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Abstract: This work aims to develop a novel convolutional neural network (CNN) named ResNet50* 
to detect various gastrointestinal diseases using a new ResNet50*-based deep feature engineering 
model with endoscopy images. The novelty of this work is the development of ResNet50*, a new 
variant of the ResNet model, featuring convolution-based residual blocks and a pooling-based at-
tention mechanism similar to PoolFormer. Using ResNet50*, a gastrointestinal image dataset was 
trained, and an explainable deep feature engineering (DFE) model was developed. This DFE model 
comprises four primary stages: (i) feature extraction, (ii) iterative feature selection, (iii) classification 
using shallow classifiers, and (iv) information fusion. The DFE model is self-organizing, producing 
14 different outcomes (8 classifier-specific and 6 voted) and selecting the most effective result as the 
final decision. During feature extraction, heatmaps are identified using gradient-weighted class ac-
tivation mapping (Grad-CAM) with features derived from these regions via the final global average 
pooling layer of the pretrained ResNet50*. Four iterative feature selectors are employed in the fea-
ture selection stage to obtain distinct feature vectors. The classifiers k-nearest neighbors (kNN) and 
support vector machine (SVM) are used to produce specific outcomes. Iterative majority voting is 
employed in the final stage to obtain voted outcomes using the top result determined by the greedy 
algorithm based on classification accuracy. The presented ResNet50* was trained on an augmented 
version of the Kvasir dataset, and its performance was tested using Kvasir, Kvasir version 2, and 
wireless capsule endoscopy (WCE) curated colon disease image datasets. Our proposed ResNet50* 
model demonstrated a classification accuracy of more than 92% for all three datasets and a remark-
able 99.13% accuracy for the WCE dataset. These findings affirm the superior classification ability 
of the ResNet50* model and confirm the generalizability of the developed architecture, showing 
consistent performance across all three distinct datasets. 
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1. Introduction 
The gastrointestinal (GI) system is the digestive system, which contains organs and 

tissues responsible for digestion, absorption of nutrients, and elimination of waste from 
the body [1,2]. The first organ of the GI system is the mouth, and it concludes with the 
expulsion of feces from the anus [3]. Each organ in the GI system has its specific function: 
the mouth initiates digestion through mechanical and chemical processes; acidic gastric 
juices in the stomach break down food and prepare it for the small intestine. The large 
intestine absorbs beneficial fluids from the food, delivers waste to the anus via feces, and 
expels waste [4]. The GI system is prone to various diseases [5], and advanced technolo-
gies have been employed in recent years for their automated diagnosis [6–9]. With the 
emergence of advanced imaging technologies like endoscopy and colonoscopy, a vast 
amount of GI images related to the GI have been developed [10]. Artificial intelligence 
(AI)-based classification systems contribute to developing automatic classification models 
using these images [11,12]. These AI-supported systems are used to identify patterns and 
abnormalities in gastrointestinal images, ranging from polyps to ulcers, tumors to lesions, 
with high accuracy and efficiency. Training on extensive datasets of annotated GI images 
enables these systems to visualize subtle visual structures in various GI conditions, facili-
tating early detection and intervention [13]. Additionally, AI-supported GI image classifi-
cation aims to streamline the diagnostic process, reduce the burden on healthcare provid-
ers, and thus improve patient outcomes through timely and accurate medical interven-
tions [14]. 

1.1. Literature Review 
There are various AI-based systems developed for the detection of different diseases 

in the literature [15–18]. The AI methods used to detect GI diseases are presented in this 
section. Caroppo et al. [19] introduced deep transfer learning approaches for bleeding de-
tection in endoscopy images. Their study utilized two benchmark datasets and employed 
a feature selection fusion approach to optimize the feature sets for classification, and they 
achieved accuracy rates of 97.65% and 95.70% on these datasets. Their study demonstrated 
the effectiveness of transfer learning in detecting bleeding lesions using endoscopy im-
ages. Ghosh and Chakareski [20] proposed a novel approach for identifying bleeding in 
endoscopic images. Their study demonstrated significant improvements over existing 
methods and reported a bleeding frame detection F1-score of 98.49% and a bleeding zone 
detection accuracy of 94.42%. Zhang et al. [21] explored deep transfer learning from ordi-
nary to capsule esophagogastroduodenoscopy for image quality control. Using a dataset 
of 62,850 capsules and 17,434 ordinary endoscopy images, the dynamic adversarial adap-
tation network achieved an AUROC of 0.8638 in internal cross-validation and 0.9471 in 
prospective validation, outperforming conventional CNNs and vision transformers 
(ViTs). Lonseko et al. [22] introduced attention-guided CNNs for gastrointestinal disease 
classification in endoscopic images. Their results demonstrated superior performance 
compared with other state-of-the-art models, with mean accuracies reported for various 
models (ResNet50 = 90.28%, GoogLeNet = 91.38%, Dense Convolutional Network (Dense-
Net) = 91.60%, and their baseline model achieving 92.84%). The proposed method 
achieved a precision of 92.8%, recall of 92.7%, F1-score of 92.8%, and overall accuracy of 
93.19%, showcasing the potential of attention-guided networks in medical image analysis 
for GI disease classification. Their attention mechanism enhanced model interpretability 
and classification accuracy, contributing to developing robust computer-aided diagnosis 
systems for GI diseases. He et al. [23] proposed a deep learning-based anatomical site 
classification for upper gastrointestinal endoscopy. By acquiring 5661 esophagogastrodu-
odenoscopy (EGD) images from 229 clinical cases, the research team developed and an-
notated a dataset following a modified guideline that integrates British and Japanese 
standards for endoscopic documentation. Their work focused on accurate anatomical site 
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localization, showcasing the potential of deep learning in facilitating precise lesion locali-
zation and diagnosis. Subedi et al. [24] proposed a hybrid CNN–transformer model to 
enhance the classification of GI, leveraging the strengths of DenseNet201 for local feature 
extraction and the Swin Transformer for global context analysis. Using the GastroVision 
and Kvasir-Capsule datasets, which include endoscopic and video capsule images, the 
model achieved superior performance metrics, with a Matthews Correlation Coefficient 
(MCC) of 0.8191 for the GastroVision dataset and 0.3871 for the Kvasir-Capsule dataset, 
surpassing standalone CNN and Swin Transformer models. Patel et al. [25] developed a 
deep learning-based approach for classifying GI diseases using pre-trained CNNs with 
transfer learning. Their study utilized the Kvasir dataset, comprising 4000 labeled endo-
scopic images across 8 classes, to evaluate the performance of the models. EfficientNetB5 
achieved the highest testing accuracy, 92.58%, with precision, recall, and F1-score all 
reaching 93%. Huo et al. [26] proposed the HiFuse model, a hierarchical multi-scale fea-
ture fusion network designed for medical image classification, addressing challenges like 
intra-class variation and inter-class similarity in medical imaging. Their study utilized 
Kvasir. The HiFuse model achieved high classification performance, with accuracy and 
F1-scores reaching 86.12% and 86.13%, respectively, on Kvasir. 

