particular, Prior Linear Pooling (PrLP), which pools opinions and then
places them into the BN, is a common method. This paper considers this approach and an alternative
pooling method, Posterior Linear Pooling (PoLP). The PoLP method constructs a BN for each expert,
and then pools the resulting probabilities at the nodes of interest. The advantages and disadvantages
of these two methods are identified and compared and the methods are applied to an existing BN,
the Wayfinding Bayesian Network Model, to investigate the behavior of different groups of people and
how these different methods may be able to capture such differences. The paper focusses on six nodes
Human Factors, Environmental Factors, Wayfinding, Communication, Visual Elements of Communication
and Navigation Pathway, and three subgroups Gender (Female, Male), Travel Experience (Experienced,
Inexperienced), and Travel Purpose (Business, Personal), and finds that different behaviors can indeed
be captured by the different methods.

Keywords: bayesian networks; linear pooling; posterior pooling; prior pooling; wayfinding;
expert opinions

1. Introduction

Bayesian networks (BNs) are a popular tool used for describing complicated systems. From their
beginnings in computer science, BNs have been increasingly used in a range of fields such as ecology [1],
natural resource management [2], computational biology [3], medical diagnosis [4] and forensics [5].
In a large number of these fields, the information required to quantify a BN must be obtained from
experts. This in itself has raised methodological questions regarding how the opinions obtained from
experts can be introduced into the BN, and how the opinions of multiple experts can be represented.

This paper explores the use of two methods to combine opinions from multiple experts in order
to investigate how these methods impact the result of a BN, the different behavior of different groups
of people, and how the different methods may be able to capture such differences. This exploration is
conducted in the context of a substantive real-world case study of wide interest, notably wayfinding.

A combination of experts’ opinions has received considerable attention in the Bayesian community
and many methods have been proposed. The book by [6] is an important reference discussing pros
and cons of many approaches, and we refer the interested reader to such book and the references
therein. An earlier, thorough review is provided in [7], whereas a more recent contribution is [8].
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Pooling methods provide a principled approach to combining expert judgements [6]. In this paper,
we concentrate our interest on linear pooling, but other approaches have been presented in literature.
Examples include logarithmic pooling, whose properties have been illustrated, e.g., in [9], and a
nonlinear geometric combination by [10]. Papers like the latter have the desirable property of
external Bayesianity, since the order of posterior updating is irrelevant; that is, combining the experts’
posteriors, after observing data, gives the same results as combining their priors and updating the
prior combination with the observed data. Other approaches about combination of experts’ opinions
in BNs are possible, like the Measurement Error Approach, proposed in [11], where the opinions at
each node are considered as if they were noisy observations of the true probability value (i.e., a random
effect model). In this paper, we assume that the experts agree on the structure of the BN, i.e., its nodes
and their logical relationships, whereas they might have different opinions about probabilities. Pooling
of opinions also on the structure of the BN is a different task, beyond the goals of the current paper.
The paper is structured as follows. The next section gives an intentionally brief description of Bayesian
networks (BNs), with further elaboration throughout the paper. The two pooling methods are then
introduced and compared in Section 3. The wayfinding case study, which is based on an existing
Wayfinding Bayesian Network Model (WBNM) [12], is introduced in Section 4 and then prior and
posterior linear pooling methods are applied in Section 5. Advantages and disadvantages of both
approaches are critically discussed in this case study and in the discussion in Section 6.

2. Bayesian Networks

Bayesian networks (BNs) are a graphic modelling method used for reasoning under
uncertainty [13]. A BN is constructed as a directed acyclic graph (DAG) that represents variables
of interest as nodes and direct dependencies between the variables as directed arrows or arcs [14].
Nodes connected by an arc are commonly called parent or child nodes, depending on the direction of
the arrow. An example of this structure is shown later in Figure 1.

Figure 1. The Wayfinding Bayesian Network [12].

