
Citation: Kumara, S.P.S.N.B.S.;

Senevirathne, S.W.M.A.I.; Mathew,

A.; Bray, L.; Mirkhalaf, M.;

Yarlagadda, P.K.D.V. Progress in

Nanostructured Mechano-

Bactericidal Polymeric Surfaces for

Biomedical Applications.

Nanomaterials 2023, 13, 2799. https://

doi.org/10.3390/nano13202799

Academic Editor: Antonios Kelarakis

Received: 30 September 2023

Revised: 16 October 2023

Accepted: 17 October 2023

Published: 20 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Review

Progress in Nanostructured Mechano-Bactericidal Polymeric
Surfaces for Biomedical Applications
S. P. S. N. Buddhika Sampath Kumara 1,2,3 , S. W. M. Amal Ishantha Senevirathne 1,3 , Asha Mathew 1,4,
Laura Bray 1,3 , Mohammad Mirkhalaf 1,3,5,* and Prasad K. D. V. Yarlagadda 1,2,3,4,*

1 School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of
Technology (QUT), Brisbane, QLD 4000, Australia; buddhika.naidelage@hdr.qut.edu.au (S.P.S.N.B.S.K.);
s2.senevirathne@qut.edu.au (S.W.M.A.I.S.); asha.mathew@unisq.edu.au (A.M.); laura.bray@qut.edu.au (L.B.)

2 Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing,
Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia

3 Centre for Biomedical Technologies, Queensland University of Technology (QUT),
Brisbane, QLD 4000, Australia

4 School of Engineering, University of Southern Queensland, Springfield, QLD 4300, Australia
5 Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
* Correspondence: mohammad.mirkhalaf@qut.edu.au (M.M.); y.prasad@usq.edu.au (P.K.D.V.Y.);

Tel.: +61-451-181-168 (M.M.); +61-434-072-608 (P.K.D.V.Y.)

Abstract: Bacterial infections and antibiotic resistance remain significant contributors to morbidity
and mortality worldwide. Despite recent advances in biomedical research, a substantial number of
medical devices and implants continue to be plagued by bacterial colonisation, resulting in severe
consequences, including fatalities. The development of nanostructured surfaces with mechano-
bactericidal properties has emerged as a promising solution to this problem. These surfaces employ
a mechanical rupturing mechanism to lyse bacterial cells, effectively halting subsequent biofilm
formation on various materials and, ultimately, thwarting bacterial infections. This review delves into
the prevailing research progress within the realm of nanostructured mechano-bactericidal polymeric
surfaces. It also investigates the diverse fabrication methods for developing nanostructured polymeric
surfaces with mechano-bactericidal properties. We then discuss the significant challenges associated
with each approach and identify research gaps that warrant exploration in future studies, emphasizing
the potential for polymeric implants to leverage their distinct physical, chemical, and mechanical
properties over traditional materials like metals.

Keywords: antibacterial surfaces; nanofabrication; antimicrobial; polymeric implants; nanostructured
surfaces

1. Introduction

Bacterial cells usually attach to surfaces, colonise, and form a matrix of polysaccharide
material called biofilms. Bacteria can adhere to many different surfaces, including human
tissues, metals, and polymeric surfaces [1]. The bacteria that form biofilms are highly
resistant to disinfectants, antiseptics, and other antimicrobial agents that are normally
effective in their planktonic state [2–4]. Moreover, overuse of antibiotics has led to an era
where bacteria are becoming increasingly resistant to antibacterial agents, making it more
difficult to treat infections [4,5]. The discovery of the mechano-bactericidal response to
nano-topography found on insect wings, such as cicadas and dragonflies, has inspired the
development of nanostructured topography on synthetic materials, which can reduce or
inhibit the growth of bacteria on their surfaces. Most of the studies on artificial antibacterial
micro/nanostructured surfaces were based on materials like ceramics, metals, and alloys,
because of their superior mechanical and thermal properties that lead to potential appli-
cations in medical and industrial sectors. Metals are among the most used engineering
materials and are employed extensively as biomaterials [6,7]. However, they can cause

Nanomaterials 2023, 13, 2799. https://doi.org/10.3390/nano13202799 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13202799
https://doi.org/10.3390/nano13202799
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-0369-4776
https://orcid.org/0000-0002-7746-7069
https://orcid.org/0000-0002-1174-0018
https://orcid.org/0000-0002-7026-4795
https://doi.org/10.3390/nano13202799
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13202799?type=check_update&version=3


Nanomaterials 2023, 13, 2799 2 of 34

inflammation, bone loss, and imaging artifacts in computed tomography (CT) scans and
magnetic resonance imaging (MRI) due to their magnetic properties, low flexibility, and
low biocompatibility compared to biocompatible polymers [8,9]. High cost and density
characteristics also make them less effective in specific medical implants such as cardio-
vascular implants, absorbable implants, paediatric implants, and cochlear implants [9–15].
Biocompatible polymers are attractive alternatives that can be used in such applications
due to ease of processing, low weight, high biocompatibility, and biodegradability [16–19].
The methods for developing nanostructured bactericidal surfaces have been reviewed
in the recent literature [20–24]. However, a comprehensive and critical overview of the
techniques developed for polymers is yet missing. This review provides such an overview
showing the progress in the field, identifying research gaps, and discussing opportunities
and possible future directions.

2. Polymers Used in Biomedical Applications

Many biocompatible polymers are used in medical implants with some demonstrating
high biocompatibility [25]. The most commonly used biocompatible polymers are polygly-
colic acid (PGA) [26,27], poly(lactic-co-glycolic acid) (PLGA) [26,28–30], polycaprolactone
(PCL) [26,31,32], polyurethane (PU) [33], polyvinyl alcohol (PVA) [34–36], silicone [33,37,38],
polylactic acid (PLA) [26,39–44], polypropylene (PP) [45,46], and polymethyl methacry-
late (PMMA) [47–49]. Each polymer has distinct advantages and limitations in various
biomedical applications, as mentioned in Table 1. For instance, PMMA is a frequently used
polymer for dental implants due to its non-degradability and high strength while PLA is
used in bone tissue engineering applications due to its biodegradability and osteoblast
stimulation [39,50]. Moreover, polyetheretherketone (PEEK) and polyetherketoneketone
(PEKK) are emerging biomedical materials with high biocompatibility, thermal stability,
and non-degradability with excellent mechanical properties which are suitable for various
biomedical applications [51,52].

In such applications, one of the most concerning issues is implant failures due to
bacterial infections as described in the Introduction section. Bacteria colonise various
implant surfaces, such as dental implants, catheters, and orthopaedic implants [53]. Fur-
thermore, antibiotic resistance directly contributes to implant failures due to the formation
of biofilms on these surfaces [54,55]. In response to this concern, numerous studies have
been undertaken to develop physical and chemical methods aimed at reducing bacterial
colonisation [56,57]. To implement these strategies successfully, the choice of implant
material plays a pivotal role in developing surfaces that are bactericidal and/or antifouling.
Among various materials, polymers offer advantageous characteristics for biomedical
implant applications. These attributes are highly considered in the biomedical field, partic-
ularly for ensuring a successful implant surgery in in vivo conditions (Figure 1).

Figure 1. Driving factors to choose a polymer as implant material. Compared to other materials
polymers provide some favourable characteristics for biomedical implant applications, which is
essential in the biomedical field for successful implant in in vivo applications.
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Table 1. Polymers used in biomedical applications. Table abbreviations: Polydimethylsiloxane—PDMS; Polyethylene terephthalate—PET; Polytetrafluoroethylene—
PTFE.

Polymer Characteristics, Physical, and Mechanical
Properties

Biomedical
Applications Advantages Limitations Ref.

