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A B S T R A C T   

The problem considered in this paper is for the stability evaluation of a rectangular tunnel in undrained clay 
during lining process. The approach adopted involved the use of isogeometric analysis (IGA) and the upper 
bound limit analysis formulation for the stability analysis. For the geometrical representation, B-spline basis 
functions are used to generate a set of B-spline surfaces that define the boundary of the soil domain, allowing for 
the exact representation of the tunnel geometry. The upper bound limit analysis is then formulated as a second- 
order cone program (SOCP), which can be solved by using a numerical optimization algorithm. The accuracy and 
reliability of the proposed method are validated by comparing the results with those published in previous 
studies. Furthermore, a large dataset is generated by randomly varying the input parameters, and a deep learning 
model is trained to learn the dataset. The deep learning model is trained using the mean squared error (MSE) 
metric, which yields an MSE as small as 10− 6, indicating the high accuracy and precision of the proposed 
approach. Feature analysis and Partial Dependence Plots (PDPs) were used to gain insights into physical behavior 
by identifying important variables and understanding their individual and collective effects. In conclusion, the 
coupling of IGA and upper bound limit analysis provides a comprehensive and reliable solution to the stability of 
rectangular tunnels. The results obtained from this approach are accurate and can be achieved with reduced 
computational cost, making it an attractive approach for practical engineering applications. This approach can be 
used as a basis for future research on tunnel and tunnel stability analysis and may be extended to other types of 
soil structures under complex geometries.   

1. Introduction 

Tunnels have become a vital infrastructure for transportation, stor-
age, and underground resource protection. As they are built under-
ground, their stability is of utmost importance during both the design 
and construction phases. The tunnel stability refers to its ability to 
maintain its shape and support its own weight, as well as any loads 
imposed on it. Therefore, understanding the behavior of tunnels in un-
drained soils and developing appropriate measures to ensure their sta-
bility is of paramount importance to engineers and designers (Kim and 
Yoo, 2005). Unlike the comprehensive assessment of a tunnel’s lifelong 
service, which incorporates time-dependent analyses of displacement 

and stress perspectives, collapses that occur during the construction 
phase are rapid and instant. As a result, there is a paramount need for 
conducting stability evaluations specifically in this construction phase to 
optimize the methodology and mitigate potential hazards. 

A considerable amount of research has been dedicated to investi-
gating the stability of tunnels or tunnels, with scholars employing 
various approaches. These include analytical approaches (Wu et al., 
2022), numerical methods (Gioda and Swoboda, 1999), experimental 
approaches (Meguid et al., 2008), and hybrid methods that combine 
experimental, analytical, and/or numerical approaches (Shahbazi et al., 
2021; Tsinidis et al., 2016), among others. By utilizing these different 
techniques, researchers have gained a better understanding of the 
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factors that influence tunnel stability and have developed more effective 
ways of assessing it. In recent times, significant progress has been ach-
ieved in enhancing the safety aspects of tunnel design. Noteworthy 
contributions include the study conducted by Guo et al. (2021) on 
estimating the minimum cover depth for underwater shield tunnels, the 
investigation by (Wang et al., 2019) on the seismic response of tunnel 
lining structures in thick expansive soil strata, the exploration of blast- 
induced vibration by Wang et al. (2022b), and the examination of the 
responses of existing tunnels to nearby excavations as discussed by Meng 
et al. (2022), and among others. 

Among the various methods used to investigate tunnel stability, the 
finite element limit analysis (FELA) approach has proven to be partic-
ularly effective (Tschuchnigg et al., 2015). This is due to its ability to 
determine failure mechanisms through an optimization process as well 
as its ability to determine both upper-bound and lower-bound solutions, 
so that the exact results can bracketed to within a few percentages. The 
FELA approach was pioneered by Sloan in 1988 and 1989, and since 
then, numerous studies have been conducted to gain insight into the 
failure mechanisms of tunnels under different scenarios. These studies 
have resulted in a vast body of literature on the subject (Wilson et al., 
2015; Wilson et al., 2017). 

Finite element limit analysis (FELA) is a popular approach for 
investigating the stability of tunnels. FELA has two main components 
(Sloan, 1988, 1989): discretizing tools, such as the finite element 
method (FEM) or smooth FEM (Nguyen and Nguyen-Son, 2022; Vo- 
Minh and Nguyen, 2022), and optimizing methods, such as linear pro-
gramming, non-linear programming, or conic programming. Linear 
finite element is often used for discretizing tunnels; however, it has 
limitations in accurately modeling complex geometries with curvature 
boundaries, owing to its nature in linear approximation with straight 
lines. To overcome this limitation, IsoGeometric Analysis (IGA) was 
introduced by Hughes et al. (2005), which can precisely model any 
complex geometries, just like in Computer-Aided Design (CAD). The 
superiority of IGA has been realized by many researchers, and it has 
become increasingly popular in the field of FEA. Several noteworthy 
advancements within the framework of the Isogeometric Analysis (IGA) 
platform have been proposed in recent times. These advancements 
include the development of precise geometry representation models 
specifically tailored for complex geometries, as discussed by Ortiz- 
Puerta et al. (2022). Furthermore, Mishra (2023) has made significant 
contributions by addressing three-dimensional (3D) fracture problems 
within the context of IGA. Additionally, Wang et al. (2022a) have 
introduced a planar parameterization technique that holds immense 
potential for IGA applications. In computational geomechanics, IGA has 
been widely adopted for various topics, such as unsaturated soil me-
chanics (Shahrokhabadi et al., 2019), poroelasticity (Irzal et al., 2013), 

load transfer mechanism of granular material (Nguyen and Tran, 2021), 
and tunneling (Nguyen, 2014; Vo-Minh et al., 2021). 

In this study, IGA is adopted as a discretizing tool for limit analysis, 
which uses upper-bound theorems to revisit the problems of the un-
drained stability of rectangular tunnels. Through this approach, this 
study aims to overcome the limitation of FELA in accurately model 
complex geometries, providing a more comprehensive understanding of 
the stability of tunnels under undrained soil conditions. Recent ad-
vancements in deep neural networks have shown tremendous potential 
in solving complex engineering problems (Nguyen et al., 2022). By 
leveraging large datasets to identify patterns and relationships, these 
models can significantly improve the accuracy and reliability of 
analytical tools in engineering. The specific objectives of the study are 
to: (1) compare the accuracy and reliability of the upper-bound 
approach based on IGA and SOCP with the results of a previous study; 
(2) generate a large dataset with 5000 runs for various random input 
parameters; (3) utilize deep learning techniques, particularly deep 
feedforward neural networks (DFNNs), to train and learn the dataset; (4) 
demonstrate the potential of machine learning in combination with 
traditional analytical tools to provide a more comprehensive and accu-
rate understanding of complex engineering problems, particularly in the 
field of tunnel stability. In sum, this study is dedicated to facilitating the 
safe and economical design of the construction process during tunnel 
lining, enhancing the overall understanding of stability considerations 
in this critical phase of tunnel construction. 

