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Background 

Wheat crown rot, occurring in many arid and semi-arid cropping regions around the globe can be 
responsible for up to a 40% yield reduction under conducive conditions.  In severe cases this disease 
can lead to necrosis of the stem, limiting grain production.  The lack of readily discernible visible 
symptoms until late in the season with the appearance of white heads causes delays in production 
decision making, potentially tying up resources in areas where productivity will be low.  
Improvements in disease identification, rapid phenotyping, and decision making, will help growers 
remain profitable and operations sustainable.   

Currently, crown rot assessment involves physical removal of the plant from the soil followed by 
removal of the leaf sheaths around the lower internodes and colour assessment by a trained rater.  
This process is time consuming, difficult to use on a large scale and prone to variation due to human 
bias and significant environment/pathogen interactions.  A machine vision-based system can be 
used to rapidly assess disease incidence and severity with high repeatability with the exclusion of 
this bias. 

A series of experiments were undertaken in glasshouse and field trials in Southern Queensland from 
2017 to 2019.  These experiments evaluated the ability of non-invasive near infrared crop sensors 
and machine learning methods to detect and quantify Fusarium pseudograminearum in bread 
wheat. 

This project aims to determine the potential of a machine sensing system to identify and quantify 
crown rot in wheat utilising unique signatures obtained from the near infrared spectrum and 
analysed using machine learning techniques.  The goal is a robust system for use across cropping 
environments for rapid assessment and phenotyping of crown rot reducing labour and time costs for 
plant breeders allowing for resistant material to become available to growers more quickly.  Direct 
grower benefits include increasing operation profits by freeing up resources from diseased crops for 
use in increasing yield in other areas of operations. 
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Call to action/take home messages 

• Non-destructive sensing enables automated detection of crown rot that previously could 
only be detected manually.  

• Machine learning models enhance classification results over traditional analysis techniques.  

• Machine learning based, near infrared sensing has potential to be deployed as a handheld or 
drone-based tool for both paddock level disease detection and phenotyping. 

• Embracing new sensing technologies enables rapid management decisions to maximise 
profit by applying inputs where most profitable. 

 



Methods 

Glasshouse trials were conducted at QDAF and USQ facilities in Toowoomba, QLD.  In 2018 and 
2019, five bread wheat genotypes were observed under positive or null, inoculation with F. 
pseudograminearum colonised wheat grain (Percy et al, 2012).  Each treatment was replicated 6 
times. Pots in the glasshouse trials were configured in randomised block designs and watered to field 
capacity as required.  The temperature was maintained at 20-25 degrees Celsius. Inoculum was 
applied individually to coleoptiles of each plant at the two-leaf stage.   

Two field trials were conducted at the Tosari research station (-27.859964, 151.452766), planted in 
June of 2018 and 2019. Paired, inoculated and non-inoculated 6m x 2m plots were arranged in a 
strip plot design in a randomised block with three replications. F. pseudograminearum colonised 
millet inoculum was applied into the furrow above the seed at planting. Six randomly selected plants 
from each plot were chosen, corresponding to each of the five genotypes in the glasshouse trials. 

Measurements were taken using the near infrared point sensor with a sensitivity of 900–1700 nm 
once a week throughout the growing season for nine weeks, from three weeks post inoculation.  
Technical issues caused week 8 in the glasshouse 2 trial to be lost.  The maximum separation 
between all other measurement dates is 8 days.  Readings were collected from the center of the 
newest emerged tiller, the leaf determined to be center-most and the youngest flag leaf.  Calibration 
reflectance measurements were gathered from a 10% grey, a 60% grey and a 99% white reference 
Spectralon® panel. 

Observed plants in both sets of trials were pulled at maturity and scored manually at the Centre for 
Crop Health for the presence and severity of F. pseudogramearum induced crown rot.   

Machine learning techniques including linear regression, clustering techniques and neural nets were 
evaluated for effectiveness in discriminating and quantifying F. pseudograminearum induced crown 
rot in bread wheat.  All analysis and model creation was performed in the Python computing 
environment (Python version 3.6.8; Python Software Foundation, 2019), using the SciPy ecosystem 
(Jones & Peterson, 2016) and the Scikit-learn library (Pedregosa et al., 2011).   

 

Results and discussion 

Machine learning models where compared for the ability to accurately discriminate crown rot at 
different timepoints from inoculation. The results show crown rot detection ability with accuracies 
ranging from 55–100%. The top performing model, of the machine learning algorithms tested, was 
an artificial neural network classifier (ANN), which performed with an accuracy of up to 100.00% 
under optimal glasshouse conditions (Figure 1). The lower classification accuracies observed in the 
field trials may be due to low levels of disease, particularly in genotypes with some resistance.  
Further analysis is being completed to determine the impact of false positives.  Differences between 
the waveform signatures of inoculated and uninoculated treatments indicate that this sensing 
approach has potential to be scaled to a camera-based system for use on remote sensing platforms 
(i.e. UAVs). Further work has been conducted and analysis is currently underway to better 
understand the viability of such an approach, which is an important step towards large-scale, 
automated disease discrimination. 
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Figure 1: Average classification accuracies of crown rot detection (+ or -) of an optimised artificial 
neural network for nine weeks, from three weeks post inoculation. 

 

Early detection of crown rot is crucial to optimise operation profits by enabling growers to reduce 
inputs on affected properties (i.e. foliar N) and plan future rotations and management strategies.  
Estimated potential annual yield loss from F. pseudogramearum is 22.2% (Murray & Brennan, 2009).  
With an estimated cost of nitrogen at $66.25–$71.11 /Ha, dependent upon utilised product, 
potential savings of excess inputs can be estimated at between $2.92 (0.044*$66.25) and $15.79 /Ha 
(0.222*$71.11) if F. pseudogramearum presence is detected early (Doyle, 2013).  The results of the 
near infrared-based, machine learning models show detection capability at three weeks post 
inoculation, allowing time to make these production decisions. 

Additional benefits exist to plant breeders and researchers which provide further, indirect, benefits 
to growers.  Rapid phenotypic assessment of crown rot may allow for reduced sunk costs for plant 
breeders allowing for resistant lines to be released to growers in less time.   

Summary 

Near infrared technology provides non-destructive disease sensing enabling rapid, automated 
detection of crown rot that previously could only be detected manually, through destructive 
methods.  Embracing these new non-invasive sensing technologies may enable rapid management 
decisions to maximise profit by optimising input timing and restricting input application to the areas 
where the highest return on investment can be expected.  The adoption of near infrared sensing by 
plant breeders may provide tools to more rapidly release resistant lines, further indirectly benefiting 
growers. This technology has the potential to be deployed as a handheld or drone-based sensor for 
rapid characterisation of paddock disease levels. 
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