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Summary

� Hyperspectral vegetation indices (VIs) are widely deployed in agriculture remote sensing

and plant phenotyping to estimate plant biophysical and biochemical traits. However, existing

VIs consist mainly of simple two-band indices that limit the net performance and often do not

generalise well for traits other than those for which they were originally designed.
� We present an automated hyperspectral vegetation index (AutoVI) system for the rapid

generation of novel two- to six-band trait-specific indices in a streamlined process covering

model selection, optimisation and evaluation, driven by the tree parzen estimator algorithm.

Its performance was tested in generating novel indices to estimate chlorophyll and sugar con-

tents in wheat.
� Results showed that AutoVI can rapidly generate complex novel VIs (at least a four-band

index) that correlated strongly (R2 > 0.8) with measured chlorophyll and sugar contents in

wheat. Automated hyperspectral vegetation index-derived indices were used as features in

simple and stepwise multiple linear regressions for chlorophyll and sugar content estimation,

and outperformed the results achieved with the existing 47 VIs and those provided using par-

tial least squares regression.
� The AutoVI system can deliver novel trait-specific VIs readily adoptable to high-throughput

plant phenotyping platforms and should appeal to plant scientists and breeders. A graphical

user interface for the AutoVI is provided here.

Introduction

High-throughput plant phenotyping (HTP) is integral in meet-
ing the demand for large-scale evaluation of genotypes in breed-
ing programmes and crop management systems (Tardieu et al.,
2017; Mir et al., 2019). In recent years, controlled-environment
and field-based HTP platforms have been developed to monitor
plants at the canopy or plot level for a large number of crop geno-
types (Tardieu et al., 2017; Mir et al., 2019; Lu et al., 2020).
Central to the success of these HTP platforms is the use of vari-
ous imaging sensors to acquire morphological, physiological and
biochemical parameters in a noninvasive manner. Hyperspectral
imaging has been a promising HTP technology for measuring
biochemical and morphophysiological traits, in a fast and nonde-
structive way, by detecting signatures in the reflectance spectrum
of vegetation in narrow (e.g. 1–2 nm in spectral resolution) and

contiguous/broad (e.g. ≥ 20 nm in spectral resolution) spectral
bands (Lu et al., 2020). The recent availability of lightweight
hyperspectral sensors has stimulated a rapid adoption of these
sensors for use in unmanned aerial vehicle systems for HTP and
precision agriculture (Adão et al., 2017; Lu et al., 2020). Hyper-
spectral data have been applied to estimate biophysical (e.g. leaf
area index, green canopy cover) and biochemical (e.g. chloro-
phyll, nitrogen, sugar) traits for the leaf and canopy, as well as
traits relating to the whole plant, particularly those linked with
growth (e.g. plant biomass, plant height) and productivity (e.g.
grain yield) (Adão et al., 2017; Lu et al., 2020). Apart from this,
close-range hyperspectral imaging (ground based or glasshouse)
characterised using high spatial resolution and signal-to-noise
ratio is also increasingly common in HTP facilities. These sys-
tems allow the fine-scale investigation of vegetative features at the
leaf or canopy level with applications in plant water content and
biochemical compounds estimation, and the detection of abiotic
and biotic stresses in plants (Mishra et al., 2017).*These authors contributed equally to this work.
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However, the large amount of data collected using hyperspec-
tral sensors poses challenges in analytical implementations.
Redundancy problems are linked to the multicollinearity of
bands and the curse of dimensionality imposes high computa-
tional costs on analytical pipelines (Bajwa & Kulkarni, 2011;
Burger & Gowen, 2011). Multicollinearity occurs when indepen-
dent variables (e.g. wavebands) are highly correlated, leading to
inaccurate estimation of coefficients (effect of independent vari-
ables on response/target trait) in a regression analysis and less reli-
able statistical inferences (Bajwa & Kulkarni, 2011; Burger &
Gowen, 2011). Conversely, the curse of dimensionality refers to
the problem of optimising a given function or model due to the
exponential increase in possible solutions or sets of parameters
associated with the increase in the number of variables (i.e. the
dimensionality), which often necessitates exhaustive enumeration
of the solution/search space to achieve satisfactory optimisation
(Donoho, 2000). Dedicated efforts are often required to develop
efficient hyperspectral data processing workflows for a specific
plant phenotyping task (Aasen et al., 2014, 2018). To this end,
vegetation indices (VIs) offer an alternate simple and fast
approach to hyperspectral data analysis. The VIs are formulated
as ratios or algebraic combinations of vegetative reflectance at dif-
ferent wavebands selected from the visible (VIS; 400–700 nm),
near infrared (NIR; 700–1000 nm) and shortwave infrared
(SWIR; 1000–2500 nm) regions (Silleos et al., 2006; Xue & Su,
2017). The application of VIs for plant phenotyping is straight-
forward, requiring the user to compute index values directly from
the relevant waveband reflectance and use them either as proxy
measures to the target trait or as features (or variables) in regres-
sion modelling to predict the target trait values. Since the intro-
duction of the first VI by Pearson & Miller (1972), more than
500 hyperspectral VIs have been developed, demonstrating a
strong and continued interest in the development and adoption
of novel VIs for specific remote sensing applications (Henrich
et al., 2017). However, existing VIs consist predominantly of
two-band indices and, to some extent, three-band indices; this
limits the amount of information represented and therefore the
net performance produced by these VIs (Henrich et al., 2017).
In addition, existing VIs are designed for specific plant traits and
often do not generalise well for other traits. As such, particularly
in agriculture, there is a continued demand for novel VIs that can
target specific traits associated with crop growth, biochemical
parameters, yield and quality.

The development of VIs is technically challenging and time
consuming, and often requires a comprehensive understanding of
the dynamic changes of the plant optical properties in relation to
the intrinsic biochemical or biophysical trait(s) of interest. To
this end, wide varieties of experiments have been established to
acquire a comprehensive spectral library (Rao et al., 2007;
Chauhan & Mohan, 2013). Ideally, knowledge on wavebands
associated with plant traits may be enriched or expanded with
successive developments of new VIs when different regions of the
reflectance spectrum corresponding to vegetative features are
identified. Biochemical and biophysical traits can be described
comprehensively with more wavebands in which each waveband
adds supplementary information. However, this is seldom the

case, as the VIs rarely constitute a complex or cohesive assem-
blage of wavebands, but rather a limited selection of a few wave-
bands (usually up to four bands). In addition, multicollinearity
of bands and the curse of high dimensionality inherent in hyper-
spectral data complicate the identification of wavebands linked to
the underlying trait of interest. Several attempts have been made
to accelerate the development of novel VIs, these include the use
of correlation matrices between VIs and the target traits of inter-
est to retrieve new waveband or index combinations (Thenkabail
et al., 2004; Aasen et al., 2014; Xu et al., 2019). Careful selec-
tion of hyperspectral features (wavebands) has been effective in
overcoming the curse of dimensionality and selected bands could
be combined to develop VIs (Aasen et al., 2014, 2018). Recently,
a brute force indices mining approach was applied in our labora-
tory to identify a new normalised difference chlorophyll index
(NDCIw) for the estimation of chlorophyll content in wheat
(Banerjee et al., 2020). However, these approaches are suited for
the evaluation of a limited number of wavebands and/or index
model combinations for the development of new VIs; and may
be computationally less efficient when dealing with a greater
number of wavebands and index models. An efficient VIs evalua-
tion and waveband selection strategy is crucial to the develop-
ment of trait-specific hyperspectral VIs for HTP and agriculture
remote sensing.