2. Problem definition 

The paper deals with rectangular tunnels that possess a width B, 
height D, and depth H, as shown in Fig. 1. The problem replicates bored 
tunnels in soft soil, where the excavation progresses by inserting a rigid 
lining, and an unlined heading with a length L is supported by internal 
pressure σt. The actual practice supports the unlined heading with either 
compressed air or clay slurry. The heading collapse is driven by the 
surcharge pressure σs and the soil unit weight γ. The assumption of plane 
strain holds valid when the length L is considerably greater than the 
width B (L ≫ B). The soil is deemed as a heterogeneous Tresca material 
having an undrained cohesion at the ground surface cuo and a strength 
factor ρ that defines the rate of strength increase with depth. The un-
drained strength of the soil at the depth z can be represented by Eq. (1). 

cu(z) = cuo + ρz (1) 

Broms and Bennermark (1967) proposed a way to assess the stability 
of a tunnel face using a parameter called the stability number. The 
stability number is defined as in Eq. (2): 

Fig. 1. Plane strain rectangular tunnel.  
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N =
(σs − σt)

cuo
(2) 

The stability analysis of shallow square tunnels was studied in detail 
by Assadi and Sloan (1991), while Abbo et al. (2013) used finite element 
limit analysis methods to analyze the stability of wide rectangular tun-
nels. Later, Sloan and Assadi (1991) and Wilson et al. (2013) extended 
this research to include tunnels in soils where undrained shear strength 
increases linearly with depth. Recent works on the development of 
tunneling analysis is due to the contribution from Shiau and Al-Asadi 
(2020); Shiau and Keawsawasvong (2022); Shiau et al. (2022) using 
three bearing capacity factors. 

This study extends the upper bound limit analysis method using 
isogeometric analysis (IGA) and second-order cone programming 
(SOCP) to calculate the stability number of rectangular tunnels. The 
formulations of upper bound limit analysis using simplex strain elements 
and SOCP were presented by Makrodimopoulos and Martin (2007), 
while the concept of isogeometric analysis was introduced by Hughes 
et al. (2005). Our approach utilizes B-spline basis functions to model the 
exact geometry, which also serves as the basis for the solution space of 
the numerical method, in accordance with the isoparametric concept. 
More details will be discussed next. 

3. Numerical framework – IsoGeometric analysis (IGA) 

Isogeometric analysis (IGA) and finite element analysis (FEA) both 
use the isoparametric concept. However, IGA reverses the traditional 

approach by selecting a basis that can exactly represent the geometry 
and uses it as a basis for the fields that require approximation. In a 
traditional FEA, geometry is followed by the analysis, while in IGA, 
geometry determines the analysis. Hughes et al. (2005) proposed the 
concept of isogeometric analysis using B-spline basis functions that can 
be used to construct an exact geometric model, thereafter, resulting in a 
higher-order approach for finite element analysis. A brief discussion of 
B-spline components in two dimensions is provided in Appendix A1. 

3.1. The element analysis 

The bivariate B-spline basis functions RI(ξ,η) = Ri,j(ξ,η) are also used 
to approximate the displacement fields. This is the same concept as the 
shape functions in a traditional FEA: 

u =

[
u

v

]

=
∑ncp

I=1
RI(ξ, η)

[
uI

vI

]

= R(ξ, η) × d;

I = 1, 2, ..., ncp = n × m

(3)  

where (uI,vI) denote the values of the displacements at the control point 
PI (Pi,j) and ncp = n × m is the number of control points. 

The displacement vector d of control points is stored in the following 
order: 

d = [ u1 u2 ... uncp v1 v2 ... vncp ]
T (4) 

Strains are given by: 

ε(ξ, η) = ∂R(ξ, η) × d = B(ξ, η) × d (5)  

where B(ξ,η) = ∂R(ξ,η) is the strain–displacement matric, which is not 
constant and changes with the value of R(ξ,η). 

The number of control points relate to a single two-dimensional 
element is (p + 1)2, where there are (1 + 1)2 = 4 control points for an 
element in rectangular tunnel (polynomial order 1). In isogeometric 
analysis, the Jacobian matrix is used to map the element from physical 

Fig. 2. Schematic of mesh. (a) The initial element with 3 elements. (b) Using knot insertion routine for refinement of the mesh.  

Table 1 
The coordinates of initial control points for Fig. 2a example.  

i Pi,1(x,y) Pi,2(x,y) 

1 (0,0) (0, H) 
2 (B/2 + H, 0) (B/2, H) 
3 (B/2 + H, D + 2H) (B/2, D + H) 
4 (0, D + 2H) (0, D + H)  
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space to the parameter space. As the basis functions span the parameter 
space, which comprises multiple elements, a mapping between each 
parent element and the parameter space is also required. The parent 
element in IGA is similar to the element in FEA but without nodes. It is at 
the parent element level that Gaussian quadrature is employed for nu-
merical integration. Since the parameter space is rectangular, the 
mapping between the parent element and the parameter space involves 
a constant Jacobian and linear relationships between the Gauss points 
and their corresponding parameter values: 

ξ = ξi +
(

ξ
∧

+ 1
)

ξi+1 − ξi

2
; η = ηi + (η∧ + 1) ηi+1 − ηi

2
(6)  

where the hat indicates coordinates on the parent element. The mapping 
processes in isogeometric analysis are illustrated in Fig. A1.1. 

3.2. Numerical simulation 

To exploit the symmetry of the problem, the analysis is limited to half 
of the region. This approach ensures that rigid elements emerge along 

u

u
u

Fig. 3. Illustration of upper bound limit analysis using IGA and SOCP.  

Table 2 
Comparison of stability number, convergence rate, and CPU time for rectangular tunnels with uniform soil shear strength (ρD/ cuo = 0).  