PGA

Biodegradable, biocompatible, tensile stress:
890 MPa, density: 1.5 g/cm3, melting point:

225–230 ◦C, glass transition temperature:
35–40 ◦C

Tissue engineering applications in
bone, tendon, cartilage, tooth, and
spinal regeneration; nerve grafts;

absorbable sutures

Stimulates cartilage regeneration;
3D-printability; high tensile

strength

High friction coefficient and
“binds and snags” when wet,

high brittleness, high
degradation causes inflammatory

response

[26,27,58–60]

PLGA

Biodegradable, bioadsorbable, biocompatible,
tensile stress: 3.4 MPa, density: 1.2 g/cm3,
melting point: dependent on the percent
composition (PLA, PGA), glass transition

temperature: 40–60 ◦C

Therapeutic tools; drug delivery;
tissue engineering

Stimulates osteoblasts;
3D-printability

Release of acidic byproducts
leads to inflammation, degrade
due to hydrolysis, poor strength

[26,28–30,61]

PCL

Biodegradable, bioadsorbable, biocompatible,
tensile stress: 12.8 MPa, density: 1.15 g/cm3,

melting point: 60 ◦C, glass transition
temperature: −60 ◦C

Dental splints; drug delivery; tissue
engineering

Stimulates osteoblasts; 3D
printable; slow degradation rate;

low cost in 3D printing due to
low melting point; high

biocompatibility

Poor mechanical properties; low
cell adhesion [26,31,62]

PU

Can be biodegradable or non-biodegradable
based on chemical composition,

non-bioabsorbable, biocompatible, tensile
strength: 34.5–56 MPa, density: 1.23 g/cm3,

melting point: 163 ◦C, glass transition
temperature: −35 ◦C

Drug delivery; catheters, pacemaker
leads insulation, vascular prostheses,
heart valves, cardiac assist devices

(cardiovascular applications)

High durability; high toughness;
good biostability; low cost

Environmental stress cracking;
material degradation in vivo;

metal ion oxidation
[16,63–65]

PP

Non-biodegradable, non-bioabsorbable,
biocompatible, tensile stress: 28 MPa, density:

0.9 g/cm3, melting point: 170 ◦C, glass
transition temperature: −25 ◦C

Sutures; scaffolds (ligament or
tendon repair); meshes for hernia

and pelvic organ repair; heart valve
structure,

oxygenator and plasmapheresis
membranes,

finger joint prosthesis

High melting point; less toxic;
low cost

Limited biocompatibility; poor
strength [16,33,66–68]
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Table 1. Cont.

Polymer Characteristics, Physical, and Mechanical
Properties

Biomedical
Applications Advantages Limitations Ref.

PVA
Biodegradable, biocompatible, tensile stress:

40–90 MPa, density: 1.26 g/cm3, melting point:
228 ◦C, glass transition temperature: 85 ◦C

Wound dressings, drug delivery,
targeted-tissue transportation

systems; soft biomaterial implants.

High chemical and thermal
stability; non-toxic

Weak hydrogel endurance in
high temperature; relatively

weak polymer; limited
biocompatibility; degrades due

to hydrolysis

[34,69–72]

Silicone or
PDMS

Non-absorbable, non-biodegradable,
biocompatible, hydrophobic, tensile stress:

2–10 MPa, density: 0.97 g/cm3, melting point:
228 ◦C

glass transition temperature: ~120–123 ◦C

Oxygenator membrane; tubing;
shunts; prostheses; heart peacemaker

leads; heart valve structures; burn
dressing

Chemically inert; low toxicity;
thermal stability; high

biocompatibility

Prone to damage; non-durable;
contamination of monomers; low

mechanical strength
[16,47,63]

PLA

Biodegradable, bioabsorbable, biocompatible,
tensile stress: 21–60 MPa, density: 1.21–1.25

g/cm3, melting point: 150–160 ◦C, glass
transition temperature: 60–65 ◦C

Bone tissue engineering; drug
delivery; plates, screws, pins, and

wires in bone fixation; bio-absorbable
implants; sutures in dermatology;

drug-eluting stents

High biocompatibility; stimulates
osteoblasts; less brittle; one of the

highly used 3D-printable
materials; degradation products
are also non-toxic to humans and

the environment.

Low mechanical strength [26,33,39,40,66,
67,73]

PMMA
Non-degradable, biocompatible, tensile stress:
48–76 MPa, density: 1.2 g/cm3, melting point:

130–180 ◦C, glass transition temperature: 80 ◦C

Dental implants; bone cement; lenses;
drug delivery

One of the hardest thermoplastics
with high scratch resistance; high

mechanical strength

Less biocompatibility; high
curing temperature; does not

support osteointegration; causes
necrosis effect

[16,74,75]

PEEK
Non-degradable, biocompatible, tensile stress:

84 MPa, density: 1.4 g/cm3, melting point:
343 ◦C, glass transition temperature: 143 ◦C

Dental implants; knee implants;
spine implants; cranioplasticity; hip
replacement; anterior plate fixation;

heart valves; face reconstructions

High biocompatibility;
3D-printable; light weight;

compatible with hydroxyapatite
(natural bone tissue materials)

hence substitute to metallic
implants; stable at high

temperatures; mechanical
stability

Low thermoformability; bioinert
(does not promote tissue

integration); complex and costly
manufacturing process

[76–78]
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Table 1. Cont.

Polymer Characteristics, Physical, and Mechanical
Properties

Biomedical
Applications Advantages Limitations Ref.

PEKK
Non-degradable, biocompatible, tensile stress:

115 MPa, density: 1.3 g/cm3, melting point:
363–386 ◦C, glass transition temperature: 162 ◦C

Dental implants; crown and bridge
in dentistry; endodontic post;

removable denture framework;
restorative and prosthetic

applications

High biocompatibility;
3D-printable; light weight; high
mechanical strength; excellent

chemical resistance

Bioinert (does not promote tissue
integration); more complex and
costly manufacturing process

than PEEK

[52,79]

PET

Non-degradable, high biocompatibility, tensile
stress: 75–100 MPa, density:1.38 g/cm3, melting
point: 255–265 ◦C, glass transition temperature:

85 ◦C

Sutures; heart valves; surgical
meshes; scaffolds; urinary and

bloodstream catheters; commercial
vascular prosthesis

3D-printable; cost effective;
excellent chemical resistance

Bioinert (does not promote tissue
integration) [80–82]

PTFE
Non-degradable, biocompatible, tensile stress:
30.5 MPa, density: 2.175 g/cm3, melting point:

327 ◦C, glass transition temperature: 127 ◦C

Vascular graft prostheses; heart
patches; stapes prosthesis

High mechanical strength;
chemically inert Difficult to 3D-print [16,83]

Chitosan
Biodegradable, biocompatible, tensile stress:
32.2 MPa, density: 0.20–0.38 g/cm3, melting

point:105 ◦C, glass transition temperature: 75 ◦C

Antitumor drug delivery; protein
and peptide drug delivery; gene

delivery; antibiotic delivery;
polyphenol delivery; wound healing

applications

Antimicrobial; anti-inflammatory;
antifungal; nontoxicity;

antitumor activity; antioxidant
activity

Low mechanical strength;
significant variations of

properties based on the source of
material

[84–90]
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3. Mechanism of Bacteria Adhesion on Surfaces

