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A B S T R A C T   

Alcoholism is a common complex brain disorder caused by excessive drinking of alcohol and severely affected the 
basic function of the brain. This paper investigates classification of the alcoholic electroencephalogram (EEG) 
signals through whole brain connectivity analysis and deep learning methods. The whole brain connectivity 
analysis is proposed and implemented using mutual information algorithm. Continuous Wavelet transform was 
applied to extract time–frequency domain information in each selected frequency bands from EEG signal. The 2D 
and 3D convolutional neural networks (CNN) were used to classify the alcoholic subjects and health control 
subjects. UCI Alcoholic EEG dataset is employed to evaluate the proposed method, a 96.25 ± 3.11 % accuracy, 
0.9806 ± 0.0163 F1-score result in 3D-CNN model was obtained via leaving-one out training method of all the 
testing subjects.   

1. Introduction 

Alcoholism is a physical disease that is addicted to drinking, simi
larly to obsessive–compulsive disorder [1]. The most common negative 
effects of alcoholism patients are digestive system diseases which 
include Ulcers, esophageal bleeding, stomach cancer, acute and chronic 
pancreatic inflammation and nervous system disorders such as mentally 
handicapped, Alzheimer, stroke [2]. In addition, the excessive alcohol 
consumption can cause high blood pressure and gout. According to the 
report of World Health Organization (WHO), alcoholism is regarded as 
the third highest risk factor for causing diseases, and it summarized that 
about 3.3 million deaths every year result from the excessive alcohol 
consumption [3]. Long-term consumption of alcohol impairs the 
development of the brain that severely damage the brain’s grey and 
white matter [4]. Similarly, in short-term, alcohol may cause issues in 
cognition problems and memory loss [5]. 

Early diagnosis of alcoholism will help individual subjects under
stand their condition and prevent permanent damage. Traditional 
alcoholism identification methods are based on questionnaires, breath 
test and blood tests. Pham, T.T.L., S. Callinan, and M. Livingston used 
questionnaires method to assess the prevalence of risky drinking among 
people with a range of chronic diseases [6]. However, the data used in 
their work is self-reported data which may exist inaccurate responses in 

their study. Bertholet, N., et al. stated that the breath test and blood test 
for identifying alcoholism are questionable as the biomarkers can only 
provide 66 % sensitivity in carbohydrate-deficient transferrin blood test 
and missed 70–80 % of cases in breath test [7]. Electroencephalogram 
(EEG), which records brain activities electronically from the scalp and is 
the most popular technique in detecting complex brain disorder, can 
support more accurate classification of the alcoholism brain and health 
control brain [8,9]. Compared with traditional methods of alcoholism 
identification, EEG is low-cost, non-invasive, high accuracy of detection 
and less reliant on trained professionals in practical applications [10]. 
EEG as the recorded brain activity signals has different features in time 
domain, frequency domain and time–frequency domain. However, 
traditional research methods such as Fast Fourier Transform etc are not 
suitable for analysing the resting-state EEG because EEG signals are 
considered to be non-stationary time series in this condition, and it can 
also be computationally expensive for high-density EEGs. 

To overcome this limitation, the brain network analysis was pro
posed as another analogous solution. Many researchers focus on con
nectivity analysis of brain networks in detecting complex brain disorders 
such as epilepsy, Alzheimer diseases, schizophrenia etc, and alcoholism 
can also use connectivity analysis to extract features from EEG raw 
signal to do the detection work. The connectivity analysis of brain 
network is derived from the data of EEG and depicts the functional 
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connections between different brain regions where the brain regions are 
regarded as nodes and the connections as edges. In EEG alcoholism 
detection, the nodes and edges of the graph represent the EEG channels 
and the connections between channels. Mumtaz et al. proposed the 
power coherence functional connectivity of frequency domain to detect 
the resting-state EEG alcoholic signal and achieved a result of 89.3 % 
accuracy and 88.5 % sensitivity [11]. Goksen et al. highlighted the 
functional connectivity measured by mutual information of time domain 
correlation to classify alcoholism subject and got a result of 82.33 % 
accuracy and 85.33 % sensitivity [12]. 