1.2. Literature Gaps 
Based on our literature review, we have identified several gaps in the research, which 

are summarized below: 
• The current literature employed well-established convolutional neural networks 

(CNNs). Hence, there is a scarcity of innovative CNNs or deep learning models in 
this field. 

• Explainable artificial intelligence (XAI) is a significant branch of machine learning 
that offers insights into the learning of deep learning models. However, in the realm 
of biomedical image classification, there are few XAI models available. This is mainly 
because the existing models focus predominantly on classification results rather than 
providing an understanding of the learning process. 

• The models developed typically employed either deep learning or feature engineer-
ing methodologies but not a combination of both. 

• A majority of the advanced models have been evaluated using only a single dataset, 
which may limit their generalizability to diverse scenarios. 

1.3. Motivation and Study Outline 
This work aims to contribute to deep learning and feature engineering. It is well es-

tablished in the literature that Residual Networks (ResNets) are efficient CNNs, and re-
cently, transformers have emerged as the forefront technology in computer vision [27]. 
This work is focused on developing an effective and explainable model for medical appli-
cations. Self-organized models represent the next wave in machine learning, yet such 
models are scarce in the existing literature. 

Hence, we introduced an enhanced version of ResNet, ResNet50*, which is attention-
based, drawing inspiration from PoolFormer [28]. We have incorporated convolution-
based residual blocks to tackle the issue of vanishing gradients. Using the pretrained Res-
Net50* and Grad-CAM [29], we have segmented the region of interest (ROI) for feature 
extraction, thereby generating meaningful features through XAI. 

We have also developed a self-organized DFE model that utilizes multiple iterative 
feature selectors, various classifiers, and an information fusion approach. This DFE model 
employed ResNet50*, integrating deep learning and feature engineering. The self-orga-
nized nature of the proposed DFE, based on ResNet50*, is the main novelty of this work. 
We have developed this ResNet50* model using three different image datasets. 
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1.4. Novelties and Contributions 
Our proposed model introduces several novel features and significantly contributes 

to the field. The innovations and contributions of the proposed ResNet50* are given below: 
Novelties: 
• We have introduced a novel ResNet50*-based explainable DFE model, which yielded 

the highest classification performance using three datasets. 
• We used three datasets to develop the ResNet50*-based explainable deep feature en-

gineering model. 
Contributions: 
• ResNet models are widely recognized in computer vision. This work proposes a new 

ResNet model, ResNet50*, to improve the classification capabilities of the original 
ResNet50. This model incorporates a convolution-based residual block and a pool-
ing-based attention algorithm. Additionally, we have developed a self-organized 
DFE model based on ResNet50*, which is a significant contribution to both deep 
learning and feature engineering. 

• The proposed DFE model has been rigorously tested using three distinct datasets. 
Our model has demonstrated high classification accuracy across all these image da-
tasets, confirming its effectiveness. Importantly, the proposed DFE model is also ex-
plainable, enhancing its value in practical applications. 

2. Materials and Methods 
2.1. Material 

Three gastrointestinal image (GI) datasets were used: (i) Kvasir, (ii) wireless capsule 
endoscopy (WCE), and (iii) Kvasir v2, containing 8, 4, and 8 classes, respectively. The 
training images from the Kvasir dataset were augmented, and the newly developed Res-
Net50* was trained with this augmented dataset. This augmented dataset was then ap-
plied to obtain a pretrained version of ResNet50*. Using this pretrained ResNet50*, the 
deep feature engineering (DFE) model was developed. Sample images from these datasets 
are shown in Figure 1. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 1. Sample images used in this work. (a) Dyed lifted polyps. (b) Dyed resection margins. (c) 
Esophagitis. (d) Normal cecum. (e) Normal pylorus. (f) Normal z-line. (g) Polyps. (h) Ulcerative 
colitis. 

2.1.1. Kvasir Dataset 
The primary dataset employed in our study is the Kvasir dataset [30,31]. This dataset 

comprises eight distinct classes, and we augmented the training images within this dataset 
to train the pretrained version of ResNet50* to develop an explainable DFE model. The 
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details of the Kvasir dataset, including the different classes and the numbers of training 
and testing images, is presented in Table 1. 

Table 1. Details of the Kvasir dataset. 