Bacteria are present in different environments, such as animals, soil, plants, fresh
water, and air [91]. Bacterial adhesion refers to the capability of bacteria to attach to
a range of surfaces, such as human tissues, medical implants, polymers, metals, and
glasses [92]. This process is vital for bacterial colonisation and is achieved through a
complex process that involves few stages with multiple factors. As an overview, it is
affected by the distinct characteristics of bacteria such as motility, cell wall structure and
appendages (flagella, pili, and curli), exposure duration to the surface, amount of nutrients,
coaggregation, cohesion, and bacterial density [92–94]. Bacteria colonisation occurs in two
stages: (1) prior attachment stage, known as the primary stage or reversible adhesion,
and (2) post-attachment stage, known as the secondary stage or irreversible adhesion [95].
During the reversible (volatile) adhesion, once the bacteria reach a certain proximity from
the surface, their adhesion depends on the superposition of attractive and/or repulsive
forces such as electrostatic, van der Waals, hydrophobic, and hydrodynamic forces [95],
whereas the attraction of the bacteria to the surface is high during this stage and occurs
within few minutes [96]. The majority of bacteria carry a predominantly negative surface
charge [97,98], especially in the initial growth stage [98], and tend to selectively bond
with surfaces that are positively charged [99]. However, if the environment (where the
bacteria and surface are located) is in high ionic condition, then this electrostatic interaction
will be reduced due to the charge screening effect (neutralizing) caused by oppositely
charged ions in the environment [93,99]. In the second stage, adhesion becomes irreversible
(permanent) without any need for physical or chemical intervention, firmly anchoring the
organism to the surface within several hours [95,99]. Similar to the primary stage, van
der Waal interactions are involved, which are between the outer cell wall and the surface.
Moreover, polysaccharides and proteins play a crucial role in the transition from reversible
to irreversible cell attachment, whereas the irreversible attachment is mostly dominated
by the production of extracellular polymeric substances (EPSs) [92,99,100]. EPSs consist of
polysaccharides, proteins, extracellular DNA, and lipids. EPSs, which are released by cells
in biofilms adhered to surfaces, protect against mechanical damage and shear generated by
flow [99]. Notably, within biofilms, EPSs exhibit a non-homogeneous distribution pattern
among cells [101]. In the biofilm, an EPS offers various advantages to the cells. These
benefits include adhesion, protection, and structural support. Specifically, the aggregative
polysaccharides function as molecular glue, facilitating the adhesion of bacterial cells both
to each other and to surfaces [102]. In addition to these factors, the surface characteristics of
the substrate, including factors like surface charge density, wettability, roughness, stiffness,
and surface architecture, are also regarded as significant factors that influence the initial
adhesion of bacteria to surfaces [94]. Once these bacterial cells colonise a surface, they can
create numerous problems such as infections. Many different methods are used to mitigate
bacterial colonisation.

4. Antimicrobial Strategies
4.1. Chemical Bactericidal Strategies

Bactericidal chemicals play a major role in mitigating bacterial colonisation. Upon at-
tachment, the planktonic bacterial cells begin clustering and start to form biofilms. Biofilms
are highly resistant to antiseptics, antibiotics, and immune killing [103–106]. These biofilms
create adverse effects on medical implants such as infections and continual inflamma-
tory reactions, that can lead to implant failure [103,107–109]. Many researchers inves-
tigated chemical antibacterial strategies to avoid this issue. A common strategy is the
widespread use of bactericidal and bacteria-repelling chemical agents, such as antibiotics
and antiseptics [110]. Under the same category, antimicrobial surface coatings are more
popular in many antibacterial applications [111–118]. Metal (Ag, Au, Cu, Zn) nanoparti-
cles [113,119,120], metal oxide (ZnO, MgO, CuO, TiO2) nanoparticles [120,121], graphene
family materials [122–125], fullerene [126,127], and carbon nanotubes [125] are frequently
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used as coatings [128] and additives for composites [129] in implants. For instance, Rezic
et al. developed an antibacterial coating on PLA polymer using different types of commer-
cially available nanoparticles such as Ag, Al2O3, Au, Pt, TiO2, Y2O3, ZnO, and ZrO2 [56].
This coating was bactericidal against Gram-positive Staphylococcus aureus (S. aureus) strains.
Moreover, Patil and colleagues developed a silver-nanoparticle-embedded polystyrene
polymer composite via thermal annealing and soft moulding process [130]. This composite
showed an excellent bactericidal effect on both Gram-negative Escherichia coli (E. coli) and
Gram-positive S. aureus bacteria.

The interaction of these nanoparticles with bacterial cells leads to several effects,
including the inhibition of enzymes, deactivation of proteins, induction of oxidative stress,
disruption of electrolyte balance, and alterations in gene expression levels resulting in
lysing the bacteria [131]. These materials demonstrate excellent bactericidal efficacy. But
the underlying antimicrobial mechanisms might induce a cytotoxicity effect for human
cells [132–135]. For instance, Berardis et al. and Guan et al. studied toxicity assessments
of ZnO nanoparticles on human colon carcinoma cells and human hepatocyte cell lines
via toxicity assay methods. They found that these nanoparticles cause a reduction in
human cell viability, presence of inflammatory biomarkers, DNA, and mitochondrial
damage [136,137]. Moreover, Haase et al. studied the toxicity of silver nanoparticles using
human leukemia cells and concluded that the silver nanoparticles cause elevated lactate
dehydrogenase and a reduction in cell viability [138]. Moreover, the biggest threat to
chemical-based antibacterial agents is the ability of bacteria to evolve into antimicrobial-
resistant strains [139,140]. Given the widespread usage of antibacterial chemicals, they
have the potential to be redundant due to antimicrobial resistance, less susceptibility of
bacteria in biofilms, and potential cytotoxicity. These challenges necessitate alternative
methods that are not prone to those threats.

4.2. Physical/Mechanical Bactericidal Strategies
4.2.1. Natural Bactericidal Nanostructured Surfaces

During the last decade, patterns with impressive bactericidal properties have been
found on shark skin, gecko skin, lotus leaves, and the wings of cicadas, damselflies, and
dragonflies [23,141–143]. These wings contain nanostructured surfaces that can prevent
the growth of biofilms and kill a variety of bacteria by generating high bactericidal levels
to different bacteria strains, as depicted in Table 2 [141,144]. For example, Ivanova et al.
showed that cicada wing surfaces can eliminate Gram-negative Pseudomonas aeruginosa
(P. aeruginosa) bacteria within 3 min of contact [145]. Interestingly, highly patterned or
regularly arrayed nanoscale pillars on cicada wings are effective against Gram-negative
bacteria, while the random nanofeatures or sigmoidal nanoarchitecture of dragonfly wings
can kill both Gram-negative and Gram-positive cells [141,146–149]. Tripathy et al. reviewed
that cicada wings are proficient at effectively lysing Gram-negative bacteria but not Gram-
positive bacteria. The reason is due to the Gram-positive bacteria’s thick peptidoglycan cell
wall, which is approximately 4 to 5 times thicker than that of Gram-negative bacteria [24].
The various nanopatterns comprise either patterned or random arrays of surface features
(Figure 2b,h), and are easily distinguished by the height, tip diameter, base width, and
spacing of their individual surface features [57,150], as shown in Table 2 and Figure 2.
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The cicada wing species demonstrate ordered nanoarchitecture while dragonfly, dam-
selfly, and gecko skin present random or hierarchical nanoarchitecture (Table 2 and Figure 3).
All these surfaces are composed of nanopillars while gecko skin and lotus leaves are com-
posed of spinules and nanotubes, respectively. The spinules are wire-like features with high
aspect ratio having a height around 3000 nm [110]. There is a significant difference between
the height of nanofeatures in gecko skin and other natural bactericidal nano-topographies
(Figure 4). Moreover, cicada wing nano-topographies are bactericidal to Gram-negative
bacteria species such as P. aeruginosa and P. fluorescens, while dragonfly wings, gecko skin,
and damselfly wings are bactericidal to both Gram-negative (P. aeruginosa, E. coli, and P.
gingivalis) and Gram-positive (S. aureus) bacteria. This bacterial cell rupture is caused by
the prolonged suspension of the bacterial cell membrane on the nanostructured surface,
which causes the membrane to stretch beyond its elastic limit [24,150–153]. It is also no-
ticeable that the tip diameter is low when it comes to dragonfly wing, gecko skin, and
damselfly wing architecture compared with cicada wings. Hence, it results in creating high
stress on the bacterial cells to lyse the bacteria. As per the literature results included in
Table 2, it is shown that there is an effect on bactericidal activity from the nanostructure
pattern type for the different bacteria species. The absence of threats of antimicrobial resis-
tance development and antibacterial tolerance due to biofilm formation makes bactericidal
nano-topographies more appealing for both medical and industrial applications.
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Figure 3. Micrographs of natural bactericidal nanostructured surface topographies. (a) Helium ion
micrograph of a periodical cicada wing (Magicicada septendecim) showing hemispherical features.
(b) Helium ion micrograph of an annual cicada wing (Tibicen tibicen) showing spherically capped
conical features. (c) Helium ion micrographs of a common sanddragon dragonfly wing (Progomphus
obscurus) showing spherically capped cylindrical features with a high aspect ratio. Adapted with
permission from ref. [154]. (d) Scanning electron microscopy (SEM) micrograph (tilted 45◦) showing
the self-organised free-standing and clustered nanopillar arrays on a black damselfly wing (C.
haemorrhoidalis). Adapted with permission from ref. [155]. (e) SEM micrograph of natural gecko
skin (Strophurus williamsi). Adapted from ref. [110]. (f) SEM micrograph of the surface of a natural
lotus leaf (scale: 10 µm). Adapted with permission from ref. [156]. Copyright© 2015, American
Chemical Society. Dragonfly (c) and damselfly (d) wings comprise similar non-uniform (random)
nanoarchitectures with different heights and orientations. However, the nanofeatures in gecko skin
(e) comprise a high aspect ratio and high spacing nanofeatures compared to all the other natural
nanostructures.
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Table 2. Natural antibacterial nanostructured surfaces.
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Periodical cicada wing
(Magicicada ssp.)

