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ABSTRACT Polycystic Ovary Syndrome (PCOS) is a prevalent hormonal disorder affecting 

women in their childbearing years. Detecting PCOS early is crucial for preserving fertility in 

young women and preventing long-term health complications like hypertension, heart disease, 

and obesity. While costly clinical tests exist to detect PCOS, there is a growing demand for more 

accurate and affordable diagnostic methods. The primary objective of this research is to pinpoint 

the most effective PCOS features that can aid experts in early diagnosis. We introduce a feature 

extraction model, termed KM-GN, which combines the k-means algorithm with a genetic 

selection algorithm to identify the most informative features for PCOS detection. These selected 

features are fed into our designed model, Random Subspace-based Bootstrap Aggregating 

Ensembles (RSBE). To assess the performance of the proposed RSBE method, we compare it 

against several individual and ensemble classifiers. The effectiveness of our model is assessed 

using a freely accessible dataset comprising 43 traits from 541 women, of whom 177 have been 

diagnosed with PCOS. We employ various statistical metrics to evaluate the performance, 

including the confusion matrix, accuracy, recall, F1 score, precision, and specificity. The 

experimental outcomes demonstrate the viability of implementing our proposed model as a 

hardware tool for efficient detection of PCOS. 

Keywords: Polycystic Ovary Syndrome, Detection, Ensemble methods, Genetic algorithm, K-

means. 
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1. INTRODUCTION 

Polycystic ovary syndrome (PCOS) is a hormone disorder that affects women. Clinical studies have 

shown that PCOS can be distinguished by hyperandrogenism [1-6]. Stein and Leventhal first 

diagnosed this disease in 1935 [2]. Women with PCOS often show some symptoms, such as 

menstrual and infertility issues [3]. Moreover, some women may suffer from long-term health 

issues such as heart disease, diabetes, mood disorders, and uterine cancer [4]. The exact causes of 

PCOS are still not identified. However, many clinical studies have shown that genetic factors or 

excess androgen and insulin resistance may play a vital role in developing PCOS. 

Irregular or absent periods, body hair growth, acne, scalp hair loss, and high levels of 

testosterone are considered the common signs of PCOS. Those symptoms and signs may vary 

in severity among women, ranging from mild to severe, making the condition difficult to 

diagnose [7].  

 Experts usually use clinical data or ultrasound scans to diagnose PCOS; however, less than 

50% of women are correctly diagnosed and receive the proper treatment [10]. The literature has 

noticed that clinical data, such as obesity, heart disease, high blood pressure, diabetes, etc., are 

widely used in PCOS diagnosis compared with ultrasound images due to their availability and 

complexity. 

Many recent studies based on machine learning approaches have shown that there is a 

relationship between the development of PCOS and obesity, high blood pressure, heart disease, 

and diabetes. For example, Aggarwal et al. (2023) designed a machine learning-based model to 

diagnose PCOS. A data amalgamation with feature selection methods was suggested, resulting 

in 8 parameters and 985 records. Rahman et al., 2024  integrated  Mutual Information with 

decision tree , AdaBoost , random forest, logistic regression , decision 

tree , AdaBoost , random forest , and support vector machine. Mutual Information was applied 

for feature selection. Aggarwal et al. (2022) found the most critical parameters for diagnosing 

PCOS. In that study, a design of Experiments (DOE) was used to minimise the number of 

diagnostic parameters while improving accuracy. Another study by Aggarwal et al. (2021) was 

conducted to diagnose PCOS. In that study, several machine learning algorithms were tested, 

and the authors found that 12 key features were the most significant for diagnosing PCOS. 

Zhang et al. (2024) combined gene expression analysis, machine learning, and network biology 

to diagnose PCOS. Aggarwal et al., (2023) thoroughly investigated the most essential feature 

for PCOS diagnosis. In that study, features like heart diseases, obesity, diabetes, and high blood 
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pressure were found to be vital for diagnosing PCOS.  Six classification models were tested 

and used in that study.  Liu et al. [13] applied an artificial neural network model with a support 

vector regression (SVR) to detect PCOS. A clinical cohort composed of 1365 women was 

utilised in that study. Danaei et al., [14] tested several machine learning algorithms and unique 

feature selection algorithms to detect PCOS from clinical data. Their results showed that the 

feature selection algorithms improved the performance of all classifiers. Baweja et al. [15] 

suggested a neural network model based on rudimentary features for POCS detection.  Roy et 

al. [16] investigated patient’s personal information such as age, metabolic, biochemical factors , 