Machine learning methods is widely used in classification work. 
Comparing with the traditional statistical classification methods, the 
machine learning methods can provide more accuracy classification 
results. Nonnegative least squares (NNLS) classifier proposed by Bajaj 
et al. combined with time–frequency images features of short time 
Fourier transform (STFT) in alcoholism signal detection and achieved a 
result of 95.83 % accuracy [13]. Goksen et al. proposed KNN based on 
relative entropy features got a result of 80.33 % accuracy and 82.67 % 
sensitivity result [12]. Fayyaz et al. used support vector machine and 
long short-term memory (LSTM) with peak visualization method ach
ieved a result of 90.97 % in accuracy [14]. Farsi also reported the LSTM 
algorithm of deep learning methods could directly classify the EEG 
alcoholism signal and achieved a result of 93 % accuracy [15]. Patidar, 
S., et al. used Tunable-Q wavelet transform and extracted features as 
centered correntropy from the decomposition level. Patidar, S., et al. 
proposed least squares-support vector with 10-fold cross validation 
method to detect EEG alcoholic signal and achieved an accuracy of 
97.02 % [16]. Agarwal, S. and M. Zubair highlighted a method which 
combined sliding singular spectrum analysis (S-SSA), independent 
component analysis (ICA) and XGBoost classifier to detect alcoholic 
subjects and obtained an accuracy of 98.97 % [17]. 

Traditional machine learning methods require manual feature 
extraction and model matching, while deep learning methods greatly 
simplifies the preprocessing process, which can automatically extract 
features and complete decoding at the same time. In addition, deep 
learning can directly deal with common events such as eye movements, 
artifacts, or background EEG, optimizing traditional methods, and giv
ing full play to the end-to-end decoding characteristics of deep learning. 
The convolution neural network (CNN) is one of the mainstream deep 
learning algorithms. Most CNN models are used in the image classifi
cation work, such as the AlexNet and GoogleNet architectures. In EEG 
analysis, the CNN models are also used widely, in particular in the 
image-liked EEG data. Chen et al. combined the mutual information 
function connectivity and convolution neural networks (CNN) models to 
detect the attention-deficit/hyperactivity disorder (ADHD) based on 
EEG signal and obtained a 94.67 % accuracy [18]. Khan et al. applied 
this method to detect alcoholism EEG data, they used the partial directed 
coherence with a 3D-CNN model, and achieved an 87.85 % accuracy and 
100 % correct classification of all testing subjects [19]. CNN also pro
posed by Mukhtar, H., S.M. Qaisar, and A. Zaguia to detect alcoholism in 
a normalized 8-second length EEG data segment directly and achieve 98 
% accuracy [20]. 

In this paper, we proposed the brain connectivity analysis with CNN 
model to detect EEG alcoholic signal. MI functional connectivity can 
reveal the abnormal connectivity and nodes (channels) of alcoholic 
diseases. It can also be used to achieve a satisfying detection result. CNN 
is used widely in graph classification work because its perfect perfor
mance, and it can also achieve good results dealing with the image-like 
data. Thus, we applied the CNN models and designed a framework 
suitable for our experiment. 

The main contributions of this study are: (1) Firstly, a deep learning 
enabled whole brain connectivity analysis method was applied to detect 
alcoholic EEG signal; (2) Design a framework of a 3D-CNN, and apply 
the image classification method to detect EEG signal and get an accuracy 
of 96.25 ± 3.11 % using leaving-one out training method for all the 
testing subjects; (3) Brain rhythms factor was taken into consideration in 

detecting the alcoholic EEG, and the gamma band (30–40 Hz) was found 
to be the most significant rhythm. (4) After the evaluation of all cross 
mutual information (CMI) connectivity values, the adjacent connectiv
ities between the left parietal part, the left frontal part, the right tem
poral part, the right frontal part and the right parietal part were found to 
be the fuzzy locations in determining alcoholism. All the experiments in 
this study were carried out in a Dell workstation with dual Intel Xeon E5- 
2697 V3 CPUs using MATLAB 2021b. 

The first section of the paper provided a brief introduction of the 
work. Section 2 described the details of the dataset. The pre-processing, 
functional connectivity analysis and classification were also introduced 
in this section. Section 3 reported our experimental work using the 
proposed method and the results obtained. The threshold selection of 
CMI, brain rhythms selection, statistical analysis of CMI values and 
machine learning method comparison were evaluated in Section 4. We 
also listed the previous work results to compare the proposed method in 
this section. Section 5 concluded the work. 

2. Methodology 

In this EEG based alcoholism detection study, there are four major 
steps. The Butterworth algorithm was applied to denoise the EEG raw 
data and the time–frequency domain features were extracted using 
continuous wavelet transform (CWT) as a pre-processing measure. After 
that, the extracted features were converted into image-like connectivity 
matrix through the CMI algorithm. The image-like data is, then, fed to 
the CNN model as input, and then the training data with leaving-one out 
training method is used to train the input and test and evaluate the re
sults. The framework of the proposed method is described in Fig. 1: 

2.1. Datasets 

The data used in this study is collected from the University of Cali
fornia, Irvine Knowledge Discovery in Databases Archive UCI KDD [21]. 
Dataset SMNI_CMI_TRAIN and Dataset SMNI_CMI_TEST contain data for 
10 alcoholic and 10 control subjects, with 10 runs per subject per 
paradigm. In these two datasets, each dataset has 600 recorded files with 
256 Hz sample rate and 64 channels including the EOG signals and the 
reference channel ND. 