Hemispherical shape
nanofeatures Ordered 167 167 83.5 252 ~80◦ Lethal to S. cerevisiae fungus [154]

Dog day annual cicada
(Tibicen ssp.)

Nanoneedles (spherically
capped, conical, nanoscale

pillars)
Random/hierarchical 57 104 183 175 132◦ Bactericidal to P. aeruginosa

(Gram-negative) [154]

Cicada wing
(Psaltoda claripennis) Nanopillars Ordered 60 100 200 170 ~159◦ Bactericidal to P. aeruginosa

(Gram-negative) [145]

Cicada wing
(Megapomponia intermedia)

Tubular nanofeatures
(nanopillars) Ordered 156 ~312 241 165 ~136◦ Bactericidal to P. fluorescens

(Gram-negative) [101]

Cicada wing
(Cryptotympana Aguila)

Tubular nanofeatures
(nanopillars) Ordered 159 ~318 182 187 ~113◦ Bactericidal to P. fluorescens

(Gram-negative) [101]

Cicada wing
(Ayuthia spectabile)

Tubular nanofeatures
(nanopillars) Ordered 207 ~414 182 251 ~96◦ Bactericidal to P. fluorescens

(Gram-negative) [101]

Sanddragon dragonfly
wing (Progomphus obscurus) Nanograss Random/hierarchical 53 - 241 123 119◦

Bactericidal to P. aeruginosa
(Gram-negative), S. aureus and B.

subtilis (Gram-positive)
[154]

Dragonfly wing
(D. bipunctata) Nanograss Random/hierarchical 50–70 - 240 - 153◦

Bactericidal to P. aeruginosa
(Gram-negative), S. aureus and B.

subtilis (Gram-positive)
[146]

Dragonfly wing
(Orthetrum villosovittatum) Nanopillar Random/hierarchical 37 and 57 -

189
and
311

- - Bactericidal to E. coli
(Gram-negative) [148]

Gecko skin
(Strophurus williamsii) Spinules Random/hierarchical 50 ~400 3000 500 >136◦ - [110]
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Gecko skin
(Lucasium steindachneri) Spinules Random/hierarchical - - 2000–

4000 ~500 150◦
Bactericidal to Streptococcus mutans
(Gram-positive) and Porphyromonas

gingivalis (Gram-negative)
[102,131]

Lotus leaves (Nelumbo
nucifera) Nanotubules Random/hierarchical - 100–

200
300–
1100

~150–
250 154◦ Bactericidal to E. coli

(Gram-negative) [157]

Damselfly wing
(Calopteryx haemorrhoidalis) Nanopillars Random/hierarchical ~48 - ~433 116 157◦

Bactericidal to P. aeruginosa
(Gram-negative) and S. aureus

(Gram-positive)
[149]
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4.2.2. Artificial Nanostructure Fabrication Methods in Polymers

To generate different morphologies of polymeric nanostructured surfaces, many stud-
ies were conducted using different chemical and mechanical methods. Nanoimprinting
lithography (NIL) [57,132], electron beam lithography (EBL) [141,158], reactive ion etching
(RIE) [159,160], colloidal lithography [161,162], laser-based lithography techniques, and
anodic aluminium oxide template (AAOT) [141,163,164] are polymer nanostructured sur-
face fabrication methods which are used in the literature (Table 3). The NIL, EBL, and
AAOT processes demonstrate high nanofeature parameter controllability. However, lim-
itations like high fabrication cost and multiple process steps make them non-facile and
inefficient [141,158,163,165].

Reactive Ion Etching

Reactive ion etching (RIE) is perhaps the most frequently used method to develop
non-polymer nanostructured surfaces, and produces high-aspect-ratio nanostructures by
mimicking cicada and dragonfly nanostructures [159,166]. It is based on high energetic ion
which is bombarded into the substrate coated with a photoresist pattern mask to remove
material from the surface which is unexposed to photoresist, resulted in nanostructured
surfaces [167,168]. Ivanova et al., Hasan et al., Roy et al., and Ganjian et al. have used
the RIE process to fabricate high-aspect-ratio antibacterial nanostructured surfaces on
non-polymer materials such as black silicon and black titanium [146,169,170]. However,
limited literature related to polymer surfaces was found. Kayes et al. developed a nanos-
tructured surface on PP polymer via maskless RIE (without using a photoresist pattern
mask) method under different plasma gas conditions, and achieved a bactericidal activity
on E.coli bacteria [171]. Moreover, Patil et al. was successful in obtaining more than 85% of
bactericidal efficacy against P. aeruginosa bacteria on commercially pure nitrile (CPN) and
nitrile gloves without using a mask in RIE [160]. Moreover, the etching time, type of gas,
gas pressure, plasma gas flowrate, and plasma power are crucial parameters in this process
to optimise the nanostructures to obtain the required bactericidal efficacy. Another study
involving maskless RIE on the PET polymer fabricated bactericidal nanostructures against P.
aeruginosa. Nevertheless, the same etched surface did not demonstrate bactericidal efficacy
against S. aureus bacteria [172]. Interestingly, the generated surfaces are random arrays
of nanofeatures as depicted in Figure 5d,e. This process is comparatively a facile method
due to the absence of the photoresist mask. Yet, there is no evidence in the literature that
maskless RIE is used to fabricate nanostructures on polymer surfaces which are effective in
lysing both Gram-negative and Gram-positive strains.