This study aimed to report the development and evaluation of
an automated hyperspectral vegetation index (AutoVI) derivation
system for the rapid generation of trait-specific novel two-band
to six-band VIs based on a hyperparameter optimisation frame-
work. The term ‘hyperparameter optimisation’ (HPO) is often
associated with the machine learning discipline, in which specific
algorithms are deployed to select optimum values in a defined
search space for model parameters (values learned from data) and
hyperparameters (values associated with the model function or
architecture) to maximise the model performance (Bergstra et al.,
2011; Yu & Zhu, 2020). Building upon an HPO framework, the
AutoVI is designed to deliver an end-to-end VI development
pipeline that covers index model evaluation and optimum wave-
band selection with minimal user input. In this study, novel VIs
for chlorophyll and sugar estimation in wheat were generated
using the AutoVI and compared against existing VIs as features
in simple and multiple regression modelling, with the results also
compared against those computed using partial least squares
regression (PLSR), a well established method for plant trait pre-
diction using hyperspectral data (Ely et al., 2019; Wu et al.,
2019; Burnett et al., 2021). The potential application of the
AutoVI for HTP and agriculture remote sensing is discussed.

Materials and Methods

Experiment in a high-throughput phenotyping facility

Data used in this study were collected in a high-throughput
controlled-environment phenotyping facility in the Plant Phe-
nomics Victoria, Horsham (PPVH), Agriculture Victoria as pre-
viously described (Banerjee et al., 2020). In brief, the PPVH
facility is equipped with a conveyor belt system, automated
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weighing and watering stations, and an automated phenotyping
Scanalyzer 3D system (LemnatecGmBH, Aachen, Germany),
which includes a hyperspectral imaging sensor. For the experi-
ment conducted at the PPVH, wheat plants were grown under 2,
5, 10, or 20 mM nitrogen (N) levels. One plant per pot was
grown in a nutrient-free growth medium consisting of perlite
covered with a layer of vermiculite. Individual pots were weighed
and equalised to a fixed pot weight and watered uniformly. The
pots were loaded onto the system 10 d after the emergence of
seedlings. Nutrient solution (4 mM MgSO4, 4 mM KCl, 5 mM
CaCl2, 3 mM KH2PO4/K2HPO4 pH 6.0, 0.1 mM Fe-EDTA,
10 µM MnCl2, 10 µM ZnSO4, 2 µM CuSO4, 50 µM H2BO3

and 0.2 µM Na2MoO4) with the indicated N concentrations was
supplied as 100 ml per pot every week. The growing conditions
were 16 h : 8 h, 24 C : 15°C, day : night. The experiment was
conducted as biological repeats with 20 replicate plants per N
treatment. A subset of five plants per N treatment was destruc-
tively harvested at 14, 21, 28 and 35 d after sowing (DAS) and,
in total, 80 samples were collected for biochemical assays.

Hyperspectral image acquisition and processing

Plants were scanned in an imaging station with a push broom
hyperspectral sensor (Micro-Hyperspec, VNIR-E Series; Head-
wall Photonics, Fitchburg, MA, USA) over a spectral range
(475–1710 nm) and three viewing angles (0°, 120°, and 240°).
Raw data acquired in 12-bit digital numbers (DNs) were trans-
formed to radiance following spectral and radiometric calibration
using a white reference target (Spectralon panel; Labsphere Inc.,
North Sutton, NH, USA) and dark reference (spectrum collected
with halogen lamps turned off) in a data-acquisition software
(Hyperspec III; Headwall Photonics, Inc., Bolton, MA, USA).
Further processing was applied to remove interchannel variation
and correct illumination variations (Banerjee et al., 2020). Non-
plant pixels (cage, pot, soil, and background) in the hyperspectral
image were first classified using the spectral information diver-
gence method (Chein, 1999) and a binary mask was applied to
segment out the remaining pixels (i.e. the plant pixels). Detected
plant pixels were averaged to generate a representative reflectance
spectrum with 256 spectral bands and resampled to a spectral

width of 1 nm using a linear resampling approach (Lewitt,
1990). In total, 47 published VIs within the spectral range 475–
1710 nm were then computed (Supporting Information Table
S1).

Biochemical assays

Whole plant samples were finely ground in liquid nitrogen using
a pestle and mortar, then subsampled separately for chlorophyll
and sugar analysis and stored at −80°C until biochemical analy-
sis. For chlorophyll analysis, chlorophyll was extracted from 100
mg of sample with 100% methanol and centrifuged for 10 min
at 10 016 g; this process was repeated twice. Extracts were anal-
ysed by recording the absorbance at 750, 665, 652 and 470 nm
using an ultraviolet–VIS (UV–VIS) light spectrophotometer
(Shimadzu UV-1800; Shimadzu Inc., Kyoto, Japan). Total
chlorophyll was calculated using the formula described in Licht-
enthaler (1987) and ranged between 396.2 and 821.9 µg g−1 in
this study. For sugar analysis, soluble sugars were extracted from
100 mg samples with 80% ethanol and centrifuged for 10 min at
10 016 g; this process was repeated twice. Total soluble sugars
were assayed according to the colorimetric method described in
DuBois et al. (1956) and ranged between 2600 and 28 300 µg g−1

in this study.