2.2. Pre-processing 

The sliding window technique is used in this study. A 5-second 
sliding window was developed and data within the moving window 
was considered as the input data, and the sliding window overlap was 
selected as 1 s. A Butterworth zero-phase filter/algorithm is used to 
denoise the EEG raw data. The CWT algorithm is used to extract time – 
frequency domain features in different frequency bands with delta band 
(1–4 Hz), theta band (4–8 Hz), alpha band (8–12 Hz), beta band (12–30 
Hz), gamma band (30–40 Hz) and whole band (1–40 Hz). The formula of 
CWT with 1 Hz frequency resolution is shown as follow: 

Wxi (t, f ) =
∫

xi(λ)⋅ϕt,f(t − λ)dλ (1)  

where Wxi (t, f) is the energy density in frequency f of the ith channel at 
time instant t, ϕt,f (t − λ) is the complex conjugates of ϕt,f (t − λ). 

The Morlet wavelet method is selected as the mother wavelet, and 
the algorithm was described as follow: 

ϕt,f (λ) = A⋅ei2πf (λ− t)⋅e
− (λ− t)2

2σ2 (2)  

where σ = 8
2πf is the time spread of the wavelet. 

After the denoising and CWT, the data is converted into 256*4 (delta 
band), 256*5 (theta band), 256*5 (alpha band), 256*19 (beta band), 
256*11 (gamma band) and 256*40 (whole band) matrix respectively. 
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2.3. The cross mutual information functional brain connectivity 

The cross mutual information (CMI) based on the CWT algorithm is 
applied to construct the functional brain matrix in time–frequency 
domain. The algorithm of CMI between two different channels is shown 
as follow: 

MI
(
Fi,Fj

)
= H(Fi)+H

(
Fj
)
− H

(
Fi,Fj

)
(3)  

where, the H(Fi) is the entropy of Channel i, which describe as: 

H(Fi) = −
∑40

b=1
p
(
Fi,b

)
log2p

(
Fi,b

)
(4)  

where Fi is the averaged power signals at the ith channel. The p(Fi,b) is 
the probability density function of each frequency bin. The bin is 
selected as 40. 

H(Fi, Fj) is the joint entropy of two channel’s averaged power signals, 
given by: 

H
(
Fi,Fj

)
= −

∑40

b=1
p
(
Fi,b,Fj,b

)
log2p

(
Fi,b,Fj,b

)
(5) 

Similarly, the bin is selected as 40 and p
(
Fi,b, Fj,b

)
is the probability 

density function of averaged power signals for channel i and j. 
After the calculation, the cross mutual information between channel 

i and j is obtained: 

MI
(
Fi,Fj

)
=

∑40

b=1
p
(
Fi,b,Fj,b

)
log2

p
(
Fi,b,Fj,b

)

p
(
Fi,b

)
p
(
Fj,b

) (6) 

Thus, the data of six frequency bands (delta band, theta band, alpha 
band, beta band, gamma band and whole band) are all converted into 
64*64 matrix through cross mutual information algorithm. As an 
example, the image-like CMI matrix of an alcoholic subject 
co2a0000364 in gamma band is shown in Fig. 2. 

Fig. 1. The framework of CWT, CMI functional connectivity and 3D-CNN methods for seizure detection.  

Fig. 2. Cross mutual information functional connectivity matrix of alcoholic subject co2a0000364 in gamma band.  
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2.4. Classification via convolutional neural networks 

The functional connectivity matrix shown above is image-like data 
which represents the brain connection network. 20 subjects’ data (10 HC 
subjects and 10 alcoholic subjects) from UCI alcoholic EEG dataset was 
used in this study. In leaving-one out training method, one subject data 
is used for testing and the other 19 subjects were used for training. As a 
result, 20 models have been trained. In addition, 20 % random training 
data is selected as the validation data via hold-out validation method. 
The input data is the 64*64 size imaged-like data constructed using the 
CMI algorithm. The training progress selects the learning rate as 0.01, 
and epochs as 400. Table 1 summarizes the architectural details of the 
2D-CNN model as shown below: 

The 2D-CNN model includes 6 convolution layers with batch 
normalization, 3 max pooling layer, 5 ReLU layers and 1 fully connected 
layer. The 6 convolution layers all use 64 filters with convolution kernels 
of 3*3, 3*3, 3*3, 3*3, 3*3, and 2*2, respectively. Batch normalization of 
each convolution layer is to reduce the internal covariance shift which 
can improve training speed and reduce the over-fitting phenomenon. 
The 3 Max pooling layers of this architectural is to reduce the cost of 
training calculation with 2*2 size and 2*2 stride. The activation function 
ReLU is defined as f(x) = max(0,x) which is used to activate or deactivate 
a node based on mapped value. The last part is the fully connected layer 
followed by a Softmax classifier for the identification using the concat
enated outputs of the last layers. 

