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10 ABSTRACT
11

12 Pultruded Fibre-Reinforced Polymer (PFRP) profiles are widely used as structural elements in 

13 many civil infrastructure applications. However, the anisotropic elasticity and the application-

14 driven slenderness make these profiles prone to local buckling failure, well below their  ultimate 

15 load capacity. In this paper, a numerical study was undertaken to characterise the local buckling 

16 and compressive failure of hollow PFRP profiles under axial compression. The Newton method 

17 were used along with the adaptive automatic stabilisation scheme and a controlled increment size 

18 in Abaqus 2019, to overcome the numerical difficulties in simulating local buckling. The 

19 numerical predictions were validated by experiments. The energy parameters and the constituent 

20 failure modes of the FEM models were used to explain the effect of dimension, layup, and 

21 slenderness ratio on the post-peak behaviour and failure modes of the PFRP profiles. Moreover, 

22 the reliance of the strain energy restoration after buckling and the axial and transverse 

23 deformations on these parameters was explained.
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26 1. INTRODUCTION 

27

28 Pultruded Fibre-Reinforced Polymer (PFRP) profiles flourished through the previous few 

29 decades. They became reliable structural construction elements as beams and trusses in buildings 

30 and bridges [1,2], piles in deep foundations [3], frames in marine structures [4,5], lighting poles 

31 and cross-arms in electrical infrastructure [6,7], pipes in the oil industry, spar caps for wind 

32 turbines and cable trays and grating walkways in solar structures in the energy sector [8–10], 

33 reinforcements for concrete [11], and sleepers in railways [12,13] 

34 The anisotropic properties of laminated composites provide a broader design range than other 

35 materials. However, it presents compressive design difficulties inherited from the high 

36 slenderness, which can result in local instabilities such as local buckling [1,6,14–19]. Local 

37 buckling is one of the major failure modes dictating the hollow box PFRP profile behaviour. 

38 Experimentally, it can occur before the structural elements reach their ultimate strength limits 

39 [1,5,17,20,21]. On the other hand, hollow circular PFRP profiles are less prone to local buckling 

40 and show compressive and shear failure due to the high circumferential confining stresses [22].  

41 Understanding the failure and energy mechanisms accompanying local buckling of composites, 

42 experimentally, presents a challenge which requires a sophisticated test setup and measurement 

43 techniques to be overcome [2,20]. 

44 The numerical approach represented by the Finite Element Method (FEM) is a robust tool to 

45 model and analyse the structural behaviour of PFRP profiles and investigate their capability and 

46 behaviour under specific loading conditions [23–29]. However, special care should be taken 

47 when studying and modelling local buckling behaviour of composites with FEM since there are 

48 several numerical methods implemented with each one of them containing advantages and 



49 limitations [14,30–32]. These methods are the linear eigenvalue (linear perturbation), the 

50 modified Riks/Arc-length, Newton method, and the dynamic analysis. The compressive 

51 behaviour of hollow square PFRP profiles has been studied numerically [33–35]. In these studies, 

52 the linear static solver STRAND 7 was used to investigate the elastic behaviour and load capacity 

53 of stub columns with different length-to-width ratios varying from 1 to 5. The captured failure 

54 mode ranged from buckling bulge for a ratio of 1 to local buckling for a ratio of 5. Moreover, the 

55 linear perturbation procedure in Abaqus was used to simulate the local buckling of hollow box 

56 and channel-section Fibre-Reinforced Polymer (FRP) short columns and beams through an 

57 eigenvalue buckling problem [36–42]. However, in all these studies, the full load-displacement 

58 path and progressive failure were not simulated due to limitations in the analysis method utilised. 

59 Linear eigenvalue buckling was also introduced to determine buckling modes of I-shape and 

60 tubular FRP pultruded short columns using Abaqus and ANSYS [43–46]. These modes were 

61 implemented as geometric imperfections to a nonlinear modified Riks method/Arc-length 

62 method analysis to estimate the buckling, post-buckling, and failure loads. The predicted 

63 nonlinear FEM results were higher than the linear FEM results and reasonably agreed with the 

64 experimental results. Nevertheless, this approach was limited to study global buckling and its 

65 effects. The Newton method was used to simulate the buckling of axially loaded I-shape, C-

66 shape, and box FRP profiles through a nonlinear geometric analysis in ANSYS and Abaqus [47–

67 49]. The FEM results closely matched the experimental results. However, these studies did not 

68 focus on local instabilities. In explicit dynamic solvers such as Abaqus/Explicit, dynamic 

69 nonlinear geometric analysis can be performed to capture local instabilities. This approach does 

70 not suffer from convergence problems due to its central-difference operator, and it allows for 

71 progressive failure definition. However, many numerical parameters such as, mass-scaling, 

72 artificial damping, and loading-rate present difficulties [31,50].



73 From the previous studies, the advantages and limitations of each FEM buckling analysis method 

74 can be summarised. The linear eigenvalue buckling method has been extensively used in 

75 literature to model the buckling of laminated profiles due to its simple eigenvalue algorithm 

76 which exists in most FEM packages and its low computational requirement. Nevertheless, it can 

77 only provide accurate results for perfect geometries and cannot capture nonlinear geometry, post-

78 buckling, and progressive failure behaviour [19,43,51–53]. Quasi-static (implicit) solvers, such 

79 as Abaqus/Standard, provide a nonlinear geometric analysis for global instabilities based on 

80 modified Riks/Arc-length method. It is a load-incremental method which has no convergence 

81 issues and can capture severe geometric nonlinearities and post-buckling behaviour. Despite that, 

82 it faces limitations against local instabilities and needs a geometric imperfection history as it 

83 cannot capture the bifurcation point [52,54]. The Newton method on the other hand can model 

84 severe geometric nonlinearities and post-buckling along with progressive failure through a 

85 nonlinear geometric time-incremental analysis. Yet, some drawbacks can be observed in this 

86 method which are related to the localised release of the strain energy (damping issues) and 

87 increment size (convergence issues) which form numerical parameters unmeasurable by direct 

88 experiments [46]. 