Colloidal Lithography

Colloidal lithography is a similar process to RIE which uses nano- or microspheres in-
stead of a photoresist mask. Distinct nanostructured surfaces are obtained by controlling the
micro/nanosphere size, plasma gas pressure and flow rate, and etching time [161,162,173].
Hazel et al. fabricated bactericidal PET nanocones via a combination of colloidal lithogra-
phy and RIE [161]. To fabricate the nanocones, initially the polystyrene (PS) microspheres
were spin-coated as a 2D hexagonally close-packed array, as depicted in Figure 6 (step 1).
Nanostructure size is dependent on the size of the microsphere, and 200 nm and 500 nm
sized microspheres were used to produce uniform nanocones in this work. Oxygen plasma
is bombarded on the PS coated substrate with relevant power and flow rate to etch the
PS and substrate. Further etching will reduce the size of the PS microsphere and remove
the substrate material while taking the PS microsphere as a mask (Figure 6 (step 2)). For
each of the PS microsphere sizes, different etching times were performed to obtain distinct
nanofeatures on the surface with different height, tip diameter, and spacings, as depicted
in Figure 6b–i. The researchers were able to produce nanostructures with a 20 nm tip
width and 400 nm height which were bactericidal to Gram-negative E. coli and Klebsiella
pneumoniae (K. pneumoniae).
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Figure 5. (a,b) SEM micrographs (scale: 1 µm) of P. aeruginosa bacteria on unetched polymer surfaces;
(d,e) SEM micrographs (scale: 1 µm) of lysed P. aeruginosa bacteria on etched polymer surfaces using
RIE; (c,f) live/dead confocal micrographs (60×) of unetched and etched polymer surfaces with P.
aeruginosa bacteria; (g) % of dead P. aeruginosa cells on each unetched and etched polymer surface.
** indicates significance for p < 0.01. Adapted with permission from ref. [160]. Copyright© 2023,
American Chemical Society.

Mo et al. fabricated different types of nanofeatures (nanopillars, micropillars, mi-
crocones) on PEEK polymer using PS microspheres as the mask [162]. The fabricated
nanofeatures were lethal to E. coli bacteria. A similar process has been used as the one
depicted in Figure 6a. However, the researchers used two gases such as Ar and O2. Using
Ar in colloidal lithography can produce nanotube-like features via anisotropic etching
(etching in vertical direction) without decreasing the size of the microspheres. On the other
hand, using O2 as the plasma gas can produce nanocone features while etching material
isotropically (etching in both vertical and horizontal directions) by decreasing the size of
the microspheres. Hence, this process can be effectively used to fabricate nanostructured
surfaces on polymers via controlling the parameters like microsphere size, plasma power,
gas flowrate, and etching time. Colloidal lithography can produce a uniform array of
nanostructures with varying nanofeature sizes more effectively than the RIE procedure.

Nanoimprinting Lithography

NIL is a high-throughput fabrication approach for producing nanostructures. It entails
transferring a pattern from a mould to a deposited polymer. A liquid polymer layer, known
as a “resist”, is placed on the substrate surface and mechanically pressed with a silicon
stamp, creating a mould pattern imprint on the polymer substrate. The mould is then
removed to reveal the polymer impression, and a RIE procedure is used to remove the
polymer resist (Figure 7), resulting in the final nanostructure [174,175]. The process can
be divided into two types: thermal nanoimprinting lithography (TNIL) and ultraviolet
nanoimprinting lithography (UVNIL) [175]. In the TNIL process, the pattern is made
using both pressure and increased temperature (Figure 7a), which is often higher than the
polymer’s glass transition temperature [176]. However, the mould removal process cause
more damage to the nanostructures. The UVNIL process reduces the structural deformation
during the demoulding process in the TNIL method. UVNIL uses UV radiation to crosslink
the polymeric nanostructures (Figure 7b) [177,178]. However, some researchers have used
a combination of both processes to get the maximum advantage of producing highly
bactericidal nanostructured surfaces [179,180].
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Figure 6. (a) Colloidal lithography process steps. Step 1: Spin-coated PS microspheres on the polymer
substrate. Step 2: Halfway etched microspheres and polymer substrate. Step 3: Completely etched
microspheres and developed nanocone structures on the substrate. (b–i). SEM micrographs of PET
nanocone structures fabricated using 500 nm (b–e) and 200 nm (f–i) PS microspheres at different
etching times. Images (b–i) adapted with permission from ref. [161]. Compared to the maskless RIE
process, colloidal lithography is capable of producing different nanoarchitectures via mimicking
cicada (b–g), dragonfly (h,i), and damselfly (h,i) wings.

Oopath et al. created surfaces that resemble rose petals and have antibacterial proper-
ties using a combination of TNIL, UVNIL, and the hydrothermal technique [179]. Initially,
they used NIL to imitate the microstructures found on rose petals on the surface of a
PVDF-HFP film, as shown in Figure 7b. The hydrothermal approach was then used to grow
ZnO nanostructures on the PVDF-HFP film, resembling the structure of rose petals. As
shown in Table 3, the experimental findings showed that PVDF-HFP films mimicking rose
petals had about 100% bactericidal efficiency against both strains of bacteria.
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Figure 7. (a) TNIL and UVNIL process steps. Adapted with permission from ref. [175]. (b) Fabrication
steps of rose petal mimetic structures on PVDF-HFP films. Adapted with permission from ref. [179].
Copyright© 2023, American Chemical Society. (c) SEM micrographs of nanopatterned thermal
shrinkage films via UVNIL process. Adapted with permission from ref. [181]. (d–f) SEM micrographs
(30◦ tilted, scale bar: 1 µm) of nanostructure made on PMMA surface with different spacings
((a): 600 nm, (b): 300 nm, (c): 200 nm). Adapted with permission from ref. [57].

Dickson et al. also used NIL to construct nanopillars inspired by cicada wing structures
on a PMMA substrate (Figure 7d–f). The PMMA film was applied onto the glass substrate
using a spin coating method, followed by an annealing procedure on a hot plate at 100 ◦C
prior to the imprinting stage. Different samples were acquired via distinct approaches to
obtain various sizes of nanopillars (Table 3). PDMS nano hole moulds, a nickel stamp,
and natural cicada wings were used in the NIL process to imprint the pattern on PMMA
surfaces [57].

Shung et al. developed a nano-in-microstructured hierarchical superhydrophobic
surface using a combination of UVNIL and RIE [181]. A PDMS mould with nanostructures
was fabricated using a silicon mould. Then, the UV-curable polymer resist was imprinted
using the prepared PDMS mould. Later, this nanostructured polymer layer was trans-
ferred into a thermal shrinkage film with an annealing process and RIE to create the final
nanostructure (Figure 7c). The created nanostructured polymer film was superhydrophobic
with a water contact angle of 150◦. The researchers harnessed these surfaces to create
superhydrophobic surfaces, primarily for self-cleaning purposes. While the bactericidal
properties of these surfaces have not been experimentally evaluated, the nanofeature char-
acteristics seem promising for potential mechano-bactericidal effects, with respect to the
mechano-bactericidal nanofeature parameter ranges in Figure 4.

Even though NIL demonstrates high controllability in nanostructure dimensions, the
multiple steps in the process lead to a high cost.