and marital status. Three classification models including SVM, decision tree, and Naïve Bayes 

were used to classify the extracted features into healthy and unhealthy subjects.  Vishwakarma 

et al. [17] used a CNN model which was trained on 152 subjects, then it was validated and 

tested on 33 subjects and 32 subjects respectively to predict PCOS. Statistical metrics were 

used to assess their model.  Bhat et al., [18] examined several classification modes in PCOS 

detection. They found that a linear discriminant classifier gave a superior performance 

compared with other machine learning models. Neto et al., [23] made a comparison among 

different machine learning algorithms namely, SVM, NN, RF, LR, and Naïve Bayes. They 

found that RF provides the best performance compared with other models. Mehrotra et al., [26] 

applied a t-test, Bayesian Classifier, and logistic regression to detect PCOS from patient’s 

medical records. Xie et al., [27] combined CNN and a random forest model to detect PCOS. A 

gene ontology analysis was conducted in that study. 

    The discussions in the studies have highlighted a crucial observation: not all clinical data 

have been thoroughly examined for PCOS detection. Consequently, there is a demand for the 

creation of a new model that can discern the most effective features for PCOS detection while 

minimizing complexity and processing time. Many recent studies have tried to diagnose PCOS 

from ultrasound scans. For example, Rachana et al. [19] proposed a machine learning based 

ultrasound image model. Several image segmentation and feature extraction techniques were 

tested in that study. Fruh et al. [22] investigated a study on electronic medical records data of 

5492 women. In that study, ultrasound images were analysed using machine-learning text 

algorithms.  Hosain et al. [28] designed a convolutional neural network-based model to identify 

PCOS. In that study, ultrasound images from healthy and unhealthy subjects were used to assess 

their model. Panicker et al., [29] suggested CNN for detecting PCOS. The proposed model 

classified ultrasound images into the PCOS and non-PCOS classes. Chitra et al. [30] proposed 
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a hybrid transfer model that combined AlexNet, Inception V3, ResNet-50, and VGG-16. 

Mahajan et al. [31] suggested the YOLO (You Only Look Once) model to classify ultrasound 

images into PCOS images or non-PCOS images.  According to the above references, detection 

of PCOS from ultrasound images requires high-quality images, and it's more expensive.  

    To improve PCOS detection, a robust detection method is proposed, and the research route 

that contains three innovative highlights is described as follows. 1) a feature selection model 

named KM-GA that integrates the K-mean model and genetic algorithm is proposed. 2) a 

bootstrap aggregating ensembles (RSBE) model is designed to classify the selected features 

into healthy and unhealthy subjects. 3) Several individual and ensemble models are tested and 

compare their results with the proposed RSBE model. 

    The key scientific contribution of this paper is the provision of time series feature selection 

and classification methods to reduce the cost associated with PCOS detection systems and 

enhance the system's robustness and suitability.  The remainder of this paper is organised as 

follows. Section 2 PCOS dataset is explained. Section 3 introduces the proposed RF ensemble-

based K-mean cluster methodology framework. In Section 4, experimental results are presented 

and discussed. Finally, the conclusions are presented in Section 5. 

 

2. PCOS TIME SERIES DATASET  

This study uses a publicly available PCOS dataset to evaluate the proposed method, which was 

collected from Kaggle's Learning Repository [64]. The dataset is recorded from 541 Indian women 

aged 20-48, with heights ranging from 134-171cm, and weights ranging from 31-108kg. From each 

subject, a total of 41 true integer traits were recorded. The attribute names are {Age, Height, Body 

Mass Index (BMI), Blood Group, Pulse rate, Prolactin, Cycle, Marriage Status, pregnancy, No. of 

abortions, beta -Human Chorionic Gonadotropin, PCOS, weight, number of Cycle days, the level 

of follicle stimulating hormone, Luteinizing hormone, Hip, Waist, Waist: Hip Ratio, thyroid 

Stimulating Hormone, anti-Mullerian Hormone, Prolactin, Vitamin  D3 Deficiency, Progesterone, 

Random Blood Sugar, Weight gain, hair growth, skin darkening, Hair loss, Pimples, Fast food, Reg 

Exercise, Systolic Blood Pressure, Diastolic Blood Pressure,  Follicle number, average, 

Endometrium}. 