89 In this research, the Newton method in Abaqus/Standard will be used along with the adaptive 

90 automatic stabilisation scheme and controlled increment size to overcome numerical difficulties 

91 in simulating the localised release of the strain energy and the solution convergence, respectively. 

92 A simplified three-dimensional modelling approach will be established to perform a nonlinear 

93 geometric analysis of local buckling and progressive failure behaviours of PFRP profiles, 

94 without the need for special codes and intensive programming. This study  will demonstrate an 

95 efficient modelling tool to assist the design and optimisation stage of new product development, 

96 with aims to reduce high costs associated with extensive experimental testing and post-

97 manufacturing characterisation.



98 2. EXPERIMENTAL PROGRAM

99

100 2.1 Materials and structures

101

102 Four hollow PFRP profile geometries were experimentally tested under axial compression to 

103 assist in validating the FEM approach presented herein. The PFRP profiles investigated in this 

104 research were all manufactured by Wagners CFT and consist of E-glass fibres & Vinyl-Ester 

105 polymer resin. The hollow box profiles have corners with an inner and outer radii of 4.75 mm 

106 and 10 mm, respectively. The experimental program considered various length-to-width (L/D) 

107 ratios for the stub columns (ranging from 2 to 5). Assessing the FEM results for different L/D 

108 ratios provides the sensitivity of the proposed modelling to the dimensional changes. The 

109 geometric and cross-sectional details of the profiles experimentally tested are provided in Table 

110 1 and Fig. 1, respectively. Moreover, experimental data from a previous study using Wagners 

111 CFT products [33] was extracted for validation purposes to complement the profiles tested in the 

112 current study (also reported in Table 1 and Fig. 1).

113 The composite layup of the profiles was provided by Wagners CFT (Table 2). The two hollow 

114 circular profiles differ only in their layups; C1-89×6.0 has a higher percentage of axial fibres and 

115 56o inclined fibres, while C2-89×6.0 has a lower percentage of axial fibres and 71o inclined 

116 fibres.

117 2.2 Test setup

118

119 The experimental program was conducted under a quasi-static loading rate of 1 mm/min with 

120 fixed-fixed supports at the profile ends. Steel fixtures were used to constrain the profile ends to 

121 prevent localised premature failure. Fig. 2 illustrates the axial compression testing configuration 

122 using a SANS (SHT4206 – 2000 kN capacity) universal testing machine loaded with a specimen. 

123 The load-axial displacement data was recorded using a Linear Variable Differential Transducer 



124 (LVDT) unit at the bottom-loading cell. Strain gauges mounted longitudinally and transversely 

125 at the specimens’ mid-height were used to calculate the axial modulus values.

126 3. FINITE ELEMENT MODELLING

127

128 3.1 Elastic behaviour 

129

130 The elastic lamina material definition was selected as it is suited for 2D plane stress formulation, 

131 such as in laminated shells [50]. The lamina mechanical properties of the PFRP profiles used in 

132 this study, along with their respective fibre volume fraction ( ), are shown in Table 3. The 𝑉𝑓

133 lamina mechanical properties were calculated using the fibre volume fraction, provided by 

134 Wagners CFT. The previous studies [33, 34] experimentally characterised the same profiles 

135 currently being studied. The fibre volume fraction was obtained from the burnout test, which 

136 confirmed the values in the manufacturer datasheets. The theoretical mechanical properties were 

137 verified against the coupon-level and structural-level experimental tests.  The elastic modulus in 

138 the fibre direction ( ) was calculated using the rule of mixture. Whereas the transverse elastic 𝐸1

139 modulus ( ), the in-plane shear modulus ( ), and the out-of-plane shear modulus ( ) were 𝐸2 𝐺12 𝐺23

140 calculated using empirical equations [33,34,55]. The value of ( ) was set to equal the value of 𝐺13

141 ( ) since unidirectional plies are considered to be transversely isotropic materials [20].𝐺12

142 3.2 Progressive failure behaviour 

143

144 The Hashin damage model (1980) was used to simulate the progressive failure in fibres and 

145 matrix at the lamina level. The model considers four different failure modes: fibre rupture in 

146 tension, fibre buckling and kinking in compression, matrix cracking under transverse tension and 

147 shearing, and matrix crushing under transverse compression and shearing. This progressive 

148 damage model requires three essential components to be defined, including damage initiation 

149 criterion, damage evolution response, and damage stabilisation scheme. 



150 According to the Hashin model, when the damage initiation criterion is met for any of the four 

151 failure modes, the damage variable for that failure mode is calculated as [50]:

152                                                                                                         (1)𝑑 =
𝛿𝑓

𝑒𝑞(𝛿𝑒𝑞 ― 𝛿𝑜
𝑒𝑞)

𝛿𝑒𝑞(𝛿𝑓
𝑒𝑞 ― 𝛿𝑜

𝑒𝑞)

153 Where  is the equivalent displacement of the element as a function of its strain and 𝛿𝑒𝑞

154 characteristic length (square root of the area for shell elements). Abaqus uses this representation 

155 to alleviate the mesh dependency in strain-softening (progressive failure) cases. It expresses the 

156 softening part of the constitutive model as a stress-displacement ( ) relation rather than the 𝜎 ― 𝛿

157 mesh dependent stress-strain ( ) model.   is the equivalent displacement at damage 𝜎 ― 𝜀 𝛿𝑜
𝑒𝑞

158 initiation and   is the equivalent displacement when the element is completely damaged. Fig. 𝛿𝑓
𝑒𝑞

159 3 depicts the above equation graphically, where the maximum value of the damage variable is 1. 

160 The lamina strength limits used in this study are for unidirectional E-glass/Vinyl-Ester 

161 composites, shown in Table 4; these limits were extracted from [34] for the same profiles. After 

162 any damage initiation criterion is met within any element, the damage evolution algorithm for 

163 that damage mode works to simulate the progressive damage in that element. The damage 

164 evolution for fibre-reinforced materials is based on energy dissipation to trace the damage 

165 process. Thus, for each failure mode, the fracture energy which equals the area under the 

166 equivalent stress-displacement diagram of the element, must be specified. Due to the lack of 

167 experimental data on the fracture energy of E-glass/Vinyl-ester lamina for each failure mode, 

168 fracture energy values of E-glass/Ly556 epoxy lamina were used for the longitudinal tensile and 

169 compressive failure modes [56]. The transverse tensile and compressive fracture energy values 

170 were taken from [57] for numerical purposes for validation against the experimental data. The 

171 fracture energy values for the four failure modes of the lamina are shown in Table 4. These values 

172 obtained close FEM results to the experimental results of the structural profiles, as will be shown 

173 in the validation section.



