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Mapping rice area and yield in northeastern asia by incorporating a crop model 
with dense vegetation index profiles from a geostationary satellite
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ABSTRACT
Acquiring accurate and timely information on the spatial distribution of paddy rice fields and the 
corresponding yield is an important first step in meeting the regional and global food security 
needs. In this study, using dense vegetation index profiles and meteorological parameters from the 
Communication, Ocean, and Meteorological Satellite (COMS) geostationary satellite, we estimated 
paddy areas and applied a novel approach based on a remote sensing-integrated crop model 
(RSCM) to simulate spatiotemporal variations in rice yield in Northeastern Asia. Estimated seasonal 
vegetation profiles of plant canopy from the Geostationary Ocean Color Imager (GOCI) were 
constructed to classify paddy fields as well as their productivity based on a bidirectional reflectance 
distribution function model (BRDF) and adjusted normalized difference vegetation indices (VIs). In 
the case of classification, the overall accuracy for detected paddy fields was 78.8% and the spatial 
distribution of the paddy area was well represented for each selected county based on synthetic 
applications of dense-time GOCI vegetation index and MODIS water index. For most of the 
Northeast Asian administrative districts investigated between 2011 and 2017, simulated rice 
mean yields for each study site agreed with the measured rice yields, with a root-mean-square 
error of 0.674 t ha−1, a coefficient of determination of 0.823, a Nash-Sutcliffe efficiency of 0.524, and 
without significant differences (p-value = 0.235) according to a sample t-test (α = 0.05) for the 
entire study period. A well-calibrated RSCM, driven by GOCI images, can facilitate the development 
of novel approaches for the monitoring and management of crop productivity over classified 
paddy areas, thereby enhancing agricultural decision support systems.
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Introduction

Rice (Oryza sativa L.) is a staple crop for more than half 
of the world’s population. It feeds approximately 557 
million people in Asia, a continent that produces 
more than 90% of the world’s rice (MacLean et al. 
2013). The growing conditions required for rice culti-
vation are likely to deteriorate over the coming dec-
ades, as climate change is projected to have an 
increasingly adverse effect on rice crop yields, parti-
cularly in Asia (Bregaglio et al. 2017; IPCC 2013; Kim et 
al. 2013). Extreme rainfall and drought events in 
Northeast Asia are projected to occur more frequently 
(Kusunoki and Mizuta 2013), making it particularly 
challenging to secure the water resources required 
for rice cultivation in the region, especially with lim-
ited irrigation facilities. A significant increase in global 
food production will be necessary to sustain the pro-
jected (the year 2050) demands for human food and 
livestock feed (Barrett 2010; Tilman et al. 2011; Zhang 

et al. 2016). Accurate monitoring of spatiotemporal 
changes in rice productivity (area × yield) in key sup-
plier regions (e.g., Northeastern Asia) is an essential 
first step toward helping prepare a sustainable agri-
cultural production environment and supporting 
informed agricultural decision-making (Yeom et al. 
2018; Zhang et al. 2017).

Empirical crop modeling approaches were among 
the earliest of the broad range of methods employed 
to simulate spatial variations in rice productivity 
(Mosleh, Hassan, and Chowdhury 2015; Peng et al. 
2014). However, such methods suffer from being lar-
gely dependent on field measurements of the target 
paddy and restricted to particular regions and time 
periods (Doraiswamy and Cook 1995; Reeves, Zhao, 
and Running 2005). An empirical crop model is con-
structed according to a particular principle using a 
procedure based on observation and experimenta-
tion. An empirical model can make the connection 
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with experience in such a way that its derivation can 
be traced to a connection given-in-experience, e.g., 
describing relationships among variables and crop 
yields based on experimentation (Lai et al. 2018). 
Accordingly, it is difficult to predict time-dependent 
processes related to crop growth and yield – critical 
measures for real-time monitoring and forecasting of 
crop productivity – using empirical approaches.In 
contrast, process-based crop models can provide dis-
crete estimates of crop growth and development 
through the simulation of crop biophysical processes 
(such as photosynthesis and evapotranspiration) in 
the soil-crop-atmospheric system (Hodson and 
White 2010; Ahuja et al. 2000). Such models, thus, 
have the advantage of being able to simulate crop 
growth and production variables based on indepen-
dent agro-biophysical processes. However, crop mod-
els cannot provide detailed information on crop 
characteristics or estimate crop yields at a regional 
scale without the input of spatial biophysical and 
meteorological variables (Ko et al. 2005). By integrat-
ing a crop model and remote-sensing approaches in a 
complementary manner, it is possible to offset the 
weaknesses of each technique. Recent methods incor-
porating vegetation index from remote sensing into 
crop models have shown some success in estimating 
crop production at regional or continental scales 
(Huang et al. 2016; Lobell et al. 2015; Yeom et al. 
2018).