No. Class Train Test Total 
1 Dyed lifted polyps 3600 100 3700 
2 Dyed resection margins 3600 100 3700 
3 Esophagitis 3600 100 3700 
4 Normal cecum 3600 100 3700 
5 Normal pylorus 3600 100 3700 
6 Normal z-line 3600 100 3700 
7 Polyps 3600 100 3700 
8 Ulcerative colitis 3600 100 3700 
Total 28,800 800 29,600 

The Kvasir dataset, along with the Kvasir v2 and WCE datasets, are widely used, 
publicly available datasets in the research community for gastrointestinal image analysis. 
In this study, the choice of using 97% of the Kvasir dataset for training and 3% for testing 
is motivated by the need for a large dataset to train the proposed ResNet50*-based DFE 
model, allowing the ResNet50* to be trained robustly and enabling it to learn diverse fea-
tures. The small percentage allocated to the test set allows the study to leverage the high-
quality features extracted by the pretrained ResNet50*. The ResNet50* model used in this 
study is pretrained on the augmented Kvasir dataset. This pretrained ResNet50* model is 
then used to extract features from other datasets (Kvasir v2 and WCE) without requiring 
additional training. The Kvasir v2 dataset, consisting of 8000 images, and the WCE da-
taset, containing 4 balanced image classes, are used to evaluate the generalizability and 
effectiveness of the proposed model. 

2.1.2. WCE Dataset 
The WCE dataset was downloaded from Kaggle [32] and contains four classes : (i) 

normal, (ii) ulcerative colitis, (iii) polyps, and (iv) esophagitis. This dataset is balanced, 
like the Kvasir dataset, and uses the test folder containing 200 images in each class. 

2.1.3. Kvasir Version 2 Dataset 
This dataset is the second version of the Kvasir dataset and contains eight classes, like 

the original Kvasir dataset [33]. There are 8000 images in this dataset, with 1000 images in 
each class. 

2.2. ResNet50* 
A new CNN model named ResNet50*, with an explainable deep feature engineering 

model, is proposed for gastrointestinal disease detection using endoscopic images. The 
small capsule-sized devices known as WCE sensors are equipped with cameras to capture 
detailed images as the capsule passes through the digestive system after being swallowed 
by the patient. These sensors can be transformed into smart sensors when used with Res-
Net50* to diagnose conditions such as ulcers, polyps, and inflammatory diseases like ul-
cerative colitis. The performance of the proposed ResNet50* model depends on the quality 
of the data captured by the sensors. 

The proposed ResNet50* model is likely to yield higher classification performance by 
integrating convolution-based residual blocks and a pooling-based attention mechanism. 
ResNet50 was selected as the foundation for this model because it is a widely used CNN. 
However, with the advent of transformers, which use attention mechanisms, CNNs have 
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been less widely used. To address this gap, a novel mechanism that combines convolu-
tion- and pooling-based attention is introduced. 

We demonstrated how ResNet50* differs from the original ResNet50 [34] in Figure 2, 
using the main blocks of CNN. This highlights the enhancements and innovations that 
ResNet50* brings to the conventional CNN architecture, particularly in terms of attention 
mechanisms. 

 
Figure 2. Block designs for ResNet and ResNet*. F: number of filters. 

Figure 2 depicts the block designs for both ResNet and ResNet*. It is evident from the 
figure that we have implemented a convolution-based residual block in the ResNet* 
blocks. Using these ResNet* blocks, we developed ResNet50*, and its graphical represen-
tation is shown in Figure 3. 
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Figure 3. Graphical demonstration of the proposed ResNet50*. F: number of filters, BN: batch nor-
malization, ReLU: restricted linear unit, Avg. Pool: average pooling, Max Pool: maximum pooling, 
GAP: global average pooling, FC: fully connected. 

Figure 3 illustrates that the proposed model incorporates both average pooling and 
a convolution-based attention mechanism. The average pooling functions as patchify 
blocks, while pixel-wise convolution blocks are used for scaling. 

The pseudocode of the ResNet50* model is given below. 
In the ResNet50* block (see Algorithm 1), shortcuts are enhanced by using the con-

volution-based residual block. In the pooling-based attention layer, the outputs of all 
stages are scaled and added to the feature map creation stage. 

Algorithm 1. Pseudocode of the ResNet50* model. 
Input: Image of size of 224 × 224 × 3 
Output: Class probabilities 
01: Stem Block:   
   Apply 7 × 7 convolution with stride 2, F = 64 
   Apply Batch Normalization (BN) and ReLU 
   Apply 3 × 3 Max Pooling with stride 2 
02: Stage 1: 
   Repeat ResNet* block 3 times with F = 256 
   (Each block contains 1 × 1 convolution, 3 × 3 convolution, 1 × 1 convolution with BN 
and ReLU between layers). 
03: Stage 2:  
   Apply downsampling with stride 2 
   Repeat ResNet* block 4 times with F = 512 
04: Stage 3: 
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   Apply downsampling with stride 2  
   Repeat ResNet* block 6 times with F = 1024 
05: Stage 3: 
   Apply downsampling with stride 2  
   Repeat ResNet* block 3 times with F = 2048 
06: Attention Mechanism with Average Pooling and Scaling, 
   For each stage output (1–4):  
   Apply average pooling with appropriate size (8 × 8 for Stage 1, 4 × 4 for Stage 2, 2 × 2 
for Stage 3, 1 × 1 for Stage 4)  
   Use 1 × 1 convolution to match the channel dimensions (2048)  
   Apply Sigmoid activation for scaling 
07: Final Layers: 
   Apply Batch Normalization and ReLU  
   Apply Global Average Pooling (GAP)  
   Fully Connected (FC) layer for classification  
   Softmax activation for output 

Overall, ResNet50* is designed to improve the capabilities of ResNet50, particularly 
addressing the limitations related to attention mechanisms found in transformers. Res-
Net50* aims to deliver superior classification performance in various computer vision 
tasks by integrating convolution-based attention with pooling mechanisms. 

3. The Presented Deep Feature Engineering Model Based on ResNet50* 
The second model we proposed is an explainable self-organized deep feature engi-

neering (DFE) model. This model aims to achieve high test classification performance. The 
DFE model encompasses four main phases: (i) deep feature extraction using Grad-CAM 
and the global average pooling (GAP) layer of the pretrained ResNet50*, (ii) feature selec-
tion with four iterative feature selectors, (iii) classification using kNN [35] and SVM [36] 
classifiers, and (iv) information fusion. 