174 Implicit solvers, such as Abaqus/Standard, usually present severe convergence difficulties when 

175 modelling material softening (failure) and stiffness degradation. To overcome this problem, 

176 Abaqus 2019 uses a viscous regularisation/stabilisation scheme to make the tangent stiffness 

177 matrix of the softening material positive for sufficiently time increments. The solver introduces 

178 a tangential viscous damage variable to the damage evolution equations [50]:  

179                                                                                                           (2)𝑑′𝑣 =
1
ƞ(𝑑 ― 𝑑𝑣)

180 Where  is the viscosity coefficient which is used to relax the time in the vicious system,  and ƞ 𝑑

181  are the damage variables evaluated in the inviscid and the viscous model, respectively. To 𝑑𝑣

182 specify the optimal viscosity coefficient values for the four failure modes, a sensitivity study 

183 with a range of  sec was performed on each PFRP profile geometry. After [1 × 10 ―6 ―1 × 10 ―3]

184 monitoring the study results and the energy balance of the models, a value of  sec was  1 × 10 ―3

185 used as the viscosity coefficient for each failure mode for all profiles.

186 3.3 Mesh, boundary conditions, and loading condition

187

188 The PFRP profiles were modelled using 8-node quadrilateral in-plane general-purpose 

189 continuum shells (SC8R). This reduced integral 3D shell element with hourglass control and 

190 finite membrane strain forms the best option for both thick and thin shells. It allows through-

191 thickness modifications such as tapering the geometry. It also provides more accurate 

192 visualisation and contact modelling than conventional shells and captures the through-thickness 

193 response more accurately [50]. A mesh sensitivity study was carried out to check the suitable 

194 element size allowing for results to converge. The mesh was enhanced by refining the number 

195 of elements through the thickness to capture the kinematic changes accurately and greatly reduce 

196 hourglass modes. A mesh with a 5 mm element edge length and five elements through-thickness 

197 was selected for S-100×100×5.2, S-125×125×6.4, and R-75×100×5.2 PFRP profiles. Since the 



198 corners form a critical zone for stress concentrations, five elements were locally assigned to each 

199 corner to refine the mesh. For the C1-89×6.0 and C2-89×6.0 PFRP profiles, a mesh with a 3 mm 

200 element edge length and five elements through-thickness was selected. For further details on the 

201 mesh sensitivity study and the element seeding, please refer to the supplementary data.

202 All the simulated profiles were assigned a fixed-fixed boundary condition on the ends. The top 

203 and bottom surfaces were restrained by preventing movement along their translational and 

204 rotational degrees of freedom in all directions. The axial translational movement at the profile 

205 top was allowed to simulate the axial compression through a displacement-control loading of 1 

206 mm/min.

207 3.4 Modelling of local buckling 

208

209 Since local buckling can be either symmetric or antisymmetric, it is preferred to model the full 

210 geometry of the structure without any symmetric boundary conditions [58–60]. Since the studied 

211 PFRP profiles have symmetric and balanced layups, coupling effects may appear at a bending-

212 twisting form if symmetric boundary conditions are used [16,20,61]. 

213 One critical difficulty in modelling local buckling, in a time-incremental procedure, is that it 

214 results from a localised release of strain energy between neighbouring elements; consequently, 

215 resulting in a softening (degradation) of the structural stiffness. This release in the strain energy 

216 is because that part of the structure at the buckling point cannot maintain equilibrium. Thus, it 

217 releases a part of its strain energy via an out-of-plane deformation to maintain equilibrium under 

218 a new load path. This type of problem has to be modelled either dynamically or by the aid of 

219 artificial damping [14,30,52,62]. 

220 To simulate the localised release of strain energy and the need to include damping, the adaptive 

221 automatic stabilisation scheme in Abaqus/Standard is utilised in this study. Abaqus/Standard 

222 uses the Newton method to solve the nonlinear equations using a combination of incremental 



223 (dividing the step time) and iterative (attempting to find an equilibrium solution in the increment) 

224 procedures. Consequently, providing an excellent approach to simulate the nonlinearity 

225 accompanying local buckling. The adaptive automatic stabilisation scheme steadies unstable 

226 quasi-static problems by providing an automatic mechanism in which volume-proportional 

227 artificial damping is added to the model to stabilise the load-displacement path. The damping 

228 varies spatially and with time, along with the analysis duration, to account for stability changes. 

229 The damping value can be capped with a maximum value relative to the strain energy of the 

230 model. Thus, the effect of the artificial viscous damping energy (ALLSD) on the energy balance 

231 of the model can be controlled. By default, Abaqus/Standard specifies a value of 0.05 as a 

232 tolerance. This value means that the cap of the energy dissipated by viscous damping to the total 

233 strain energy is 5%. This value has proved to be suitable for this study. Moreover, the adaptive 

234 automatic stabilisation scheme is compatible with shell elements, as it facilitates the solution 

235 during the first increment when a poor estimation of the extrapolated strain energy might occur. 

236 For these reasons, the adaptive automatic stabilisation scheme in Abaqus/Standard is used in this 

237 approach for local buckling modelling.  

238 The NLgeom (Nonlinear geometry) algorithm was implemented to permit for the usage of the 

239 large displacement formulation [19]. Thus, allowing to capture local buckling and the large 

240 displacements accompanying the post-peak behaviour [46].