In the present study, Communication, Ocean, and 
Meteorological Satellite (COMS) Meteorological 
Imager (MI) and Geostationary Ocean Color Imager 
(GOCI) products were incorporated into a remote 
sensing-integrated crop model (RSCM) to assess the 
spatiotemporal variation in paddy rice area and yield 
in Northeast Asia. The RSCM updated from a grami-
neous crop model that uses remote-sensing data, 
GRAMI (Maas 1992), can be employed for crop growth 
monitoring and yield mapping (Ko et al. 2015; Nguyen 
et al. 2019). RSCM can use simpler input parameters 
and variables than other process-based crop models 
owing to the integration with remote-sensing data. 
This feature allows RSCM to improve simulation accu-
racy by assimilating satellite images into the model-
ing procedure through the direct use of observed 
scene data. RSCM can carry out within-season simula-
tion using operational satellite images obtained dur-
ing the crop-growing season (Maas 1993b). In this 
process, simulated values are calibrated to agree 

with observed values based on the application of 
mathematical procedures using parameters that con-
trol crop growth. Approaches that improve model 
performance, the WOrld FOod STudies (WOFOST) 
(van Diepen et al. 1989) and the Simple and 
Universal CROp growth Simulator (SUCROS) models 
(Spitters, Van Keulen, and Van Kraalingen 1989), can 
be used to mathematically calibrate a model based on 
the integration of satellite images (Huang et al. 2016; 
Zhao, Chen, and Shen 2013; Launay and Guerif 2005). 
However, these approaches require the same number 
of input parameters and variables as most process- 
based crop models, which hampers the simulation of 
geographical projections of crop productivity, espe-
cially for data-sparse and inaccessible regions without 
scouting through satellites.

The process of obtaining spatial rice area and yield 
using satellite imagery can be divided into the map-
ping of paddy areas and the estimation of input para-
meters for modeling paddy rice productivity. To 
classify rice paddy areas, most optical satellite-based 
approaches use the unique flooding signatures gen-
erated from the transplanting phase to the early 
growing season under the specific water manage-
ment strategies adopted in paddy rice fields (Xiao et 
al. 2006; Zhang et al. 2015). Classification methods 
include supervised procedures, such as the maximum 
likelihood (McCloy, Smith, and Robinson 1987) and 
support vector machine (Li et al. 2014), and unsuper-
vised procedures, such as the Iterative Self-Organizing 
Data Analysis Technique (ISODATA; Nguyen et al. 
2012). However, as a result of spectral variability 
based on time period and region, such approaches, 
in addition to their limitations in extending classifier 
rules and parameters, are region- and phase-depen-
dent (Dong et al. 2016). Recently developed phenol-
ogy-based methods using time-series vegetation 
indices (VIs) obtained from polar orbit satellites, such 
as Moderate Resolution Imaging Spectroradiometer 
(MODIS), Advanced Very High Resolution Radiometer 
(AVHRR) and Landsat, have been demonstrated to 
perform reliably in large-scale applications (Kontgis, 
Schneider, and Ozdogan 2015; Zhang and Zhang 
2016; Zhang et al. 2017). Existing phenology-based 
methods can draw upon polar orbit satellite data 
obtained under clement-weather spring seasons to 
successfully capture the distinctive spectral signals 
of vegetation and water in paddy rice fields during 
the season’s transplanting period. However, during 
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the monsoon summer growing season, when there 
are long periods of rain and numerous cloudy days, 
the instrument’s relatively low temporal resolution 
results in polar orbit satellites increases the likelihood 
of discontinuous crop signal transitions, mainly due to 
extended cloudiness (Xiao et al. 2006; Yeom and Kim 
2015).

From a rice yield perspective, it is also important to 
secure reliable and continuous rice vegetation index 
profiles, especially in the growing season, since the 
degree to which results extracted from indirect satel-
lite imaging indicators (e.g., NDVI) accurately reflect 
real paddy rice crop phenology and productivity is 
closely correlated with the accuracy of national-scale 
productivity simulations (Kastens et al. 2005; 
Mkhabela et al. 2011; Wu et al. 2011; Zhang et al. 
2017). In conclusion, to accurately classify paddy rice 
areas and simulate paddy rice productivity using a 
national-scale crop model, the degree to which indir-
ect indicators extracted from satellite data (e.g., NDVI) 
reflect real crop phenology remains an essential factor 
to consider (Kastens et al. 2005; Mkhabela et al. 2011; 
Wu et al. 2011; Zhang et al. 2017).

In the present study, high temporal resolution ima-
gery from GOCI satellite was newly applied to 
obtained time-dense vegetation index profiles. Such 
data can produce higher temporal-resolution contin-
uous NDVI-based phenology profiles for paddy rice 

than existing polar orbit satellite images, particularly 
during Northeast Asia’s monsoon growing season 
(Yeom and Kim 2015). Accordingly, the present 
study’s objectives were to classify paddy areas across 
Northeast Asia and to simulate the geospatial varia-
bility in rice productivity in the region using the 
RSCM, time-dense vegetation index profiles, and 
meteorological variables from a COMS geostationary 
satellite. The approach fills a significant knowledge 
gap, as there have been few efforts previously to 
generate annual maps of rice area and yield in 
Northeast Asia (including South and North Korea, 
Japan, and the northeastern part of China), or to per-
form a comparative analysis of the spatiotemporal 
patterns of paddy rice cultivation.