In the first phase, the pretrained ResNet50* is employed to identify regions of interest 
(ROIs) in images. Grad-CAM is applied to create a heatmap for each image, which helps 
segment the ROI. Features are then extracted from this segmented area using the GAP 
layer of the pretrained ResNet50*, resulting in feature vectors of length 2048. 

During the feature selection phase, four iterative feature selectors are utilized: (i) It-
erative Neighborhood Component Analysis (INCA) [37], (ii) Iterative Chi-squared (IChi2) 
[38], (iii) Iterative Minimum Redundancy Maximum Relevance (ImRMR) [39], and (iv) 
Iterative ReliefF (IRF) [40]. These selectors help to generate four distinct sets of selected 
feature vectors. 

For classification, the selected feature vectors are processed using kNN and SVM 
classifiers, producing a total of 8 (=4 × 2) classifier-based outcomes. 

In the information fusion phase, iterative majority voting (IMV) [41] creates an addi-
tional 6 voted outcomes, resulting in a total of 14 (8 + 6) outcomes. The best outcome is 
then selected through a greedy algorithm. 

A schematic diagram of the proposed DFE model is presented in Figure 4. 
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Figure 4. Graphical overview of the proposed ResNet50*-based DFE model. Here, f: selected fea-
ture vector, c: classifier-based outcome, v: voted outcome. 

To better explain the proposed model, we present the steps of the presented DFE 
model. 

Step 1: Train the ResNet50* by deploying training images of the Kvasir image dataset 
and obtain the pretrained ResNet50*. 

Step 2: Load test images. 
Step 3: Apply Grad-CAM to each test image and generate a heatmap. 
Step 4: Segment the hot areas of the image. In this step, we use the read areas as ROI, 

and the features are extracted from these areas. 
Step 5: Extract deep features by deploying the GAP layer of the pretrained ResNet50*. 
The five steps above have been defined as the proposed explainable deep feature ex-

traction phase of the proposed ResNet50*-based DFE model. The feature selection steps 
are defined below. 

Step 6: Select the most informative features by deploying iterative feature selectors. 
These feature selectors are (i) INCA, (ii) IChi2, (iii) ImRMR, and (iv) IRF. We have used an 
iterative feature selection structure, and the pseudocode of the iterative feature selection 
is explained in Algorithm 2. 

Algorithm 2. Iterative feature selection 
Input: Feature matrix (𝑋𝑋), actual output (𝑦𝑦), the used feature selector (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(. , . )), the used 
loss value generator (ℒ(. , . )).  
Output: The selected feature vector (𝑓𝑓). 
01: 𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑋𝑋, 𝑦𝑦); //Here, 𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖 is the qualified indices of the feature matrix. 
//Generate the qualified indices of the features by deploying the used feature selection 
function. 
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02: for i = 0 to 𝑓𝑓𝑓𝑓 − 𝑓𝑓𝑓𝑓 do//Select features iteratively. Herein, sv: start value, fv: finite 
value. 
03:      for j = 1 to 𝑓𝑓𝑓𝑓 + 𝑖𝑖 do 
04:           𝑓𝑓𝑓𝑓(: , 𝑗𝑗) = 𝑋𝑋(: , 𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖(𝑗𝑗));  
05:      end for j 
06:      𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓(𝑖𝑖 + 1) =  ℒ(𝑓𝑓𝑓𝑓,𝑦𝑦); //Calculate loss values of the each selected feature vec-
tor. 
07:      𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑖𝑖(𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓); //Compute id of the minimum loss value. 
08: end for i 
09: for k = 1 to 𝑓𝑓𝑓𝑓 + 𝑖𝑖𝑖𝑖 − 1 do 
10:      𝑓𝑓(: , 𝑘𝑘) = 𝑋𝑋(: , 𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖(𝑘𝑘)); //Create the final feature vector. 
11: end for k 

As seen from Algorithm 2, iterative feature selectors are used differently to select the 
best-selected feature vectors. 

Step 7: Classify the selected four feature vectors by deploying kNN and SVM. The 
first four classifier-based outcomes are generated by deploying the kNN classifier, and the 
remaining four outcomes are created by the SVM classifier. Therefore, 8 classifier-based 
outcomes are created in this step. For each feature vector, classification is performed using 
kNN and SVM models. The kNN classifier produces 4 outcomes (one for each feature 
vector), and the SVM classifier also generates 4 outcomes, resulting in a total of 8 classifier-
based outcomes. 

To ensure robust performance, 10-fold cross-validation is used to train and evaluate 
both kNN and SVM classifiers. The pretrained ResNet50* model is used for feature extrac-
tion, and the resulting feature vectors are used as input for these classifiers. This training 
process ensures the generalizability of the classifiers and their ability to accurately distin-
guish between classes. 

Step 8: Produce voted outcomes utilizing the IMV algorithm. IMV was proposed by 
Dogan et al. [41]. We explain the IMV algorithm in Algorithm 3. 

Algorithm 3. Procedure of the IMV. 
Input: Classifier-based outcomes (𝑐𝑐), real output (𝑦𝑦).   
Output: Voted outcomes (𝑓𝑓). 
0101: 𝑎𝑎𝑐𝑐𝑐𝑐(𝑡𝑡) = 𝛼𝛼(𝑐𝑐𝑡𝑡 ,𝑦𝑦), 𝑡𝑡 ∈ {1,2, … ,8}  
//Here, 𝑎𝑎𝑐𝑐𝑐𝑐 is the computed classification accuracy by deploying the classification accu-
racy calculation function (𝛼𝛼(. , . )). 
02: 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝒮𝒮(𝑎𝑎𝑐𝑐𝑐𝑐); //Sort the classification accuracies from high to low and 𝑖𝑖𝑖𝑖𝑖𝑖 is the qual-
ified index. where 𝒮𝒮(. ) is the sorting function. 
03: for i = 3 to 8 do //Apply iterative majority voting. 
04:      for j = 1 to D do //Herein, D is the number of images 
05:           for k = 1 to i do 
06:                𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) = 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖)(𝑗𝑗); //Create array (𝑎𝑎𝑎𝑎𝑎𝑎).   
07:           end for k 
08:           𝑓𝑓𝑖𝑖−2(𝑗𝑗) = 𝜛𝜛(𝑎𝑎𝑎𝑎𝑎𝑎)  
//Apply mode (𝜛𝜛(. )) function to the created array to generate a voted value 
09:      end for j   
10: end for i  
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As presented in Algorithm 3, we have generated the six voted outcomes by deploying 
the eight classifier-based outcomes. 