In the BNs of interest here, the nodes are discrete in nature, for example Boolean (true or false),
ordered values (low, medium, high), and integer ranges (1–49, 50–100), although continuous nodes
are also possible [15]. Each node is quantified by a probability table that is either marginal over
the states if the node has no parents, or conditional on the states of the parent nodes. These are
commonly collectively called conditional probability tables (CPTs) and are populated using data
or other information available about the system or problem, including information obtained from
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experts [15,16]. Each CPT is denoted by P(XV |Xpa(V)), where V is a set of one or more nodes in the
DAG; P(XV) is the joint probability distributions over the set of variables XV , and Xpa(V) is the set of
parent variables of XV , i.e., those nodes connected directly to V. The conditional probabilities take
the form P(XV = xV |Xpa(V) = xpa(V)) = z. These probabilities thus define a factorisation of a joint
probability distribution over the variables represented in the DAG, in that the probability distribution
of the BN is the product of the conditional probabilities of each of the variables of a BN conditioned
only on its parents [16]. This feature of BNs means that all marginal prior and posterior probabilities
can be obtained by marginalizing and conditioning, and that knowledge about one or more variables
can be updated as new knowledge or evidence about other variables is acquired [17].

The structure of a BN admits a number of simplifications that can lead to efficiencies in
quantification, interpretation and computation. Examples include d-separation and the existence
of Markov blankets, which are comprised of a node and all the variables that shield it from the rest of
the network (i.e., its parents, children and children’s other parents) (see [18–20]). Moreover, because
they provide a full representation of probability distributions over their variables, they are able to
condition upon any subset of their variables and support any direction of reasoning (see [15,16,20]).
These include: diagnostic reasoning from symptom to cause, following the opposite direction to
network links; predictive reasoning from new information about causes to new beliefs about effects,
following the direction of the network links; and intercausal reasoning about the mutual causes of a
common effect, following a v-structure in the network.

Some of the practical advantages of BNs are that they are suitable for small and incomplete
datasets; that they allow for structural learning; that different sources of knowledge and data types can
be combined; that they can be solved analytically and hence can provide a fast, real-time response to
queries; and that they can be extended to incorporate spatial and temporal dynamic processes [21–23].

3. Linear Pooling Methods for Combining Opinions

A common way in which to combine the probabilities Pi(X) obtained from experts is linear
pooling [24]. In its most general form, the probabilities required are calculated by P(X) = ∑n

i=1 wiPi(X),
where wi are positive weights given to each of the n experts and ∑n

i=1 wi = 1. In this paper, each of the n
experts is given equal weighing since the wayfinding process is a person-specific experience. Since the
purpose of the WBNM was to investigate the factors that influence or impact wayfinding in airports
for all users, each respondent’s experience was considered to be equal in value. Hence, wi = 1/n and
so P(X) = ∑n

i=1 Pi(X)/n.
Prior Linear Pooling (PrLP), the most common pooling method, pools the elicited probabilities

within each node. These probabilities are then propagated through the single network to find the
marginal probabilities for the nodes of interest. Posterior Linear Pooling (PoLP) uses the elicited
probabilities to form a BN for each of the n experts. Pooling is then undertaken at the final node,
or at particular nodes of interest, to obtain the relevant marginal probability distribution. The idea of
PoLP has been around for a while in the BN community, but the authors are unaware of papers that
formalized such approach. In both approaches, pooling is performed just at individual nodes, not
jointly in more nodes: in this way, we are avoiding the general problem that linear pools in multivariate
settings do not preserve, in general, independence.

Advantages and Disadvantages of Linear Pooling Methods for Combining Opinions

Each method, of course, has its advantages and disadvantages. The first difference is the number
of steps required to get to the stage where the final marginal probabilities of the nodes in the BN can
be found. As shown in Figure 2, PrLP only requires three steps before information about the marginal
probabilities can be obtained. This differs from PoLP, which requires an extra step to obtain marginal
probability information about the nodes of interest. This is because the latter method requires n BNs
(where n is the number of experts) to be formed before it can be used.
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Figure 2. The steps involved in the expert opinion combination methods used.

PrLP allows the single BN, which contains the pooled opinions at each state, to be used straight
away for diagnostic, predictive, and intercausal [15] reasoning. It also allows the updating of
information in the BN to be done quickly, which is one of the advantages of using BNs. The number
of BNs required for each method makes the model reasoning a more cumbersome process for PoLP.
Reasoning and information updating with this method needs to be done for each BN, and then the
pooling method is applied. Depending on the number of updates, reasoning types, and BNs, this could
become a time-consuming task. A list of advantages and disadvantages for each method is shown in
Table 1. Further discussion of the issues raised in the table is deferred to Section 6.