Laser-Based Lithography Techniques

In laser-based lithography techniques, a laser beam or set of beams is used to cre-
ate nanopatterns on different material substrates via a photosensitive material (typically
a photoresist). Laser lithography, laser interference lithography, and femtosecond laser
lithography are key methods used in the literature for fabricating nanostructured sur-
faces [176,182–184]. The laser lithography process uses a laser beam to directly produce
a pattern on the photosensitive material. Resists used in this process can have either
negative or positive tones, and the region on the resist that is exposed can be crosslinked
or chain-scissioned [185]. The patterned photoresist material acts as a mask on the tar-
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get substrate, and plasma etching usually follows in order to etch the unexposed area
of photoresist to obtain the final nanostructure on the substrate. Kim et al. produced a
nanostructured bactericidal and superhydrophobic surface on PMMA polymer using the
KrF laser lithography process with dry etching, thermal oxidation, high-density plasma
chemical vapour deposition, and TNIL, as depicted in Figure 8a–i [176]. BARC and LX-429
photoresists were coated on a Si wafer, and the initial nano pattern was produced using
KrF laser beam. Then, a dry etching process was used with a combination of Cl2 and
HBr gases to etch the Si wafer by taking the produced photoresist nanopattern as a mask.
Subsequently, a nanocone structure was obtained, as depicted in Figure 8e. Later, the
high-density plasma chemical vapour deposition process used to develop nanopillars on
Si, and the TNIL process replicated the pattern on PMMA with dimensions of 250 nm
(base diameter), 490 nm (height), and 300 nm (spacing) (Figure 8i). The fabricated surface
exhibited bactericidal properties against P. aeruginosa and E. coli bacteria. In the early stages
of attachment, which occurred during the first 1–4 h of bacterial incubation, most adhered
E. coli cells were lysed, primarily attributable to the mechano-bactericidal effect, when
compared to a flat substrate. Conversely, there was no substantial bactericidal impact on
P. aeruginosa during this initial attachment phase. However, over a period of 2–7 days, a
significant portion of both bacteria lysed due to the inhibition of adhesion and bacterial
growth because of the surface’s superhydrophobic nature.

Laser interference lithography (LIL) creates detailed patterns on a substrate using the
interference pattern of coherent laser beams. Complex interference patterns are formed
by adjusting the angles and wavelengths of the laser beams, resulting in high-resolution
patterns on the substrate [184,186–188]. During the process of fabricating polymer nanos-
tructured surfaces, the initial photoresist pattern can be made using the LIL method with
high-resolution patterns due to the interference of multiple beams rather than using the
conventional laser lithography processes [189].

Quilis et al. fabricated arrays of thermoresponsive poly(N-isopropylacrylamide)
(pNIPAAm)-based hydrogel nanostructures with a gold nanoparticle array for applications
in highly sensitive chemical and biological sensing [190]. The four-beam UV laser interfer-
ence lithography (UVLIL) method was used to pattern the photoresist on the pNIPAAm
hydrogel, and the hydrogel was etched using the dry etching process to obtain the final
nanostructure, as depicted in Figure 8j. This resulted in nanostructures with 132 nm (di-
ameter), 50 nm (height), and 463 nm (spacing) dimensions (Figure 8k). Even though the
spacing is too high compared to diameter and height, these methods can be used in the
development of mechano-bactericidal nanostructures on polymers. Interestingly, Valle et al.
fabricated microstructures on polystyrene polymer surfaces using the LIL process [191].
These microstructures took various forms, including line and pillar-like patterns as well as
lamella shapes. The researchers examined bacterial attachment, using S. aureus, to assess the
antibacterial properties in both static and fluid flow conditions. Surprisingly, the line and
pillar-like microstructures seemed to promote bacterial adhesion, while the lamella-shaped
patterns reduced bacterial adhesion under both static and flow conditions. Furthermore,
the researchers primarily demonstrated an anti-adhesion effect as a key contributor to
the antibacterial activity of these microstructures. Additionally, they proposed that these
microstructures provided a mechano-bactericidal effect inspired from the microfeatures
found on shark skin.

To conclude, the laser-based lithography technique is an extended version of the NIL
process. Given the high precision of the nanofeatures, the various steps employed in the
process make it a non-facile method in commercial implant fabrication. However, LIL
can also be used as a facile method without using NIL and other supportive processes
like etching as per the study of Valle et al. Moreover, to make such surfaces mechano-
bactericidal, nanofeature parameters should be carefully controlled as per Figure 4.
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Figure 8. (a–i) Laser-based lithography process assisted with TNIL. Adapted from ref. [176].
(j) Schematic view of the crosslinking of pNIPAAm-based hydrogel polymer via arrays of interference
laser beams. (k) Change of nanofeature parameters with irradiation dose. (l–n) AFM micrographs
of pNIPAAm-based hydrogel polymer nanofeature parameters under different irradiation doses.
Images (j–n) adapted with permission from ref. [190].

Anodic Aluminium Oxide Template

To create well-ordered nanofibers, AAOT is used as a template to recreate fine
nanopores employing a molten polymer. Nanostructure fabrication via AAOT consists
of several steps, as depicted in Figure 9d. First anodization, acid etching, and second
anodization are the key steps of producing the template. The AAOT process is used to
fabricate the template which is required to use in the NIL process to impart the nanostruc-
ture to a polymer material [192]. During the initial anodization process, electoral density
distribution is formed over the thin aluminium sheet. Then, the acid etching is used to
remove the initial aluminium oxide layer to form an organized barrier layer to produce
nano pores in an ordered manner. Finally, a secondary anodizing process follows to allow
the developed pores to penetrate into the original aluminium sheet. Temperature, voltage,
and the pH level of the anodising electrolyte play a crucial role of determining the pore
depth, spacing, and diameter [193,194].

Cui et al. modified the polycarbonate (PC) substrate surface using AAOT-assisted wet
etching and hot embossing [195]. This is similar to the procedure depicted in Figure 9d. The
ability to change the geometric parameters (height, diameter, and spacing of nanopillars) of
the nanostructure more efficiently (Figure 9a–c) than other manufacturing methods, such
as NIL, RIE, and colloidal lithography, is an essential component of this nanostructure
fabrication process. As mentioned in Table 3, the researchers fabricated bactericidal nanos-
tructures with a bactericidal efficacy of more than 95% against E. coli bacteria. Moreover,
the interaction between bactericidal efficacy and geometric parameters were also studied
in this work, and the researchers concluded that high efficacy is obtained at 200 nm of
nanopillar height with smaller cap diameters. Also, as per the study, there was an optimum
value (170 nm) for the spacing which influence to have more bactericidal efficacy.

Zhang and colleagues devised a hybrid nano-topography via a mechano-bactericidal
mechanism using an AAOT assisted technique [196]. They employed a layer-by-layer
assembly method to create this structure, involving the sequential application of tannic
acid (TA) and iron ions (Fe3+) through a dip-coating process. Polymeric nanopillars were
crafted by forming a polymeric resin from diglycidyl ether of bisphenol A resin (DGEBA),
polyether amine resin (D230), and ethyl acetate using the AAOT process. The coating of TA
and Fe3+ on these nanopillars exhibited a significant photothermal effect resulting in en-
hanced antibacterial properties in addition to its mechano-bactericidal effect. These hybrid
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nanopillars demonstrated exceptional efficacy in lysing P. aeruginosa and S. aureus bacteria,
with a bactericidal rate exceeding 99%. It is worth noting that the photothermal coating can
have inherent cytotoxicity, but the developed surface exhibited excellent compatibility with
mammalian cells (more than 88% cell viability) in in vitro studies.
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Figure 9. (a–c) SEM micrographs (scale: 200 nm) of fabricated nanostructures via AAOT on PC
surface: (a) 100 nm, (b) 170 nm, and (c) 300 nm of interpillar spacing. 30◦ tilted SEM images of
nanopillars (a1–a4,b1–b4,c1–c4) with different heights (H). Adapted with permission from ref. [195].
Copyright© 2020, American Chemical Society. (d) Nanostructure fabrication using AAOT. Adapted
with permission from ref. [192].

Similar to NIL and laser-based lithography methods, AAOT involves a series of
process steps and is primarily suitable for creating nanostructures on flat surfaces due to
the difficulties involved in mould removal of NIL on curved surfaces. As AAOT utilizes
the NIL process, any drawbacks associated with NIL also apply to this method.