Automated hyperspectral vegetation index derivation

An automated system for hyperspectral vegetation index deriva-
tion named AutoVI, was developed to deliver effective VIs in a
streamlined process covering model selection, model parameter
generation, model parameter tuning and model evaluation, and
driven by a hyperparameter optimisation framework, that is the
optimiser, for plant phenotyping (Fig. 1). The optimiser is the
core of the AutoVI method that seeks to generate a VI model for
the desired trait based on a model evaluation metric, that is the
objective function score (R2, described in the following para-
graphs) using an optimisation algorithm given time and comput-
ing resource constraints. However, unlike simple optimisation
challenges that typically search for optimal solutions for a single
model or function (static search space), multiple index models

Fig. 1 Overview of the automated hyperspectral vegetation index (AutoVI) framework. The tree parzen estimator (TPE) algorithm is implemented as the
optimiser for AutoVI. A single iteration consists of model selection, model parameter generation, model parameter tuning and model evaluation. The
AutoVI is programmed to repeat the optimisation process until a predetermined number of iterations is reached. The repeated iterations seek to maximise
the objective function score, R2, by selecting the best candidate model and an optimum set of hyperparameters.
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(dynamic search spaces) were optimised and evaluated in the
AutoVI (Fig. 1). This is made possible using dynamic parameter
programming or ‘define-by-run’ coding (Akiba et al., 2019),
which generates the search space or set of model parameters dur-
ing code execution, depending on the index model or equa-
tion under evaluation.

The mathematical expression (or model) defining a VI is pri-
marily needed to combine two or more wavebands to decipher
certain biochemical or biophysical traits of interest. The develop-
ment of a new VI requires the selection of both a suitable model
and a set of wavebands. A library of 33 index models was created
(Table S2) after an exhaustive review of more than 500 previ-
ously developed VIs (Henrich et al., 2017). The listed model
equations are of varying complexities, differing in the number of
distinct wavebands (Nwb = 2–6, i.e. B1, B2, . . ., B6) and the
number of coefficients (NCf = 1–5, i.e. α, β, . . ., ρ). The AutoVI
system begins with model selection (step 1, Fig. 1) in which the
optimiser selects a mathematical model at random from the
library of 33 index models and generates the model parameters
corresponding to the Nwb and NCf (step 2, Fig. 1). This is fol-
lowed by model parameter tuning (step 3, Fig. 1) in which opti-
mum wavebands and coefficient values (between 0 and 1) are
selected to maximise the objective function score (step 4, Fig. 1),
which in this study is the coefficient of determination, R2, derived
from a simple linear regression fitted to calculated index values
and ground truth values for the measured trait of interest (in this
case chlorophyll or sugar content). One run of optimisation
(steps 1–4) is referred to as a single iteration; the AutoVI system
is programmed to repeat the optimisation process until a prede-
termined number of iterations is reached. At each iteration, an
index model is selected, and the computed objective function
score (R2) is compared with the previous iteration. Additionally,
unique sets of model parameters are computed for the respective
index models. The repeated iterations seek to maximise the objec-
tive function score, R2, by selecting the best candidate model and
an optimum set of model parameters.

In this study, the tree parzen estimator (TPE) (Bergstra et al.,
2011; Yu & Zhu, 2020) was implemented as the optimisation
algorithm in the AutoVI, as it is widely used for hyperparameter
optimisation in machine learning problems and showed better
accuracy and efficiency compared with other algorithms when
dealing with dynamic search spaces (Bergstra et al., 2015; Akiba
et al., 2019; Yu & Zhu, 2020). The TPE algorithm is a variant
of Bayesian optimisation approaches that tries to construct a
probabilistic model, also known as a ‘surrogate’ model for map-
ping hyperparameters based on the probability of an objective
function score given the set of hyperparameters. The AutoVI sys-
tem, including the TPE algorithm customised to handle hyper-
spectral data, was implemented in PYTHON using the open source
hyperparameter optimisation library, OPTUNA V.2.0 (Akiba et al.,
2019) with default settings. A graphical user interface (GUI) for
the AutoVI and source codes for TPE implementation are hosted
on the public repository GitHub (see the Data availability sec-
tion). The AutoVI system was tested on an AMD Threadripper
3970X (32-cores) system with 256 GB RAM at the SmartSense
iHub, Agriculture Victoria.

Automated hyperspectral vegetation index for chlorophyll
content estimation

We evaluated the ability of AutoVI to derive high-quality novel
hyperspectral VIs for plant phenotyping using wheat total chloro-
phyll content as a biochemical trait. Chlorophyll content, either
measured or estimated, can be a direct indicator of a plant’s pri-
mary production and has been used to determine the N status
and stress response of crop plants (Richardson et al., 2002;
Murchie & Lawson, 2013). The existing dataset (n = 80) was
split randomly in a ratio of 65 : 35 into training and test datasets,
with both datasets having the same sample distribution (i.e. strat-
ified sampling) according to time points. The resulting train-test
split was used for all subsequent AutoVI computations and
regression modelling in this study for chlorophyll content predic-
tion. The AutoVI system was trained on the training dataset to
derive novel indices for chlorophyll content estimation, with the
performance of these indices validated using the test dataset.

One possible issue with any optimisation system is a selection
bias towards index models with lower complexity, for example
models with a Nwb value between 2 and 3 compared with those
with higher complexity, for example models with Nwb ≥ 4. This is
because the size of the solution search space increases exponentially
with the increase in the number of input features, that is Nwb

(Winston, 1992; Yao & Liu, 1997). Consequently, more compu-
tational time or resource is required to optimise the complex mod-
els (Nwb ≥ 4) compared with the simpler models (Nwb ≤ 3), but
their performances tend to scale better over time and do not
plateau as fast as do simpler models. When all model computations
are grouped together, simpler models tend to outperform complex
models in the early stages of optimisation, causing these to be
favoured by the optimiser and leading towards a ‘locally maximal
solution’, which is the tendency of the computation to become
stuck at a suboptimal solution (Hinneburg & Keim, 1999). To
address this issue in the AutoVI, computations were performed on
model groups consisting of models with the same Nwb (Fig. 2).
Five parallel instances of the AutoVI corresponding to the five
model groups (M2, M3, . . ., M6, equivalent to Nwb = 2, 3, . . ., 6)
were executed with 20 000 iterations each, and with coefficients
fixed at 1 (Fig. 2). These were repeated five times on the same
train-test split as described earlier, with the best performing index
model from each group logged at each repetition (Fig. 2). As
TPE is initialised randomly and common to HPO algorithms, it
can exhibit varied performance on the same dataset (Bergstra
et al., 2011; Yu & Zhu, 2020); the repeated AutoVI computa-
tions provided a measurement of the stability of the TPE algo-
rithm. In addition, the best index model for each model group
and the overall best index model could be reliably identified. The
effect of longer optimisations and the inclusion of a coefficient
on model performance was determined using the overall best
index model, with five repeated AutoVI computations at 20 000
and 40 000 iterations with or without coefficient tuning.