Study area and materials

Characteristics of the study area in northeast asia

The study region for rice cultivation and productivity 
was limited to the GOCI full-disk area, which fully 
covered the nations of South and North Korea, 
Japan, and the Manchuria region (northeast) of 
China (Figure 1). The latter region includes the impor-
tant grain-growing areas of the Sanjiang, Songnen, 
and Liaohe plains (Dong et al. 2016). As a topographi-
cal feature, the average altitude of the study area is 

Figure 1. Study area for the geospatial simulation of rice yield. The red and blue circles indicate locations (80) for calibration (27) and 
validation (53), respectively, of the crop model in counties (or, in the case of North Korea and China, provinces) where rice is primarily 
cultivated.
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approximately 900 m, and the variation in altitude 
within the area is large. The large rivers form a large- 
scale sedimentary plain downstream, creating a 
unique topographical feature in Northeast Asia. The 
surface slope in the study area ranges from 0 to 54 
degrees, and the average slope is 3.94 degrees, indi-
cating significant spatial variability (Park 2014). The 
study region’s climate varies from the subtropical 
monsoon in southern Japan to the cold temperate 
monsoon in northern China (Peel, Finlayson, and 
McMahon 2007). The four countries are generally 
dominated by a single rice cropping system, as a 
result of their wide temperature ranges and temporal 
concentration of precipitation in the summer under a 
monsoon climate. The rainy monsoon season that 
uniquely characterizes East Asia is a phenomenon in 
which wet air forms a front between mid-June and 
the end of July, producing a large amount of precipi-
tation as it moves north and south (Yoshikane, 
Kimura, and Emori 2001). During the rainy summer 
season, it is difficult to acquire polar orbit satellite 
imagery as a result of persistent clouds, making it 
reasonable to use high-temporal-resolution data 
obtained from the GOCI satellite observation area to 
directly or indirectly represent rice productivity in 
Northeast Asia.

RSCM evaluation sites for northeast asia

The parameterization and validation sites for the 
RSCM-rice run were selected from 34 counties in 
South Korea, 8 provinces in North Korea, 36 counties 
in Japan, and three provinces in northeast China, 
based on data availability (Figure 1). The parameter-
ization and validation counties or provinces (80 sites) 
were carefully chosen to best represent each coun-
try’s paddy growth environments. Rice was cultivated 
over an area of 778,734 ha in South Korea in 2016, 

according to the Korean Statistical Information 
Service (KOSIS). The current study used the rice yields 
reported by KOSIS to define the geospatial variability 
of yield throughout the study region. Table 1 presents 
information on the cultivated areas and production of 
rice in the study region.

COMS vegetation indices and solar radiation

The first geostationary satellite orbited by South 
Korea, COMS, was launched on 27 June 2010 by the 
Korean Aerospace Research Institute (KARI). The satel-
lite has two payloads: GOCI, to monitor short-term 
biological phenomena and the ocean environment, 
and a meteorological imager (MI) to observe weather 
phenomena and atmospheric conditions (Table 2). In 
the present study, the vegetation indices and solar 
radiation data estimated from the GOCI and MI sen-
sors, respectively, served as input variables to the 
RSCM.

GOCI obtains hourly top of atmosphere (TOA) 
reflectance values from 9 A.M. to 4 P.M. local time in 
eight multispectral bands from visible to near-infrared 
at a half-kilometer spatial resolution. An atmospheric 
correction for GOCI TOA reflectance values was per-
formed to estimate surface reflectance using the sec-
ond simulation of the satellite signal in the solar 
spectrum (6S) model. The GOCI surface reflectance 
data were further corrected using a semi-empirical 
bidirectional reflectance distribution function (BRDF) 
to correct for surface anisotropy effects. More details 
about the BRDF model are described in section 4.1 
below. Four vegetation indices (VIs) were determined 
using the BRDF-adjusted GOCI reflectance data for 
use as inputs to the crop model: the NDVI (Rouse et 
al. 1974), the renormalized difference vegetation 
index (RDVI) (Rouse et al. 1974), the optimized soil- 
adjusted vegetation index (OSAVI) (Rondeaux, Steven, 

Table 1. Information about the cultivated areas and productions of paddy rice in the study regions.

Region
Area 
(ha)

Production 
(Tg [Mg ha−1]) Data source

South Korea 778,734 5.612 [7.23] Korean Statistical Information Service (KOSIS, http://kosis.kr)
North Korea 468.677 2.536 [5.41] United Nations Food and Agriculture Organization (FAO, 

http://www.fao.org), United States Department of 
Agriculture (USDA, https://www.fas.usda.gov)

Japan 1,478,511 8.043 [5.44] Portal Site of Official Statistics of Japan (https://www.e-stat. 
go.jp)

NE China 4,454,000 32.975 [7.40] China Statistical Yearbook (http://www.stats.gov.cn)

All the data obtained are based on the year 2016.
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and Baret 1996), and the modified triangular vegeta-
tion index (MTVI) (Haboudane et al. 2004). The 
detailed equations to determine the VIs are as follows: 

NDVI ¼ ðR865R660Þ= R865þR660ð Þ (1) 

RDVI ¼ R865� R660ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R865þR660ð Þ
p

(2) 

OSAVI ¼ ðR865R660Þ= R865þR555þ0:16ð Þ (3) 

MTVI1 ¼ 12:2 � ½12:2 � ðR865 � R555Þ2:5�ðR660 � R555Þ�

(4) 

where R865, R660, and R555 represent reflectance at 865, 
660, and 555 nm from GOCI, respectively. We used all the 
four VIs to estimate LAI based on the empirical relation-
ships between the VIs and the LAI. The fundamental idea 
is to adopt an ensemble approach based on the four 
relationships between the structural VIs and LAI.