To investigate the impact of the different methods on the outcome of a BN, and to see if behaviors
of subgroups of different groups of respondents can be found as a result of using the different methods,
they are applied here to an existing BN, the Wayfinding Bayesian Network Model [12].

Table 1. Advantages and disadvantages of using Prior Linear Pooling and Posterior Linear Pooling for
combining the opinions of multiple experts.

Method Advantages Disadvantages

Prior Linear
Pooling (PrLP)

· Smaller number of steps are
required to obtain marginal
probabilities of interest.
· Having only one BN makes
updating information easier and
more timely.
· Diagnostic, predictive, and
intercausal reasoning are easier to
undertake.

· Pooling, when used with BNs do
not follow a coherent probability
model [25].
· Since each of the probabilities given
by the experts are pooled within
each entry of the CPT, the resulting
averages are not a reflection of what
was originally given by the expert
for that entry, and so the conditional
independence structure is lost.

Posterior Linear
Pooling (PoLP)

· The conditional independence
structure of the BN is maintained.

·More steps are required in order to
obtain the marginal probabilities of
interest.
· Updating information can be
time consuming if there are a large
number of experts, and hence BNs.
· Diagnostic, predictive, and
intercausal reasoning is also time
consuming if there are a large
number of experts. This is because
each individual BN must be
modified and then pooling once
again done to obtain the marginal
probabilities of interest.
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4. The Wayfinding Bayesian Network Model

The Wayfinding Bayesian Network Model (WBNM) [12] was developed to investigate the factors that
influence effective wayfinding in airports. The model brings together two factors required for wayfinding:
human and environmental. Previous research had been split into these two district streams: human
factors such as cognition, memory and spatial recognition were investigated by cognitive scientists [26–31];
environmental factors such as the number of sight lines and visual connectivity between activity centres
were modelled using mathematical measures such as the Visibility Index (VI) [32–34] and inter-connection
density (ICD) [35]. The WBNM was applied to the airport setting to investigate the factors that contributed
to effective wayfinding in airports. Of particular interest to this paper is that the WBNM was quantified
using expert opinion, obtained through a series of surveys. This makes it an ideal BN to investigate the
impact of different methods of combining opinions from multiple experts, the behaviors of groups of
people, and how the PrLP and PoLP may be able to capture these differences.

The WBNM [12] shown in Figure 1 contains 49 nodes and 58 connections. This BN was used to
investigate the factors that influence effective wayfinding in an airport. This model brought together the
human and environmental aspects of wayfinding into one model. Previous wayfinding research was
split into investigating the human factors involved in wayfinding such as memory, cognitive mapping,
spatial recognition, and information processing [26–28] or by using index measures that were heavily reliant
on the environmental factors associated with the process. These measures included the Inter-Connection
Density, which measures the complexity of a floor plan [35], and the Visibility Index, which gives a measure
of the ease of wayfinding to the value of available sight lines in an environment [32–34].

The development of the model was undertaken with the feedback from focus groups comprised of a
multi-disciplinary team with varying levels of air travel and airport experience, a thorough review of the
current wayfinding research [36], and feedback from airport operators and BN modelers [12]. The model
was quantified using a combination of data obtained from focus groups, wayfinding literature, and an online
survey. The online survey was redeployed and the 99 responses are what will be used in this case study.

5. Case Study: Linear Pooling Methods and the Wayfinding Bayesian Network Model

To make the evaluation of the Linear Pooling methods easier, a subset of the nodes from the
WBNM were chosen. The nodes chosen were Communication, Environmental Factors, Human Factors,
Navigation Pathway, Visual Elements of Communication, and Wayfinding. The definition and the states
for these nodes are shown in Table 2 [36]. Communication, Navigation Pathway, and Visual Elements of
Communication were chosen for the number of parents that they have, as well as their interest for airport
operators. The other nodes were chosen as they are nodes of interest for the wayfinding problem. The
subgroups of interest chosen are Gender (Female, Male), Travel Experience (Experienced, Inexperienced),
and Travel Purpose (Business, Personal).

Table 2. The six nodes of interest, their definitions and respective states, as found in Farr et al. [36].