To determine the quality of AutoVI-derived indices for chloro-
phyll estimation, they were used as features in simple linear
regression (SLR) modelling to predict chlorophyll content. Sim-
ple linear regression with each of the derived indices was first
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trained on the training dataset and then used to predict chloro-
phyll values for the test dataset. Model performance was evalu-
ated using the R2 score calculated between predicted and actual
chlorophyll values for the test dataset. In addition, performance
for a stepwise multiple linear regression (SMLR) model (de-
scribed in the following paragraphs) with VIs selected from 25
AutoVI-derived indices (Fig. 2) is also included for comparison.
Results achieved using the AutoVI indices were compared with
those produced using SLR and SMLR with 47 published VIs, in
addition to results provided using PLSR modelling using the full
spectrum of reflectance values, that is reflectance values from all
1235 wavebands (described in the following paragraphs). For
comparison across different regression models, additional perfor-
mance metrics, such as root mean square error (RMSE), mean
absolute error (MAE) and mean absolute percentage error
(MAPE), were also provided.

Automated hyperspectral vegetation index for sugar
content estimation

Sugar plays an important role in the osmotic adjustment of plants
in response to drought stress. Some studies have shown that
genotypes that have higher accumulation of sugar content in
leaves or stems are more drought tolerant (Adams et al., 2013;
Piaskowski et al., 2016). Using the grouped model evaluation
approach, AutoVI computations were conducted across five repe-
titions with 20 000 iterations each, with the coefficients fixed at
1. The existing dataset was split at a ratio of 65 : 35 into training
and test datasets as described previously, with the training of the
AutoVI conducted on the training dataset and validation of
derived indices performed on the test dataset. The resulting train-
test split was used for all subsequent AutoVI computations and
regression modelling in this study for estimation of sugar content.
The effect of longer optimisations and inclusion of a coefficient
on model performance was determined as described previously.
Results for SLR and SMLR using AutoVI-derived indices were
compared with those produced using 47 published VIs and PLSR
modelling, as described in the previous section.

Stepwise multiple linear regression

Stepwise multiple linear regression is a feature selection method
that iteratively adds (forward selection) or removes (backward

selection) features to a multiple linear regression model to
improve model performance, as indicated using an evaluation
metric or score. In this study, we implemented a stepwise forward
selection strategy based on a five-fold cross-validated R2 score of a
multiple linear regression model using the PYTHON package,
SCIKIT-LEARN v.0.24. The maximum number of features to select
was set to between 1 and 20 and selection was performed on 25
AutoVI-derived indices and 47 published VIs for both chloro-
phyll and sugar estimation on the training dataset. A multiple lin-
ear regression model was then fitted to the training dataset using
the optimum selected features and used to predict target values
(chlorophyll or sugar content) for the test dataset.

Partial least squares regression

Partial least squares regression modelling is one of the most effec-
tive methods for plant trait prediction using hyperspectral data
(Ely et al., 2019; Wu et al., 2019; Burnett et al., 2021). Partial
least squares regression was designed to address both the
collinearity between predictors, that is the different wavebands of
a reflectance spectrum and the large number of predictor vari-
ables when compared with trait observations. This study imple-
mented PLSR modelling using the PYTHON package SCIKIT-LEARN
v.0.24 for chlorophyll and sugar content estimations. The opti-
mal number of PLSR components was first determined based on
five-fold cross-validated R2 scores of PLSR models fitted on the
training dataset with the number of components set to between 1
and 20 (Fig. S1). A PLSR model was then fitted to the training
dataset using the optimum number of components (n = 6 for
chlorophyll and n = 7 for sugar; Fig. S1) and used to predict tar-
get values (chlorophyll or sugar content) for the test dataset.

Results

Automated hyperspectral vegetation index for chlorophyll
content estimation

Automated hyperspectral vegetation index performance was mea-
sured using R2 scores generated using SLR models on the test
dataset with the respective AutoVI-derived indices as features.
Automated hyperspectral vegetation index performance across
five repetitions was relatively stable, with the grouped evaluation

Fig. 2 Flowchart for grouped model
evaluations in the automated hyperspectral
vegetation index (AutoVI). Index models
were grouped according to the number of
wavebands (Nwb) and parallel computations
with 20 000 iterations each were performed
on the model groups (M2, M3, M4, M5 and
M6). The best index model for each model
group and the overall best index model were
identified from five repeated computations.
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strategy allowing for comparison across different model groups
and identification of the best performing index model within
each model group (Fig. 3). Between model groups, the M4
group (Nwb = 4) had the best mean R2 of 0.7818, followed by
M5 (Nwb = 5) with R2 of 0.7747, M6 (Nwb = 6) with R2 of
0.7689, M2 (Nwb = 2) with R2 of 0.7637 and finally M3 (Nwb = 3)
with R2 of 0.7555. Overall, Index25 (Nwb = 4, Ncf = 1) pro-
duced the best VI (R2 = 0.8007) and generated the best results
across all five repetitions within the M4 group (Fig. 3). The per-
formance of the best VIs according to model group is sum-
marised in Table 1. Wavebands selected by the AutoVI for the
best chlorophyll indices were derived predominantly from the
red (600–720 nm) and red-edge (RE; 720–780 nm) regions,
with a few wavebands from the blue (470–490 nm), NIR (1000–
1300 nm) and SWIR (1600–1700 nm) regions (Table 1). The
R2 score produced by the best VI, termed from this point for-
wards as the AutoVI chlorophyll index (AutoVI-Chl), was
achieved using wavebands at 610, 716, 1384 and 1607 nm, with-
out coefficient tuning (i.e. value set to 1), as depicted in Eqn 1:

AutoVI� Chl

¼ R1607 � R1384ð Þ � R1607 � R716ð Þ R1607=R1384ð Þ
2� R610 � R1384ð Þ= R610 þ R1384 þ 1ð Þð Þ

Eqn 1

(Rwb, reflectance measured at a discrete waveband (wb)).
The performance of the AutoVI-Chl with or without a coeffi-

cient variable, alpha (α), as depicted in its original equa-
tion (Index25; Table S2) was determined across five
computational repetitions of 20 000 and 40 000 iterations (Fig.
4). At 20 000 iterations, the inclusion of the coefficient had min-
imal impact on the AutoVI-Chl performance, as boxplots for R2

scores obtained with the coefficient (min = 0.7657, median =
0.7771, max = 0.7959) or without the coefficient (min =
0.7673, median = 0.7875, max = 0.7922) were comparable
(Fig. 4). However, AutoVI computational time when the

coefficient was included (c. 2.1 h for five repetitions) was up to
1.6× higher than without the coefficient (c. 1.3 h for five repeti-
tions), suggesting that the inclusion of coefficient(s) in AutoVI
optimisations were likely to incur computational costs. At 40
000 iterations, AutoVI-Chl performance deteriorated signifi-
cantly with or without the coefficient (Fig. 4), suggesting that
overfitting, in which a model performs significantly better on the
training (i.e. overfitted) but not the test dataset (i.e. unable to
generalise to new data), may be a concern with longer AutoVI
runs. The effect of coefficients and longer AutoVI runs will need
to be determined for individual target traits.