3. METHODOLOGY  

This study presents a robust model for diagnosing PCOS using clinical data. Fig. 1 shows the block 

diagram of the suggested model. First, the preprocessing phase is performed. Then, K-means 
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clustering and a Genetic algorithm are implemented to select the most relevant features from the 

patient’s clinical time series record. The outputs of the genetic algorithm and k-means are 

integrated, and different sets of features are formed and selected using arithmetic operators. The 

selected features are then used as inputs to the proposed RBSE ensemble classifier, as well as to a 

set of ensembles and individual classification models. In this study, to reduce potential bias in model 

assessment, the dataset was randomly divided into training and testing sets. We considered a ratio 

of 70% for training and 30% for testing. The proposed model was implemented using MATLAB, 

version R2020a, MathWorks Inc. 

 

3.1 DATA PREPROCESSING  

Medical datasets often suffer from missing values and outliers due to network loss, device failure, 

irregular time recording, and other factors. Several machine learning models are sensitive to those 

issues. We made Data preprocessing to fill in missing data. Many statistical methods have been 

developed to deal with missing data. Most methods rely on the percentage of missing data and the 

significance of the features that are missing. In the case of the missing data, which is between 5% 

to 10%, classic statistical methods such as max, mod, and mean work well. However, When the 

percentage of data missing is above 25%, advanced methods such as hot deck are required.  In this 

paper, we removed features with more than 25% missing values. Features with missing values, 

which are less than 25%, are considered. We removed columns that contain several null values. As 

a result, the dataset is converted into a matrix. The dimension of the resulting matrix was 538X42 

 Preprocessing Feature Selection 

Dataset 

Feature Selection Using 

Arithmetic Operators 

k-Mean Clustering 

The Proposed 

RBSE Model 

Genetic Algorithms    

Figure 1. Block diagram of the proposed method. 

 

Detection Results  
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where 538 refers to the number of samples and 42 indicates the number of features which are 

employed to diagnose PCOS. 

3.2 FEATURE SELECTION 

This paper integrates the genetic algorithm and K-means to select the most powerful features for 

detecting PCOS. The outputs of the genetic algorithm and K-means are combined based on 

arithmetic operators. The following section gives details regarding the genetic algorithm and K-

means.  

3.2.1 Genetic Algorithms 

We employed the Genetic Algorithm (GA) to identify the most significant features from medical 

records. Figure 2 describes feature selection using GA. GA generates a random population, which 

is used in the evaluation phase based on a fitness function. The elite's children are automatically 

propelled to the next generation, while the children who remained in the current society were 

allowed to pass genetically through the function of crossing over and mutation to form a new 

generation [36]. There are 41 features of PCOS in each patient’s record in this dataset. The parties 

are either "infected" or "uninfected". 

Suppose we have a set of features and need to identify the most powerful ones. A binary vector [1, 

0, 0, 1, 1, ...] is created where 0 refers to rejected feature, and 1 denoted to selected feature. The 

vector is represented as “individual”, and each vector value is named a “gene”. The genes are 

randomly chosen from {0, 1. In Fig. 3, the number of genes is N=12, and the population size is 

8. The objective function is used to evaluate everyone. In this stage, the individuals with the best 

objective values are selected, while individuals with the worst values are discarded. Then, a gene 

pool is created using crossover and mutation, as shown in Fig. 3. 

 

 

 

 

 

 

 

Feature set  

 

GA 

Fitness 

function 

Best feature 

set 

Feature selection 

prcoess 

Figure 2. Feature selection using GA 
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    Table 1 lists the parameters of GA. As previously discussed, selecting the optimal number of 

chromosomes is essential in the evolutionary computation phase [36, 38, 39].  The literature 

contains a variety of findings regarding the appropriate population size [41, 42].  Researchers 

typically argue that a "small" population size could cause a poor solution [43, 44] while a large" 

population requires a high computational time to find a solution. To define a subset feature, the 

trapping function that evaluates the suitability of each subset feature must be defined. We adopted 

Oluleye’s as a fitness function [38]. The distance between the training sample and the testing sample 

is calculated using the KNN algorithm. Individuals are assessed according to the KNN- error. All 

individuals with high physical fitness have a top priority to survive in the next generation. GA 

reduces the error rate and selects the individual with the best fitness error. This can reduce the 

number of features. Predictions examine the entire training sample to identify the K most similar 

instances, generating a new data point. Various population sizes were tested in this work to find the 

optimal size. 