H/D B/D γD/cuo 

Stability numbers (N), Abbo et al. (2013) Stability number (N), this paper#; CPU times (seconds)* 

LB UB nel = 500 nel = 2,000 nel = 4,500 nel = 8,000 nel = 12,500 

1 2 0 0.98 0.98  0.997  0.990  0.987  0.985  0.984  
0.9 s  3.8 s  13.2 s  84.3 s  242.0 s 

1 4 0 0.42 0.43  0.438  0.429  0.426  0.424  0.423  
1.0 s  4.4 s  30.8 s  102.3 s  255.6 s 

3 3 2 − 4.24 − 4.18  − 4.134  − 4.159  − 4.175  − 4.185  − 4.191  
1.5 s  4.2 s  12.2 s  35.7 s  113.1 s 

3 4 2 − 4.59 − 4.56  − 4.536  − 4.540  − 4.549  − 4.556  − 4.560  
0.9 s  3.8 s  12.6 s  62.2 s  206.3 s 

6 4 3 − 15.80 − 15.68  − 15.548  − 15.643  − 15.667  − 15.679  − 15.688  
1.1 s  3.6 s  12.4 s  40.8 s  165.2 s 

10 3 5 − 48.19 − 48.00  − 47.350  − 47.819  − 47.933  − 47.981  − 48.005  
0.7 s  3.7 s  13.2 s  38.6 s  177.3 s  

# nel: number of IGA elements. 
* Processor: Intel Core i5 (8 CPUs); Memory: 8192 MB RAM. 
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the complete boundary, as illustrated in Fig. 2. The rectangular tunnel is 
modeled using the same polynomial orders of B-spline basis functions 
for both directions, p = q = 1. The total number of elements, nel, is 
determined as the product of the number of elements in the ξ and η 
directions, represented by nx and ny, respectively. The number of initial 

elements is nel = 3 × 1 = 3, the number of initial control points are (3 +
p) × (1 + q) = 8, with p = q = 1. The coordinates of initial control points 
(the red points in Fig. 2a) are shown in Table 1. Also, the initial knot 
vectors are shown in Eq. (7).  

Table 3 
Comparison of stability number, convergence rate, and CPU time for square tunnels (B/D = 1) where the shear strength increases linearly with depth.  

H/D ρD/cu0 γD/cu0 Stability numbers (N), Wilson et al. (2013) Stability numbers (N), this paper#; CPU times (seconds)* 

LB UB nel = 500 nel = 2,000 nel = 4,500 nel = 8,000 nel = 12,500 

4 0 1 − 0.30 − 0.12  0.040  − 0.062  − 0.102  − 0.124  − 0.138  
0.8 s  3.9 s  13.4 s  41.0 s  176.1 s 

4 1 1 12.38 13.06  13.993  13.454  13.229  13.099  13.016  
0.8 s  4.0 s  14.3 s  42.0 s  161.9 s 

7 0 3 − 17.46 − 17.13  − 16.657  − 17.020  − 17.109  − 17.148  − 17.171  
0.7 s  3.9 s  16.6 s  44.2 s  183.9 s 

7 1 3 10.17 12.11  15.286  13.362  12.697  12.353  12.137  
0.8 s  4.6 s  15.9 s  52.4 s  198.5 s  

# nel: number of IGA elements. 
* Processor: Intel Core i5 (8 CPUs); Memory: 8192 MB RAM. 

Fig. 4. Comparison of the stability of rectangular tunnels in uniform undrained shear strength between the present study and those given by Abbo et al. (2013) for H/ 
D = 1–4. 
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ξ direction: Ξ = {0,0,nx1,(nx1 + nx2),nx,nx}                                          (7)  

η direction: H = {0, 0, ny, ny}.                                                                

where nx = nx1 + nx2 + nx3 (with nx1, nx2, nx3 are illustrated in Fig. 2a). 
The alignment of control points when the mesh is refined is then 

determined from a knot insertion routine. Since the formulas are based 
on a single knot inserted, the routine must be repeated to give the 
desired number of elements. The total number of elements is nel = nx ×

ny = (50 + 2 × 50 + 2 × 50) × 50 = 250 × 50 = 12,500 elements. 
The global knot vectors expand as knots are inserted:  

ξ direction: Ξ = {0, 0, 1, 2, …,248, 249, 250, 250}                              (8)  

η direction: H = {0, 0, 1, 2, …, 48, 49, 50, 50}.                                         

Lastly, an element in parameter space has an area of [ξi,ξi+1] ×
[ηj,ηj+1] = [0,1] × [0,1]. Therefore, a mapping between each parent 
element and the parameter space is necessary for using numerical 
integration. 

3.3. Upper bound analysis as second-order cone programming 

The upper bound analysis as second-order cone programming 
formulated by Makrodimopoulos and Martin (2007) is provided in Ap-
pendix A2. Introducing an approximation of the displacement and using 
the smoothed strains, the upper bound limit analysis problem for plane 
strain can be formulated as: 

λ+ = min

(
∑nel

e=1
cAetecosφ − W0

ext(u̇)

)

(9a)  

subject to. 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Wext(u̇) = 1
u̇ = 0 on Γu

˙̃ε
e
xx +

˙̃ε
e
yy = tesinφ e = 1, 2,…, nel

‖ρ‖i⩽ti e = 1, 2,…, nel

(9b)  

where nel is the number of elements in the whole investigated domain. 

Fig. 5. Comparison of the stability of rectangular tunnels in uniform undrained shear strength between the present study and those given by Abbo et al. (2013) for H/ 
D = 5–8. 
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Fig. 6. Comparison of the stability of rectangular tunnels in uniform undrained shear strength between the present study and those given by Abbo et al. (2013) for H/ 
D = 9–10. 

Fig. 7. Comparison of the stability of square tunnels B/D = 1 between the present study and those given by Wilson et al. (2013) for H/D = 1–4.  
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Fig. 8. Comparison of the stability of square tunnels B/D = 1 between the present study and those given by Wilson et al. (2013) for H/D = 5–8.  

Fig. 9. Comparison of the stability of square tunnels B/D = 1 between the present study and those given by Wilson et al. (2013) for H/D = 9–10.  
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And the fourth constraint in Equation (9b), resulting optimization 
problem is cast in the form of a second-order cone programming (SOCP) 
problem so that a large-scale problem can be solved efficiently. 

Since strains change with the value of R(ξ,η) (see Eq. (5)), Nguyen 
(2014) has proposed a framework to obtain the smoothed strains of IGA 
element e as below: 

˙̃εe =
[
˙̃ε

e
xx

˙̃ε
e
yy

˙̃ε
e
xy

]T
=

˙̃Bede(de = const) (10)  

where 

˙̃Be =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

˙̃R1,x
˙̃R2,x

˙̃R3,x
˙̃R4,x 0 0 0 0

0 0 0 0 ˙̃R1,y
˙̃R2,y

˙̃R3,y
˙̃R4,y

˙̃R1,y
˙̃R2,y

˙̃R3,y
˙̃R4,y

˙̃R1,x
˙̃R1,x

˙̃R3,x
˙̃R4,x

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(11)  

with 

˙̃RI,x =
1
Ae

∫

Ωe

ṘI,xdΩe
˙̃RI,y =

1
Ae

∫

Ωe

ṘI,ydΩe

Ae =

∫

Ωe

dΩe; I = 1, 2, 3, 4
(12) 

In this study, isogeometric analysis is employed to compute the in-
ternal power dissipation, the undrained stability number for a domain Ω 
divided into nel = nx × ny elements. It is worth to mention that the last 

constraint in Equation (9b) was formed in the quadratic, allowing the 
conic interior point optimizer of the academic Mosek to be adopted for 
solving the optimization problem. The procedure of upper bound limit 
analysis using IGA and SOCP is illustrated in Fig. 3. 