Based on the 2D-CNN model with functional connectivity analysis, 
the gamma band has a better performance than other frequency bands. 
3D-CNN in gamma band was designed to further improve the accuracy 
of the results. The CWT and CMI algorithms are used to compute the 
functional matrix in each Hz frequency such as (30–31 Hz, 31–32 Hz, …, 
39–40 Hz). Thus, the input data size of each segment has changed into 
3D imaged-like data size 64*64*10. The 3D functional matrix of the 
same subject in Fig. 2 is shown in Fig. 3: 

In the 3D-CNN model, the learning rate is still selected as 0.01 and 

the epochs selected as 400 for comparison with the 2D-CNN results. In 
addition, the 3D-CNN architectural is designed to classify the input data 
shown in Fig. 3. Table 2 summarizes the architectural details of the 3D- 
CNN model with the hyperparameter settings in each layer. 

Similar as the architectural of 2D-CNN, this model contains 6 
convolution layers with batch normalization, 3 max pooling layers, The 
5 ReLU layers and 1 fully connected layer as well. The difference is the 
hyperparameter settings of each layer. In this model, the 6 convolution 
layers all use 64 filters with dimensions of 3*3*3, 3*3*3, 3*3*1, 3*3*1, 
3*3*1, and 2*2*1 respectively. The size of kernel in 3 max pooling layers 
are set as 2*2*2, 2*2*2, and 2*2*1 with stride 2*2*2, 2*2*2, and 2*2*1. 
Other hyperparameter setting is the same as the 2D-CNN such as the 
ReLU algorithm, fully connected layer and softmax classifier. The opti
mizer based Deep Network Designer of MATLAB 2021b of HC subject 
co2c0000345 is shown in Fig. 4. 

3. Experiments and results 

Accuracy is a direct parameter in method evaluation which is define 
as follow: 

Acc =
TP + TN

TP + TN + FP + FN
(7)  

where ‘TP’ is the true positive, ‘TN’ is the true negative, ‘FP’ is the false 
positive and ‘FN’ is the false negative. 

In statistical analysis of binary classification, the F1-score is an ac
curacy measure of a test. It is calculated from the precision and recall of 
the test, where the precision is the number of true positive results 
divided by the number of all positive results, including those not iden
tified correctly, and the recall is the number of true positive results 
divided by the number of all samples that should have been identified as 
positive. In this study, we use the leaving-one out training method that 
makes the true negative and false positive being zero. The formula of F1- 
score were shown in equation (10). 

PRECISION =
TP

TP + FP
=

TP
TP

= 1 (8)  

RECALL =
TP

TP + FN
= Acc (9)  

F1 − score = 2*
PRECISION*RECALL

PRECISION + RECALL
=

2*Acc
1 + Acc

(10)  

where ‘TP’ is the true positive, ‘FP’ is the false positive, ‘FN’ is the false 
negative and ‘Acc’ is accuracy. 

3.1. Results for 2D and 3D convolutional neural networks 

Based on the performance in alcoholic subjects’ detection on gamma 
band which detailly discussed in Discussion part section B, 2D and 3D 
CNN methods are applied to detect EEG alcoholic signal in this study. 
We achieved 86.25 ± 6.48 % accuracy, 0.9249 ± 0.0378 F1-score and 
96.25 ± 3.11 % accuracy, 0.9806 ± 0.0163 F1-score respectively. The 
details are summarized in Table 3 and Table 4. 

4. Discussion 

4.1. Time-frequency domain functional connectivity analysis 

The Mutual information measures the degree of interdependence 
between two variables which widely used in studies of analysing syn
chronicity. Joint entropy, as one of the significant parameters of mutual 
information, describes the distribution of the signal. The bin selection of 
the joint entropy changes the distribution of the data. The challenge in 
calculating the CMI from experimental data is to estimate p

(
Fi,b, Fj,b

)

from histograms. For a given number of data points, using larger sam

Table 1 
The architecture of 2D-CNN for training and test of the alcoholic detection.  