Population creation  

crossover 

Mutation 

Figure 3. The main process of GA 
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3.2.2 K-Means Clustering Technique 

In classification applications, the quality of the classification result is heavily influenced by the 

features chosen. Noisy and repetitive features are removed during the feature selection process, 

while informative features are retained [48]. In this paper. The k-means algorithm is adopted as a 

feature selection model. K-Means is used to partition the dataset into two clusters. The best accuracy 

was achieved using a K-Means cluster with 10 replicates and k = 2, as shown in Table 2. Algorithm 

1 describes the K-Means algorithm. 

 

 

TABLE 2 

K-MEANS PARAMETERS 

Parameter  Value 

No. of clusters 2 

Replicates  10 

Distance type City block 

 

 

 

TABLE 1 

LIST OF GA PARAMETERS 

GAs Parameter Value 

Number Feature 41 

Population size 50,100 

Genome length 41 

Population type BitstringS 

Fitness Function KNN-Based Classification 

Error 

Number of generations 100,150 

Crossover Arithmetic crossover 

Crossover Probability 0.8 

Mutation Uniform 

Mutation Probability 0.1 

Selection Scheme Tournament of Size 2 

EliteCount 2 
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3.2.3 Random Subspace with Bootstrap Aggregating Ensembles (RSBE) 

Several studies based on machine learning have demonstrated that combining the outputs of 

multiple classifiers reduces generalisation error [52-54]. Ensemble methods are a very effective 

way because they combine different types of classifiers with distinctive "inductive biases" [51-60].  

TABLE 3 

PARAMETERS OF ALL CLASSIFIERS. 

Classifiers Parameters 

Linear SVM Kernel Function = Linear 

gaussian SVM Kernel Function = Linear 

KNN Distance Function = Euclidean, 

K = 1,3,5  

Decision Tree Default Parameters 

Naïve Bayes Default Parameters 

ALGORITHM 1 

Input: PCOS dataset   

Output: feature set.  

• Choose the number cluster. 

• Mix the feature set first to initialize the centroids, 

then arbitrarily choose the K feature for the 

centroids. 

• repeat step 2, until no change is detected in the 

middle points. 

• We assigned Si features to the closest cluster 

identified by the sum of the city block distance: 

𝑑(𝑥, 𝑐) = ∑ |𝑥𝑗
𝑝
𝑗=1 − 𝑐𝑗|                                  

(1) 

Recalculate the center pointer Nk for each cluster, to 

reflect the new tasks. 

𝑁𝑘 =
∑ 𝑥𝑖

𝑛
𝑖=0  

𝑛  
                                            (2) 
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Indeed, such diversity used by ensemble methods can effectively reduce variance error while 

increasing bias error. In this work study, we proposed a method based on a group of base classifiers 

to detect PCOS using random subspace with bootstrap aggregating ensembles (RSBE).  

    We suggest an ensemble model that generates new learning sets using random subspaces and 

bagging [60-70]. In this model, we updated the training set based on two ways. First, we modified 

the training set by adopting bootstrap replicates 𝑆𝑖 = (𝑋1 
𝑖 , 𝑋2 

𝑖 , … 𝑋𝑛,
𝑖 ) of the training set 𝑆 =

(𝑋1 , 𝑋2 , … 𝑋𝑛 ). Then, we modified the feature space.  

    Suppose 𝑋𝑗 
𝑖 = (j =  1, 2, . . . , n ; i =  1, 2, . . . B) of a bootstrap replicate 𝑆𝑖 = (𝑋1 

𝑖 , 𝑋2 
𝑖 , … 𝑋𝑛,

𝑖 ) 

represented by a p-dimensional vector  𝑋𝑗
𝑖 = (𝑋𝑗1 

𝑖 , 𝑋𝑗2 
𝑖 , … 𝑋𝑗𝑝,

𝑖 ). We arbitrarily chose p∗ < p 

attributes from every bootstrap replicate 𝑋𝑖. As a result, we obtained a p∗ dimensional random 

subspace from the original p-dimensional feature space. The modified training set is represented as   

~S𝑖 = (~X1 
𝑖 , ~X2 

𝑖 , … ~X𝑛,
𝑖 ) which includes p∗-dimensional training ~X𝑗

𝑖 =

(~X𝑗1 
𝑖 , ~X𝑗2 

𝑖 , … ~X𝑗𝑝
𝑖 ) (j =  1, 2, . . . , n). The p∗ components X𝑗 

𝑖 (k =  1, 2, . . . , p ∗) are randomly 

chosen from p components by integrating bagging and random subspaces X𝑗𝑘 
𝑖 (j =  1, 2, . . . , p)  of 

the training vector X𝑗 
𝑖  (the selection is the same for each training vector). One then constructs base-

level classifiers in the random subspaces ~S𝑖  (of the same size), i =  1, 2, . . . B and combines them 

with a voting scheme in the final prediction rule. We name this algorithm Random Subspace with 

Bootstrap Aggregating Ensembles (RSBE). Table 3 lists the models used to form the RSBE. 