4. Numerical results and validation 

The stability number in Equation (2) is described conveniently by the 
dimensionless parameters. Because the function f is not the precise form, 
it is necessary to determine discrete values which define it. 

N =
(σs − σt)

cuo
= f
(

H
D
,
B
D
,
γD
cuo

,
ρD
cuo

)

(13) 

For undrained analysis, the solution is independent of the loading 
direction (Shiau and Al-Asadi, 2020) and the problem can be simplified 
by setting the surcharge pressure σs to zero. Additionally, assumptions of 
unity are adopted for both the tunnel height (D) and the undrained shear 
strength at the ground surface (cuo) in this study. By using dimensionless 
parameters H/D, B/D, γD/cuo, and ρD/cuo, parametric studies are con-
ducted by varying the tunnel depth H, width B, unit weight γ, and soil 
strength factor ρ to investigate the stability of the rectangular tunnels. For 
upper bound limit analysis, this study sets H/D = 1–10, B/D = 1–4, 
γD/ cuo = 0–5, and ρD/ cuo = 0–1. 

In contrast to the previous study conducted by Nguyen (2014) that 
showcased the superiority of the Isogeometric Analysis (IGA) in 
modeling circular tunnels, the efficacy of IGA in the context of 

Fig. 10. The failure mechanisms of rectangular tunnels in uniform undrained shear strength.  
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rectangular tunnels remains unproven. However, the results presented 
in Tables 2 and 3 indicate that IGA-LA model exhibits promising speed. 
This advancement holds significant potential for efficiently processing 
large datasets in machine learning computations, thereby enhancing 
overall computational efficiency. 

It is important to note that a negative stability number N indicates a 
compressive normal stress that must be applied to the tunnel faces to 
maintain stability, while a positive stability number means that no 
tunnel support is required to prevent collapse. A series of convergence 
study using the present method is shown in Tables 2 and 3. Numerical 

results have shown that the number of nel would improve the solution 
accuracy. When the number of elements is 12,500, the stability numbers 
are between the upper and lower bound results of Abbo et al. (2013) and 
Wilson et al. (2013). The CPU time for such a refined study with 12,500 
elements is approximately 200 s. 

The IGA method provides accurate solutions, and they are compat-
ible with those produced by finite element limit analysis, as shown in 
Figs. 4–9. IGA upper bound solutions are almost the same as those FELA 
upper bounds. The average stability number difference is approximately 
1.10% and 5.92%, respectively, compared to Abbo’s and Wilson’s 

Fig. 11. The failure mechanisms of square tunnels where the shear strength increases linearly with depth.  

Fig. 12. Typical topology of deep feedforward neural networks.  
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models. Moreover, isogeometric analysis uses only nel = 12,500 1st 
order elements, whereas Abbo’s model in finite element method (FEM) 
uses, 199,400 continuum and discontinuity elements, and Wilson’s 
model in finite element method (FEM) uses 100,000 continuum and 
discontinuity elements. The IGA could significantly reduce the size of 

the optimization problem but also minimizes computational resources. 
Selected failure mechanisms are shown in Figs. 10 and 11. For ho-

mogeneous soil (ρD/cuo = 0), the failure mode is dependent on both the 
tunnel depth and the unit weight. For shallow tunnel and low unit 
weight in Fig. 10 (a) and (b), the failure mechanism is more like a roof 

Table 4 
Effect of the number of samples in the dataset on the performance model with the 4–10–10–10-1 architecture, Tanh activation, Adam optimization, epoch 500, bath 
size = 32.  

Number of data MSE (×10− 5) MAE (×10− 3) R2 Time (s) 

Training Testing Training Testing Training Testing 

1000 5.81 ± 3.20 6.45 ± 3.53 5.43 ± 1.40 5.59±1.30 0.99764 ± 0.00121 0.99733 ± 0.00196  48.8 
2000 1.91 ± 0.85 2.14 ± 0.86 3.29 ± 0.77 3.44 ± 0.77 0.99928 ± 0.00027 0.99916 ± 0.00026  76.3 
3000 1.58 ± 0.81 1.68 ± 0.95 3.00 ± 0.93 3.06 ± 0.99 0.99940 ± 0.00013 0.99938 ± 0.00019  81.1 
4000 1.27 ± 0.72 1.31 ± 7.24 2.68 ± 0.89 2.71 ± 0.86 0.99952 ± 0.00014 0.99949 ± 0.00019  107.3 
5000 0.48 ± 0.19 0.49 ± 0.19 1.67 ± 0.34 1.69 ± 0.33 0.99979 ± 0.00009 0.99978 ± 0.00009  176.8  

Table 5 
The statistical description of the input and output variables.  

Variables Unit Notation Min Mean Std Skewness Max 

H/D – X1  1.001  5.512  2.580  − 0.002  9.997 
B/D – X2  1.000  2.481  0.848  0.036  3.998 
ρD/cu0 – X3  0.001  0.501  0.287  − 0.011  1.000 
γD/cu0 – X4  0.000  2.553  1.456  − 0.025  4.994 
N – Y  − 40.562  − 2.944  10.722  0.038  40.858  

R
2

Fig. 13. Comparison of the peformance model of the different activation functions with the 4–10–10–10–1 architecture trained with Adam optimizer algorithm, after 
500 epochs, batch size = 32: (a) MSE, (b) MAE, (c) R2. 
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failure of the tunnel. For moderate depth and large strength ratio in 
Fig. 10 (c), (d), (e), (f), the failure mechanisms become wider and in-
cludes heaving of the roof, walls, and floor. For the shear strength in-
creases linearly with depth, the failure mechanism is more localized 
when compared with the uniform strength case. This is illustrated in 
Fig. 11, where the failure zone is much reduced when ρD/cuo = 1, and 
there is no plastic deformation below the floor of the tunnel, as observed 
in Fig. 11 (c) and (d). 