241 In the Newton method, the total step time is divided into a number of increments. After each 

242 increment, the model stiffness matrix is updated. Modelling of stability-based behaviour, such 

243 as local buckling, is very sensitive to the maximum increment size assigned by the user (in the 

244 general static step definition tab) since the model stability is related to its stiffness matrix, which 

245 is updated relying on the number of increments [46]. As shown in Fig. 4 (a) for S-100×100×5.2 

246 profile (L/D = 2),  the maximum increment size had to be reduced to 0.35% of the total step time 

247 to reach convergence for the local buckling load capacity in the hollow box PFRP profiles. For 



248 all the simulated PFRP profiles, the recommended increment size range by Abaqus 

249 documentation (10% of the step time) was not sufficient. Thus, the maximum increment size had 

250 to be reduced until convergence is achieved with a percentile error of 5% between the load 

251 capacities of the successive increment sizes, as shown in Fig. 4 (b) for S-100×100×5.2 profile. 

252 The increment size sensitivity can be used to inspect the realistic failure mode. It is a good 

253 practice to initiate the analysis by two runs with maximum increment sizes of 10% and 5% of 

254 the step time, respectively. By doing that, compressive failure and local buckling failure modes 

255 can be differentiated. The load capacity of these two successive analyses will be the same if the 

256 dominant failure mode is compressive failure. Whereas, it will show a variation if local buckling 

257 occurred, as highlighted in Fig. 4. These two maximum increment sizes were chosen as a starting 

258 point since they will not consume high computational resources. Furthermore, if there is local 

259 instability, it will start appearing in the load-displacement path at one of them leaving the door 

260 open to seek convergence. This simplified approach alleviated the model’s dependency on the 

261 increment size as a numerical parameter and obtained accurate results. 

262 4. MODEL VALIDATION AND DISCUSSION 

263

264 The validity and accuracy of the proposed modelling approach is assessed in the following 

265 sections. First, the FEM results were evaluated against the theoretical and experimental data in 

266 terms of the local buckling load capacity of the hollow box PFRP profiles. Second, the FEM 

267 load-displacement curves were compared to their experimental counterparts. Finally, the 

268 agreement in the mechanical properties and failure modes between the FEM and experimental 

269 results was studied. The data presented here on validation and discussion were used for 

270 illustration. For the complete validation, please refer to the supplementary data.

271 4.1 Local buckling load capacity of the hollow box PFRP profiles  

272



273 The FEM results were compared to the current experimental results and data from the previous 

274 study [33] to examine the extent of agreement. Moreover, the most cited closed-form equations 

275 were used to estimate the local buckling loads ( ) of the hollow box PFRP profiles with L/D 𝑃𝑐𝑟

276 equals 2, as shown in Table 5. These equations assume clamped boundary conditions along the 

277 wall length and a uniaxial compressive loading along the wall width. The clamped boundary 

278 conditions assumption can be justified in this research by the high fibre volume fraction along 

279 the walls, interaction regions (corners), and the continuation of the inclined fibres around the 

280 corners [63]. Good agreement was found between these values. The S-125×125×6.4 profile 

281 exhibited a higher load capacity compared to the other profiles. This high load capacity is directly 

282 related to the larger cross-sectional area of the S-125×125×6.4 profile, which compensated for 

283 the slightly lower axial fibre content compared to the S-100×100×5.2 and R-75×100×5.2 

284 profiles.

285 4.2 Load-displacement curves
286

287 The FEM analysis was performed in two phases in order to independently assess the proposed 

288 approaches individually, prior to assessing the combined effect. The adaptive automatic 

289 stabilisation scheme was studied first, followed by the addition of the progressive failure (Hashin 

290 damage) definition.

291 In the first phase, the adaptive automatic stabilisation scheme along with a controlled reduced 

292 incremental size and Nlgeom algorithm in Abaqus 2019 were implemented to capture the local 

293 buckling only without any failure definition. The models accurately captured the local buckling 

294 load in all of the hollow box PFRP profiles, as shown in Fig. 5 for the S-100×100×5.2 profile. 

295 The hollow circular profiles did not show local buckling effects. Overall, the hollow PFRP 

296 profiles exhibited linear elastic behaviour experimentally and numerically until the peak-point 

297 (maximum load point). 



298 In the second phase, the same FEM models from the first phase were used along with the 

299 progressive failure (Hashin damage) definition. The FEM load-displacement curves matched the 

300 experimental results accurately for all the hollow PFRP profiles, as shown in Fig. 6 for the S-

301 100×100×5.2 profile. Two out of the seven experimental curves of S-100×100×5.2 profile with 

302 L/D equals 2 (Fig. 6 (a)) had slightly eccentric results which caused a higher standard deviation 

303 in axial stiffness and strength, as shown in Table 6. It was inferred that these two profiles maybe 

304 defected. The hollow box profiles showed a post-peak behaviour prior to the final failure, while 

305 the hollow circular profiles failed sharply with no post-peak zone due to material compressive 

306 failure. 

307 4.3 Mechanical properties
308

309 The FEM models obtained a strong agreement with the experimental data in terms of the axial 

310 compressive modulus and ultimate strength, as shown in Table 6. The axial stiffness (EA) of the 

311 hollow PFRP profiles is arranged ascendingly as follows: C2-89×6.0, C1-89×6.0, R-

312 75×100×5.2, S-100×100×5.2, and S-125×125×6.4, as shown in Fig. 7 (a). C2-89×6.0 profile 

313 exhibited the least axial stiffness and elastic modulus since it has the lowest percentage of axial 

314 fibre and the largest inclined fibres angle. S-125×125×6.4 profile has a lower percentage of axial 

315 fibres compared to C1-89×6.0, R-75×100×5.2, and S-100×100×5.2 profiles. Nevertheless, it 

316 recorded the highest axial stiffness due to its larger cross-sectional area. R-75×100×5.2 profile 

317 represented the highest elastic modulus value, as shown in Fig. 7 (b), even though it has a similar 

318 percentage of axial fibres to S-100×100×5.2. This can be as attributed to the higher fibre volume 

319 fraction and lower inclined fibres angle in R-75×100×5.2.

320 When comparing the compressive strength of the hollow PFRP profiles, C1-89×6.0 then C2-

321 89×6.0 circular profiles were highest, followed by R-75×100×5.2, as shown in Fig. 7 (b). This 

322 can be as attributed to the absence of local buckling in the circular profiles allowing for the full 



323 utilisation of their structural capacity, whereas the local buckling effect limited the R-

324 75×100×5.2 profile due to the higher resistance to buckle in the shorter walls. On the other hand, 

325 S-100×100×5.2 profile had the least strength due to its thinner wall thickness compared to S-

326 125×125×6.4 profile. 