Step 9: Using a greedy algorithm, the best outcome among the created 14 (=8 classi-
fier-based + 6 voted) outcomes per classification accuracy is obtained. 

𝑎𝑎𝑐𝑐𝑐𝑐(𝑡𝑡) = 𝛼𝛼(𝑐𝑐𝑡𝑡 ,𝑦𝑦), 𝑡𝑡 ∈ {1,2, … ,8} 
𝑎𝑎𝑐𝑐𝑐𝑐(8 + ℎ) = 𝛼𝛼(𝑓𝑓ℎ ,𝑦𝑦),𝑤𝑤 ∈ {1,2, … ,6} 
𝑖𝑖𝑖𝑖𝑖𝑖 = max(𝑎𝑎𝑐𝑐𝑐𝑐) 

𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑡𝑡 = � 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 8
𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖−8, 𝑖𝑖𝑖𝑖 > 8    

(1) 

Herein, 𝑎𝑎𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑡𝑡 is the final outcome. 
During the selection of the best result in the proposed ResNet50*-based deep feature 

engineering model, accuracy plays a crucial role and is calculated using 10-fold cross-val-
idation in the training phase, and test results are computed. For the 8 classifier-based re-
sults (4 from kNN and 4 from SVM) and 6 voted results (generated using the IMV algo-
rithm), cross-validation ensures that the accuracy of each result is an unbiased and robust 
estimate of its performance. Using this cross-validated accuracy, a greedy algorithm se-
lects the result with the highest accuracy and determines the single best outcome among 
the 14 results (8 classifier-based + 6 voted). This approach ensures that the selection pro-
cess does not interfere with the evaluation of the testing phase, preserving the integrity of 
the results while utilizing the most reliable output. 

4. Experimental Results 
This section presents the classification performances obtained for the ResNet50*-

based explainable deep feature engineering (DFE) model. ResNet50* and the DFE models 
were developed using the MATLAB (2023a) programming environment. To develop Res-
Net50*, the deep network designer tool available in MATLAB was used. We modified the 
existing ResNet50 CNN to tailor it to our requirements and created our proposed CNN 
model. To develop the presented DFE model, we employed MATLAB’s ‘m’ files, which 
are script files used to execute MATLAB commands and function sequences. 

4.1. Experimental Settings 
In this work, we trained the proposed ResNet50* and then developed a deep feature 

engineering (DFE) model based on this ResNet50*. To implement these models, we used 
the following parameters: 

Training parameters for ResNet50*: 
Solver: Stochastic Gradient Descent with Momentum (sgdm); Initial Learning Rate: 

0.01; Mini-Batch Size: 128; Maximum Epochs: 25; L2 Regularization: 0.0001; training and 
validation split ratio: 80:20. 

Parameters for the DFE based on ResNet50*: 
The DFE model consists of four phases, and the parameters for each phase are as 

follows: 
Feature extraction phase: 
Image segmentation method: Grad-CAM; Mask Generation Method: Grad-CAM-

based score map generation and thresholding; Threshold Value: mean value of the score 
map × √2; Feature extraction layer: global average pooling (GAP). 

Feature Selection Phase: 
Feature selectors used: NCA [42], Chi2 [43], mRMR [44], and RF [45]; Iteration range: 

100 to 768; Loss value generator: kNN with 10-fold cross-validation; Final selected feature 
vector selection method: greedy algorithm. 

Classification Phase: 
kNN parameters: k: 10; Distance metric: Euclidean; Weight: squared inverse; Valida-

tion: 10-fold cross-validation. 
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SVM parameters: Kernel: third degree polynomial; Box constraint: 1; Coding: one-vs-
all; Validation: 10-fold cross-validation. 

Information fusion phase: 
IMV parameters: Sorting criteria: Descending order based on classification accuracy; 

Iteration range: 3 to 8; Voting function: mode. 
Greedy algorithm: Selection of one outcome with maximum accuracy. 
Using these parameters, we successfully implemented both ResNet50* and DFE mod-

els. 

4.2. Performance Analysis 
We used (i) classification accuracy, (ii) F1-score, and (iii) geometric mean perfor-

mance evaluation matrices. 
The training accuracy/loss versus the number of epochs for ResNet50* on the Kvasir 

dataset are in Figure 5. 

 
Figure 5. Graph of training and validation accuracies/losses versus number of epochs. 

Figure 5 shows that our model achieved 94.78% validation accuracy and a final loss 
value of 0.2603 with a maximum training accuracy of 100%. 

Using the pretrained ResNet50*, we have developed and presented our DFE model. 
This DFE model is capable of generating outcomes based on both classifier-specific and 
voted approaches. Furthermore, we have applied three different datasets to this DFE 
model. We tested our DFE model on the test images of the Kvasir and WCE datasets, as 
these datasets share common images. The DFE model was fed with all images from the 
Kvasir v2 dataset. The summary of classification results obtained for the different datasets 
is summarized in Table 2. 

Table 2. Summary of classification results (%) obtained using our proposed DFE. 