5. Deep Feedforward neural networks (DFNN) 

Deep feedforward neural networks (DFNN) have emerged as a 
prominent class of deep neural networks owing to their ability to model 
non-linear relationships, flexibility to accommodate diverse tasks and 
scalability for handling large datasets. In addition, their ability to train 
in parallel results in faster training times. Therefore, deep feedforward 
neural networks have been adopted as the preferred method of inves-
tigation in this study for the design of rectangular tunnels. The com-
parison of our results with those of a prior study is conducted to 
showcase the accuracy and reliability of the upper-bound approach 
utilizing Isogeometric Analysis (IGA) and Second-Order Cone Pro-
gramming (SOCP). Following this, a substantial dataset comprising 
5000 runs is generated, encompassing diverse random input parameters, 
and deep learning techniques are employed to train and analyze the 
dataset. By utilizing DFNNs, the study aims to harness the power of deep 
learning techniques to provide accurate and efficient solutions for 

practical uses. 

5.1. Numerical framework of DFNN model 

The Deep Feedforward Neural Network (DFNN) is a fundamental 
model in the field of deep learning (DL) (Goodfellow et al., 2016). Its 
purpose is to learn a sophisticated and intricate representation of data in 
a hierarchical fashion by passing it through multiple layers of trans-
formation (Najafabadi et al., 2015). The architecture of the DFNN 
typically consists of three parts: the input layer, hidden layer, and output 
layer, each containing interconnected processing units (Fig. 12). The 
mathematical description of DFNN is given in Appendix A3. 

In the context of a regression problem, the selection of an appro-
priate activation function is essential in determining the accuracy of the 
output data for a given neural network architecture. Traditionally, the 
sigmoid and hyperbolic tangent activation functions have been widely 
utilized in defining specific output values of the network. However, as 
the number of layers in the network increases, the use of these smooth 
nonlinear activation functions fails to capture useful gradient informa-
tion of the loss function. This phenomenon, known as the vanishing 
gradient issue, arises when the gradient of the loss function is back-
propagated through the network and used to modify internal parame-
ters. The use of these activation functions in hidden layers leads to 
gradients that approach zero, making it difficult to determine the di-
rection in which the parameters should be adjusted to improve the cost 
function (Goodfellow et al., 2016). To address this issue, various 

R
2

Fig. 14. Comparison of the peformance model of the different optimizer althgorithms with the 4–10–10–10–1 architecture trained with Tanh activation, after 500 
epochs, batch size = 32: (a) MSE, (b) MAE, (c) R2. 
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activation functions were adopted to find the most appropriate activa-
tion function that provides superior performance for the DFNN. 

To evaluate the accuracy of the output model’s prediction, it is 
crucial to train the Deep Feedforward Neural Network (DFNN) to 
minimize the loss function. This study implements the Mean Square 
Error (MSE) as the loss function for the regression problem, which is a 
popular technique used to measure the discrepancy between predicted 
and actual values. MSE is often used in training DFFN models due to its 
simplicity, computational efficiency, sensitivity to outliers, and align-
ment with the assumption of Gaussian error distribution commonly used 
in traditional DNN models (Wani et al., 2020). Additionally, to assess the 
precision of the model’s prediction, this study employs the Mean Ab-
solute Error (MAE) and Coefficient of Determination (R2) as evaluation 
metrics (see Appendix A3). These metrics are widely used to evaluate 
the accuracy of prediction results and provide a comprehensive under-
standing of the model’s performance. By using these evaluation metrics, 
valuable insights can be obtained regarding the model’s predictive ac-
curacy, thereby enabling the identification of potential areas for further 
improvement if needed. 

During the network training process, a specific gradient descent al-
gorithm is used to minimize the MSE loss function. Numerous algo-
rithms have been developed to search for optimal network parameters 
that can minimize the loss function (Nguyen et al., 2023), including 
stochastic gradient descent (SGD) (Robbins and Monro, 1951), adaptive 
gradient algorithm (Adagrad) (Duchi et al., 2011), adaptive moment 
estimation (Adam) (Kingma and Ba, 2014), RMSprop (D. Gutierrez, 
2017), and Adadelta (Zeiler, 2012). While they are similar methods that 

work well in similar circumstances (Ruder, 2016), there is no single 
algorithm that is the most efficient as it depends on the specific problem 
and conditions. 

When optimizing weights in a network, batch gradient descent cal-
culates the error for each sample in the training set, but the model is 
updated only after evaluating all training samples. This can make model 
updates and training speed slow for large datasets. To address this issue, 
the mini-batch technique, introduced by Hinton (2012), is adopted in 
this study. The mini-batch gradient descent helps split the training 
dataset into small batches that are used to compute model error and 
update model parameters (Truong et al., 2020). DFNN networks may 
encounter an overfitting problem during training. To mitigate this issue, 
the dropout method proposed by Srivastava et al. (2014) is applied in 
this study. 

5.2. Constructing DFNN model 

5.2.1. Dataset 
It is important to take into account the impact of the size of a dataset 

on the performance of a deep feedforward neural network (DFNN) 
model, particularly when dealing with models that have a specific ar-
chitecture, such as the one analyzed in this study. The study conducted 
on this model reveals that the number of 5000 samples is an appropriate 
choice to obtain reliable and accurate results, as demonstrated by the 
excellent performance metrics presented in Table 4. The analysis con-
ducted on this dataset provides confidence in the predictive capabilities 
of the model. The selected sample size has been carefully considered to 

R
2

Fig. 15. Effect the number of layers on the performance model trained with Tanh activation, Adam optimizer, after 500 epochs, batch size = 32: (a) MSE, (b) MAE, 
(c) R2. 
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ensure sufficient representation of the variability and characteristics of 
the system, allowing for robust predictions of stability. Based on this 
analysis and the achieved performance metrics, it can be concluded that 
the chosen sample size of 5000 samples is appropriate for obtaining 
reliable and accurate results in predicting the stability of rectangular 
tunnels. Therefore, it is recommended to consider this sample size when 
working with similar DFNN models to achieve optimal performance. The 
dataset has been split into two subsets: 80% for the training set and 20% 
for the testing set. 

The dataset comprising 5000 samples was automatically generated 
using the IGA-LA model. While this approach may allow for a broad 
exploration of the parameter space, it can also introduce biases or gaps 
in the data that may not accurately represent real-world scenarios. It is 
therefore important to consider the implications of using the dataset that 
was generated through random parameter variation. A list of the sta-
tistical description of the input and output variables is shown in Table 5. 
Noted that the stability number N defined in Eq. (2) is the output of the 
proposed DFNN model. 

The following steps are outlined for constructing DFNN. 

Step 1. Investigate activation function. 

The effectiveness of several activation functions, including ReLU, 
SeLU, Tanh, Sigmoid, and Softplus, was tested in deep learning models. 
The performance of each function was evaluated based on MSE, MAE, 
and R2 values for both training and test data. Among these functions, 
Tanh consistently outperformed the others across all metrics. It achieved 
the lowest MSE and MAE scores and the highest R2 values for both the 

training and test data sets (see Fig. 13). Consequently, the Tanh acti-
vation function was chosen for the proposed DFNN model to ensure 
superior results. These findings highlight the crucial role of selecting 
appropriate activation functions in designing deep learning models. 