327 4.4 Failure mode

328

329 The failure mode of the axially loaded hollow PFRP profiles varied depending on their cross-

330 sectional shape. The hollow box profiles were dominated by local buckling of the walls. Whereas 

331 the hollow circular profiles were dominated by compressive and shear failure at the profiles ends. 

332 The FEM failure modes closely agreed with the experimental observed behaviour.

333 The failure mode in the hollow box PFRP profiles started with local buckling at the peak-point, 

334 evident by the localised out-of-plane deformation/waves. As expected from the tested profiles, 

335 their low L/D ratio prevented the columns’ axes from movement. Thus, global buckling was not 

336 experimentally observed nor numerically monitored. Just after the local buckling point (peak-

337 point), the applied load encountered a sharp drop due to the sudden loss of stability. 

338 Subsequently, the hollow box PFRP profiles went through a post-peak phase, which became 

339 more evident when L/D ratio was increased, while for small L/D ratio, the post-peak zone 

340 diminished. This behaviour is addressed in the “Effect of Profile Slenderness Ratio” section. 

341 During the post-peak zone, the failure in the buckled profiles was initiated by shear, tensile, and 

342 compressive damage in the matrix at the waving regions due to the out-of-plane deformation. 

343 Afterwards, the localised waves subsided when the full profile collapse occurred due to 

344 compressive failure, in addition to localised tensile failure in fibres at the mid-height of the 

345 profile’s wall.  Fig. 8 shows the failure sequence of S-100×100×5.2 profile with L/D equals 3.5 

346 illustrated by matrix (resin) tensile failure counters to highlight the localised waves propagation, 

347 which is compared to the experimental buckled shape at the same time increment.



348 The R-75×100×5.2 profile had a shorter sharp drop, after the local buckling point, in the load-

349 displacement curves compared to S-100×100×5.2 and S-125×125×6.4 profiles. It can be inferred 

350 that the different cross-sectional aspect ratio (wall height/wall width) of R-75×100×5.2 profile 

351 helped in a fast recovery of the stability since the 75 mm walls need a higher load to buckle 

352 compared to the 100 mm walls. Thus, after the 100 mm walls buckled, the 75 mm walls were 

353 still resisting the loads and maintained a higher loading level after buckling compared to the 

354 hollow square PFRP profiles.    

355 It is worth mentioning that delamination between plies was not modelled due to computational 

356 limitations. Since the current FEM modelling approach closely matched the experimental and 

357 theoretical results, it can be concluded that delamination is not dominant in the hollow PFRP 

358 profiles until the entire collapse of the profiles occurs. This is because of the high confinement 

359 in the PFRP profiles due to the closed geometry and the continuous inclined fibres layup that 

360 wrap the axial plies. Nevertheless, since transverse shear and tensile damage in the matrix can 

361 provide an indication of delamination propagation [20], tracking these failure modes can assess 

362 the models’ capability of capturing the experimental failure mode, which is represented by ply 

363 splitting, after the post-peak region. The output variable (DAMAGESHR) in Abaqus/CAE can 

364 be used to reflect these effects. Based on that, the FEM models showed a good agreement with 

365 the experimental failure mode, as shown in Fig. 9 for S-100×100×5.2 profile with L/D ratio 

366 equals 5.0 for example.

367 Regarding the hollow circular PFRP profiles, the failure mode was the same for all L/D ratios. 

368 The failure was characterised by crushing at the profiles ends due to compressive damage in 

369 fibres accompanied by matrix shear failure, as shown in Fig. 10 for C2-89×6.0 profile with L/D 

370 equals 5.0. This failure mode was similar to what was reported in Reference [22].



371 5. INTERPRETATION OF THE NUMERICAL LOCAL BUCKLING AND 

372 FAILURE OBSERVATIONS

373

374 After validating the FEM models, their numerical results were used to explain two events that 

375 were not clear in the experimental data. The first observation was related to the peak-point and 

376 the post-peak behaviour of the hollow box PFRP profiles. These behaviours were addressed 

377 using the energy parameters of the numerical models. The second observation was the effect of 

378 the column slenderness ratio on its behaviour. The data presented here on these observations 

379 were used for illustration. For the complete dataset, please refer to the supplementary data.

380 5.1 Energy parameters 

381

382 With validated models, the energy outputs provide valuable information regarding the peak-point 

383 and post-peak behaviours. The strain energy was used to address the local buckling behaviour, 

384 while the damage dissipation energy was used to trace the progressive failure. 

385 5.1.1 Strain energy
386

387 The strain energy is an essential factor to be studied when characterising the structural behaviour 

388 of loaded members since the member load-carrying pattern is a reflection of the strain energy 

389 storage and release. If the release in the strain energy is minor (localised) and followed by a 

390 storing process, then it can indicate the models response to a local instability (e.g. local buckling) 

391 by changing its loading path to maintain equilibrium [14,30,50]. Fig. 11 shows the strain energy 

392 and load values vs the axial displacement of S-100×100×5.2 profile with L/D ratio equals 5. It 

393 is obvious that the extent of the post-peak zone changes along with the L/D ratio. For small L/D 

394 ratio, the post-peak zone diminishes, and its restored strain energy as well. While for a higher 

395 L/D ratio, the post-peak zone and its resorted strain energy become clear. It is evident that the 

396 amount of the restored strain energy at the post-peak zone controls its behaviour, as shown in 



397 Fig. 12, which presents the resorted strain energy at the post-peak zone vs L/D ratio for the 

398 hollow box PFRP profiles. S-100×100×5.2 profile exhibited the highest restoration capability 

399 followed by R-75×100×5.2, then S-125×125×6.4 profiles when L/D ratio is increased. In other 

400 words, S-100×100×5.2 profile showed larger relative deformation after buckling than other 

401 profiles evident by the larger axial shortening after buckling. This was referred to the lower wall 

402 thickness it has compared to S-125×125×6.4 profile, which resulted in a lower axial stiffness 

403 against deformations. Compared to R-75×100×5.2 profile, the walls of S-100×100×5.2 are 

404 wider, which resulted in a longer unstiffened length for more out-of-plane deformation after 

405 buckling.

