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Dynamics of curved reaction fronts under a
single-equation model
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Abstract

Fronts of reaction in certain systems (such as so-called solid flames)
are modelled by a high-order nonlinear partial differential equation,
which we analyse numerically. Previously, Strunin [IMA J. Appl. Math.
63:163–177, 1999] obtained stable spinning solutions of the equation
using the Galerkin method. Here we use a more sophisticated and
arguably more powerful method, namely the one-dimensional radial
basis function method, to study the equation further. As an initial
step, we elaborate the numerical code and tested it by reproducing the
spinning regimes for a range of initial conditions. In a new series of
experiments, we find a regime where the front is shaped as a pair of
kinks spinning in a stable joint formation. The settled character of this
regime is demonstrated.
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1 Introduction

Certain types of active systems with dissipation satisfy

∂tu = −A(∂xu)
2∂2xu+ B(∂xu)

4 + C∂6xu , (1)

where A, B and C are constants (A > 0 , C > 0). In particular, equation (1)
is relevant to combustion waves (fronts) [1] and nonlinear instabilities in
reaction-diffusion systems [2]. In the context of combustion waves, u stands
for the distance passed by the combustion front along a hollow cylinder, x is
a running coordinate along the circumference of the cylinder and t is time.
Equation (1) generates a rich variety of dynamics, the most spectacular of
which is the spinning wave illustrated in Figure 1. Figure 1 shows periodic
solutions of (1) at different times on the surface of a cylinder, rolled out into
a plane (two periods are shown).

Equation (1) was solved in 1D with one independent spatial dimension x
using the spectral Galerkin method [1], and in 2D using a finite difference
scheme [3]. In this paper we apply a different numerical method, namely
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Figure 1: A spinning front solution of equation (1) derived by Strunin [1].

the 1D integrated radial basis function networks method (1d-irbfn), which
has proved to be efficient in a number of applied problems [13, 14]. Firstly
we obtain a spinning wave solution and compare it with Figure 1. In this
figure we see a train of fronts, each comprising a steep section (step) followed
by a long, nearly flat plateau. The plateau appears inclined, but the slope
is small. The speed of the fronts, as well as their height and width, are
controlled by the equation and not initial conditions. This step-like structure
is a consequence of the balance between the energy release, represented by
the term −A(∂xu)

2∂2xu , and the dissipation, represented by the term C∂6xu .
The term B(∂xu)

4 plays the role of a bridge between the two, as explained
by Strunin [1, 2, 3]. By re-scaling t, x and u, equation (1) can always be
transformed into canonical form where all the coefficients, A, B and C become
unity.

2 The numerical method

The 1d-irbf and irbf-based methods were successfully verified through
several engineering problems such as turbulent flows [4], laminar viscous



2 The numerical method C401

flows [5, 6, 7], structural analysis [8], and fluid-structure interaction [9].

Radial basis function networks (rbfns) are known as powerful high-order ap-
proximation tools for scattered data [10]. A function f(x), to be approximated,
is represented by an rbfn as

f(x) ≈ u(x) =
N∑
i=1

wiGi(x) , (2)

where x is the input vector, N is the number of rbfs, {wi}Ni=1 is the set of
network weights to be found, and {Gi(x)}

N
i=1 is the set of rbfs. According

to Micchelli’s theorem [20], there is a large class of rbfs, for example the
multiquadric, inverse multiquadric and Gaussian functions, whose design/
interpolation matrices obtained from (2) are always invertible. It was proved
that rbfns are capable of representing any continuous function to a prescribed
degree of accuracy [20]. Furthermore, according to the Cover theorem [20],
the higher the number of rbfs used, the more accurate the approximation will
be, indicating the property of ‘mesh convergence’ of rbfns. Among rbfs, the
multiquadric functions, Gi(x) =

√
(x− ci)T(x− ci) + a2i , with ci the centre

and ai the width, are ranked as the most accurate and possess an exponential
convergence with the spatial discretisation refinement [20]. The application
of rbfns for solving partial differential equations has received wide attention
over the last decades [11, e.g., and references therein]. The usual approach
is to differentiate (2) as often as required to obtain approximate derivatives
of f(x) [12]. If the error in f(x) is O(hs), where h is the mesh size and s > 0 ,
then the error in the nth derivative of f(x) is O(hs−n). In other words, there
is a reduction in the convergence rate for derivatives and this reduction is an
increasing function of derivative order. Thus, differentiation will magnify any
error that might exist in the approximation of f(x).

To avoid the convergence rate decreasing with differentiation, and recognising
that integration is a smoothing process, the integral formulation was proposed
[13, 14], where spectral approximants (e.g. rbfns) are utilised to represent
the highest-order derivatives under consideration and then integrated an-
alytically to yield approximate expressions for lower-order derivatives and
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the function itself. This approach is called integrated radial basis function
networks (irbfn). Although rbf methods can be easily implemented in a
truly meshless manner based on scattered data points, it proves very efficient
and effective to discretise a domain using Cartesian grids [13, 14]. Thus, the
purpose of using integration (a smoothing operator) to construct the approxi-
mants is to avoid the reduction in convergence rate caused by differentiation,
and also to improve the numerical stability of the discrete solution.