Node Description States

Communication The effectiveness of communication in the airport terminal Effective, Ineffective

Environmental
Factors

The level of the environmental factors such as terminal
design and navigation pathway complexity that contribute
to effective wayfinding in airport terminals

Good, Bad

Human Factors The level of the human factors such as spatial anxiety
and cognitive and spatial skills that contribute to effective
wayfinding in airport terminals

Good, Bad

Navigation
Pathway

The complexity of the navigation pathway that a passenger
must traverse in order to reach a desired destination in the
airport terminal

Simple, Complex

Visual Elements of
Communication

The quality of the visual elements of communication in the
airport terminal

Good, Bad

Wayfinding The effectiveness of wayfinding in the airport terminal Effective, Ineffective
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5.1. Prior Linear Pooling (PrLP)

Using Prior Linear Pooling, the elicited probabilities from the 99 experts were pooled and entered
into the CPTs for each node of the WBNM. The resulting marginal probabilities for the six nodes of interest
showed that there is no change in the marginal probabilities for Communication, Environmental Factors,
Navigation Pathway, and Visual Elements of Communication across the three subgroups of interest when
compared with the results from the full model. This is due to the structure of the network as these nodes
are not immediate parents or children of any of the nodes associated with the subgroups of interest.
The remaining nodes, Human Factors and Wayfinding, were found to be heavily effected by Gender and
Travel Experience. The impact of Gender (particularly Females) is higher on Human Factors, whereas Travel
Experience (particularly Inexperienced) has a higher impact on Wayfinding effectiveness. Table 3 shows the
marginal probabilities for Human Factors and Wayfinding, with the first row, ‘All’, showing the results
from compiling the BN. The probabilities in the remaining rows are found by changing the states of the
subgroups of interest. This kind of model interrogation is a strength of BNs and is easy to do. Using this
strength, the four possible combinations of Gender and Experience were used and propagated through
the network. It was found that Inexperienced Female travelers caused the greatest change in the marginal
probabilities for Human Factors and Wayfinding than any of the other combinations (Table 4).

Table 3. The marginal probabilities for the Human Factors and Wayfinding nodes, using Prior Linear
Pooling, for the full network and the three subgroups Gender (Female, Male), Travel Purpose (Business,
Personal), and Travel Experience (Experienced, Inexperienced). Since the nodes have binary states,
the probability for one state per node is shown.

Group Human Factors Good Wayfinding Effective

All 0.8033 0.8057
Female 0.7790 0.7876
Male 0.8369 0.8305

Business 0.8033 0.8057
Personal 0.8033 0.8057

Experienced 0.8135 0.8132
Inexperienced 0.7458 0.7683

Table 4. The marginal probabilities for Human Factors and Wayfinding for the full BN, as well as for
combinations of the subgroups Gender and Travel Experience. The absolute value of the differences
between the full model and each subgroup is shown in the square brackets.

Good Human Factors Effective Wayfinding

All 0.8033 0.8057
Female, Experienced 0.7880 [0.0153] 0.7943 [0.0114]

Female, Inexperienced 0.7282 [0.0751] 0.7500 [0.0557]
Male, Experienced 0.8487 [0.0454] 0.8393 [0.0336]

Male, Inexperienced 0.7701 [0.0332] 0.7810 [0.0247]

Another strength of BNs is their ability to provide full representations of probability distributions
over the nodes in the network meaning that they can be conditioned upon any subset of the nodes in
the network. This allows any direction of reasoning to occur [15]. Since a single BN is used in Prior
Linear Pooling, different kinds of reasoning are able to be completed quickly and easily. For example,
diagnostic reasoning, that is, reasoning from symptom to cause can be performed if, for example,
Wayfinding observed to be 100% effective. In this situation, the Effective state on the Wayfinding node
would be set to 100%, the other nodes of interest would update, and the updated marginal probabilities
can be found. Investigating this diagnostic reasoning on the three subgroups of interest shows that, in
order to obtain this situation, Good Human Factors need to increase by 0.1337 for Females, 0.1554 for
Males, 0.1487 for Experienced travelers, 0.1267 for Inexperienced travelers, and 0.1454 for Business and
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Personal travel. The change required in Human Factors is an order of magnitude larger than the change
required for any of the other nodes (Table 5). It can be argued that this may be the case since Human
Factors is a parent node to Wayfinding; however, this argument does not explain why Environmental
Factors, which is also a parent node, does not result in the same increase. This result indicates that, in
order for Wayfinding to be 100% effective, a large increase in good Human Factors is required.