    As shown in Fig. 4, seven algorithms were implemented to form the classification set i.e., 

support vector machine, Decision Tree, Nave Bayes (NB), and KNN. The weights are then 

assigned and calculated for each of the classifier algorithms based on their performance. Each 

classifier algorithm's weight is determined using the error rate as a criterion. This means that 

when a workbook's error rate is low, it is given a high weight. The weight 𝛽 for each classification 

algorithm is calculated using the following equation: 

𝛽 = 𝑙𝑜𝑔
1−𝑒𝑟𝑟𝑜𝑟

𝑒𝑟𝑟𝑜𝑟(𝐿)
                                 (3) 

where L is a classification algorithm. 

We considered the following steps in the classification phase: 

• We calculated the error rate for each individual model during the training phase.  

• The error rate was calculated as follows:  
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o Let the error rates of Linear SVM, Gaussian SVM, KNN3, Naïve Bayes, 

Decision Tree, KNN1 = 0.16, 0.25, 0.30, 0.27 0.32, 0.12, 0.20. 

o Using Eq.3 the models obtained the following weights: Linear SVM = 0.72, 

Gaussian SVM = 0.48, KNN3 = 0.37, Naïve Bayes = 0.43 and KNN5 = 0.33, 

KNN1 = 0.87, Decision Tree=0.60. 

o Assume each model classifier identifies a targeted PCOS segment as follows: 

Linear SVM = C1, Gaussian SVM = C2, KNN3 = C2, Naïve Bayes = C2 and 

KNN5 = C1, KNN1 = C1, Decision Tree = C2. 

o Based on the ensemble model in Fig. 4, the weighted vote was calculated as 

Class (C1): Linear SVM + KNN5 + KNN1→ 0.72+ 0.33+ 0.87= 1.92 Class (C2) 

= Gaussian SVM + KNN3+ Naïve Bayes + Decision Tree → 

0.48+0.37+0.43+0.60=1.88. 

o As a result, the class (C1) obtained a higher value than class (C2). The ensemble 

classifier considered the targeted segment as the PCOS segment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The proposed ensemble model. 

 

GA 

PCOS dataset  

K-means 

Selected features 
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3.2.4 Performance Evaluation 

Several metrics are used for performance evaluation. In this study, recall, F-measure, accuracy, 

sensitivity, and specificity are employed to the proposed method [70-77]. 

• Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
  . 

• Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 . 

• F-measure  = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

• Specificity= 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

• accuracy = 
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
  . 

    Where TP refers to the person with no PCOS symptoms, TN denotes to the PCOS patient 

correctly recognised as a PCOS patient. FN denotes the patient with PCOS and is classified as a 

healthy person. FP refers to a healthy patient while predicted as a PCOS patient. 

 

4. EXPERIMENTAL RESULTS  

In this paper, data from 538 patients were collected, of which a total of 421 subjects were healthy, 

while 177 subjects were identified as PCOS subjects. The data was preprocessed to remove 

unwanted columns, and then we standardised the data. As mentioned before, two feature selection 

models were integrated in this study. K-means and Genetic Algorithm were employed to select the 

optimal feature set. As a result, a total of six features were selected using the K-Means algorithm, 

and a total of ten features were selected by the Genetic Algorithm. The selected features were sent 

to the proposed model RSBE. An accuracy of 95.68 was obtained when the RSBE was combined 

with k-Means, and an accuracy of 91.98 was gained when the RSBE was combined with the Genetic 

Algorithm. Table 4 reports the classification accuracy of the proposed model. 

 

 

TABLE 4 

THE CLASSIFICATION RESULTS BASED ON TWO FEATURE SELECTION MODELS 

The proposed model  Sensitivity F-Measure Precision  Specificity Accuracy 

RSBE based on k-Means 94.12 93.20 92.31 96.40 95.68 

RSBE is based on a Genetic Algorithm 76.36 86.60 87.4 85.5 89.98 
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4.1 DIAGNOSTIC RESULTS BASED ON GENETIC ALGORITHM 

In this experiment, it was observed that the proposed ensemble model RSBE coupled with the 

Genetic Algorithm. The highest accuracy rate was scored using GA when the population number 

was set to 50,100 and k = 3 for the Fitness Function (KNN). The number of features extracted by 

the Genetic Algorithm was 7. To find the best solution, different values of k were tested.  The fitness 

function was chosen carefully to minimise the classification error. A total of 7 chromosomes were 

selected from the total of 41, as shown in Fig. 5. Fig. 5 lists the best value for fitness using KNN.  