Daily solar radiation with a 1-km spatial resolution 
was estimated by integrating hourly solar radiation of 
the COMS MI during the daytime using the Kawamura 
physical model (Kawamura, Tanahashi, and Takahashi 
1998), as modified by Yeom et al. (2016). Given the 
complex physical characterization and time-consum-
ing calculations involved in interpreting the radiative 
effects of atmospheric constituents and clouds from a 
hemispherical source, a grid-based physical model 
using instantaneous satellite observations and atmo-
spheric information was employed. As the pass depth 
of clouds is more representative of the magnitude of 

radiance attenuation than to cloud temperature, the 
model applied an improved cloud factor based on the 
solar zenith angle and visible reflectance (Yeom, Han, 
and Kim 2012). Details of the methods of solar radia-
tion estimation are described in Yeom et al. (2016). In 
addition, we resampled the 1-km resolution of the 
COMS MI solar radiation to a resolution of 500 m 
using the nearest-neighbor interpolation method.

MODIS reflectance product

In this study, we used MODIS 8-day composite near- 
infrared (NIR) and shortwave infrared (SWIR) spectral 
bands in the MYD09A1 product of the Aqua satellite 
(https://ladsweb.modaps.eosdis.nasa.gov/), as an addi-
tional dataset to calculate the land surface water index 
(LSWI), for the classification of the spatial distribution of 
cultivatable paddy fields, since GOCI only observes 
from the visible to the near-infrared (VNIR) spectral 
domain. The LSWI equation is as follows: 

LSWI ¼ R865� R2;130
� �

= R865þR2;130
� �

(5) 

where R865 and R2,130 represent surface reflectance at 
865 and 2,130 nm from MODIS, respectively. The 
MYD09A1 data, at a spatial resolution of 500 m, 
were selected to reduce the effects of atmospheric 
water vapor and clouds over 8-day periods. To resolve 
the contamination issue during the crop-growing sea-
son, arising from the typically cloudy monsoonal con-
ditions, we performed a simple linear interpolation to 

Table 2. Detailed characteristics of the COMS GOCI, COMS MI, and MODIS sensors for estimating crop productivity in Northeast Asia.

Satellite sensor
Orbit type 
(Altitude)

Wavelength 
(µm) Spatial resolution

GOCI Geo-synchronous 
(36,000 km)

B1: 0.402–0.422 
B2: 0.433–0.453 
B3: 0.480–0.500 
B4: 0.545–0.565 
B5: 0.650–0.670 
B6: 0.675–0.685 
B7: 0.735–0.755 
B8: 0.845–0.885

500 m at nadir

MI Geo-synchronous 
(36,000 km)

B1: 0.55–0.80 
B2: 3.50–4.00 
B3:6.50–7.00 

B4:10.30–11.30 
B5:11.50–12.50

1 km

MODIS Sun-synchronous 
(≈ 705 km)

B1: 0.620–0.670 
B2: 0.841–0.876 
B3: 0.459–0.479 
B4: 0.545–0.565 
B5: 1.230–1.250 
B6: 1.628–1.652 
B7: 2.105–2.155

500 m at nadir for visible bands
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average the indices obtained before and after poor 
pixels contaminated by clouds.

Numerical weather prediction reanalysis data and 
SRTM DEM data

The geographical variation in the RSCM’s temperature 
data input was reproduced using the Regional Data 
Assimilation and Prediction System (RDAPS), based on 
a fifth-generation Mesoscale Model (Grell, Dudhia, and 
Stauffer 1994) provided by the Korea Meteorological 
Administration (KMA). The RDAPS reproduces tempera-
ture data as a reanalysis weather variable, with a 12-km 
three-dimensional resolution across 70 levels, from the 
ground surface to about 40 km. In addition, digital eleva-
tion model (DEM) data were generated by the Shuttle 
Radar Topography Mission (SRTM) model of the United 
States National Aeronautics and Space Administration 
(NASA). Drawing upon Interferometric Synthetic 
Aperture Radar data, the SRTM model is designed to 
provide a world DEM at a spatial resolution of 90 m 
(Rabus et al. 2003). The data were employed to compute 
the threshold values for surface elevation and slope for 
arable land conditions. Detailed information on the 
obtained and manipulated geospatial data are pre-
sented in Table 3. RDAPS and SRTM DEM datasets were 
resampled to 500 m using the nearest-neighbor inter-
polation method.

Methodology

Temporal profiles of NDVIs from the semi-empirical 
BRDF model

It was very important to secure a stable NDVI profile in 
both paddy rice classification and crop yield predic-
tion to obtain input parameters for the crop model for 
the countries that are influenced by monsoon. 
Although both Terra and Aqua MODIS can provide 

frequent observations, it remains difficult to secure 
continuous NDVI profiles over the study area during 
the cloudy summer season. We assumed that measur-
ing the crop area more frequently would provide a 
more reliable reflection of the vegetation’s actual 
condition and used the output of the GOCI sensor 
aboard a geostationary satellite, rather than the 
MODIS products. A semi-empirical BRDF model was 
applied to correct the primarily solar-generated sur-
face anisotropy effects occurring in geostationary 
satellite images as well as to estimate angularly inde-
pendent crop phenology using GOCI NDVI profiles. 
Specifically, a linear combination of three basic scat-
tering kernels from the Ross-Thick Li-Sparse 
Reciprocal (RTLSR) – volumetric, geometric, and iso-
tropic – was used (Ross and Marshak 1988; Roujean, 
Leroy, and Deschamps 1992): 

ρ θs; θv; ;ð Þ ¼ fiso þ fgeokgeo θs; θv; ;ð Þ

þ fvolkvol θs; θv; ;ð Þ (6) 

where kgeo is the LiSpare-Reciprocal geometric kernel, 
kvol is the Ross-Thick volumetric kernel, fiso is the 
Lambertian reflectance at the nadir direction, fgeo is 
the coefficient of kgeo (the LiSpare-Reciprocal geo-
metric kernel), fvol is the coefficient of kvol (the Ross- 
Thick volumetric kernel), θv is the viewing zenith 
angle, θs is the solar zenith angle, and ; is the relative 
azimuth angle.