Table 5. Marginal probabilities for diagnostic reasoning for the WBNM. Changes in the nodes of
interest are shown when the Wayfinding node is set to be 100% effective. The absolute value of the
differences between the full model and each subgroup is shown in the square brackets. The comparison
shown is made between the full model with the Wayfinding node at 100% Good, and then each node
chosen at 100% for each subsequent subgroup.

Group
Communication Environmental Human Navigation Visual Elements of

Effective Factors Good Factors Good Pathway Simple Communication Good

Full network 0.8115 0.7697 0.8033 0.6893 0.7087
Female 0.8183 [0.0068] 0.7931 [0.0234] 0.9410 [0.1377] 0.6941 [0.0048] 0.7114 [0.0027]
Male 0.8239 [0.0012] 0.7901 [0.0020] 0.9587 [0.1554] 0.6935 [0.0042] 0.7137 [0.0050]

Business 0.8207 [0.0092] 0.7918 [0.0021] 0.9487 [0.1454] 0.6939 [0.0046] 0.7124 [0.0037]
Personal 0.8207 [0.0092] 0.7918 [0.0021] 0.9487 [0.1454] 0.6939 [0.0046] 0.7124 [0.0037]

Experienced 0.8201 [0.0086] 0.7947 [0.0022] 0.9518 [0.1485] 0.6937 [0.0044] 0.7121 [0.0034]
Inexperienced 0.8246 [0.0013] 0.7947 [0.0025] 0.9300 [0.1267] 0.6945 [0.0052] 0.7139 [0.0052]

Using PrLP for combining expert opinions for use in BNs is convenient, as the single BN used
allows for model interrogation, scenario testing, reasoning, and what-if analysis to be undertaken
quickly. One disadvantage of this method that has not previously been mentioned is that information
regarding the basic descriptive statistics of the responses for each probability is ignored. This type of
information may provide useful information for inference, and may provide additional information on
subgroups of interest. Posterior Linear Pooling is a method that may be able to capture this information.

5.2. Posterior Linear Pooling (PoLP)

PoLP develops a BN for each expert and then pools the resulting marginal probabilities at
particular nodes of interest. In order to investigate the impact of this pooling method on the WBNM
and in particular the nodes of interest, posterior pooling was first run on the full network. That is,
the 99 BNs obtained from the survey responses were propagated individually and the results pooled
at the six nodes of interest, with the resulting marginal probabilities noted for each of these nodes.
The process was then repeated for each subgroup. The number for each subgroup were 46 Females,
53 Males, 32 travelers whose travel purpose was Business, 67 travelers whose travel purpose was
Personal, 85 Experienced travelers, and 14 Inexperienced travelers.

The marginal probabilities for the full network for the nodes of interest and the corresponding
marginal probabilities for each of the subgroups are shown in Table 6. It can be seen that there are
differences between and within each subgroup when compared with the results from the full model
for each of the nodes of interest. The absolute difference between the results of the full model and each
subgroup for each node of interest can be seen in the square brackets of the same table. The nodes of
interest whose marginal probabilities had the largest difference were Human Factors and Wayfinding.
This supports the earlier results from the PrLP analysis of the same BN. Interestingly, PrLP shows that the
subgroup Inexperienced had the largest difference in marginal probabilities across the six nodes of interest.

Since PoLP provides n BNs (where n is the number of respondents) before pooling occurs, it is
possible to investigate the spread of the responses for each subgroup. Figure 3 shows the mean
and standard deviation bars for the entire response group and for each subgroup of interest, for the
six nodes of interest. The node with the largest standard deviation across all subgroups was Human
Factors. Interestingly, the spread in this node is consistent across all subgroups for all the respondents.
The node with the smallest standard deviation was Environmental Factors, followed by Navigation
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Pathway. This may be due to the fact that, while the factors associated with the environment of an
airport are important, a greater importance is placed on Human Factors. In addition, perhaps most
travelers have the same level of expectation of what the environmental factors in an airport should be.
The mean for Human Factors is visibly different across all subgroups and to the mean for all responses
for the node. This is different from the mean responses for each subgroup across the other nodes,
which look to be consistent with the mean of all the responses for each respective node. From Figure 3,
the Wayfinding node, which looks to have a consistent mean across all subgroups, is the only node
where the standard deviation bars do not have the same length.