In addition, Figure 6 shows the best and worst scores of the fitness function. The classification error 

for the PCOS was 0.00185874, 0.00221516. Table 5 shows the classification results based on the 

selected features named Fast Food, hair growth, Cycle length (days), RR, VD3, Pimples, Follicle 

No. (R)). 

 Table 5 presents the results of PCOS detection based on ensemble methods using a Generic 

Algorithm as feature selection. The proposed RSBE achieved the highest specificity and precision 

compared with the other models. The performance of all ensemble models was degraded with a 

genetic algorithm. Our findings showed that the low performance resulted from some noisy features 

that were selected by Genetic Algorithm. The basic ensemble had a better performance, it achieved 

91.98%.  The Boosted Ensemble recorded the lowest performance with an f-score 86.67, sensitivity, 

84.76. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. The Optimal Fitness Value 
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TABLE 5 

TYPICAL PERFORMANCE TEST RESULTS FOR ENSEMBLE METHODS USING GA 

 

Ensemble techniques 

 

Sen. 

 

F-Measure 

 

Prec.  

 

Spe. 

 

Accuracy 

Confusion  

Matrix 
 

Predict 

Class 
 

0 1    

Basic Ensemble 90.38 91.26 92.16 96.36 94.44 
106 4 0 

T
ru

e 
C

la
ss

 
5 47 1 

Bagged Ensemble 93.88 89.32 85.19 92.92 93.21 
105 8 0 

3 46 1 

Boosted Ensemble 84.78 86.67 88.64 95.69 92.36 
111 5 0 

7 39 1 

Random Subspace 

Ensemble 
91.30 87.50 84.00 93.10 92.59 

108 8 0 

4 42 1 

RSBE 76.36 86.60 1 1 91.98 
107  0 

13 42 1 

Figure 6. The highest and lowest scores of the fitness function. 
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4.2 DIAGNOSE RESULTS BASED ON K-MEANS 

With k-means, the proposed model achieved the best accuracy when K-means parameters were set 

to Replicates = 10 and k = 2. More details regarding the results obtained are in the next section. 

Table 6 shows the detection rate based on the selected features. The six selected features were 

ranked based on the accuracy rate. The follicle feature was ranked the top feature, gaining the 

highest detection. However, weight gain recorded the lowest detection rate.  The detection results 

of integrating K-means with RSBE are listed in Table 7. In this experiment, the proposed ensemble 

model was compared with other ensemble approaches. The selected features using K-Means were 

sent to the RSBE as well as to the ensemble methods.  Table 7 presents the comparison results 

among the proposed model RSBE, and other ensemble classifiers. The RSBE scored a high 

accuracy compared with other ensemble models. However, the random subspace ensemble 

recorded a higher specificity than the RSBE accuracy of 95.68%. The bagging ensemble achieved 

a classification accuracy of 95.06%, Prec. of 89.58% and sensitivity of 93.48%. Our results showed 

that the bagging ensemble produced a higher number of false positives and a lower number of false 

negatives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 6 

CLASSIFICATION RESULTS USING THE K-MEANS MODEL 

Features Detection rate 

Follicle  78.7 

SK 77.6 

FN  77.5 

HG  77.1 

CL  74.3 

WG  74.2 

Skin darkening (SK), Follicle No. (R) (FN), Hair growth 

level (HG), Cycle length (CL), Weight gain (WG) 
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4.3 INTEGRATING K-MEANS AND GENETIC ALGORITHM  

To improve diagnose of PCOS, we integrated the output of K-Means and Genetic Algorithm. We 

used a mathematical operator to find out the best combination of features.  Table 8 reports the 

accuracy of integrating k-Means with Genetic Algorithms. We can notice that the classification 

accuracy was improved when the selected features by k-Means with Genetic Algorithm using ∪ 

operator. 