406

407 5.1.2 Damage index
408

409 The damage dissipated energy of the model due to the failure of the constituents on the element 

410 level is another vital energy output that provides informative signs regarding the progressive 

411 failure status. It was normalised in this study to introduce a Damage Index (DI) parameter, which 

412 provides a percentage of damage in the model along the test time, as follows: 

413                             (3)𝐷𝑎𝑚𝑎𝑔𝑒 𝐼𝑛𝑑𝑒𝑥 (𝐷𝐼) =
𝐷𝑎𝑚𝑎𝑔𝑒 𝑑𝑖𝑠𝑠𝑝𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 (𝑡)

𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑚𝑎𝑔𝑒 𝑑𝑖𝑠𝑠𝑝𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 × 100%

414

415 Fig. 13 shows the DI and load vs axial displacement for the S-100×100×5.2 profile with L/D 

416 equal to 5. The post-peak zone for high L/D ratios has a very small DI compared to the following 

417 failure zone. This small damage can be attributed to the matrix tensile and compressive crack 

418 initiation due to the localised out-of-plane deformation of the walls accompanying local 

419 buckling. On the other hand, the hollow circular profiles witnessed a sharp jump in DI value just 

420 after the peak-point. This jump is accompanied by a severe drop in the load-carrying capacity. 



421 Since these profiles were not affected by local buckling, their compressive failure in fibres and 

422 shear failure in the matrix were sudden and drastic.      

423 5.2 Effect of profile slenderness ratio 

424

425 5.2.1 Hollow box PFRP profiles 
426

427 Previous studies confirmed that the local buckling load capacity decreases and the number of 

428 localised waves increases when the L/D ratio is increased [1,14,20,60,64]. This is clear from the 

429 tested hollow box PFRP profiles, as shown in Fig. 14 (a) for S-100×100×5.2 profile. Increasing 

430 L/D ratios resulted in a reduction of the axial stiffness, as it increased the unsupported length of 

431 the profiles as reported by [1,20,65]. 

432 It is also evident that the post-peak zone extent is increasing when L/D ratio is increased. This 

433 behaviour can be explained using the normalised strain energy for each L/D ratio for each profile, 

434 as shown in Fig. 14 (b) for S-100×100×5.2 profile, which demonstrates the normalised strain 

435 energy vs test time for each L/D ratio. It can be concluded that for small L/D ratios, the 

436 normalised strain energy is higher at the local buckling point as it is being stored in a fewer 

437 number of localised waves. Thus, the post-peak zone will be infinitesimal because the damage 

438 evolution criteria are met just after the local buckling point due to this high normalised strain 

439 energy. On the other hand, for high L/D ratio, the normalised strain energy is lower at the local 

440 buckling point as it is being stored in a higher number of localised waves. Thus, the post-peak 

441 zone will be visible because the damage evolution criteria just after the local buckling point need 

442 more strain energy to be met.

443 After the post-peak zone, the effect of L/D ratio on the failure of the hollow box PFRP profiles 

444 was studied by assessing the density of each failure mode of the constituents. These failure modes 

445 are referring to the damage progression in fibres by compression (DAMAGEFC), in fibres by 



446 tension (DAMAGEFT), in the matrix by compression (DAMAGEMC), in the matrix by tension 

447 (DAMAGEMT), and in the matrix by shear (DAMAGESHR). The density of each failure mode, 

448 represented by the number of failed elements, at each L/D ratio for S-100×100×5.2 profile is 

449 shown in Fig. 15 (a). For all L/D ratios, the density of matrix failure by tension, compression, 

450 and shear is higher than that for fibres failure by compression and tension. This can be referred 

451 to as the lower strength limits and fracture energy of the matrix compared to the fibres. In 

452 addition, as L/D ratio is increasing, the densities of fibre failure by compression and tension are 

453 nearly constant. While the densities of matrix failure by compression, tension, and shear are 

454 increased. It can be inferred that the higher number of localised waves (delamination zones) 

455 when increasing L/D ratio is the reason. Consequently, matrix failure is extending across these 

456 zones when L/D is increased and causing an increase in the relevant densities.      

457 5.2.2 Hollow circular PFRP profiles 
458

459 Regarding the hollow circular profiles, the load capacity was equivalent across all L/D ratios 

460 since they did not experience local buckling. Moreover, the axial shortening increased, and the 

461 axial stiffness decreased when L/D ratio is increased, as shown in Fig. 16 (a) for C1-89×6.0 

462 profile.

463 Since the hollow circular profiles failed by compressive failure, their normalised strain energy 

464 across different L/D ratios was constant, as shown in Fig. 16 (b) for C1-89×6.0 profile. It can be 

465 concluded that the damage evolution criteria were met at the same part of the profiles (the ends 

466 of the profiles) across all L/D ratios. Thus, the same amount of normalised strain energy was 

467 stored in these profiles. 

468 Fig. 15 (b) shows the failure modes densities versus L/D ratios for C1-89×6.0 profile. The fibre 

469 damage by tension and the matrix damage by compression have negligible densities. There is no 

470 tensile damage in fibres since they are subjected to compression loading. The matrix has a lower 



471 tensile strength than compression. Thus, it fails by transverse tensile cracks before the 

472 compression failure criterion is satisfied. Moreover, when L/D ratio is increased, the other failure 

473 densities remain nearly constant. This can be referred to as the constant failure zone (the ends of 

474 the profiles) across all L/D ratios.