The quality of AutoVI-derived indices for chlorophyll content
estimation was evaluated further against 47 published VIs, as fea-
tures in SLR modelling. First, the best SLR model resulting from
the AutoVI indices and the best SLR model with existing VIs
were compared (Table 2). The model with the AutoVI-Chl (R2

= 0.8007, RMSE = 38.52, MAE = 30.51, MAPE = 4.69%)
significantly outperformed the model with the normalised differ-
ence chlorophyll index (NDCI; R2 = 0.6018, RMSE = 54.45,
MAE = 46.05, MAPE = 7.09%) (Tables 2, S3). Next, SMLR
models using the optimum subset of features selected from
AutoVI indices and existing VIs were compared (Table 2). For
the existing VIs, SMLR with seven VIs selected (Table S4) led to
a significant improvement in model performance (R2 = 0.7136,
RMSE = 46.17, MAE = 38.12, MAPE = 5.88%) compared
with SLR and NDCI, but was still inferior to SLR with the
AutoVI-Chl; SMLR with four AutoVI indices selected (Table
S5) did not perform better (R2 = 0.7989, RMSE = 38.69, MAE
= 30.98, MAPE = 4.88%) compared with SLR and AutoVI-
Chl. Finally, PLSR modelling performance for chlorophyll esti-
mation was included as an additional benchmark for comparison.
The PLSR model (R2 = 0.7379, RMSE = 44.17, MAE =
33.81, MAPE = 5.36%) did not perform as well as SLR with
AutoVI-Chl or SMLR with the selected AutoVI indices (Table
2). Overall, the best modelling performance was provided using

Fig. 3 Best performing index models from grouped model evaluations for total chlorophyll content estimation. The best index models from grouped (M2,
M3, M4, M5 and M6) model evaluations were identified across five repeated automated hyperspectral vegetation index (AutoVI) computations. Index
model names are indicated within the bar figure. The overall best index model was Index25 from the M4 group with objective function score R2 of 0.8007
(indicated by the green dashed line).
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SLR with AutoVI-Chl. These results supported the AutoVI as an
efficient system for novel trait-specific hyperspectral VI deriva-
tion.

Automated hyperspectral vegetation index for sugar
content estimation

Automated hyperspectral vegetation index performance across
five repetitions was relatively stable, with the M6 group having
the best mean R2 of 0.8201, followed by the M3 group with R2

of 0.8127, the M4 group with R2 of 0.7933, the M5 group with

R2 of 0.7877 and finally the M2 group with R2 of 0.7591 (Fig.
5). The overall best VI was produced by Index33 (Nwb = 6, Ncf

= 1), which also generated the best results for three repetitions
within the M6 group (Fig. 5). The performance of the best VIs
according to model group is summarised in Table 3. Wavebands
selected by the AutoVI for the best sugar indices were derived
predominantly from the SWIR (1400–1700 nm) and NIR
(770–1370 nm) regions, with a few bands from the VIS (499–
644 nm) region (Table 3). The R2 score produced by the best
VI, termed from this point forwards as the AutoVI sugar index
(AutoVI-Sgr), was achieved using wavebands at 499, 773, 1179,
1291, 1425 and 1661 nm, without coefficient tuning (i.e. value
set to 1), as depicted in Eqn 2:

AutoVI� Sgr

¼ R773 � R1425ð Þ � R773 � R1179ð Þ R773=R1425ð Þ
2� R1661 � R1425ð Þ= R1661 þ R1425 þ R499 þ R1291 þ 1ð Þð Þ

Eqn 2

(Rwb, reflectance measured at a discrete waveband (wb)).
The inclusion of a coefficient, alpha (α), in the AutoVI-Sgr

as depicted in its original equation (Index33; Table S2) and
longer optimisations at 40 000 iterations did not significantly
improve its performance (Fig. 6). For the longer runs (40k iter-
ations) with or without the coefficient, performance appeared to
converge closer and plateau at an R2 value of c. 0.83, suggesting
that this may be the maximum performance produced by the
underlying model equation (Fig. 6). Future studies using novel
index equations may yield further performance enhancement.
Based on these results, the recommended starting point for
AutoVI training was up to 20 000 iterations and without coeffi-
cient tuning.

The quality of AutoVI-derived indices for sugar content esti-
mation was evaluated further against 47 published VIs, as features
in SLR modelling. The best SLR performance with the AutoVI-
derived indices was achieved using the AutoVI-Sgr (R2 = 0.8339,
RMSE = 2612.41, MAE = 2148.15, MAPE = 20.17%), which
significantly outperformed the best SLR model achieved with

Table 1 Performance of the best AutoVI-derived indices according to
model group for chlorophyll estimation.

Group
Index
model

Selected
wavelengths (nm) R2 RMSE MAE MAPE

M2 2 637, 711 0.7683 41.52 33.78 5.14%
M3 15 607, 716, 1712 0.7629 42.01 34.27 5.23%
M4 25 610, 716, 1384,

1607
0.8007 38.52 30.51 4.69%

M5 26 497, 650, 707,
778, 1017

0.7813 40.35 32.74 5.13%

M6 32 477, 635, 713,
1033, 1035, 1668

0.7776 40.69 33.01 5.03%

Performance metrics calculated for simple linear regression using the
indicated AutoVI-derived index for chlorophyll estimation on the test
dataset. The best scores are indicated in bold. MAE, mean absolute error;
MAPE, mean absolute percentage error; R2, objective function score;
RMSE, root mean square error.

Table 2 Comparison between different regression models for chlorophyll
estimation.

Model Feature(s) R2 RMSE MAE MAPE

SLR AutoVI-Chl 0.8007 38.52 30.51 4.69%
SLR NDCI 0.6018 54.45 46.05 7.09%
SMLR Seven existing VIs 0.7136 46.17 38.12 5.88%
SMLR Four AutoVI indices 0.7989 38.69 30.98 4.88%
PLSR Reflectance values 0.7379 44.17 33.81 5.36%

Performance metrics calculated for simple linear regression (SLR) and
stepwise multiple regression (SMLR) using AutoVI-derived indices or
existing 47 vegetation indices (VI), in addition to partial least squares
regression (PLSR) using the full spectrum of reflectance values for
chlorophyll estimation on the test dataset. The best scores are indicated in
bold. AutoVI-Chl, AutoVI chlorophyll index; MAE, mean absolute error;
MAPE, mean absolute percentage error; NDCI, normalised difference
chlorophyll index; R2, objective function score; RMSE, root mean square
error.