Step 2. Investigate gradient descent optimization algorithms: 

To achieve accurate predictions in deep learning, the selection of an 
appropriate gradient descent optimization algorithm is critical. Several 
widely used optimization algorithms, including Adam, RMSprop, 
Nadam, and Adamax, were compared to assess their effectiveness. The 
performance of these algorithms was evaluated based on MSE, MAE, and 
R2 values for both the training and test data sets (see Fig. 14). 

Fig. 14 also presents results of four performance models. It is 
concluded that the Adam optimizer consistently outperformed the other 
algorithms in terms of all metrics. Specifically, it achieved the lowest 
MSE and MAE scores and the highest R2 values for both the training and 
test data sets. Consequently, the optimization algorithm selected for our 
proposed Deep Feedforward Neural Network (DFNN) model was Adam, 
chosen to ensure optimal performance. This finding emphasizes the 
critical role of selecting an appropriate gradient descent optimization 
algorithm in deep learning. By choosing the most effective algorithm, 
researchers and practitioners can ensure the highest levels of accuracy 
and predictive power in their models. The anticipated outcome of this 
study is to offer valuable insights to researchers and practitioners in the 
field, thus contributing to the advancement of deep learning 
applications. 

R
2

Fig. 16. Effect the number of hidden neurons on the performance model trained with Tanh activation, Adam optimizer, after 500 epochs, batch size = 32: (a) MSE, 
(b) MAE, (c) R2. 
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Step 3. Determining the number of layers, hidden neurons. 

The impact of varying the number of layers and hidden neurons on 
the performance of Deep Feedforward Neural Network (DFNN) models 
was also analyzed in this study. The results, as presented in Figs. 15 and 

16, highlight the performance of different architectures in terms of MSE, 
MAE, and R2 values. The architecture comprising 4 input parameters, 6 
hidden layers with 10 units and 1 output (4–10–10–10–10–10–10–1) 
consistently outperformed the other architectures, achieving the lowest 
MSE and MAE scores and the highest R2 values. As a result, this 

Fig. 17. Regression plot of the best DFNN model for: a) Training dataset; b) Testing data; c) All data.  

Table 6 
Compare the DFNN model with LSTM, CNN, SVM, and XGB.  

Methods MSE (x10− 4) MAE (x10− 3) R2 Time (s) Ranking 

Training Testing Training Testing Training Testing 

DFNN  0.026  0.026  1.215  1.231  0.9999  0.9999  181.8 1 
LSTM  0.189  0.200  3.545  3.686  0.9995  0.9995  305.1 3 
CNN  2.612  3.614  10.799  11.300  0.9855  0.9800  131.8 4 
SVM  10.27  9.95  26.76  26.60  0.9523  0.9568  12.0 5 
XGB  0.15  0.12  2.31  6.82  0.9993  0.9929  0.440 2  
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architecture was identified as the optimal model for the proposed DFNN. 
Detailed evaluation of the performance of the best-performing DFNN 

model is provided in Fig. 17. These findings suggest that careful selec-
tion of the number of layers and hidden neurons can help design DFNN 
models that achieve high levels of accuracy and predictive power, and 
they are valuable for researchers and practitioners working in the field 
of deep learning. It is also anticipated to significantly contribute to the 
development of more effective DFNN models in the future. 

5.3. Summary 

The optimal architecture for the proposed Deep Feedforward Neural 
Network (DFNN) model was identified based on our analysis of varying 
the number of layers and hidden neurons. This study’s findings suggest 
that the selected architecture is highly effective, as indicated by the 
coefficient of determination (R2) values. Specifically, the performance of 
the constructed model is outstanding, with an R2 value of 1.0 for both 
the training and testing phases. This result indicates that the model 
explains all the variability in the data and has excellent predictive 
power. 

This study’s results underscore the importance of selecting an 
appropriate architecture for DFNN models to achieve optimal perfor-
mance. These findings are expected to contribute to the development of 
more effective deep learning models and help advance the field’s un-
derstanding of neural networks. Note that the performance of the 
optimal architecture for the proposed Deep Feedforward Neural 
Network (DFNN) model significantly outperformance other machine 
learning models such as Long Short-Term Memory (LSTM), Convolu-
tional Neural Network (CNN), Support Vector Machine (SVM), and 
eXtreme Gradient Boosting (XGB) as shown in Table 6. 

This table presents the performance comparison of five different 
models, including DFNN, LSTM, CNN, SVM, and XGB, based on their 
mean squared error (MSE), mean absolute error (MAE), coefficient of 
determination (R2), and execution time. The results show that the DFNN 
model achieved the best performance, with the lowest MSE and MAE 

Fig. 18. SHAP values of feature.  

Fig. 19. Partial Dependence of each input of features on the output.  
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values and the highest R2 values for both the training and testing phases. 
The XGB model also performed well, with the second-highest ranking 
based on its R2 values, although it had relatively high MAE values. The 
LSTM, CNN, and SVM models had lower rankings due to their relatively 
high MSE and MAE values and lower R2 values. Finally, the table also 
provides information on the execution time of each model, with the 
DFNN and LSTM models taking the longest time to train and test, and the 
XGB model being the fastest. 

6. Feature Analysis and Partial Dependence Plots. 

Explainable Machine Learning techniques like SHAP and Partial 
Dependence Plots (PDPs) help us understand the contribution of each 
feature to a model’s prediction by facilitating both local and global 
analysis of the dataset. The shape value of a feature shows how it affects 
the prediction, and SHAP values can be used to compare feature 
importance and improve our understanding of the model. 

The SHAP (Shapley Additive exPlanations) values presented in 

Fig. 18 clearly demonstrate that the factor of ρD/cuo has the most sig-
nificant impact on the model’s predictions. This means that variations in 
the value of ρD/cuo have a relatively higher influence on the predicted 
outcomes of the model as compared to other input features. Addition-
ally, the factor of γD/cuo is found to have the second most substantial 
effect on the model’s predictions. On the other hand, the input features 
H/D and B/D are shown to have similar and relatively low SHAP values, 
indicating their comparatively lesser contribution to the model’s pre-
dictions. By understanding the relative importance of each input feature, 
insights into the model’s behavior can be gained, and this knowledge 
can be leveraged to enhance the accuracy of predictions. 