Electron Beam Lithography (EBL)

Lithography is a nanofabrication method which uses light or focused particle beams
to remove material from a substrate and obtain nanostructures [197]. EBL and focused ion
beam (FIB) are the two main categories of the particle beam lithography (PBL) process [198].
Particles can be identified as electrons and ions (Ga+, He+, Ne+). In EBL, high-energy
electrons are employed, whereas in focused ion beam (FIB) milling, high-energy ions are
utilized. EBL is a maskless lithography process which uses an electron gun to fabricate
nanoscale patterns on a substrate [197]. The electron beam produced by the gun either
images (in SEM) a surface or fabricates a previously deposited resist on a substrate. The
resist that is exposed can be crosslinked or chain-scissioned [185]. Then, exposed and
nonexposed resist regions are selectively removed via a solvent. While the covered regions
are protected, the exposed areas can be further processed for etching or thin-film deposi-
tion [199]. PMMA polymer is a common positive e-beam resist whose solubility changes
when exposed to an e-beam [185,200]. Moreover, polyacrylic acid (PAA), polyethylene
glycol (PEG), and hydrogen silsesquioxane (HSQ) are the mostly used resist materials in
the EBL process [201].

Kallas et al. produced nanopillars on polycarbonate polymers using a combination
of the UV-NIL, dry-etching, and EBL process [201]. The developed nanostructures were
bactericidal against E. coli bacteria. The EBL process is used to make the pattern for
the UVNIL process. The pattern was made from hydrogen silsesquioxane (HSQ) resist.
Compared to photolithography processes, EBL provides minimum nanofeature size as fine
as ~2 nm while photolithography fabricates around ~50 nm [180]. However, the direct
writing of patterns by scanning electron beam is a slow process with low throughput. As a
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result, EBL is utilised for photomask preparation for photolithography or the direct writing
of low-volume and small-area patterns.

Hydrothermal Synthesis

The hydrothermal synthesis process develops a high-temperature and high-pressure
environment in a closed Teflon-lined stainless steel reactor [202]. During this process, the
sample (or implant) is submerged completely in alkaline solution to perform a reaction to
achieve nanostructures. Because of its reliability, environmental friendliness, simplicity,
low cost in comparison to other procedures, and flexibility for material morphology control,
hydrothermal synthesis is the most versatile nanostructured surface fabrication method for
metals, ceramics, and non-flat complex geometry surfaces [159,166,203]. As per the litera-
ture relevant to hydrothermal synthesis on titanium surfaces, it can resemble the nanofea-
tures of cicada wings or dragonfly wings with high bactericidal efficacy [159,166,204].
Hence, theoretically this method can be used to fabricate mechano-bactericidal nanos-
tructures on 3D implants. For instance, Jaggessar and colleagues fabricated bactericidal
nanostructures on 3D titanium surfaces via the hydrothermal synthesis process, and were
successful in obtaining 91% more efficiency in anti-adhesion compared to 2D surfaces
against S. aureus bacteria, showing the same or higher bactericidal efficacy than 2D sur-
faces [205].

On the other hand, due to the low melting point and low glass transition tempera-
ture of polymers, it is challenging to use the hydrothermal synthesis process to develop
nanostructures on polymer surfaces. Hence, using the hydrothermal synthesis process for
polymers has been overlooked in the bactericidal nanostructured surface field. However,
Yoo et al. created ZnO nanowires on flexible plastics such as PET, PC, and polyimide (PI)
using a low-temperature (approx. 90 ◦C) hydrothermal synthesis method, as depicted in
Figure 10a [206]. After coating the flexible plastic substrate with Ag ink solution, the Ag
layer was transformed into a nanoporous layer at 130 ◦C (Figure 10b,c). The hydrothermal
reaction was processed inside the Zn2+ ion solution of this Ag-coated plastic substrate.
Finally, as shown in Figure 10d–f, ZnO crystallised on the Ag-seeded substrate at 90 ◦C
after 9 h. This nano-topography is similar to the mechano-bactericidal nano-topography
developed by Bhadra et al. [159] and Zhao et al. [203]. Even though there are a few studies
that used the hydrothermal synthesis process to develop nanostructures via metal oxides on
polymer substrates, no study has yet been reported in the literature for using hydrothermal
synthesis to fabricate micro/nanostructured surfaces on pure polymers.
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Table 3. Summary of polymer nanostructured surface fabrication methods. Table abbreviations: Poly(ethylene glycol) dimethacrylate—PEGDMA; Poly(vinylid
ne fluoride-co-hexafluoropopylene)—PVDF-HFP; Height—H; Tip diameter—Dt; Base diameter—Db; Diameter—D; Spacing—S; Width—W; Pillar density—PD;
Pitch—P; Aspect ratio—AR; Roughness—R.

Method Substrate
Material Supportive Processes Feature Type Nanofeature Parameters Bactericidal Effect (Max. Efficiency %,

Incubation Time in Hours) Ref.

NIL

PMMA
Silicon mould
preparation

Nanopillars

H 210 nm, 300 nm

Lethal to E. coli bacteria (~50%, 24 h) [57]

Dt
70 nm, 190 nm,

215 nm

Db
100 nm, 130 nm,

380 nm

S 170 nm, 320 nm,
595 nm

OrmoStamp
(glass) AAOT, deep RIE Nanopillars

H 200, 300, 400 nm

Lethal to S. aureus bacteria (~100%, 0.5 h) [207]D 70, 80 nm

PD 40 µm2, 70 µm2

PEGDMA RIE Nanoneedle

H 300 nm

Lethal to E. coli bacteria (N/A) [208]
Dt 50 nm

Db 200 nm

P 500 nm

PVDF-HFP Hydrothermal method

Array of
micropapillae
with nanofold

structures

D (papillae) 20 µm Lethal to Gram-positive S. agalactiae:
Micropapillae (~97%, 12 h), Nanopillars (100%,

12 h); Gram-negative E. coli, Micropapillae
(~100%, 12 h), Nanopillars (100%, 12 h)

[179]
D (nanofold) 300–400 nm

D 300 nm

P 600 nm

PC RIE, EBL Nanopillar

H 25 nm

Lethal to E. coli (N/A) [201]Db 40 nm

S 100, 200, 500 nm
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Table 3. Cont.

Method Substrate
Material Supportive Processes Feature Type Nanofeature Parameters Bactericidal Effect (Max. Efficiency %,

Incubation Time in Hours) Ref.

Laser Lithography PMMA
Thermal oxidation, RIE,

chemical vapour
deposition, TNIL

Nanopillars

H 450 nm
Lethal to P. aeruginosa (~70%, 8 h) and E. coli

(~70%, 8 h) [176]Db 250 nm

AR 3

LIL PS None

Both pillar-like
and

lamella-shaped
patterns

H 2 µm
Lethal and anti-adhesion under flow conditions

to S. aureus
[191]W 3 µm

S 3 µm

Colloidal
lithography

PET RIE Nanocones

H 530–350 nm

Lethal to E. coli (~30%, 1 h) and K. pneumoniae
(~30%, 1 h) [161]

Dt 20–300 nm

Db 55–380 nm

AR 1–7

PEEK RIE

Nanopillars,
nanocones,

micropillars,
micro-cones

H 350 nm
Lethal to E. coli: Nanopillars (>95%, 12 h),

Micropillars (~90%, 12 h), Micro-cones (>75%,
12 h)

[162]P 200, 250 nm

D 100, 50 nm

AAOT

Polymer made
from DGEBA and

E230

Wet etching, dip
coating

Nanopillars

H 500–600 nm
Lethal to P. aeruginosa (~99%, 3 h) and S. aureus

(~99%, 3 h) [196]Dt 100 nm

Db 350 nm

PC
Hot embossing and

wet etching
Nanopillars

H 143–408 nm

Lethal to E. coli bacteria (>95%, 3 h) [195]
Dt 26.7–33.4 nm

Db 66.3–154.3 nm

S 100–307.8 nm
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Table 3. Cont.