Fig. 4 Effect of coefficient tuning and longer iterations on the automated
hyperspectral vegetation index-chlorophyll index (AutoVI-Chl)
performance. The inclusion (Yes) or exclusion (No) of a single coefficient,
α, on AutoVI-Chl performance was determined across five repeated
computations at 20 000 (20k) and 40 000 (40k) iterations each. The
distributions of objective function scores R2 are shown in the boxplot. Error
bars are the 95% confidence intervals, the lines inside the boxes indicate
the median.
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the published VI, Gitelson & Merzlyak Index 2 (GMI2) (R2 =
0.4695, RMSE = 4668.35, MAE = 3939.59, MAPE = 38.96%).
In general, SLR modelling performance with existing VIs was
very poor (Table S6). Stepwise multiple linear regression with
five existing VIs selected (Table S7) produced dramatically bet-
ter results (R2 = 0.7387, RMSE = 3276.50, MAE = 2401.14,
MAPE = 22.30%) compared with SLR and GMI2 but was still
inferior to the model with the AutoVI-Sgr (Table 4). Conversely,
SMLR with four AutoVI indices selected (Table S8) performed
better (R2 = 0.8587, RMSE = 2409.19, MAE = 2071.47,
MAPE = 19.16%) compared with SLR and AutoVI-Sgr (Table 4).
Partial least squares regression modelling performance for sugar
estimation was also included as a benchmark for comparison.
The PLSR model produced a similar performance (R2 = 0.8322,
RMSE = 2625.99, MAE = 2212.89, MAPE = 21.19%) as SLR
with the AutoVI-Sgr but was outperformed by SMLR with the
AutoVI indices (Table 4). These results further supported the
AutoVI as an efficient system for novel VI derivation, with the
AutoVI indices as high-quality features for trait prediction.

Discussion

In this study, we describe the design and implementation of an
automated system for hyperspectral vegetation index derivation

(AutoVI), for plant phenotyping using as examples chlorophyll
and sugar content estimations in wheat. In both cases, indices
generated by the AutoVI significantly outperformed existing VIs
in simple and multiple linear regression modelling, with perfor-
mance exceeding that of a more complex model such as PLSR.
The success of the AutoVI can be attributed to the use of a highly
performing hyperparameter optimisation algorithm, TPE
(Bergstra et al., 2011; Akiba et al., 2019).

Results in this study showed that the AutoVI was able to effi-
ciently generate high-quality two-band to six-band indices speci-
fic for chlorophyll and sugar contents. A review of the existing
literature highlighted that most VIs currently deployed consisted
predominantly of two-band indices, and to a lesser extent three-
band indices (Henrich et al., 2017). Indices with four bands or
more are rare, presumably due to the difficulty in optimising such
indices (e.g. band selection), which has been attributed to the
curse of high dimensionality and issues associated with the multi-
collinearity of bands. Although a myriad of hyperspectral band
selection strategy exists (Sun & Du, 2019), most of these were
explicitly developed for image classification or regression models.
Previous studies that focused on generating novel hyperspectral
VIs used single or multiple correlation matrices between VI pairs
and the trait of interest to uncover new band or index combina-
tions (Thenkabail et al., 2004; Aasen et al., 2014; Xu et al.,

Fig. 5 Best performing index models from grouped model evaluations for total sugar content estimation. The best index models from grouped (M2, M3,
M4, M5 and M6) model evaluations were identified across five repeated automated hyperspectral vegetation index (AutoVI) computations. Index model
names are indicated within the bar figure. The overall best index model was Index33 from the M6 group with an objective function score R2 of 0.8339
(indicated by green dashed line).

Table 3 Performance of the best AutoVI-derived indices according to model group for sugar estimation.

Group Index model Selected wavelengths (nm) R2 RMSE MAE MAPE

M2 3 1420, 1588 0.7693 3078.89 2493.21 22.94%
M3 15 1271, 1417, 1650 0.8209 2712.72 2237.33 20.31%
M4 24 1371, 1422, 1650, 1712 0.8055 2827.07 2466.19 23.57%
M5 29 644, 990, 1406, 1418, 1649 0.7860 2964.88 2387.41 21.66%
M6 33 499, 773, 1179, 1291, 1425, 1661 0.8339 2612.41 2148.15 20.17%

Performance metrics calculated for simple linear regression using the indicated AutoVI-derived index for chlorophyll estimation on the test dataset. The best
scores are indicated in bold. MAE, mean absolute error; MAPE, mean absolute percentage error; R2, objective function score; RMSE, root mean square error.
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2019). However, these approaches are computationally expensive
as every possible combination of available bands (filtered or unfil-
tered) needs to be computed. Therefore, previous efforts have
focused only on limited combinations between a few bands
(two-band and three-band indices), therefore also limiting the
net performance of the derived VIs. Consequently, the limited
availability of specific VIs as biomarkers for plant traits has forced
researchers to generalise upon the applicability of existing VIs,
for example the NDVI (two-band index), across almost all
aspects of research and analysis, leading to suboptimal results.
The AutoVI system is well positioned to address this issue
through the rapid generation of trait-specific novel two-band to
six-band VIs without requiring band filtering or dimension
reduction techniques to limit the number of input hyperspectral
bands before processing.

Biochemical constituents in plants absorb electromagnetic
energy in specific wavelength regions. Vegetation indices profiled
around these characteristic spectral absorption regions can detect
or estimate the biochemical trait of interest. The AutoVI system
was constructed to automate the identification of these critical
spectral regions using the underlying TPE algorithm. For chloro-
phyll, the selected wavebands centred around the red (600–700
nm) and RE (700–740 nm) regions, with a few bands from the
blue (470–490 nm), NIR (1000–1300 nm) and SWIR (1600–
1700 nm) regions. Chlorophylls (chlorophyll a and b) are the
most important plant pigments that function as photoreceptors
and catalysts for photosynthesis, the photochemical synthesis of
carbohydrates (Blackburn, 2006). As such, chlorophyll content

in leaves and canopies is a key indicator of physiological measures
such as photosynthetic capacity, developmental stage, productiv-
ity and stress (Richardson et al., 2002; Murchie & Lawson,
2013). Studies have shown that the reflectance of wavelengths in
the red region (c. 530–630 nm and a narrower band c. 700 nm)
is most sensitive to chlorophyll pigment concentrations across the
normal range found in most leaves and canopies (Lichtenthaler
et al., 1996; Gitelson et al., 2005). In addition, research has also
shown that bands within the RE region (680–740 nm), which
delineates the border between chlorophyll absorption in red
wavelengths and leaf scattering in the NIR wavelengths, are
strongly correlated with chlorophyll content (Curran et al., 1991;
Gitelson et al., 1996). Existing chlorophyll VIs consist mainly of
two-band indices derived from the ratios of narrow bands within
regions of the spectrum that are sensitive to chlorophyll pigments
(VIS–RE, 400–740 nm) and those areas not sensitive to the pig-
ments and/or related to some other control on reflectance (typi-
cally NIR, 750–900 nm) (Blackburn, 2006; Wu et al., 2008).
Wavebands selected by the AutoVI agree with published studies,
and additional wavebands selected from the SWIR region were
likely to enhance the sensitivity of some of the AutoVI indices to
chlorophyll by acting as a control on reflectance.