To provide a more detailed understanding of the impact of each 
parameter on the output, a Partial Dependence Plot (PDP) analysis was 
conducted and is presented in Fig. 19. The results show a significant 
drop in the magnitude of the N value when the ρD/cuo parameter is 
increased. Conversely, the N value increases as the γD/cuo parameter is 
increased. It follows that the parameters B/D causes a reduction in the 
value of N, with a decrease from 0 to minus 6. In addition, for H/D values 

Fig. 20. Partial dependence of N on (H/D and B/D): (a) 2D features interaction; (b) 3D features-output relations.  

Fig. 21. Partial dependence of N on (H/D and γD/cuo): (a) 2D features interaction; (b) 3D features-output relations.  
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less than 6, it leads to a decrease in N from − 2 to − 3.75, whereas for H/D 
values greater than 6, it causes an increase in N. These findings provide a 
more comprehensive understanding of the influence of each parameter 
on the output, enabling more informed decisions when designing the 
system. 

In addition to analyzing the individual effects of various parameters 
on N, this study also investigates the partial dependence of N on the 
simultaneous variation of two parameters. This approach allows for a 
more comprehensive understanding of the underlying relationships be-
tween the input variables and the response variable. The impact of 
various parameter pairs on N is specifically analyzed, including (H/D 
and B/D), (H/D and γD/cu), (H/D and ρD/cuo), (B/D and γD/cuo), (B/D 
and ρD/cuo), and (γD/cuo and ρD/cuo). These pairs are explored in-depth, 
and the results are visualized in Figs. 20–25, providing valuable insights 
into the behavior of N in relation to multiple variables. 

In Fig. 20, numerical results have shown that N value changes from 
positive to negative as both (H/D and B/D) increase. Note that the 
gradient of change is more gentle for H/D than for B/D (see Fig. 20a and 
b). As discussed before, a positive value of N may indicate a strong 
curvert (need external pressure to fail the system), while a weak one 
(need internal support) can be identified when a negative value of N is 
presented. Phyically, that means the stability of tunnel declines shaprly 
as the value of B/D increases. Similar observation is made for other 
pairs. In particular, the linear relationships found for the pairs of (B/D 
and γD/cuo), (B/D and ρD/cuo), and (γD/cuo and ρD/cuo) in Figs. 21–25. 
Through the analysis of the partial dependence of N on these parameter 
pairs, a deeper understanding of the intricate interactions between the 
input variables and the response variable can be obtained. This knowl-
edge serves to enhance modeling and prediction accuracy in future 
studies. 

Fig. 22. Partial dependence of N on (H/D and ρD/cuo): (a) 2D features interaction; (b) 3D features-output relations.  

Fig. 23. Partial dependence of N on (B/D and γD/cuo): (a) 2D features interaction; (b) 3D features-output relations.  
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7. Conclusion 

A novel coupled approach based on upper bound isogeometric 
analysis and deep learning was proposed to investigate the undrained 
stability of rectangular tunnels. The coupled approach was validated by 
comparing numerical results with those of previous studies. Further-
more, a big dataset was randomly generated with 5000 runs for various 
input parameters, and a deep learning algorithm was employed to learn 
the dataset. The results showed that the proposed approach could 
accurately predict the undrained stability of rectangular tunnels with a 
small mean squared error of 10− 6. The proposed approach has several 
advantages over traditional methods. First, the use of isogeometric 
analysis provides a higher level of accuracy in modeling the geometry of 
the tunnels. Second, the use of upper-bound limit analysis ensures that 
the calculated results are safe and conservative. Third, the use of deep 

learning allows for the development of accurate and efficient prediction 
models for complex problems. Our findings indicate that the soft 
computing model using deep learning is highly effective in predicting 
the stability of tunnels with a high level of accuracy. 

Feature analysis and Partial Dependence Plots (PDPs) were con-
ducted in this study to gain valuable insights into the physical behavior 
of the system under investigation. Through feature analysis, the study 
identified and prioritized the important variables and factors influ-
encing the observed outcomes, providing a deeper understanding of the 
relationships and interactions among different variables in the system. 
Additionally, the utilization of Partial Dependence Plots (PDPs) allowed 
for visualizing and analyzing the individual and collective effects of 
selected features on the target variable. These plots facilitated a 
comprehensive examination of how changes in specific features impact 
the overall behavior of the system, revealing significant trends, 

Fig. 24. Partial dependence of N on (B/D and ρD/cuo): (a) 2D features interaction; (b) 3D features-output relations.  

Fig. 25. Partial dependence of N on (γD/cuo and ρD/cuo): (a) 2D features interaction; (b) 3D features-output relations.  
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dependencies, and non-linear relationships between variables. These 
findings offer valuable support for optimizing the construction process, 
enabling cost minimization while achieving the desired predesigned 
stability factor (N). Stakeholders can leverage these insights to make 
informed decisions, enhancing construction efficiency and ensuring the 
attainment of the desired stability levels within budgetary constraints. 

In conclusion, the present study can be a useful tool for engineers and 
researchers to evaluate the undrained stability of rectangular tunnels in 
various geotechnical conditions during the construction process. Over-
all, it highlights the potential of machine learning in combination with 
traditional analytical tools to provide a more comprehensive and accu-
rate understanding of complex engineering problems. The combination 
of isogeometric analysis and deep learning can also be extended to other 
engineering problems, offering a promising avenue for future research. 

Limitations and research outlooks. 
In addition to the aforementioned merits, it is important to 

acknowledge the limitations of this study, which are outlined below:  

• This study primarily concentrates on the undrained shear strength of 
the ground, overlooking the incorporation of tunnel structural 
properties, thereby impeding a comprehensive understanding of the 
interplay between the ground and the tunnel structure. Furthermore, 
a common assumption of rigid-perfectly plastic material for un-
drained clay, as seen in other limit analysis studies, is considered 
inadequate.  

• Unlike the availability of field data during a tunnel’s lifelong service, 
field observation regarding tunnel stability during the construction 
process is scarce. As a result, the present study solely relies on 
computational simulation data, without incorporating or validating 
the findings with field data. Furthermore, this study is limited to the 
deep learning modeling of undrained stability of rectangular tunnels, 
without fully exploring the potential of AI modeling for more 
demanding applications with high computational costs, such as 
reliability analysis. To facilitate further advancements in this area, a 
supplementary file has been provided, containing a substantial 
dataset of 5000 samples.  

• The simplicity of the rectangular tunnel geometry prevented the full 
utilization of one of the primary advantages of Isogeometric Analysis 
(IGA), which is its ability to precisely model complex geometries. 
The potential of IGA in accurately representing tunnels with curved 
shapes was not fully explored in this study. 