Table 6. The marginal probabilities for the six nodes of interest, using Posterior Linear Pooling, for the
full network and the three subgroups Gender (Female, Male), Travel Purpose (Business, Personal), and
Travel Experience (Experienced, Inexperienced). The absolute value of the differences between the
full model and each subgroup is shown in the square brackets. Since the nodes have binary states, the
probabilities for one state per node is shown.

Group
Communication Environmental Human Navigation Visual Elements of Wayfinding

Effective Factors Good Factors Good Pathway Simple Communication Good Effective

All 0.7415 0.7672 0.7082 0.6509 0.8188 0.7517
Female 0.7430 [0.0014] 0.7680 [0.0007] 0.7400 [0.0318] 0.6524 [0.0015] 0.8194 [0.0006] 0.7546 [0.0029]
Male 0.7403 [0.0012] 0.7666 [0.0006] 0.6811 [0.0270] 0.6495 [0.0013] 0.8182 [0.0005] 0.7492 [0.0024]

Business 0.7413 [0.0002] 0.7674 [0.0001] 0.6698 [0.0383] 0.6517 [0.0008] 0.8206 [0.0018] 0.7585 [0.0067]
Personal 0.7416 [0.0001] 0.7672 [0.00006] 0.7247 [0.0164] 0.6505 [0.0003] 0.8180 [0.0007] 0.7488 [0.0029]

Experienced 0.7363 [0.0052] 0.7666 [0.0006] 0.7006 [0.0076] 0.6503 [0.0005] 0.8180 [0.0007] 0.7485 [0.0031]
Inexperienced 0.7690 [0.0274] 0.7705 [0.0032] 0.7482 [0.0399] 0.6537 [0.0028] 0.8230 [0.0041] 0.7683 [0.0165]

Figure 3. Mean and Standard Deviation bar plots for the subgroups Gender, Travel Purpose, and Travel
Experience, grouped for each node of interest.
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Since Human Factors had the most spread and varying mean, a histogram of the responses
from each subgroup for this node was plotted. Figure 4 shows that the distribution of responses
are approximately normal with most of the responses centred around 0.7–0.8, across all subgroups,
and with a spread from 0.2 to 1.0. A similar set of plots (Figure 5) for Wayfinding shows a similar
distribution behavior across all subgroups, with the exception of Inexperienced Traveler. The range of
responses is less consistent, ranging from 0.6 to 1.0 for Female, Business Travel, and Inexperienced Traveler
and 0.3–1.0 for Male, Personal Travel, and Experienced Traveler. This may explain the varying standard
deviation bars for this node, as seen in Figure 3.

Figure 4. Histograms of the responses from the subgroups of interest for the node Human Factors, in
the state Good.

To further investigate the responses given by the subgroups for each node of interest, boxplots
were constructed. Figure 6 shows the spread of responses for the six nodes of interest, with the widest
spread associated with Human Factors followed by Wayfinding. Environmental Factors and Navigation
Pathway has the narrowest spread of responses. By deconstructing these results and grouping the
results for each subgroup, as shown in Figure 7, it can be seen that Inexperienced travelers reported
higher probabilities of Good Environmental Factors and Effective Communication in order to effectively
find their way around an airport. It is also worth noting that the spread of responses by these travelers
was much narrower for the other nodes when compared to the other subgroups. The spread of
responses for Effective Wayfinding, Good Visual Elements of Communication and Simple Navigation Pathway
was generally similar across all subgroups; however, it was much narrower for the Inexperienced
subgroup. Interestingly, the Females, Personal, and Inexperienced groups required Human Factors to be
higher for the same level of Wayfinding. Conversely, it can be seen that those in the Males, Business
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and Experienced groups have a narrower range for Human Factors for the same level of Wayfinding
effectiveness to occur.

Figure 5. Histograms of the responses from the subgroups of interest for the node Wayfinding, in the
state Effective.

Figure 6. Boxplot showing the spread of responses for the six nodes of interest. For simplicity, only one
state per node is shown since the states are binary.

The data from the BNs were organized into the eight possible combinations for the three subgroups
to see what impact these combinations had on the nodes of interest. Based on the observations from
Figure 7, plots for Female, Personal, Inexperienced and Male, Business, Experienced were generated
(Figure 8). Both subgroup combinations placed the lowest importance on the part that the complexity
of the Navigation Pathway in an airport plays in having an impact on their ability to find their way
around an airport effectively. For the Female, Personal, Inexperienced group, this importance is placed
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on the level of Human Factors, whereas the Male, Business, Experienced group placed this importance
on the effectiveness of the Visual Elements of Communication. Both subgroups had a very small spread
of responses for Environmental Factors. Interestingly, the spread of responses for Wayfinding was
quite different for both subgroups with the Males, Business, Experienced group having a wider spread
in responses.