Outcome 
Dataset 

Kvasir Kvasir v2 WCE 
Acc F1 GM Acc F1 GM Acc F1 GM 

C1 92.63 92.60 98.88 98.87 98.87 93.56 98.88 98.87 98.87 
C2 91.25 91.24 96.63 96.62 96.59 92.51 96.63 96.62 96.59 
C3 91.50 91.42 97.38 97.36 97.34 92.49 97.38 97.36 97.34 
C4 92.25 92.23 97.88 97.87 97.85 92.68 97.88 97.87 97.85 
C5 92.63 92.62 98.75 98.75 98.74 93.36 98.75 98.75 98.74 
C6 92.25 92.26 98.13 98.12 98.11 93.14 98.13 98.12 98.11 
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C7 92.63 92.62 98.38 98.37 98.37 93.12 98.38 98.37 98.37 
C8 92.38 92.38 98.63 98.62 98.61 93.25 98.63 98.62 98.61 
V1 92.75 92.74 99.12 99.12 99.12 93.78 99.12 99.12 99.12 
V2 92.87 92.87 98.75 98.75 98.74 93.73 98.75 98.75 98.74 
V3 92.50 92.49 99.13 99.12 99.12 93.92 99.13 99.12 99.12 
V4 92.88 92.86 99 99 98.99 93.69 99 99 98.99 
V5 92.88 92.86 98.88 98.87 98.87 93.67 98.88 98.87 98.87 
V6 92.75 92.74 98.88 98.87 98.87 93.43 98.88 98.87 98.87 

C: Classifier-based outcome, V: Voted outcome, Acc: Classification accuracy, F1: F1-score, GM: Ge-
ometric mean. Bold font face highlights the best results. 

Table 2 indicates that our proposed ResNet50*-based DFE model achieved test per-
formance exceeding 92% for all the datasets. The highest results across all datasets were 
obtained from the voted outcomes. This finding strongly suggests that the IMV model 
significantly enhanced classification performance for all datasets. Our model is character-
ized as self-organized because it automatically selects the classification outcome with the 
best performance. Additionally, Table 2 includes a detailed tabulation of the classification 
performance of the proposed DFE model, which is further elaborated in Table 3. 

Table 3. Final classification results (%) obtained using our proposed method for different datasets. 

Dataset Accuracy F1-Score Geometric Mean 
Kvasir 92.87 92.87 92.71 
Kvasir v2 94.08 94.08 93.92 
WCE 99.12 99.12 99.12 

Additionally, we have presented the computed confusion matrices for these datasets 
in Figure 6. 
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(c) WCE 

Figure 6. Confusion matrices obtained for the proposed ResNet50*-based DFE model. In the con-
fusion matrices, cells with a blue background represent the correctly predicted observations (true 
positives) for each class. Cells with a white background represent zeros, indicating no predictions 
for those combinations. Cells with a beige background represent the number of falsely predicted 
observations (misclassifications) between classes. 

The numbers in the confusion matrices shown in Figure 6a,b correspond to the fol-
lowing classes: 1: Dyed lifted polyps; 2: Dyed resection margins; 3: Esophagitis; 4: Normal 
cecum; 5: Normal pylorus; 6: Normal z-line; 7: Polyps; and 8: Ulcerative colitis. In the con-
fusion matrix for the WCE dataset (Figure 6c), four classes are represented: 1: Normal; 2: 
Ulcerative colitis; 3: Polyps; and 4: Esophagitis. 

Our model employed an attention-based convolutional neural network (CNN) and a 
Grad-CAM-based segmentation model to generate deep features from the images. The 
explainable results obtained are shown in Figure 7. 

 
Figure 7. Sample images and their corresponding heatmaps. The colors in the heatmap typically 
represent varying levels of intensity or importance: blue tones indicate areas that are not important, 
yellow tones represent moderately important areas, and red tones highlight regions that are highly 
important for feature extraction. 

Figure 7 demonstrates that the proposed model is able to focus on the ROI accurately 
due to the attention mechanism employed in the ResNet50* model. 

For all classes, the ROIs have been highlighted in red. The main findings are as fol-
lows: 
- The red areas in each image represent the highest activation regions identified by 

Grad-CAM, indicating that the proposed ResNet50* model perceives these regions 
as the most relevant for classification. The yellow, green, and blue areas represent 
decreasing levels of importance. 
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- The use of Grad-CAM increases explainability and helps to understand why the 
model focuses on certain regions. This feature is particularly useful in medical imag-
ing, where interpretability can aid clinical decisions and provide insights into how 
ResNet50* classifies. 

- These images demonstrate how the presented ResNet50* can assist in detecting ab-
normalities (such as polyps, esophagitis, or ulcerative colitis) and in confirming nor-
mal anatomical structures. Focusing on ROIs supports professionals in making accu-
rate diagnoses. 
The results shown in Figure 7 highlight the ability of the model to locate ROIs in 

addition to its high classification performance. The focus on ROIs, enabled by the attention 
mechanism, leads to improved accuracy and reliability in classification and analysis, mak-
ing the ResNet50* a valuable tool in advanced computer vision applications. 

5. Discussion 
The results obtained using our proposed models are discussed in this section. We 

present a novel ResNet50*-based model with about 28 million more parameters than Res-
Net. This increase in parameters is due to the inclusion of a pooling-based attention mech-
anism in ResNet50*. This mechanism does not increase the size of the pooling map, since 
we used multiplication before the output layer. The convolutions used for scaling have 
increased the number of parameters. This layer was incorporated to add attention to our 
proposed model and enhance the classification performance of the presented ResNet50*. 
Figure 8 presents the validation accuracies obtained using the ResNet50 and ResNet50* 
models. 

 
Figure 8. Validation accuracies (%) obtained for the ResNet50 and ResNet50* models. 

It may be noted from the above figure that ResNet50* demonstrated a superior clas-
sification accuracy compared with ResNet50. Also, ResNet50* delineated ROI better, as 
shown in Figure 7. Hence, we chose ResNet50* over ResNet50 and introduced a novel DFE 
model with the pretrained ResNet50*. As shown in Figure 8, the performance comparison 
between the original ResNet50 model and the modified ResNet50* version was conducted 
using the pretrained ResNet50 model on the Kvasir dataset to provide a fair and unbiased 
evaluation. Both models were pretrained under identical conditions on the same dataset, 
ensuring comparability in terms of validation accuracy. 