 

 

 

 

 

 

4.4 RSBE PERFORMANCE EVALUATION WITH INDIVIDUAL CLASSIFICATION 

MODELS  

The proposed RSBE model was compared with several individual classification models. Firstly, 

the comparisons were conducted based on the k-mean feature selection model. In this experiment, 

the K-Means were used as a feature selection model, and the selected features were sent to several 

TABLE 7 

TYPICAL PERFORMANCE TEST RESULTS FOR ENSEMBLE METHODS USING K-MEAN CLUSTER 

 

Ensemble techniques 

 

Sensitivity 

 

F-Measure 

 

Prec.  

 

Specificity 

 

Accuracy 

Confusion 

Matrix 
 

Predict Class  

0 1    

Basic Ensemble 90.00 89.12 88.24 94.84 93.21 
108 6 0 

T
ru

e 
C

la
ss

 

5 45 1 

Bagged Ensemble 93.48 91.49 89.58 95.69 95.06 
108 5 0 

5 15 1 

Boosted Ensemble 82.98 84.78 86.67 94.78 91.36 
109 6 0 

116 39 1 

Random Subspace 

Ensemble 
86.67 91.76 97.50 99.15 95.68 

116 1 0 

6 39 1 

RSBE 94.12 93.20 92.31 96.40 95.69 
107 4 0 

3 48 1 

TABLE 8 

CLASSIFICATION RESULTS USING K-MEANS INTEGRATED 

WITH GENETIC ALGORITHM  Accuracy   

K-Means  ∩ Genetic Algorithm 86% 

K-Means  ∪  Genetic Algorithm 99% 
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individual classifiers as well as to the RSBE model. We found that the K-Mean model showed a 

high performance with all classification models. The main cause is that K-Mean was capable to 

select the most influential attributes as well as eliminating the irrelevant feature. The classification 

results for different classifiers are presented in Table 9. As shown in Table 9, the naive bayes 

algorithm and Linear SVM algorithm scored very close results with an accuracy of 89.51%.  The 

Naive Bayes algorithm scored an increase in F-Measure, Precision, sensitivity, and Specificity. 

However, the proposed model RSBE recorded the highest accuracy compared with all individual 

classifiers.  

     

    Second, in this experiment, the best features selected by the genetic algorithm were fed to 

individual classifiers. Table 10 shows that the accuracy of weak individual classifiers was lower 

than that of the proposed ensemble model. For individual classifiers, it can be noticed that the 

KNN3 and Linear SVM algorithms achieved the highest accuracy of 89.51% and 88.72%, 

respectively. However, the KNN1 recorded the lowest accuracy among the individual classification 

TABLE 9 

PERFORMANCE COMPARISONS BASED ON INDIVIDUAL CLASSIFIERS AND K-MEANS FEATURE SELECTION 

 

 
Classifier Sen. F-Measure Prec.  Spec. Acc. 

Confusion Matrix  

Predict results  

0 1    

Linear SVM 

model 
84.8 84.2 83.4 91.8 89.6 

100 9 0 

T
ru

e 
C

la
ss

 

8 45 1 

Gaussian 

SVM model 
83.4 81.9 80.4 89.9 87.7 

97 11 0 

9 45 1 

Decision Tree 

algorithm 
78.8 80.5 82.5 92.1 87.8 

101 9 0 

11 41 1 

Naïve Bayes 

model 
85.9 86.8 87.6 91.3 89.7 

90 8 0 

9 29 1 

KNN1 model 84.6 87.7 73.5 90.5 88.5 
111 12 0 

6 33 1 

KNN3 model 76.8 80.21 83.31 92.8 87.7 
102 8 0  

12 40 1  

KNN5 model 74.6 78.9 83.8 92.62 86.5 
99 8 0  

14 41 1  

The proposed 

RSBE 
94.12 93.3 92.4 96.5 95.8    
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models. In addition, compared to Table 10, we can observe that K-Means performed very well with 

individual classifiers compared with the Genetic Algorithm. Further evaluation was made using a 

10-fold cross-validation metric. The results in Fig. 7 confirmed our findings in Tables 9 and 10.  

     According to Fig. 8, which depicts SHAP values for the detection of Polycystic Ovary 

Syndrome (PCOS), we can identify the relative importance of various features for both the normal 

group (represented by blue bars) and the diagnosis group (shown in orange). The chart illustrates 

how specific biological and symptomatic characteristics are weighed differently in predicting 

PCOS, with Height, Progesterone, and Pimples standing out as key indicators for diagnosis. 

     We applied the Wilcoxon Signed-Rank Test to evaluate the results obtained. The Wilcoxon 

Signed-Rank Test is considered one of the most effective non-parametric tests that compare the 

performance of two models’ accuracies. Table 11 displays the observed results. From the results, 

it can be noticed that the proposed model outperformed the state-of-the-art models.  