Figure 7. Boxplots of the probabilities for each node of interest, grouped per subgroup.

Figure 8. Boxplots showing the spread of responses for each node of interest for Female, Inexperienced
Travelers on Personal Travel, and for Experienced Male Travelers traveling for Business. For simplicity,
only one state per node is shown since the states are binary.
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6. Conclusions

As discussed and shown in the previous sections, prior and posterior pooling have both
advantages and disadvantages. Here, we summarise these, especially in the interest of those who
should choose between them in practical situations.

PrLP is the fastest way to undertake the analysis of a BN because the expert opinions are pooled
and placed into a single BN. Because of this, diagnostic and predictive reasoning, scenario testing,
and what-if analysis are easier to undertake. Additionally, processes like sensitivity analyses are easy
to perform, as there is only one BN to contend with and the popular BN software can do this easily.
Disadvantages of this method are that the resulting BN does not follow a coherent probability model,
in the sense that one can think of each expert’s assessment as his/her estimator of the probability
based on his/her own model, whereas no such model is behind the estimator obtained when pooling
the opinions. Practically, since the probabilities given by each expert are pooled within each entry in
the CPT, these probabilities are not a reflection of the information that was originally obtained from
the expert. As such, the conditional independence structure of the network is lost. This issue could
be addressed to some extent by undertaking a validation process similar to that proposed by [37].
This approach is based on psychometric testing and includes nomological, face, content, concurrent,
predictive, convergent and discriminant validity. A network model that passes all seven tests can be
deemed to be empirically coherent.

Another disadvantage of the PrLP method is that information regarding the descriptive statistics
for the responses provided, particularly if responses of subgroups are of interest, can not be easily
obtained. Gaining information on the spread, distribution and mean of the responses from subgroups
is difficult. PoLP, on the other hand, is able to provide this kind of information.

Posterior Linear Pooling can provide valuable information about the responses from experts.
As has been shown, information regarding the mean, standard deviation, and the spread of subgroup
responses to the nodes of interest can be obtained when using PoLP. This analysis can show behaviors
from the subgroups that may not be as obvious if PrLP is being used. Additionally, this method ensures
that the conditional independence structure of the BN is maintained since pooling occurs at the ‘end’
of the process. Of course, the main disadvantage to PoLP comes from having to construct a BN for
each expert. Posterior Linear Pooling is more time consuming as it requires the handling of every BN
in the problem, which in this case study was 99 BNs. If there is a large number of BNs involved, it
will take more time to update the information in the network, undertake predictive and diagnostic
reasoning, and investigate scenario and what-if analyses. A similar computational problem arises
when the number of nodes in the BN increases. Notwithstanding this, the additional steps of the PoLP
method and the associated computational burden may not be too onerous since polynomial inference
algorithms only impose an additional O(n) factor in the computational complexity. Moreover, parallel
programming with associated automatic updating can reduce the burden on the reasoning steps.

Regarding the application of these methods to the WBNM, both PrLP and PoLP found that Gender
and Travel Experience have the greatest impact on Human Factors and Wayfinding. PoLP was also able to
show that the combination of Female, Personal, Inexperienced travelers placed the greatest importance
on Human Factors, whereas Male, Business, Experienced placed more importance on Visual Elements
of Communication. Inexperienced travelers were also found to require higher probabilities of Effective
Communication and Good Environmental Factors in order to easily find their way around the airport.
This, of course, is not a surprising result. Of the six nodes of interest, the complexity of the Navigation
Pathway was one that was not important to the subgroups investigated.

This investigation has some implications for airport operators, which back up the results found by
Farr et al. [12]. That is, Human Factors have a large impact on effective wayfinding in airports, more so
than the other nodes that were investigated in this paper. This means that the airport environment has
to be designed to allow human factors to be ‘Good’. Additionally, the catering to the Inexperienced
Traveler has to be a consideration. As shown, this subgroup is the one that has the largest difference in
outcomes across all the nodes of interest that were investigated. Examples of how airports can cater to
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inexperienced travelers could include providing airport and travel process information online, and at
the time of booking.
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