An ablation study was also conducted on the presented model. In this study, an at-
tention block was used with ResNet50 in Case 1, and the ResNet* block was applied with-
out pooling-based attention in Case 2. These results were evaluated on the Kvasir 2 da-
taset, yielding validation accuracies of 94.36% for Case 1 and 94.53% for Case 2. Further-
more, when these blocks were used together (to create ResNet50*), the computed valida-
tion accuracy increased to 94.78%. 
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The ResNet50*-based DFE model (this model is presented to increase the test classi-
fication accuracy) incorporated the INCA, IChi2, ImRMR, and IRF feature selectors along 
with kNN and SVM classifiers. This combination yielded eight classifier-based outcomes 
with six voted outcomes. The details of the feature selector and classifier combination are 
shown in Table 4. 

Table 4. Feature selector and classifier combination for the proposed DFE. 

No. Feature Selector Classifier No. Feature Selector Classifier 
1 INCA kNN 5 INCA SVM 
2 IChi2 kNN 6 IChi2 SVM 
3 ImRMR kNN 7 ImRMR SVM 
4 IRF kNN 8 IRF SVM 

We evaluated the performance using various feature selectors and classifiers accord-
ing to Table 4, and the accuracies (%) obtained are shown in Figure 9. 

 
(a) Feature selectors 

 
(b) Classifiers 

Figure 9. Classification accuracies (%) obtained using various feature selectors and classifiers. The 
given red lines represent the median of the accuracies.  

It may be noted from Figure 9 that the best feature selector is INCA, and the best 
classifier is SVM. Moreover, the voted results are the best results using the various da-
tasets employed. To create the voted results, classifier-based outcomes were used, and the 
generation methods of these outcomes have been tabulated in Table 5. 
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The results in Figures 9 and 10 pertain to the presented DFE model based on Res-
Net50. These figures comparatively demonstrate the effectiveness of the feature selectors 
and classifiers used in the proposed DFE model, providing insights into the robustness 
and reliability of the results derived from the iterative and voting mechanisms. Figure 8 
presents the validation accuracies of the proposed ResNet50* and ResNet50. In this con-
text, the introduced DFE model was implemented using the proposed ResNet50* instead 
of ResNet50. 

Table 5. Summary of best combinations of methods employed for various datasets to yield optimum 
performance. 

Dataset Generation Method 
Kvasir (INCA and kNN); (INCA and SVM); (ImRMR and SVM); (IRF and SVM) 

Kvasir v2 
(INCA and kNN); (INCA and SVM); (IRF and SVM); (IChi2 and SVM); (Im-
RMR and SVM) 

WEC (INCA and kNN); (INCA and SVM); (IRF and SVM) 

Table 5 tabulates a summary of the best-performing methods for various datasets 
used. The number of times feature selectors and classifiers were used to obtain the best 
performance by various datasets is depicted in Figure 10. 

 
Figure 10. Number of times classifiers and feature selectors were used to obtain the best outcomes. 

Figure 10 illustrates that the best-performing feature selector and classifier are NCA 
and SVM, respectively. 

Table 6 compares our developed ResNet50* model with cutting-edge technologies. 

Table 6. Comparison of our work with the state-of-the-art techniques developed for gastrointestinal 
image classification. 
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2. KID datasets, with two 
classes 

Zang et al. [21] 
Dynamic adver-
sarial adaption 

network 

Collected data, with two 
classes 

4-fold CV 84.02 - - - 

Lonseko et al. 
[22] 

Attention-Guided 
CNN 

Mixed data (Kvasir, 
EAD2019, EEC), with ten 

classes 
5-fold CV 93.19 92.80 92.80 92.70 

He et al. [23]  DenseNet-121 
Collected data, with 

twelve classes 
5-fold CV 91.11 - - - 

Subedi et al. [24] DenseNet201 

1. GastroVision, with 
twenty-two classes 

2. Kvasir-Capsule, with 
thirteen classes 

5-fold CV 
1. 83.86 
2. 72.39 

1. 83.24 
2. 69.00 

1. 83.20 
2. 70.07 

1. 83.86 
2. 72.39 

Patel et al. [25] 
EfficientNet 

B5 
Kvasir, with eight classes 80:20 92.58 93.00 93.00 93.00 

Huo et al. [26]  

Hierarchical 
multi-scale fea-
ture fusion net-

work 

Kvasir, with eight classes 2-fold CV 86.12 86.13 86.25 86.13 

Montalbo [46] 
Multi-Fused Re-

sidual CNN 
WCE, with four classes 

Hold-out CV 
53.3:33.3:13.3 

97.75 97.75 - - 

Mohapatra et al. 
[47] 

Empirical wave-
let transform + 

customized CNN 
Kvasir, with five classes 

Hold-out CV 
80:20 

88.53 78.87 - - 

Yogapriya et al. 
[48] 

VGG16 
Kvasir v2, with seven 

classes 
Hold-out CV 

80:20 
96.33 96.50 96.50 96.37 

Wang et al. [49] CNN 
Kvasir v2, with six clas-

ses 
Hold-out CV 

60:20:20 
94.83 94.82 - - 

Noor et al. [50] CNN 
Kvasir v2, with five clas-

ses 
10-fold CV 96.40  95.24 97.57 93.02 

Ramzan et al. [7] CNN Kvasir, with eight classes 5-fold CV 95.02 - 94.75 - 
Escobar et al. 

[51] 
CNN 

Kvasir v2, with five clas-
ses 

Hold-out CV 
80:15:5 

98.20 92.76 92.86 92.75 

Sharma et al. [52] ResNet50 Kvasir, with four classes 10-fold CV 99.84 - - - 

Our model, Res-
Net50* 

DFE based on 
ResNet50* 

Kvasir, with eight classes 10-fold CV 92.87 92.87 - - 
Kvasir v2, with eight 

classes 
10-fold CV 94.08 94.08 - - 

WCE, with four classes 10-fold CV 99.12 99.12 - - 

Table 6 indicates that our proposed model achieved comparable classification perfor-
mance of over 92% test classification accuracy for all three image datasets. Only Sharma 
et al. [52] attained 99.84% classification accuracy by using the ResNet50, but they used five 
classes and did not select the classes and images from the Kvasir dataset. 