475 6. CONCLUSIONS 

476

477 A nonlinear buckling analysis approach has been developed in this research using an incremental 

478 analysis in Abaqus/Standard (2019). An extensive experimental program consisting of 44 

479 specimens was undertaken to validate this modelling approach under axial compression. The 

480 FEM results had good agreement with the theoretical results and closely agreed with 

481 experimental results and literature data. The proposed methodology presents a helpful utility to 

482 design and optimise the PFRP profiles against local buckling and compressive failure. It can also 

483 help in analysing and studying the effect of many design parameters on these profiles in early 

484 design stages to enhance their strength and stiffness properties. From this study, the following 

485 points were concluded:    

486  The proposed FEM modelling approach using Abaqus 2019 proved its accuracy against 

487 theoretical, experimental, and published data. The incremental approach using the Newton 

488 method along with the adaptive automatic stabilisation scheme and the controlled increment 

489 size demonstrated its accuracy and validity to undertake a nonlinear geometric analysis of 

490 local buckling in PFRP profiles. The progressive failure based on Hashin damage criteria 

491 proved to be a very accurate and useful tool to investigate the load capacity and compressive 

492 failure in PFRP profiles. Overall, the proposed FEM approach represents a simple and 

493 robust utility to model and investigate the mechanical behaviour of PFRP profiles. The 

494 energy parameters and constituent failure modes of the FEM models helped greatly in 



495 explaining the effect of the dimensions, layups, and slenderness ratios on the failure modes 

496 of the PFRP profiles.  

497  The failure in the hollow box profiles was triggered by local buckling. When the length-to-

498 width (L/D) ratio is increased, the local buckling capacity of the hollow box PFRP profiles 

499 decreases. On the other hand, the load capacity of the hollow circular PFRP profiles remains 

500 constant when changing L/D ratio. These profiles were dominated by compressive failure 

501 as their strength limit was reached. Both cross-sectional shapes exhibited linear elastic 

502 behaviour and degradation in the axial stiffness when L/D is increased.

503  For the hollow box profiles, the post-peak zone after local buckling becomes more evident 

504 when the L/D ratio is increased. It was inferred that the larger number of localised waves 

505 distributed the damage over a larger zone and resulted in lower normalised strain energy 

506 when the L/D ratio is increased. Consequently, allowing for a higher restoration in the strain 

507 energy, causing the post-peak zone to extend further. Contrary, the hollow circular profiles 

508 exhibited a sharp drop in their load-displacement curves just after their load capacity is 

509 reached.  

510  Increasing the inclined fibre content results in higher circumferential confinement and a 

511 larger transverse deformation tolerance before failure or buckling. Consequently, this led to 

512 a higher overall axial shortening in the elastic zone as seen for C2-89×6.0 and S-

513 125×125×6.4 profiles compared to C1-89×6.0 and the other hollow box profiles, 

514 respectively. However, these profiles exhibited lower axial modulus compared to their 

515 counterparts. On the other hand, profiles with lower wall thickness showed a higher strain 

516 energy restoration after buckling and a larger axial shortening after buckling due to the lower 

517 axial stiffness of the buckled walls as seen in S-100×100×5.2 and R-75×100×5.2 profiles.

518  After the post-peak zone, the failure in the hollow box PFRP profiles was characterised by 

519 fibre compressive failure and localised fibre tensile rupture at the profiles mid-height. In 



520 addition to that, matrix compressive, tensile, and shear failure occurred along the profile at 

521 the localised waving zones. While the fibres failure densities were constant when L/D ratio 

522 is increased, the matrix failure densities increased in a sign to the larger growth of 

523 delamination zones as the unsupported length is increased. Regarding the hollow circular 

524 profiles, the densities of compressive failure in fibres and shear failure in the matrix were 

525 constant when L/D ratio is increased. This is because the failure occurred along an invariant 

526 failure zone at the profile’s ends. 

527 Further investigations would be required to assess and enhance the proposed FEM modelling 

528 approach to extend it to cover higher L/D ratios and more loading conditions such as bending 

529 and shear. Consequently, allowing for the capture of interactions with other buckling types, such 

530 as global flexural buckling and lateral-torsional buckling. 
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688 Fig. 1. Cross-sectional dimensions of the hollow PFRP profiles (a) S-100×100×5.2 (b) S-125×125×6.4 (c) R-
689 75×100×5.2 and (d) C-89×6.0.
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710 Fig. 2. Testing SANS machine loaded with a PFRP specimen. 
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715 Fig. 3. Damage variable as a function of equivalent displacement [50].
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728 Fig. 4. Local buckling load convergence when reducing the increment size for S-100×100×5.2 PFRP profile (a) 
729 experimental vs numerical load-displacement curves with L/D equals 2 and (b) convergence curves for all L/D 
730 ratios.
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733 (a)                                                                                 (b)

734

735                                                                        (c)

736 Fig. 5. Phase one FEM vs experimental load-displacement curves for S-100×100×5.2 profile with L/D equals (a) 
737 2 (b) 3.5 and (c) 5.
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740
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742 Fig. 6. Phase two FEM vs experimental load-displacement curves for S-100×100×5.2 profile with L/D equals (a) 
743 2 (b) 3.5 and (c) 5.
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746 (a)                                                                                     (b) 

747 Fig. 7. Mechanical properties of the hollow PFRP profiles with L/D equals 5 (a) load-displacement and (b) axial 
748 stress-strain curves.
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751 Fig. 8. Failure sequence in S-100×100×5.2 hollow box PFRP profile with L/D equals 3.5.
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757 (a)                                                                     (b)                

758 Fig. 9. Failure mode of S-100×100×5.2 profile with L/D ratio equals 5 (a) Experimental vs (b) FEM.

759



760

761

762

763 (a)                                                                               (b)

764 Fig. 10. Failure mode of hollow circular profile C2-89×6.0 with L/D ratio equals 5 (a) Experimental vs (b) FEM.

765
766
767      

768
769 Fig. 11. Strain energy and load values vs the axial displacement of  S-100×100×5.2 profile with L/D equals 5.

770
771



772

773 Fig. 12. Resorted strain energy at the post-peak zone vs L/D ratio for the hollow box PFRP profiles.

774

775

776    

777
778 Fig. 13. DI and load vs the axial displacement of  S-100×100×5.2 profile with L/D equals 5.



779

780

781

782  

783 (a)                                                                                     (b)

784 Fig. 14. FEM results for S-100×100×5.2 profile with various L/D ratios (a) load-displacement curves and (b) 
785 normalised strain energy vs time.