The sugar metabolic pathway is intrinsically linked with the
regulation of plant growth and development, and response to
stress (Julius et al., 2017; Kaur et al., 2021). Studies have shown
that abiotic stress such as drought or heat triggers sugar accumu-
lation, particularly soluble sugars such as sucrose in plants
(Lemoine et al., 2013; Zhou et al., 2017). In this study, the
AutoVI generated novel indices with a strong correlation to total
sugar content, with specific wavebands selected mainly from the
SWIR (1400–1700 nm) and NIR (770–1370 nm) regions. It is
known that leaf reflectance properties in the SWIR region
(1300–2500 nm) are governed by water content and biochemical
compounds such as cellulose, sugars and starch (Elvidge, 1990;
Kokaly et al., 2009). Indeed, more recent studies have used NIR
spectroscopy (750–2500 nm) coupled with machine learning
and/or statistical models to estimate soluble carbohydrates,
including total sugar in various plant tissues and organs such as
leaf and stem (Adams et al., 2013; Piaskowski et al., 2016).

Table 4 Comparison between different regression models for sugar
estimation.

Model Feature(s) R2 RMSE MAE MAPE

SLR AutoVI-Sgr 0.8339 2612.41 2148.15 20.17%
SLR GMI2 0.4695 4668.95 3939.59 38.96%
SMLR Five existing VIs 0.7387 3276.50 2401.14 22.30%
SMLR Four AutoVI indices 0.8587 2409.19 2071.47 19.16%
PLSR Reflectance values 0.8322 2625.99 2212.89 21.19%

Performance metrics calculated for simple linear regression (SLR) and
stepwise multiple regression (SMLR) using AutoVI-derived indices or
existing 47 vegetation indices (VI), in addition to partial least squares
regression (PLSR) using the full spectrum of reflectance values for sugar
estimation on the test dataset. The best scores are indicated in bold.
AutoVI-Sgr, AutoVI sugar index; MAE, mean absolute error; MAPE, mean
absolute percentage error; R2, objective function score; RMSE, root mean
square error.

Fig. 6 Effect of coefficient tuning and longer iterations on automated
hyperspectral vegetation index-sugar index (AutoVI-Sgr) performance.
The inclusion (Yes) or exclusion (No) of a single coefficient, α, on AutoVI-
Sgr performance was determined across five repeated computations at
20 000 (20k) and 40 000 (40k) iterations each. The distributions of
objective function scores R2 are shown in the boxplot. Error bars are the
95% confidence interval, the lines inside the boxes indicate the median.
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Research in rice has also identified wavebands in the NIR region
(800–1100 nm) as being important for sugar content estimation
in leaves (Das et al., 2018). These studies provide support for
bands selected by the AutoVI as being specific for total sugar con-
tent. Models for sugar estimation in this study were less robust
overall (e.g. MAPE = 19.16–22.30%) compared with models
for chlorophyll estimation (e.g. MAPE = 4.69–5.23%) as
reflected in the higher error scores. This may be due to difficulties
in obtaining high-quality spectral signatures from the SWIR
region as water vapour is known to obscure spectral signatures for
biochemical compounds in this region in plants (Elvidge, 1990;
Kokaly et al., 2009). Nevertheless, it is noteworthy that the
AutoVI was able to select bands in the SWIR region, whilst avoid-
ing the water absorption peak at 1450 nm (Elvidge, 1990; Kokaly
et al., 2009). Moving forwards, further biological or physiological
association of specific wavebands detected by the AutoVI can be
studied on individual traits under varied environments.

Novel AutoVI-derived indices for chlorophyll and sugar con-
tent estimations were first compared against 47 published VIs as
features in SLR. This provided a good baseline to compare VIs,
as model performance would depend solely on the quality of the
VI. For chlorophyll estimation, the best SLR was achieved with
the AutoVI-derived index, AutoVI-Chl (R2 = 0.8007), which
significantly outperformed the best SLR with the published VI,
NDCI (R2 = 0.6018). Similarly, for sugar estimation, the best
performance provided using SLR with AutoVI-Sgr (R2 =
0.8339) significantly outperformed the SLR with the published
VI, GMI2 (R2 = 0.4695). Next, the performance of an SMLR
with features selected from existing VIs was compared with the
SLR models with AutoVI indices. Results showed that although
SMLR did significantly improve performance for both chloro-
phyll (R2 = 0.7136) and sugar (R2 = 0.7387) estimations with
published VIs, these were still inferior compared with SLR results
achieved using the AutoVI indices. Stepwise multiple linear
regression was also performed using the AutoVI indices, with per-
formance enhancement observed for sugar (R2 = 0.8587) but
not chlorophyll (R2 = 0.7989) estimations. Finally, model per-
formance for chlorophyll and sugar estimations using the AutoVI
indices were compared with results produced using PLSR, a well
established method for plant trait modelling using hyperspectral
data (Ely et al., 2019; Wu et al., 2019; Burnett et al., 2021). Par-
tial least squares regression represents a different modelling
approach, as it projects the entire spectrum of reflectance values
(or the predictor variables) into a smaller number of variables (or
components), whilst simultaneously maximising the correlation
between the response and the variables (Geladi & Kowalski,
1986; Wold et al., 2001). With PLSR, the quality of feature rep-
resentation or learning is being compared with the models with
AutoVI indices, as depicted using the projected components in
PLSR, in contrast with the functions encoded in the AutoVI
indices. For both chlorophyll and sugar estimations, SLR and
SMLR with AutoVI indices outperformed PLSR (R2 = 0.7379
for chlorophyll; R2 = 0.8322 for sugar). Impressively, SLR with
the best AutoVI-derived index (AutoVI-Chl or AutoVI-Sgr) pro-
duced better results and outperformed more complex approaches
such as SMLR (except for sugar estimation) and PLSR. These

results provided strong support for AutoVI-derived indices as
high-quality features and affirmed the AutoVI as a high-
performing system for novel trait-specific hyperspectral VI
derivation.