It is important to acknowledge these limitations as they provide 
opportunities for future research to address and overcome these chal-
lenges, thus contributing to a more comprehensive and advanced un-
derstanding of tunnel engineering. 
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Appendix A. B-Spline components 

Knot vectors 

In the context of computational geometry, a knot vector is defined as an ordered sequence of parameter values in a specific direction. The sequence, 
denoted as Ξ = {ξ1, ξ2,…, ξi,…, ξn+p+1} where ξi is the ith knot, i is the knot index, n is the number of basis functions, and p is the polynomial order. The 
knot vector divides the parametric space into intervals usually referred to as knot spans. 

Basis functions 

The Cox-de Boor recursion formula is used to define the basis functions once a knot vector has been selected: 

For p = 0 :

Ni,0(ξ) =

{
1 ξi⩽ξ < ξi+1

0 otherwise

For p ⩾ 1:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p− 1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p− 1(ξ)

(A1.1)  

B-spline curves 

Constructing a piecewise-polynomial B-spline curve involves using a set of n control points Pi ∈ R2 and n B-spline basis functions Ni,p(ξ). The curve 
C(ξ) is then constructed as a linear combination of the control points, where the coefficients of the linear combination are the basis functions: 

C(ξ) =
[

x
y

]

(ξ) =
∑n

i=1
Ni,p(ξ)Pi =

∑n

i=1
Ni,p(ξ)

[
xi
yi

]

(A1.2)  

B-spline surfaces 

Given two knot vectors (one for each parametric direction) Ξ = {ξ1, ξ2, …, ξn+p+1} and H = {η1, η2, …, ηm+q+1} and a control net Pi,j ∈ R2, a tensor- 
product B-spline surface S(ξ,η) is defined as: 

S(ξ, η) =
[

x

y

]

(ξ, η) =
∑n

i=1

∑m

j=1
Ni,p(ξ) × Mj,q(η) × Pi,j = ...

... =
∑n

i=1

∑m

j=1
Ri,j(ξ, η) × Pi,j =

∑n

i=1

∑m

j=1
Ri,j(ξ, η)

[
xi,j

yi,j

] (A1.3)  

where RI(ξ,η) = Ri,j(ξ,η) = Ni,p(ξ) × Mj,q(η) are the bivariate B-spline basis functions. Fig A1. illustrates B-spline surface S(ξ,η) as a rectangular tunnel 
with 6 elements, the polynomial order is p = q = 1. 

The local support of a basis function reads: 

Ni,p(ξ) × Mj,q(η) =
[
ξi, ξi+p+1

]
×
[
ηj, ηj+q+1

]
(A1.4)  

meaning that the support of the bivariate function Ni,p(ξ) × Mj,q(η) extends over the area restricted by the knot values [ξi, ξi+p+1] × [ηj, ηj+q+1], where i, 
j is the knot index and p,q is the polynomial order in ξ and η direction, respectively. 

Appendix A2 

According to Makrodimopoulos and Martin (2007), the structure will collapse if and only if there exists a kinematically admissible displacement 
field u̇ = [u,v]T such that: 

Wint(ε̇ ) < λ+Wext(u̇)+W0
ext(u̇) (A2.1)  

where Wint(ε̇ ) is the internal plastic dissipation; λ+ is the collapse load multiplier; W0
ext(u̇) is the work of any additional loads f0, g0 not subjected to the 

multiplier; Wext(u̇) is the external work rate of a rigid perfectly plastic body of area Ω ∈ R2 with boundary Γ, which is subjected to body forces f and to 
surface tractions g such that: 
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Wext(u̇) =
∫

Ω
f T u̇ dΩ+

∫

Γt

gT u̇ dΓ (A2.2) 

The internal plastic dissipation of the two-dimensional domain Ω can be written as: 

Wint(ε̇ ) =

∫

Ω
D( ε̇ ) dΩ (A2.3)  

where the plastic dissipation D( ε̇ ) is defined by: 

D( ε̇ ) = max
ψ( σ )⩽0

σ. ε̇ ≡ σε. ε̇ (A2.4) 

With σ represents the admissible stresses contained within the convex yield surface ψ(σ) and σε represents the stresses on the yield surface 
associated to any strain rates ε̇ through the plasticity condition. 

If definingC = {u̇ ∈ U | Wext(u̇) = 1}, the collapse load multiplier λ+ can be determined by the following mathematical programming: 

λ+ = min
u̇∈C

∫

Ω
D(ε̇ ) dΩ − W0

ext(u̇) (A2.5) 

For this study, the behavior of soil is assumed to adhere to the characteristics of rigid-perfectly plastic materials, with increments of plastically 
admissible strain followed by the normality rule. The Mohr-Coulomb failure criterion is expressed in terms of the cohesion and the internal friction 
angle of soil such that: 

ψ( σ ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σxx − σyy)
2
+ 4τ2

xy

√

+(σxx + σyy)sinφ − 2ccosφ (A2.6) 

Hence, the power of dissipation can be formulated as a function of strain rates for each element e as Makrodimopoulos and Martin (2007): 

D( ε̇ ) = cAetecosφ (A2.7)  
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖ρ‖e⩽te

ρ =

[ ρ1

ρ2

]

=

⎡

⎢
⎢
⎣

˙̃ε
e
xx −

˙̃ε
e
yy

˙̃γ
i
xy

⎤

⎥
⎥
⎦

˙̃ε
e
xx +

˙̃ε
e
yy = tesinφ

(A2.8)  

Appendix A3. Mathematical description of DFNN and model’s evaluation metric 

Mathematical Description of DFNN 

Nonlinear transformations are applied to the input at each layer, resulting in a unique representation at the output. Let us assume that there are V 
(same as stability number) layers in the neural network, and the output signal of the lth layer is expressed as follows: 

zl
j = f

(
wT

j al− 1
j + bj

)
, l = 1, 2, 3, 4, ..., V, (A3.1) 

The output signal of the (l)th layer in the DFNN is determined by a combination of factors. Firstly, the activation function f is applied to the input. 
Additionally, the weight vector wT

j describes the influence of all units in the same hidden layer, while al− 1
j represents the output signal of the previous 

(l-1)th layer. Finally, bj represents the bias parameter of the jth unit in the current (l)th layer. Together, these factors contribute to the overall output 
signal of the DFNN at each layer, and ultimately to the final prediction made by the model. 

Model’s evaluation metric. 
The MSE can be formulated as follows: 

MSE =
1
n
∑n

i=1
(pi − yi)

2 (A3.2) 

The MAE can be formulated as follows: 

MAE =
1
n

∑n

i=1
(|pi − yi|) (A3.3) 

Coefficient of determination (R2). 

R2 = 1 −
∑n

i− 1(pi − yi)
2

∑n
i− 1(yi − yi)

2 (A3.4)  

where n represents the sample size in the training set; yi denotes the actual output; pi corresponds to the predicted value of the model; and yi is the 
average of the actual values. 
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Appendix B. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tust.2023.105330. 
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