786

787

788

789  

790 (a)                                                                                     (b)

791 Fig. 15. Density of failure modes in constituents for different L/D ratios of (a) S-100×100×5.2 profile and (b) C1-
792 89×6.0 profile.
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795  

796 (a)                                                                                     (b)

797 Fig. 16. FEM results for C1-89×6.0  profile with various L/D ratios (a) load-displacement curves and (b) 
798 normalised strain energy vs time.
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815 TABLES

816

817

818 Table 1: Geometry details of the hollow PFRP profiles.

No. 
specimens

Profile 
Geometry

Profile Label Cross-
sectional 

Area ( )mm2

Wall 
Thicknes
s (mm)

L/D ratio Length 
(mm)

Current 
study

[33]

2.0 200 5 2
3.5 350 5 -S-100×100×5.2 1910 5.2
5.0 500 5 2
2.0 250 5 -
3.5 438 4 -

Square

S-125×125×6.4 2970 6.4
5.0 625 5 -
2.0 200 5 -
3.5 350 4 -Rectangular R-75×100×5.2 1580 5.2
5.0 500 5 -
2.0 178 - 2

C1-89×6.0 1563 6.0
5.0 445 - 2
2.0 178 - 2

Circular
C2-89×6.0 1563 6.0

5.0 445 1 2
819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834



835 Table 2: Composite layup properties of the hollow PFRP profiles.

Profile Label No. of Plies Fibre Orientation (Degree) Fibre Content (%)

C1-89×6.0 7 [0/+56/-56/0/-56/+56/0] 0o: 74.4

56 o: 25.6

C2-89×6.0 7 [0/+71/-71/0/-71/+71/0] 0o: 55.9

71 o: 44.1

S-100×100×5.2 7 [0/+50/-50/0/-50/+50/0] 0o: 82.2

50 o: 17.8

S-125×125×6.4 9 [0/+50/0/-50/0/-50/0/+50/0] 0o: 78.1

50 o: 21.9

R-75×100×5.2 7 [0/+47.5/-47.5/0/-47.5/+47.5/0] 0o: 80.0

47.5 o: 20.0
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837
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839
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841

842

843
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845
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849
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851
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855

856

857

858 Table 3: Fibre volume fraction and lamina elastic properties of the PFRP profiles.

Profile’s Label (%)𝑉𝑓 𝐸1
(MPa)

(MPa)𝐸2 𝑣12  𝐺12 = 𝐺13

(MPa)

(MPa)𝐺23

C1-89×6.0, 
C2-89x6.0,

S-100×100×5.2,
S-125×125×6.4

60.6-60.8 45700 12100 0.28 4600 4000

R-75×100×5.2 64.6 48257 12836 0.28 4861 4266

859

860

861

862

863

864 Table 4: Strength limits and fracture energy values of the pultruded lamina [34,56,57].

𝑋𝑇 
(MPa)

𝑋𝑐 
(MPa)

𝑌𝑇 
(MPa)

𝑌𝐶 
(MPa)

𝑆𝐿 
(MPa)

𝑆𝑇 
(MPa)

 𝐺𝐿𝑇
(N/mm)

𝐺𝐿𝐶
(N/mm)

𝐺𝑇𝑇
(N/mm)

𝐺𝑇𝐶
(N/mm)

803 548 43 187 64 50 92 79 5 5
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871
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877

878

879

880

881

882

883 Table 5: Theoretical vs experimental and FEM local buckling loads of hollow box PFRP profiles.

Reference Equation Profile  𝑃𝑐𝑟

[kN]

Avg. EXP 

Load [kN]

FEM Load 

[kN]

S-100×100×5.2 578 589 625.1

S-125×125×6.4 863 1002 1040

[65,66]

𝑁𝑐𝑟 =
π2

𝑏2(4.53 𝐷11.𝐷22 + 2.62(𝐷12 + 2𝐷66))

R-75×100×5.2 497 558 591.2

S-100×100×5.2 532 589 625.1

S-125×125×6.4 801 1002 1040[1] 𝜎𝑐𝑟 =
π2

𝑏2.𝑡
(2 5.139(𝐷11𝐷22) + 2.62(𝐷12 + 2𝐷66))

R-75×100×5.2 432 558 591.2

S-100×100×5.2 570 589 625.1

S-125×125×6.4 850 1002 1040[6] 𝑁𝑐𝑟 =
24

𝑏2(1.871 𝐷11.𝐷22 + (𝐷12 + 2𝐷66))

R-75×100×5.2 489 558 591.2

S-100×100×5.2 588 589 625.1

S-125×125×6.4 876 1002 1040[20] 𝑁𝑐𝑟 =
π2

𝑏2(4.6 𝐷11.𝐷22 + 2.67𝐷12 + 5.33𝐷66)

R-75×100×5.2 505 558 591.2
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887

888

889

890

891

892



893

894

895

896

897

898 Table 6: FEM vs experimental mechanical properties of hollow PFRP profiles. 

Profile L/D
ratio

FEM modulus, 
E [MPa]

EXP modulus, 
E [MPa]

EXP 
SD

Error 
(%)

FEM 
strength 
[MPa]

EXP 
strength 
[MPa]

EXP 
SD

Error 
(%)

2.0 39955 40100 3217 0.36 327 308 19.5 6.16
3.5 39904 39604 1569 0.75 274 267 5.1 2.62S-100×100×5.2
5.0 39951 41612 1334 3.99 243 252 6.7 3.57
2.0 38789 39100 1274 0.79 350 337 10.3 3.85
3.5 38630 38599 1454 0.08 314 305 5.1 2.95S-125×125×6.4
5.0 38783 42301 996 8.31 277 280 8.9 1.07
2.0 43492 43090 2124 0.93 374 353 11 5.94
3.5 43521 41070 1473 5.96 308 301 10 2.32R-75×100×5.2
5.0 43454 44879 2124 3.17 299 311 19.8 3.85
2.0 37213 37100 348 0.30 373 335 53.3 11.41C1-89×6.0
5.0 37278 37092 374 0.50 373 333 57.3 12.01
2.0 31004 30800 237 0.66 324 308 43.5 5.19C2-89×6.0
5.0 30979 32514 598 4.72 325 306 35.2 6.2
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