The integration process naturally gives rise to arbitrary constants that serve
as additional expansion coefficients, and therefore facilitate the employment
of some extra equations in the process of converting the rbf weights into
the function values. This distinguishing feature of the integral formula-
tion provides effective ways to overcome well-known difficulties associated
with conventional differential approaches: (i) the implementation of multiple
boundary conditions [15]; (ii) the description of non-rectangular boundaries
on a Cartesian grid [16]; (iii) the imposition of high-order continuity of the
approximate solution across subdomain interfaces [17]; and (iv) the incorpo-
ration of nodal derivative values into the approximations via compact irbfn
stencils (C-irbfn) [18].

The ability of the irbfn methods to capture very sharp gradients, which
is highly desirable for equation (1), was demonstrated with the effective
simulation of shockwave-like behaviour in the dynamic strain localisation of a
quasi-brittle material subjected to a sudden step loading [19].
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3 Numerical experiments

3.1 Travelling front under homogeneous boundary
conditions

In this set of numerical experiments we assume the homogeneous boundary
conditions

∂xu|x=L1 = ∂xu|x=L2 = 0 ,
∂2xu|x=L1 = ∂

2
xu|x=L2 = 0 ,

∂3xu|x=L1 = ∂
3
xu|x=L2 = 0 .

In this context, L is the perimeter of the cylinder and L1 6 L 6 L2 . The
equation coefficients were chosen arbitrarily, A = 2 , B = 1 , C = 1 . We recall
that, regardless of concrete values of the coefficients, the governing equation
can always be transformed to the canonical form with A = B = C = 1 by
re-scaling x, t and u. The space domain is constantly shifted to the right,
following the moving front. The number of nodes is 100, and the covered
length is L2 − L1 = 30 . The initial condition is

u(x, 0) = 5 exp
[
−(x− 1)2

]
. (3)

After some transitional period (Figure 2), the front clearly settles into a
constant shape (most evident at the later times), with nearly horizontal
tails (Figure 3). Ahead of the front is a characteristic chain of small-scale
oscillations caused by the high-order dissipation. Effectively, the kink in
Figure 2 is almost the same as an individual kink from the train in Figure 1
because Figure 2 presents the limiting case of Figure 1 when the spatial period
goes to infinity (the period in Figure 1 is already very large compared to the
kink’s width). In the next section we present a more direct matching between
our results and the periodic solution in Figure 1.
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Figure 2: The front at early times t = 2 (top) and t = 3 (bottom).

3.2 Travelling front under periodic boundary
conditions

For these numerical experiments we imposed periodic boundary conditions

u|x=L1 = u|x=L2 , ∂xu|x=L1 = ∂xu|x=L2 ,
∂2xu|x=L1 = ∂

2
xu|x=L2 , ∂3xu|x=L1 = ∂

3
xu|x=L2 ,

∂4xu|x=L1 = ∂
4
xu|x=L2 , ∂5xu|x=L1 = ∂

5
xu|x=L2 .
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Figure 3: Settling of the fixed-shape front.

The solutions obtained in this section are associated with the reaction front
moving on a cylindrical surface. In this context, L is the perimeter of the
cylinder and L1 6 L 6 L2 .

In the following numerical experiment we used A = 8 , B = 3 and C = 2 and
the lumpy initial condition

u(x, 0) = 2 sin x . (4)

Over one period L2 − L1 = 4π the initial profile (4) performs four oscillations,
as seen in Figure 4. The number of nodes is 100, and the time step is 0.001.
Figures 5 and 6 show the early evolution of the front where the initially
symmetric shape gradually becomes asymmetric. We explain this effect by
the small initial asymmetry introduced by spatial discretisation. Over time
the asymmetry amplifies, with the four initial crests gradually merging into
one. Figure 7 presents the later stages of the evolution during which a single-
step regime is eventually established. Thus, the small initial asymmetry
progresses into a fully developed step-like formation travelling to the left.
This numerical experiment again demonstrates independence of the settled
regime (to be precise, the hight and width of individual steps, but not their
number) to the details of the initial condition.
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Figure 4: The initial condition (4).

Figure 5: The solution evolved from (4) between t = 2.1 and t = 2.9 .
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Figure 6: The solution between t = 4.9 and t = 6.5 .

Figure 7: The solution between t = 6.8 and t = 9.6 .
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Figure 8: The surface diagram for the times between t = 0 and t = 10 .

Figure 8 displays the solution dynamics in the form of a surface u = u(t, x) .
The front’s motion and shape start to settle around t = 6 , and then the
velocity is practically constant. We obtained similar results when using
different initial conditions and values of the parameters. Figure 9 shows the
time dependence of the position of the local maximum of u; that is, the top
point of the step. Apparently, after some transitional period characterised by
fluctuations of the velocity, the graph becomes a straight line, thus indicating
a constant velocity.

4 Conclusions

We applied the 1d-irbf numerical method to solve equation (1), simulating
spinning combustion fronts and oscillations in a certain class of reaction-
diffusion systems. The method successfully reproduced the settled spinning
regimes of an earlier study [1]. We also presented the complex formation
process of the spinning waves, in which the energy pumping within the
sharpest segments of the front overpowers the details of the initial conditions
and determines the direction of motion.
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Figure 9: The propagation of the local maximum of u for t = 0 through
t = 10 (top: earlier times; bottom: later times).
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