Layer Input Size Output Size Trainable parameters 

2D imaged-data input 64*64*1   
Convolution layer 64*64*1 62*62*64 Kernel size: 3*3 

Stride: 1*1 
Channel: 64 

ReLU 62*62*64 62*62*64  
Max Pooling layer 62*62*64 31*31*64 Pooling Size: 2*2 

Stride: 2*2 
Convolution layer 31*31*64 29*29*64 Kernel size: 3*3 

Stride: 1*1 
Channel: 64 

ReLU 29*29*64 29*29*64  
Max Pooling layer 29*29*64 14*14*64 Pooling Size: 2*2 

Stride: 2*2 
Convolution layer 14*14*64 12*12*64 Kernel size: 3*3 

Stride: 1*1 
Channel: 64 

ReLU 12*12*64 12*12*64  
Max Pooling layer 12*12*64 6*6*64 Pooling Size: 2*2 

Stride: 2*2 
Convolution layer 6*6*64 4*4*64 Kernel size: 3*3 

Stride: 1*1 
Channel: 64 

ReLU 4*4*64 4*4*64  
Convolution layer 4*4*64 2*2*64 Kernel size: 3*3 

Stride: 1*1 
Channel: 64 

ReLU 2*2*64 2*2*64  
Convolution layer 2*2*64 1*1*64 Kernel size: 2*2 

Stride: 1*1 
Channel: 64 

Fully Connected layer 1*1*64 1*1*2  
Softmax 1*1*2    
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pling bins to construct the histograms produces more accurate estimates 
of the average probability, but then the estimate of p

(
Fi,b, Fj,b

)
will be 

over detrended, and underestimate theMI
(
Fi, Fj

)
. Using smaller bins is 

better in indicating changes in p
(
Fi,b, Fj,b

)
over short distances, but it 

produces fluctuations because of the smaller sample size, which will 
overestimateMI

(
Fi, Fj

)
. Empirically, the bin of joint entropy was selected 

as 40, as shown in Fig. 5: 
To extract the features from both time domain and frequency 

domain, CWT method is applied to obtain the power spectrum of 
time–frequency domain. In alcoholic EEG detection, the data of gamma 
band (30–40 Hz) provides the best performance in detection than other 
frequency bands. The CWT method and CMI algorithm of brain con
nectivity analysis can consider both time domain and frequency domain 
features, which improves the performance of classification results. 

4.2. Brain rhythms selection 

In this study, the functional connectivity is constructed in different 
frequency bands, delta band (1–4 Hz), theta band (4–8 Hz), alpha band 
(8–12 Hz), beta band (12–30 Hz), gamma band (30–40 Hz) and whole 
band (1–40 Hz), to find the best brain rhythms in EEG alcoholic subject 
detection. Table 5 summarized the results of the accuracy and sensitivity 
of the classification between alcoholic subjects and health control sub
jects in each frequency bands. 

To reduce the computational cost, the gamma band data is selection 
to fed into the deep learning methods. 

4.3. Different classification method comparison 

In this experiment of alcoholic detection via CWT, CMI and 3D-CNN 
models, we get a 96.25 ± 3.11 % accuracy using the gamma band. The 
SVM, KNN and decision tree methods with random 20 % hold-out 
validation of leaving-one out training method were applied to conduct 
the alcoholic signal detection and compared with the results of the 3D- 
CNN models. In 3D-CNN model, we used the 64*64*10 (40960) imaged- 
like data as input. But the value of CMI matrix is symmetrical, in addi
tion, the values between the same nodes, such as (Fz to Fz), are all equal 
to 1. To reduce the computing costs, we used (64*64–64)/2*10 = 20160 
eigenvalues as the input. The results of these three machine learning 
methods are summarized in Table 6. 

It is evident that, from Table 6, the 3D-CNN model provides a better 
performance in alcoholic signal detection than the aforementioned three 
machine learning methods. 

4.4. Statistical significance of CMI connectivity in whole brain 
connectivity 

Finding the connectivity location can aid in detecting the location of 

Fig. 3. 10 layers cross mutual information functional connectivity matrix of alcoholic subject in gamma band.  

Table 2 
The architecture of 3D-CNN for training and test of the alcoholic detection.  

Layer Input Size Output Size Trainable parameters 

3D imaged-data input 64*64*10*1   
Convolution layer 64*64*10*1 62*62*8*64 Kernel size: 3*3*3 

Stride: 1*1*1 
Channel: 64 

ReLU 62*62*8*64 62*62*8*64  
Max Pooling layer 62*62*8*64 31*31*4*64 Pooling Size: 2*2*2 

Stride: 2*2*2 
Convolution layer 31*31*4*64 29*29*2*64 Kernel size: 3*3*3 

Stride: 1*1*1 
Channel: 64 

ReLU 29*29*2*64 29*29*2*64  
Max Pooling layer 29*29*2*64 14*14*1*64 Pooling Size: 2*2*2 