To estimate the adjustable surface reflectance 
(ρ θs; θv; ;ð Þ) using the BRDF model, the kernel coeffi-
cients of fiso, fvol , and fgeo were fitted based on multiple 
linear regression using entire sets of hourly surface 
reflectance data during 16-day composite periods; 
128 samples of surface reflectance observations 
were used to normalize each of the data points. In 
addition, BRDF adjustable surface reflectance was 
simulated only when at least seven observations of 
clear surface reflectance were secured. The 

Table 3. Information on collected and manipulated geospatial data for detection of the spatial distribution of paddy fields and 
transplanting dates and for the simulation of rice yield and production in Northeast Asia from 2011 to 2017.

Purpose Data type Produced data Spatial resolution

Detection of paddies and transplanting dates MODIS reflectance Water indices 500 m
SRTM DEM Elevation and 

surface slope
90 m

KME land cover Paddy field map of South Korea 5 m

JAXA land cover Paddy field map of Japan 30 m
Simulation of rice yields and production COMS GOCI Vegetation indices 500 m

COMS MI Solar radiation 1,000 m
LDAPS Temperatures 12,000 m

6 J.-M. YEOM ET AL.



determined coefficients by the BRDF model kernels 
were used to normalize the fixed view angle and 
mean solar zenith angle using Eq. (6) for each pixel 
grid (Lucht, Schaaf, and Strahler 2000; Schaaf et al. 
2002, 2011). Thus, the BRDF model in Eq. (6) allowed 
for the estimation of the BRDF-adjusted reflectance 
(BAR) for GOCI (Yeom and Kim 2015).

Phenology-based paddy rice classification in 
northeast asia

Paddy rice (Oryza sativa ssp. japonica) grows in wet-
lands, making it unique among staple crops. 
Accordingly, this study focused on detecting irrigated 
paddy fields by using all available spectral indices 
from GOCI and MODIS data to classify paddy fields 
based on interrelationships between NDVIs obtained 
from GOCI data, the land surface water index (LSWI) 
obtained from MODIS, and the threshold (T) of the 
MODIS LSWI. This approach, proposed by Xiao et al. 
(2005); Xiao et al. (2002), is based on the constraint 
that LSWI + T ≥ NDVI (Figure 2). The T value is a 
threshold for enhancing the sensitivity of the LSWI 
in mixed pixels, which is connected with the land 
cover heterogeneity of the study area. Therefore, the 
land cover characteristics could have an influence on 
the determination of the T value. Using this metho-
dology, it is not only possible to detect paddy fields, 
but also to determine transplanting dates, a factor 

vital for determining the initiation of paddy growth 
in most crop models.

In addition to the T value, we used several thresh-
olds related to the characteristics of rice cultivation. 
Thresholds of altitude and surface slope from SRTM 
DEM data were used to reflect the topographical 
features of paddy fields and determine environments 
in which it was impossible to cultivate paddy rice 
because of high altitudes or severe slopes. The max-
imum NDVI attained during the reproductive stage 
was based on growing degree days (GDD) and the 
minimum NDVI on the transplanting date, based on 
NDVI and LSWI conditions. Finally, the NDVI increase 
rate was used as a threshold to reflect the distinctive 
growth rate of paddy rice relative to other plants 
(Figure 2). The equation is as follows: 

NDVI increase rate ¼ NDVImax � NDVIminð Þ=

DOYNDVImax � DOYNDVIminð Þ � 1; 000
(7) 

where NDVImax and NDVImin are the maximum and 
minimum NDVI from transplanting (about May to 
June) and heading periods (about July to August), 
respectively. DOYNDVImax and DOYNDVImin are the 
dates on which NDVImax and NDVImin were obtained. 
1,000 is a constant for scaling the value. Additionally, 
pixels corresponding to days which satisfied the 
paddy detection condition but on which the air tem-
perature was lower than 10°C were ignored, as trans-
planting was not possible under these conditions 

Figure 2. Seasonal variations in the normalized difference vegetation index (NDVI) derived from geostationary ocean color imager 
(GOCI), and land surface water index (LSWI) derived from moderate resolution imaging spectroradiometer (MODIS) imagery of a paddy 
field in South Korea. T (0.17) is the threshold value of the LSWI.
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(Dingkuhn and Miezan 1995). According to the daily 
NDVI from GOCI, the irrigation period for satisfying 
detection conditions was defined to be at least one 
week.

The paddy field map was obtained from high-spa-
tial-resolution land cover maps of South Korea (based 
on KOrea Multi-Purpose SATellite-2, KOMPSAT-2) and 
Japan (based on Advanced Land Observing Satellite, 
ALOS) produced in 2013 and 2014, respectively. The 
maps were provided by the Environmental 
Geographic Information Service (EGIS) of the Korean 
Ministry of the Environment (KME) (https://egis.me. 
go.kr) and by the Earth Observation Research Center 
(EORC) of the Japan Aerospace Exploration Agency 
(JAXA) (https://www.eorc.jaxa.jp). Given the inaccessi-
bility of official national land cover data for the north-
east region of China and North Korea, these nations’ 
paddy areas were assumed to have the same distin-
guishing characteristics as South Korea and Japan 
because there is no officially reported spatial data. 
Paddy fields in all the study regions are mostly trans-
planted under the monocropping practice. Rice culti-
vation depends on flood irrigation during the summer 
growing season after transplanting.