 

 

 

TABLE 10 

PERFORMANCE COMPARISONS BASED ON INDIVIDUAL CLASSIFIERS AND GENETIC ALGORITHM FEATURE SELECTION 

 

Models 

 

Sen. 

 

F-Measure 

 

Prec.  

 

Spec. 

 

Acc 

Confusion Matrix  

Predict Class  

0 1    

Linear SVM 

model 
78.2 80.5 83.1 92.9 88.3 

99 12 0 

T
ru

e 
C

la
ss

 

12 39 1 

Gaussian 

SVM model 
63.49 75.47 93.03 96.97 83.95 

104 8 0 

11 39 1 

Decision Tree 

model 
76.47 76.47 76.47 89.19 85.19 

96 3 0 

23 40 1 

Naïve Bayes 

model 
82.1 78.9 76.1 88.4 86.5 

91 14 0 

14 43 1 

KNN1 model 75.5 75.6 75.5 86.8 82.6 
98 8 0 

9 99 1 

KNN3 model 84.5 85.3 86.1 92.4 89.6 
101 8 0  

13 40 1  

KNN5 model 75.5 79.3 83.4 88.5 87.1 
99 13 0  

9 4 1  
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TABLE 11  

WILCOXON TEST FOR PERFORMANCE COMPARISONS 

Model  Wilcoxon p-value Results  
RSBE vs Linear SVM model v 0.0021 RSBE significantly better 
RSBE vs Gaussian SVM model 0.0033 RSBE significantly better 
RSBE vs Decision Tree algorithm 0.0012 RSBE significantly better 
RSBE vs Naïve Bayes model 0.0032 RSBE significantly better 
RSBE vs KNN1 model 0.0024 RSBE significantly better 
RSBE vs KNN3 model 0.0034 RSBE significantly better 
RSBE vs KNN5 model 0.0032 RSBE significantly better 
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Figure 7. Evaluation using 10-fold cross-validation. 
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4.5 COMPARISON WITH STATE-OF-THE-ART METHODS 

In this section, the proposed model was compared with several previous methods. All studies were 

tested with the same dataset.  Kanvinde et al., [56] designed a Bootstrap ensemble model to detect 

PCOS. Bharati et al., [5] detected PCOS based on a filter-based univariate feature selection method. 

In that study, they considered 10 features. Compared with our results, we used lower features to 

detect PCOS.  Munjal et al., [57] proposed a genetic algorithm to detect PCOS. In that study, 

random forest, and decision trees were used to classify the features into healthy and unhealthy 

subjects.  Tanwani et al. [58] suggested a method based on two machine learning algorithms, k-

nearest and logistic regression. 20 features were used in that study. Table 12 shows the comparison 

of our proposed method with state-of-the-art. 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion  

Early detection of PCOS is crucial for prompt patient treatment. An automated system that relies 

on clinical and metabolic parameters could be a valuable tool for PCOS identification. While 

numerous automated detection systems have been proposed in the literature, many of them rely on 

deep learning techniques, which demand large datasets for accurate performance. However, due to 

data availability constraints, numerous studies fail to meet this requirement, resulting in reduced 

accuracy, sensitivity, or increased computation time when employing individual machine learning 

algorithms. In our research, we took a different approach, employing a variety of ensemble methods 

and machine-learning algorithms for PCOS detection. Our dataset, sourced from the Kaggle 

repository, comprises 541 samples. Specifically, we evaluated the performance of six well-

established and capable machine learning approaches: Stacked Ensemble, Random Subspace, 

Boosted Ensemble, Bagged Ensemble, Ensemble Learning, and the RF model. 

TABLE 12 

COMPARISON WITH THE STATE-OF-THE-ART  

Authors Accuracy 

Kanvinde, N., et al [62] 92.00% 

Bharati,et al.[5] 91.01% 

Munjal,et al.[64] 88.00% 

Tanwani, N. et al. [65] 92.00% 

Proposed method 98% 
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    The experimental findings reveal that our proposed method, which combines a subspace 

ensemble model and RSBE learning model, alongside features extracted using the K-Means 

algorithm delivers superior classification performance in predicting PCOS cases across most of the 

scenarios considered. 
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• Identify key features for early PCOS diagnosis using a novel feature extraction model. 
• Genetic algorithms and k-means are used to identify features. 
• Several ensemble classifiers have been integrated with the proposed model. 
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