Stride: 2*2*2 
Convolution layer 14*14*1*64 12*12*1*64 Kernel size: 3*3*1 

Stride: 1*1*1 
Channel: 64 

ReLU 12*12*1*64 12*12*1*64  
Max Pooling layer 12*12*1*64 6*6*1*64 Pooling Size: 2*2*1 

Stride: 2*2*1 
Convolution layer 6*6*1*64 4*4*1*64 Kernel size: 3*3*1 

Stride: 1*1*1 
Channel: 64 

ReLU 4*4*1*64 4*4*1*64  
Convolution layer 4*4*1*64 2*2*1*64 Kernel size: 3*3*1 

Stride: 1*1*1 
Channel: 64 

ReLU 2*2*1*64 2*2*1*64  
Convolution layer 2*2*1*64 1*1*1*64 Kernel size: 2*2*1 

Stride: 1*1*1 
Channel: 64 

Fully Connected layer 1*1*1*64 1*1*1*2  
Softmax 1*1*1*2    
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symptoms in alcoholism patients. We calculated all CMI connectivity 
values and listed the top 7 channels (≥0.05) with the major difference in 
CMI mean values between HC subjects and alcoholic subjects in Table 7: 

We found that the major difference happened to the connectivity 
between the left parietal part, the left frontal part, the right temporal 
part, the right frontal part and the right parietal part. In addition, the 
most difference connectivities are between adjacent channels. The HC 
subjects’ CMI values in this location are obviously more remarkable than 
the alcoholic subjects. 

4.5. Performance comparison with previous work 

Table 8 summarizes the performance of the proposed method and 
other peer works in alcoholic signal detection. The proposed method 
achieved a result of 96.25 ± 3.11 % in accuracy through function con
nectivity analysis and 3D-CNN deep learning model. 

The proposed method achieved a satisfying result of 96.25 ± 3.11 % 

in accuracy. In addition, this method can also determine fuzzy locations 
of the abnormal connectivity area caused by alcoholic diseases. 
Furthermore, the sliding window technique applied can capture the 
dynamics of alcoholism [11,25–27]. However, this study still has several 
limitations. Firstly, there is more work to be done to implement real- 
time detection, as the proposed method cannot calculate a sliding win
dow size smaller than 10 s. Secondly, the alcoholic diseases’ location is 
fuzzy, this method cannot detect the alcoholic diseases in specific re
gions of interest in the brain at the moment. 

5. Conclusion 

In this paper, the whole brain connectivity analysis is applied and 
implemented using mutual information algorithm. The functional con
nectivity maps between the whole brain regions are estimated using 
CWT and CMI algorithms. The 2D and 3D convolutional neural networks 
are applied to classify the alcoholic subjects and health control subjects. 

Fig. 4. The optimizer for 3D-CNN model of HC subject co2C0000345.  

Table 3 
Classification performance of 2D-CNN test.  

Subject No. CMI matrices Samples identified as Acc (%) 

ALC HC 

Co2a0000364 56 48 8 85.71 
Co2a0000365 56 50 6 89.29 
Co2a0000368 56 49 7 87.50 
Co2a0000369 56 44 12 78.57 
Co2a0000370 56 47 9 83.93 
Co2a0000371 56 48 8 85.71 
Co2a0000372 56 49 7 87.50 
Co2a0000375 56 52 4 92.86 
Co2a0000377 56 56 0 100.00 
Co2a0000378 56 40 16 71.43 
Co2c0000337 56 5 51 91.07 
Co2c0000338 56 12 44 78.57 
Co2c0000339 56 11 45 80.36 
Co2c0000340 56 8 48 85.71 
Co2c0000341 56 6 50 89.29 
Co2c0000342 56 7 49 87.50 
Co2c0000344 56 7 49 87.50 
Co2c0000345 56 3 53 94.64 
Co2c0000346 56 12 44 78.57 
Co2c0000347 

Mean ± Std 
56  6 50  89.29 

86.25 ± 6.48 

‘ALC’ is the alcoholic subject, ‘HC’ is the healthy control subject, and ‘Acc’ is 
accuracy. 

Table 4 
Classification performance of 3D-CNN test.  

Subject No. CMI matrices Samples identified as Acc (%) 

ALC HC 

Co2a0000364 56 55 1 98.21 
Co2a0000365 56 51 5 91.07 
Co2a0000368 56 55 1 98.21 
Co2a0000369 56 55 1 98.21 
Co2a0000370 56 56 0 100.00 
Co2a0000371 56 55 1 98.21 
Co2a0000372 56 55 1 98.21 
Co2a0000375 56 56 0 100.00 
Co2a0000377 56 56 0 100.00 
Co2a0000378 56 51 5 91.07 
Co2c0000337 56 5 51 91.07 
Co2c0000338 56 0 56 100.0 
Co2c0000339 56 3 53 94.64 
Co2c0000340 56 4 52 92.86 
Co2c0000341 56 3 53 94.64 
Co2c0000342 56 3 53 94.64 
Co2c0000344 56 3 53 94.64 
Co2c0000345 56 2 54 96.43 
Co2c0000346 56 3 53 94.64 
Co2c0000347 