RSCM for rice

The integration of remotely sensed data into the 
RSCM for rice (Figure 3) enabled the simulation and 
monitoring of crop growth and the capacity to make 
productivity estimates, based on the agreement 
between simulation and observation from remote- 

sensing information (Ko et al. 2015). The RSCM for 
rice simulates the daily growth of rice using four 
processes: (1) determining daily growing degree 
days, (2) absorption of incoming solar radiation by 
the crop canopy, (3) daily increase in above-ground 
dry mass, and (4) daily change in the LAI (increase or 
senescence), based on mathematical equations (Eqs. 
A1‒A4). The RSCM fits a simulated LAI curve to the 
observed LAI curve using a Bayesian procedure as a 
part of the within-season calibration method. The LAI 
concept employed in this study is the green LAI, as 
the modeling regime is designed to absorb solar 
radiation through photosynthesis in the vegetation 
canopy. The LAI was indirectly estimated using the 
four VIs determined from GOCI imageries onboard the 
COMS geostationary satellite.

The RSCM was initially designed to accept 
remote-sensing data as an input variable to obtain 
a mathematical agreement between simulation 
and measurement based on a “within-season” cali-
bration procedure (Maas 1993a). In this study, four 
parameters were employed by the RSCM to model 
rice crop growth processes: L0, the initial LAI at 
transplanting; a and b, parameters of the leaf allo-
cation function; and c, the parameter of the leaf 
senescence function. The Bayesian method for 
optimization of these parameters was applied to 
obtain these parameter values with prior distribu-
tions selected in relation to estimates from pre-
vious findings. The LAI is a three-dimensional 
measure of the volume of a crop canopy, while 
the reflectance of the crop canopy to solar 

Figure 3. Schematic diagram of remote sensing-integrated crop modeling (RSCM) system used (a) to simulate crop growth and yield 
and (b) to project spatiotemporal crop production based on the crop modeling process and remote sensing (RS) data. (LAI: leaf area 
index; PAR: photosynthetically active radiation; VI: vegetation index).
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radiation is a two-dimensional measure corre-
sponding to the flat surface atop the canopy. 
Accordingly, the square root of reflectance should 
be proportional to the cube root of the LAI, and 
we presumed that the relationship between the 
two could be determined using a log-log regres-
sion regime with a slope of about two-thirds 
(McMahon 1973). Using this approach, we quanti-
fied the relationships between the LAI and the four 
VIs (NDVI, RDVI, OSAVI, and MTVI) with log-log 
linear regression models, which were adopted to 
obtain more robust LAI estimates using an ensem-
ble approach based on the relationships between 
the four Vis and LAI. The current approach was 
developed earlier in the RSCM formulation process 
to achieve the best fit between remote-sensing 
data and LAI (Nguyen et al. 2019).

An empirical model was designed for each VI using 
the following equation.

logðVItÞ ¼ αVI þ βVIlogðLAItÞþ 2t (8) 

,
where αVI; βVI, and 2t (,N 0; σ2

VI

� �
represent the 

intercept, slope, and error of the linear regression 
model, respectively. The evolution of the LAI for 
each pixel was explained by the RSCM-rice regime, 
using four parameters θ ¼ (L0, a, b, and c). These 
parameters were assumed to be generated from the 
prior distributionψ,N μ;Dð Þ, where transformations 
were used to guarantee that all four parameters (L0, 
a, b, and c) range between 0 and 1 as follows. 

ψ ¼ ψ1;ψ2;ψ3;ψ4ð Þ

¼ log
a

1 � a
; log

b
1 � b

; log
c

1 � c
; log

L0

1 � L0

� �

, 

θ ¼ θ ψð Þ ¼
eψ1

1þ eψ1
;

eψ2

1þ eψ2
;

eψ3

1þ eψ3
;

eψ4

1þ eψ4

� �

(9) 

We obtained both the regression coefficients 
α,; β,; σ2

,

� �
; , ¼ 1; 2; 3; and4 and the hyper-para-

meters μ;Dð Þ from the data collected in previous 
studies (Ko et al. 2015; Kim et al. 2017). These 
included both the VIs and the measured LAI values. 
The parameter μ was specified using the ‘before- 
calibration’ values (Table A1). Parameter D is a diag-
onal matrix with all diagonal elements equivalent 
to 0.5.

The following numerical procedure was adopted to 
obtain θ for each pixel.

Step 1: For each pixel, the set μ served as the initial 
guess ofψ.

Step 2: LAIt ¼ ~G t; ψð Þ ¼ G t; θ ψð Þð Þ was defined and 
the objective function below considered. 

X5

,¼1

1
σ2

,

Xn

t¼1
log VI,t � α, � β, log ~G t; ψð Þ
� �2

� �

þ ψ � μð Þ
0

D� 1 ψ � μð Þ

(10) 

Step 3: The simulated curve for each pixel was 
generated from the estimated ψ in Step 2.

Step 4: μandD were updated as the sample means 
and sample variances of the estimates in Step 2.