However, AutoVI indices, including AutoVI-Chl and AutoVI-
Sgr, are not perfected VIs and will benefit from further studies
incorporating more data collected from multiple genotypes across
different environments and growth stages. Particularly for field-
based phenotyping, AutoVI indices should ideally be derived
using canopy spectra, as these are known to differ from leaf spec-
tra (Croft et al., 2014). Depending on the underlying trait, it
may be worthwhile collecting samples from different plant tissues
or organs. For example, studies have shown that genotypes that
accumulate more sugar in leaf and stem tissues are more heat
and/or drought tolerant (Piaskowski et al., 2016; Zhou et al.,
2017). Fortunately, the AutoVI does not impose any size or
dimensional constraint on the input data and is expected to work
with data derived from different hyperspectral sensors and/or
spectra sources. Depending on the data provided, the AutoVI can
be customised to deliver trait-specific VIs according to species,
genotype, growth stage and environment, making it a powerful
and versatile tool for both novice and expert users alike. In addi-
tion, compared with machine learning and statistical modelling
approaches, in which model optimisation and deployment
remains technically challenging, AutoVI-derived indices can be
easily computed and readily deployed for HTP without requiring
complex hardware or software resources.

In conclusion, results in our study demonstrated that the
AutoVI is an efficient and powerful tool for deriving high-
quality hyperspectral VIs for plant phenotyping. Automated
hyperspectral vegetation index-derived VIs outperformed exist-
ing VIs and delivered strong performance in SLR and SMLR
modelling for chlorophyll and sugar content estimations, pro-
ducing results superior to PLSR. The AutoVI system is expected
to accelerate the development of novel VIs for plant/crop traits
that will find wide application in HTP and agriculture remote
sensing, vital to improving breeding programme and crop man-
agement efficiencies.
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Data availability

All relevant source codes and datasets, including a GUI imple-
mentation of the AutoVI in PYTHON for WINDOWS 10 64-bit
operating system, required to reproduce the results reported in
this study are available at www.github.com/AVR-SmartSense/
AutoVI.
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Bergstra J, Bardenet R, Bengio Y, Kégl B. 2011. Algorithms for hyper-parameter

optimization. In: Shawe-Taylor J, Zemel R, Bartlett P, Pereira F, Weinberger

KQ, eds. Proceedings of the 24th international conference on neural information
processing systems. Granada, Spain: Curran Associates, 2546–2554.

Bergstra J, Komer B, Eliasmith C, Yamins D, Cox DD. 2015. Hyperopt: a

PYTHON library for model selection and hyperparameter optimization.

Computational Science & Discovery 8: 014008.
Blackburn GA. 2006. Hyperspectral remote sensing of plant pigments. Journal of
Experimental Botany 58: 855–867.

Burger J, Gowen A. 2011. Data handling in hyperspectral image analysis.

Chemometrics and Intelligent Laboratory Systems 108: 13–22.
Burnett AC, Anderson J, Davidson KJ, Ely KS, Lamour J, Li Q, Morrison BD,

Yang D, Rogers A, Serbin SP. 2021. A best-practice guide to predicting plant

traits from leaf-level hyperspectral data using partial least squares regression.

Journal of Experimental Botany 72: 6175–6189.
Chauhan HJ, Mohan BK. 2013. Development of agricultural crops spectral

library and classification of crops using hyperion hyperspectral data. Journal of
Remote Sensing Technology 1: 9.

Chein IC. 1999. Spectral information divergence for hyperspectral image analysis.
IEEE 1999 international geoscience and remote sensing symposium, vol. 501.
IGARSS’99 (cat. no.99CH36293), 509–511. doi: 10.1109/IGARSS.1999.
773549.

Croft H, Chen JM, Zhang Y. 2014. The applicability of empirical vegetation

indices for determining leaf chlorophyll content over different leaf and canopy

structures. Ecological Complexity 17: 119–130.
Curran PJ, Dungan JL, Macler BA, Plummer SE. 1991. The effect of a red leaf

pigment on the relationship between red edge and chlorophyll concentration.

Remote Sensing of Environment 35: 69–76.
Das B, Sahoo RN, Pargal S, Krishna G, Verma R, Chinnusamy V, Sehgal VK,

Gupta VK, Dash SK, Swain P. 2018. Quantitative monitoring of sucrose,

reducing sugar and total sugar dynamics for phenotyping of water-deficit

stress tolerance in rice through spectroscopy and chemometrics. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy 192: 41–51.

Donoho DL. 2000. High-dimensional data analysis: the curses and blessings of
dimensionality. [WWW document] URL https://fdocuments.in/document/

high-dimensional-data-analysis-the-curses-and-blessings-of-.html [accessed 29

September 2021].

DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric

method for determination of sugars and related substances. Analytical Chemistry
28: 350–356.

Elvidge CD. 1990. Visible and near infrared reflectance characteristics of dry

plant materials. International Journal of Remote Sensing 11: 1775–1795.
Ely KS, Burnett AC, Lieberman-Cribbin W, Serbin SP, Rogers A. 2019.

Spectroscopy can predict key leaf traits associated with source–sink balance and
carbon–nitrogen status. Journal of Experimental Botany 70: 1789–1799.

Geladi P, Kowalski BR. 1986. Partial least-squares regression: a tutorial.

Analytica Chimica Acta 185: 1–17.
Gitelson AA, Merzlyak MN, Lichtenthaler HK. 1996. Detection of red edge

position and chlorophyll content by reflectance measurements near 700 nm.

Journal of Plant Physiology 148: 501–508.
Gitelson AA, Viña A, Ciganda V, Rundquist DC, Arkebauer TJ. 2005. Remote

estimation of canopy chlorophyll content in crops. Geophysical Research Letters
32: doi: 10.1029/2005GL022688.

Henrich V, Krauss G, Götze C, Sandow C. 2017. Index database: a database for
remote sensing indices. [WWW document] URL https://www.indexdatabase.de/

db/ias.php [accessed 29 September 2021].

Hinneburg A, Keim DA. 1999. Optimal grid-clustering: towards breaking the

curse of dimensionality in high-dimensional clustering. Proceedings of the 25th

VLDB Conference, Edinburgh, UK. [WWW document] URL http://nbn-

resolving.de/urn:nbn:de:bsz:352-opus-70410 [accessed 29 September 2021].

Julius BT, Leach KA, Tran TM, Mertz RA, Braun DM. 2017. Sugar

transporters in plants: new insights and discoveries. Plant and Cell Physiology
58: 1442–1460.

Kaur H, Manna M, Thakur T, Gautam V, Salvi P. 2021. Imperative role of

sugar signaling and transport during drought stress responses in plants.

Physiologia Plantarum 171: 833–848.
Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA. 2009.

Characterizing canopy biochemistry from imaging spectroscopy and

its application to ecosystem studies. Remote Sensing of Environment 113: S78–
S91.

Lemoine R, Camera SL, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N,
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