Mean ± Std 
56  1 55  98.21 

96.25 ± 3.11 

‘ALC’ is the alcoholic subject, ‘HC’ is the healthy control subject, and ‘Acc’ is 
accuracy. 
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In particular, the 2D-CNN model achieved results of 86.25 ± 6.48 % in 
accuracy and 0.9249 ± 0.0378 F1-score of gamma band data which 
have better performance than other frequency bands. Based on the 2D- 
CNN results, a 3D-CNN was proposed to improve the detection results 
further and 96.25 ± 3.11 % accuracy and 0.9806 ± 0.0163 F1-score of 
all the testing subjects. Furthermore, we analysed the CMI values in the 
whole connectivity and found the most significant channels that can 
detect the fuzzy brain connectivities location of symptoms in alcoholism 
patients. 
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[12] N. Gökşen, S. Arıca, A simple approach to detect alcoholics using 
electroencephalographic signals, in: EMBEC & NBC 2017, Springer, 2017, 
pp. 1101–1104. 

Fig. 5. Joint entropy of channel F1 and channel Fz.  

Table 5 
Results of 2D-CNN in different brain rhythms.  

Frequency bands Acc (%) 

Delta band (1–4 Hz) 52.02 ± 7.98 
Theta band (4–8 Hz) 55.66 ± 6.73 
Alpha band (8–12 Hz) 62.50 ± 6.34 
Beta band (12–30 Hz) 75.84 ± 7.65 
Gamma band (30–40 Hz) 86.25 ± 6.48 
Whole band (1–40 Hz) 72.54 ± 7.56 

‘Acc’ is accuracy. 

Table 6 
Results of 3 machine learning methods.  

Machine learning methods Validation Acc (%) Acc (%) 

Decision tree 94.93 ± 0.88 88.93 ± 6.15 
SVM 99.72 ± 0.32 95.18 ± 5.41 
KNN 99.82 ± 0.36 91.67 ± 6.03 
Proposed Method 3D-CNN 99.77 ± 0.29 96.25 ± 3.11 

‘Acc’ is accuracy. 

Table 7 
The mean value of CMI values.  

CMI location (Channel to 
Channel) 

CMI values in HC 
subjects 

CMI values in alcoholic 
subjects 

FP2-AF2 0.2534 ± 0.0337 0.1850 ± 0.0313 
P4-P8 0.2314 ± 0.0332 0.1811 ± 0.0357 
P8-PO2 0.2213 ± 0.0318 0.1682 ± 0.0296 
F7-F5 0.2392 ± 0.0449 0.1848 ± 0.0236 
T7-C5 0.2080 ± 0.0256 0.1555 ± 0.0279 
P5-P7 0.2983 ± 0.0310 0.2309 ± 0.0390 
P6-P8 0.2845 ± 0.0295 0.2286 ± 0.0274 

‘ALC’ is the alcoholic subject, ‘HC’ is the healthy control subject. 

Table 8 
Comparison of the proposed method and previous works in EEG alcoholism 
detection.  

References Channels Features Classifier Acc 
(%) 

Mumtaz et al. 
(2017) [11] 

19 Coherence functional 
connectivity 

Logistic 
regression 

89.3 

Goksen et al. 
(2017) [12] 

19 Mutual information 
functional 
connectivity 

KNN 82.33 

Patidar, S., et al. 
(2017) [16] 

64 Tunable-Q wavelet 
transform, centered 
correntropy 

LS-SVM 97.02 

Malar et al. 
(2020) [22] 

64 Wavelet 
decomposition 

Extreme 
learning 
machine 

87.6 

Farsi et al. (2020) 
[15] 

64 EEG signal LSTM 93 

Agarwal, S. and 
M. Zubair 
(2021) [17] 

64 S-SSA, ICA XGBoost 
classifier 

98.97 

Mukhtar, H., S.M. 
Qaisar, and A. 
Zaguia (2021) 
[20] 

64 Normalized EEG 
signal 

CNN 98 

Khan et al. (2021) 
[19] 

6 Effective 
connectivity (DMN) 

3D-CNN 87.85 
± 4.64 

Kumari, N et al. 
(2022) [23] 

19  Raw EEG signal CNN 92.7 

Li, H. and Wu, Lei 
(2022) [24] 

64 Discrete Wavelet 
Transformation 

CNN, Bi- 
LSTM 

99.32 

Proposed 
method 

64 Cross mutual 
information 
functional 
connectivity 

3D-CNN 96.25 
± 3.11  

M. Shen et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S1746-8094(22)00696-6/h0005
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0005
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0010
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0010
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0020
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0020
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0025
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0025
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0030
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0030
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0035
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0035
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0035
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0040
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0040
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0045
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0045
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0045
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0050
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0050
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0055
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0055
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0060
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0060
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0060


Biomedical Signal Processing and Control 79 (2023) 104242

8

[13] V. Bajaj, et al., A hybrid method based on time–frequency images for classification 
of alcohol and control EEG signals, Neural Comput. Appl. 28 (12) (2017) 
3717–3723. 