In this procedure, the parameter ψ was esti-
mated by minimizing the above function, and 
the optimization was performed using the 
POWELL optimization routine (Press et al. 1992) 
for one-point simulation cases and the Quasi- 
Newton minimizer (Nash 1990) for 2-dimensional 
simulation cases. Previously established as an 
extended system of the RSCM-rice, the crop infor-
mation delivery system uses remotely sensed 
images from various platforms to simulate grid- 
based crop growth and yield maps (Ko et al. 2015) 
(Figure 3). This system receives grid-based remote 
sensing and climate data as input variables to the 
RSCM-rice system. When available, climate data 
are extracted from one or more weather stations 
as grid data, and the RSCM-rice is then implemen-
ted to simulate crop growth in each grid using 
both types of input variables. Details of the mod-
eling procedures and related equations are pro-
vided in Ko et al. (2015) and Kim et al. (2017). In 
the current study, we applied the same initial 
conditions and parameter values used in these 
previous studies to simulate geographical rice 
productivity in Northeast Asia using the RSCM- 
rice system (see also Table A1). As described ear-
lier in the study area section (section 3), the mod-
eling regime was calibrated for 27 locations and 
validated for 53 locations. These locations were 
chosen considering the representation of each 
country’s paddy production conditions, randomly 
dividing the calibration and validation sites at a 
3:7 ratio.
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Statistical analysis

For the training and validation of paddy field classifi-
cations, paddy, and non-paddy pixels, in total 225,000 
pixels, were randomly selected from the reference 
paddy field maps, out of which 75,000 were paddy 
pixels, and 150,000 were non-paddy pixels. The pixels 
were divided into a 150,000-pixel (50,000 paddy and 
100,000 non-paddy pixels) training set and a 75,000- 
pixel (25,000 paddy and 50,000 non-paddy pixels) 
validation set. To evaluate the classified results, accu-
racy metrics, including overall, user, and producer 
accuracies, in addition to Cohen’s Kappa Coefficient 
(Cohen 1968) were used.

The simulation performance of RSCM was eval-
uated using three statistical indices: the root mean 
squared error (RMSE), the coefficient of determina-
tion (r2), and the Nash-Sutcliffe model efficiency 
(NSE) (Nash and Sutcliffe 1970) as well as paired 
sample t-tests in the R software (https://www.r-pro 
ject.org/). NSE determines the relative magnitude 
of the residual variance of the simulated data in 
comparison with that of the observed data, 
designed to evaluate how well simulated versus 
measured data fit the 1:1 line. NSE values can 
vary from ‒∞ to 1. The modeling regime is more 
dependable if the value is closer to 1. Simulated 

values are lower or larger than the observed data 
when NSE values are close to zero.

Results

Comparison of time-dense profiles of vegetation 
index from BRDF-adjusted GOCI and MODIS surface 
reflectance

Figure 4 presents an example of the annual varia-
tion in seasonal paddy rice dynamics obtained 
using BRDF-adjusted GOCI- and MODIS-based 
NDVI profiles from 2011 to 2017. Under clement 
weather conditions in the spring and fall, both 
GOCI (red circles) and MODIS (gray circles) effec-
tively captured the NDVI profiles over the rice 
paddy areas. During the summer rainy season 
(light gray boxes), however, MODIS produced dis-
continuous crop signal transitions owing to its lim-
ited acquisition of observations during the period. 
The GOCI BAR NDVIs accurately captured the 
respective rice crop growth and development pat-
terns corresponding to the sowing, transplanting, 
heading, and harvesting stages (Kim et al. 2016). In 
particular, the NDVI values for the rice-growing 
paddy season, based on their higher temporal 
resolution, exhibited a stable pattern despite the 

Figure 4. Annual variations in normalized difference vegetation index (NDVI) profiles between geostationary ocean color imager 
(GOCI) and moderate resolution imaging spectroradiometer (MODIS) in a sampled paddy pixel in the study area. MODIS NDVIs are 8- 
day composite data from the MYD09 A1 product (gray circles), and BRDF adjusted GOCI NDVIs (red circles) is daily data. when 
simulating BRDF model of GOCI imagery, 128 samples of surface reflectance observations during a 16-day composite period were used 
to normalize each of the data points. The light gray boxes are summer monsoon periods in the study area.

10 J.-M. YEOM ET AL.

https://www.r-project.org/
https://www.r-project.org/


rainy summer weather conditions, which suggests 
that the continuous NDVI profiles produced by 
GOCI are potentially viable alternatives for addres-
sing the previously discussed challenges experi-
enced during the classification of paddy rice areas 
and estimation of rice productivity at national 
scales. For reference, the NDVI profiles of MODIS 
in Figure 4 are due to lack of BRDF correction; the 
present study used official products of NDVI 
profiles from MODIS 8-day composite surface 
reflectance (MYD09A1) to assess the capability of 
current polar orbit MODIS products. MODIS Nadir 
BRDF-adjusted Reflectance (NBAR) products 
(MYD43) or BRDF MODIS/Multi-Angle 
Implementation of Atmospheric Correction 
(MAIAC) products would be superior choices for 
minimizing BRDF effects. However, an inherent per-
sisting limitation of polar orbit satellite is its inabil-
ity to acquire continuous rice growth and 
development patterns in spite of BRDF correction 
(Yeom and Kim 2015).