Method Substrate
Material

Supportive
Processes Feature Type Nanofeature Parameters Bactericidal Effect (Max. Efficiency %,

Incubation Time in Hours) Ref.

RIE

PP None Nanofibrils
H 0.5, 1 µm

Lethal to E. coli (~99.6%, 24 h) [171]D 30, 40 nm

CPN None Nanopillars
H 1–1.4 µm

Lethal to P. aeruginosa (~80%, 24 h) [160]R 0.92–1.42 µm

PET None
Nanopillars

H 128.67 nm

Lethal to P. aeruginosa (~99%, 24 h) [172]
D 21.7 nm

Nanowires
H 501.4 nm

D 29.54 nm
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5. Factors Affecting Bactericidal Activity of Mechano-Bactericidal Mechanism

The stress experienced by the bacterial cell membrane due to a nanopattern is deter-
mined by both the shape and arrangement of the nanofeatures and by how strongly the
cell membrane is attached to the surface, with various factors mentioned in Section 3. By
fine-tuning the various geometric aspects of the nanopillars, it is possible to increase the
level of stretching that the membrane undergoes [24,150,153,209]. Seng et al. showed that
S. aureus is the most common pathogenic bacterium for breast implant infections (49% of
47 cases), whereas P. aeruginosa was identified as the second most pathogenic bacterium
in this study (19% of 47 cases) [210]. Hence, it is more important to consider both bacteria
species when developing bactericidal nanostructured surfaces.

Cui et al. found that the bactericidal efficacy of nanostructures developed on PC
surfaces increased with spacing and reached a maximum at 170 nm of nanopillar spacing,
but then decreased. On the other hand, the bactericidal efficiency increased exponentially
with the height of the nanopillar up to 300 nm, but then plateaued [195]. Different pa-
rameters of the nanostructured surface, including the shape of the feature [20,145,211],
height [145,150,209], tip radius [145,209], spacing [145,209], aspect ratio [146,209], base
width [209], and the arrangement (periodic or random), influence its bactericidal effi-
ciency [207,212]. For example, Fisher et al. found that sharp diamond nanocones on a
silicon wafer arranged in a nonuniform array (random) with a lower distribution density
were much more bactericidal against P. aeruginosa than uniformly (periodic) arranged, high-
density nanocones [213]. However, this cannot imply the effect of nanostructure density (or
spacing) and nanoarchitecture type on bactericidal efficacy solely. Effects and relationships
among the factors should be studied separately, one parameter at a time, to get a clear
understanding. In addition to that, Velic et al. has summarised the effect of tip radius (or
diameter) and spacing on the maximum von Mises stress (σvmax), areal stress (σA), and
contact pressure (Pmax). These stresses were then correlated to the bactericidal efficacy
from the available data in the literature (Figure 11) [209]. It was shown that the reduction
in both tip radius and spacing increases bactericidal efficacy in most of the cases plotted in
the graph (Figure 11). Hence, it is beneficial to use various nanostructure configurations
with distinct parameters to achieve highly effective bactericidal nanostructured surfaces.

In a separate study, Velic et al. studied the effect of geometrical parameters of a
nanostructured surface for lysing bacteria via a finite element analysis approach, and
concluded that the reduction in nanopillar radius and spacing increased the maximal
strains and the frequency of perturbation points accordingly [214]. The maximum strain
is in the highest point of the pillar. This suggests that whenever there is stretching that
induces pore formation and potential rupture of the bilayer, it will consistently begin within
the inner leaflet at the highest point of the pillar.

Anti-bio adhesion is another mechanism which uses the wettability of the nature-
inspired nanostructured surface to achieve the anti-adhesion of the bacteria [173,215]. This
phenomenon is not a bactericidal activity, but it uses the non-adhesion mechanism resulting
in a reduction in viability of the bacteria on the surface. There were many researchers who
investigated the effect of surface wettability (hydrophobicity [154,215–218] or hydrophilic-
ity [216,219,220]) on the bactericidal efficacy of nanostructured surfaces. Valiei et al. studied
the mechano-bactericidal efficacy of etched silicon nanopillars against P. aeruginosa bacteria.
Their results showed that the bactericidal efficacy decreases when the surfaces hydropho-
bicity increases. In other words, bactericidal activity was greatest on superhydrophilic
surfaces and decreased as the surface became more hydrophobic. It significantly decreased
when the contact angle of the substrate exceeded 90◦ [215]. These results suggest that super-
hydrophilic nanopillared surfaces are more suitable for mechano-bactericidal activity. In
contrast, superhydrophobic surfaces, although not bactericidal, may possess antibiofouling
properties owing to their self-cleaning characteristics. Interestingly, according to Ivanova
and colleagues, despite the cicada wing nanostructures demonstrating a superhydrophobic
nature, the adhesion of bacteria was significant to kill the P. aeruginosa bacterium [145].
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They reduced the hydrophobicity of the cicada surface by coating it with gold, which
reduced the water contact angle from 158◦ to 105◦. However, no significant difference in
bactericidal action was observed, implying that the topography of the nanostructure is more
important than the surface chemistry [145]. A large number of contributory factors makes
it challenging to study their impact and the interactions between them. Therefore, more
comprehensive studies are needed to explain the effects of those factors on the bactericidal
effect of the surface.
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6. Conclusions and Outlook

Antibacterial implants are highly desired to prevent failures due to bacterial infections.
To achieve that, different approaches have been developed in the literature, briefly outlined
in the Introduction. Among different pathways, “bactericidal nanostructured surfaces”
have taken the spotlight in the field for years due to their excellent bactericidal efficacy
on different pathogenic bacteria species, and possibility of implementation on different
implant materials. Polymers are crucial materials for biomedical implants due to their
inherent low density and ease of manufacturing, for example, additive manufacturing
processes. TNIL, UVNIL, AAOT, EBL, and laser-based lithography processes have been
efficiently used to achieve high-precision bactericidal nanofeatures on different polymeric
surfaces. However, the multiple steps involved in each process make them non-feasible
in the commercial scale of the relevant biomedical application. Moreover, almost all
fabrication processes which were carried out in the literature were related to flat surfaces.
However, most implants are not flat. Implants contain intricate shapes of internal and
external features. Hence, there is no successful fabrication method to produce bactericidal
nanostructures on the internal features of polymeric implants. Hydrothermal synthesis
can be an effective solution to this requirement. However, the low melting point and glass
transition temperature has made this process non-feasible. On the other hand, RIE and
colloidal lithography are facile methods compared with lithography and templating. To
optimise the topography of nanofeatures for the majority of the methods described in
Table 3, assistance from the RIE process is required. However, several researchers have
succeeded in fabricating nanostructures on various polymers using RIE, with or without
a photoresist mask. Interestingly, these structures have shown great bactericidal efficacy
against Gram-negative bacteria. However, there is no research that has shown bactericidal
efficacy on Gram-positive bacteria using maskless RIE. This process has reduced most
of the steps in other popular methods and could be useful in developing bactericidal
nanostructures on different polymers. Due to the directional etching principle (nanofeatures
will be created perpendicular to the surface) of RIE and colloidal lithography, again it
is difficult to fabricate nanostructures on 3D surfaces. As a result, the density of the
nanofeatures will not be homogenous due to the agglomeration of nanofeatures in low
curvature areas and the surfaces which are parallel to plasma direction. In a broader
context, the challenge of scaling up these processes to fabricate successful implants with
strong bactericidal efficacy on a commercial scale remains unmet. Given their attributes
of additive manufacturing and excellent biocompatibility, polymers are poised to play a
pivotal role in addressing the aforementioned gaps in the biomedical field.
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