[14] A. Fayyaz, M. Maqbool, M. Saeed, Classifying alcoholics and control patients using 
deep learning and peak visualization method, in: Proceedings of the 3rd 
International Conference on Vision, Image and Signal Processing, 2019. 

[15] L. Farsi, et al., Classification of alcoholic EEG signals using a deep learning method, 
IEEE Sens. J. 21 (3) (2020) 3552–3560. 

[16] S. Patidar, et al., An integrated alcoholic index using tunable-Q wavelet transform 
based features extracted from EEG signals for diagnosis of alcoholism, Appl. Soft 
Comput. 50 (2017) 71–78. 

[17] S. Agarwal, M. Zubair, Classification of Alcoholic and Non-Alcoholic EEG Signals 
Based on Sliding-SSA and Independent Component Analysis, IEEE Sens. J. 21 (23) 
(2021) 26198–26206. 

[18] H. Chen, Y. Song, X. Li, A deep learning framework for identifying children with 
ADHD using an EEG-based brain network, Neurocomputing 356 (2019) 83–96. 

[19] D.M. Khan, et al., Effective Connectivity in Default Mode Network for Alcoholism 
Diagnosis, IEEE Trans. Neural Syst. Rehabil. Eng. 29 (2021) 796–808. 

[20] H. Mukhtar, S.M. Qaisar, A. Zaguia, Deep convolutional neural network 
regularization for alcoholism detection using EEG signals, Sensors 21 (16) (2021) 
5456. 

[21] K. Bache, M. Lichman, UCI Machine Learning Repository. University of California, 
School of Information and Computer Science, Irvine, CA, 2013, 2017. 

[22] E. Malar, M. Gauthaam, Wavelet analysis of EEG for the identification of alcoholics 
using probabilistic classifiers and neural networks, Int. J. Intell. Sustain. Comput. 1 
(1) (2020) 3–18. 

[23] N. Kumari, S. Anwar, V. Bhattacharjee, A Deep Learning-Based Approach for 
Accurate Diagnosis of Alcohol Usage Severity Using EEG Signals, IETE J. Res. 
(2022) 1–15. 

[24] H. Li, L. Wu, EEG Classification of Normal and Alcoholic by Deep Learning, Brain 
Sci. 12 (6) (2022) 778. 

[25] T.P. Teo, et al., Feasibility of predicting tumor motion using online data acquired 
during treatment and a generalized neural network optimized with offline patient 
tumor trajectories, Med. Phys. 45 (2) (2018) 830–845. 

[26] A.-S. Wessam, Y. Li, P. Wen, K-complexes detection in EEG signals using fractal and 
frequency features coupled with an ensemble classification model, Neuroscience 
422 (2019) 119–133. 

[27] M. Shen, et al., An EEG based real-time epilepsy seizure detection approach using 
discrete wavelet transform and machine learning methods, Biomed. Signal Process. 
Control 77 (2022), 103820. 

M. Shen et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S1746-8094(22)00696-6/h0065
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0065
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0065
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0075
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0075
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0080
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0080
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0080
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0085
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0085
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0085
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0090
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0090
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0095
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0095
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0100
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0100
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0100
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0110
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0110
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0110
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0115
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0115
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0115
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0120
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0120
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0125
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0125
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0125
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0130
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0130
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0130
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0135
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0135
http://refhub.elsevier.com/S1746-8094(22)00696-6/h0135

	Detection of alcoholic EEG signals based on whole brain connectivity and convolution neural networks
	1 Introduction
	2 Methodology
	2.1 Datasets
	2.2 Pre-processing
	2.3 The cross mutual information functional brain connectivity
	2.4 Classification via convolutional neural networks

	3 Experiments and results
	3.1 Results for 2D and 3D convolutional neural networks

	4 Discussion
	4.1 Time-frequency domain functional connectivity analysis
	4.2 Brain rhythms selection
	4.3 Different classification method comparison
	4.4 Statistical significance of CMI connectivity in whole brain connectivity
	4.5 Performance comparison with previous work

	5 Conclusion
	Declaration of Competing Interest
	Data availability
	References