The findings, advantages, limitations, and future directions are outlined below. 
Findings: 

• Developed a ResNet50*-based explainable DFE model that achieved a test perfor-
mance of more than 92% for all three datasets. 

• Employed an IMV technique in the information fusion phase, which significantly en-
hanced classification outcomes in the form of voted results. This iterative approach, 
combined with model self-organization, improved decision making. 
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• Used INCA and SVM as the optimal feature selector and best performing classifier, 
respectively. 

• Generated an attention-based CNN (ResNet50*) model with Grad-CAM, ensuring 
explainable outcomes with the highest classification performance. 

• Presented a DFE model that exhibited a self-organizing characteristic, automatically 
selecting the best performance outcome. 

• In this work, we used four feature selectors to iteratively select features. (i) The INCA 
is a distance-based feature selector that helps to reduce dimensionality by selecting 
features based on distance criteria [37]. (ii) The IChi2 selector uses a chi-squared sta-
tistical test to measure the independence between features and class labels [53]. (iii) 
The ImRMR selector aims to minimize redundancy between features while selecting 
features highly relevant to the target class. This balance is important when many fea-
tures provide similar information, which may add noise and reduce the interpreta-
bility of the model [39]. (iv) IRF is a feature selector that emphasizes distinguishing 
examples close to the decision boundary, effectively increasing the model’s sensitiv-
ity to subtle differences between classes [40]. 

• kNN is a simple, effective, and widely used distance-based classifier that classifies an 
example based on the majority label among its k nearest neighbors [54]. SVM is a 
powerful classifier that works well with high-dimensional spaces and is widely used 
in image analysis. The combination of kNN and SVM was chosen to balance simplic-
ity and performance. 

• The IMV mechanism is a final-stage technique that combines the results obtained 
from eight classifier-based outcomes (four from kNN and four from SVM) into six 
aggregated or “voted” outcomes. The aim of IMV is to increase the reliability of the 
generated outcome by focusing on the consensus between classifiers. 

• IMV iterates through the classification results by applying a majority voting scheme 
to generate more stable, voted outcomes. Using IMV reduces the risk of misclassifi-
cation due to the weaknesses of any single classifier and produces more generalized 
results. 

• In the final stage, after both classifier-specific and voted outcomes are generated, a 
greedy algorithm selects the final outcome with the highest classification accuracy. 
Through this process, the proposed DFE model is transformed into a self-organized 
DFE model. 

• Obtained the best results from the voted outcomes, suggesting the combination of 
classifiers and feature selectors in a voting scheme. 

• Used an attention mechanism in the ResNet50* model that improved the classifica-
tion performance by focusing on relevant areas within images. 
Advantages: 

• The proposed ResNet50* combines convolutional residual blocks with pooling-based 
attention mechanisms. This helps it to focus on important areas in the image and 
yield highest classification performance. 

• High classification accuracy was obtained for all three datasets, demonstrating the 
generalization of the model. 

• The attention-based ResNet50* integrated with Grad-CAM extracts more meaningful 
features, as it focuses on feature ROI regions. 

• The reliability of the proposed DFE model is enhanced by employing IMV, which 
provides consistent results by reducing the probability of misclassification due to 
weaknesses in single classifiers. In clinical scenarios, this level of interpretability and 
reliability is highly desirable and differentiates the model from benchmarks based 
solely on raw classification outputs. Applying the greedy algorithm with the pro-
posed DFE model transformed it into a self-organized DFE model. Hence, the pro-
posed method is the self-organized DFE model. 
Potential clinical applications: 
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• A new generation explainable ResNet50*-based model is presented as an adjunct tool 
for radiologists to confirm their findings with high accuracy. 

• The heatmaps obtained using Grad-CAM visually explain certain regions that are 
marked in endoscopy images by the model, enhancing the accuracy and reducing 
human error. 

• The feedback collected on the ROI delineation from clinicians can be used to generate 
an improved version of the CNN model. 

• The presented ResNet50* automatically delineates the visual annotations in reports. 
Hence, a quick patient record can be obtained. 

• Explainable visual outputs help to boost the confidence of clinicians. 
Limitations: 

• The performance of the model depends on the datasets used, and hence, additional 
fine-tuning is required while using when using new datasets. Also, if the image qual-
ity changes and a new abnormal class is fed as the test data, performance may be 
affected. 

• The ResNet50*-based model contains many parameters due to the convolutional re-
sidual blocks and pooling-based attention mechanism (similar to ResNet50), increas-
ing the complexity of the model while also increasing the classification accuracy. 

Future directions: 
• The proposed ResNet50* can be used for other computer vision applications. 
• Integrating ResNet50* with wireless capsule sensors can yield new-generation intel-

ligence sensors. 
• The classification capabilities can be further increased by extending ResNet50* to de-

velop other state-of-the-art algorithms. 
• Novel adaptive learning mechanisms and optimized models can be proposed to im-

prove decision-making processes. 
• The presented model can be employed for other disease diagnoses using various 

medical images. 

6. Conclusions 
This study introduced a novel ResNet50*-based model designed to enhance the clas-

sification capabilities of endoscopy images. We have shown that the classification accura-
cies were consistently above 92% for various datasets, such as Kvasir, Kvasir v2, and wire-
less capsule endoscopy (WCE). 

The main contribution of this work is the proposed ResNet50* model, developed us-
ing convolution-based residual blocks and a pooling-based attention mechanism. Hence, 
the developed system is able to extract the subtle details from the localized region and 
obtain the highest classification performance, more than 92% accuracy on all three da-
tasets and 99.13% accuracy using the WCE dataset. The self-organizing DFE approach of 
our model further enhanced its adaptability and classification accuracy. 

We plan to extend this work for the detection of breast cancer, kidney stones, brain 
tumors, and celiac disease. 
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