Classification of rice area in northeast asia

Following the determination of the optimal values 
by combining and changing each threshold values 
for paddy rice field classifications, the following 
values were set: altitude, 800 m; surface slope, 7º; 
maximum and minimum NDVIs, 0.43 and 0.42; NDVI 
increase rate, 2.0; and T value, 0.17. Following the 

application of these thresholds to the validation 
dataset, the overall accuracy and Kappa coefficient 
for detected paddy fields were found to be 78.8 and 
51.2%, respectively (Table 4). The user accuracies for 
paddy and non-paddy fields were 69.7 and 82.7%, 
respectively, while the producer accuracies were 
64.1 and 86.1%, respectively. Figure 5 shows a repre-
sentative map of classified paddy fields based on 
GOCI and MODIS for the study period. A representa-
tive map was estimated by compositing the over-
lapping areas of seven-rice classification maps from 
2011 to 2017. The spatial distribution of the paddy 
rice area was well described for each selected 
country.

In the case of the Korean peninsula, most rice 
cultivation areas are located in the western plains 
(Jeong, Ko, and Yeom 2018), as shown in Figure 5. 
In the northeast part of China, paddy rice fields 
were mostly distributed in the Sanjiang Plain of 
Heilongjiang Province (the northeast region) and 
in a plain in Liaoning Province (the western 
region), which is consistent with the findings of 
previous studies (Clauss, Yan and Kuenzer 2016; 
Zhang et al. 2017). In Japan, paddy fields were 
mainly distributed along the central-eastern region 
and along the coastline (Inoue, Ito, and Yonezawa 
2020). The classified spatial distribution patterns of 
paddy fields were well reflected in the actual fields. 
In addition, from 2011 to 2017, the paddy field 
areas showed decreasing trends. For reference, 

Table 4. Error matrix to validate the spatial distribution of detected paddy fields from geostationary ocean color imager (GOCI) and 
moderated resolution imaging spectroradiometer (MODIS) data for South Korea in 2013 and Japan in 2014.

Reference

Paddy Non-paddy Total User’s accuracy (%)

Classification Paddy 16,021 6,953 22,974 69.7

Non-paddy 8,979 43,047 52,026 82.7
Total 25,000 50,000 75,000

Producer’s accuracy (%) 64.1 86.1

Overall Accuracy = 78.8%, Kappa coefficient = 51.2%

Table 5. Root mean square errors (RMSE), coefficient of determination (r2), nash-sutcliffe efficiencies (NSE), and p values of two-sample 
t-tests (α = 0.05) between observed and simulated rice yields for the model calibration in 27 and validation in 53 selected counties (or 
provinces) in northeast asia for the entire years (2011–2017). SD is standard deviation.

Site Observed mean yield (SD)
Simulated 

mean yield (SD) RMSE r2 NSE t-test

- – – – – – – – t ha−1 – – – – – – - - – p –

Calibration 6.12 (± 0.99) 6.04 (± 1.07) 0.551 0.903 0.692 0.235
Validation 6.25 (± 0.98) 6.15 (± 1.14) 0.674 0.823 0.524 0.434
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each of the classified paddy maps for the entire 
year for the period from 2011 to 2017 is presented 
in Figure 1 A.

Projection of crop productivity in northeast asia

In this study, paddy rice yield was geospatially 
simulated and analyzed in most of the Northeast 
Asian counties and provinces in China, North 
Korea, South Korea, and Japan from 2011 to 
2017. We could successfully reproduce the geo-
graphical variation in rice yield according to the 
grid with a pixel resolution of 500 m (Figure 6 and 
A2) and the respective administrative county or 
province (Figure 7 and A3). In the case of Figures 
6 and 7, each of the representative maps of paddy 
rice yields shows the simulated mean rice yield 
and standard deviations from 2011 to 2017. Each 
of the representative maps presented distinctive 
spatiotemporal rice yield trends in each of the 
countries, which could be due to differences in 
climate zones, rice cultivars, and agricultural infra-
structure among the countries. In the case of 
North Korea, rice yield is relatively lower than in 
the other neighboring countries, which could be 
attributed to poor agricultural infrastructure 
(Yeom et al. 2018; Ryu et al. 2019). All rice yield 
maps on the grid-scale and the country/province 

scale from 2011 to 2017 are represented in 
Appendix (Figure A2 and A3) for more detailed 
information. These maps represented the tem-
poral and spatial variations in rice yield in the 
Northeast Asian countries well; the spatiotemporal 
characteristics of rice yield differed across coun-
tries and were well illustrated in annual maps. 
Based on the spatiotemporal annual maps of 
paddy rice yield across the Northeastern Asia, we 
could perform further rice productivity analyses 
by considering various factors such as cultivars 
planted, environmental conditions, and agricul-
tural infrastructure in each of the countries.

In the statistical error analysis for the calibra-
tion sites, the RMSE, r2, and NSE were 0.551 t 
ha−1, 0.903, 0.692, and 0.434, respectively (Figure 
8a). For the validation sites, the RMSE, r2, and NSE 
were 0.674 t ha−1, 0.823, 0.524, and 0.235, respec-
tively (Figure 8b). There were no significant differ-
ences between simulated and measured rice 
yields, where p-values were 0.434 and 0.235 for 
the calibration and validation sites according to a 
sample t-test (α = 0.05). This indicates that the 
simulated mean rice yields for each county from 
2011 to 2017 were in agreement with the 
observed rice yields within an acceptable statisti-
cal range in both calibration and validation sites. 
In a more detailed statistical analysis for the entire 

Figure 5. Spatial distribution of classified paddy fields based on geostationary ocean color imager (GOCI) and moderate resolution 
imaging spectroradiometer (MODIS) composited from 2011 to 2017 in northeast asia.
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dataset, in the calibration, the RMSE, r2, NSE, and 
p values ranged from 0.367 to 0.680 t ha−1, 0.661 
to 0.834, 0.581 to 0.802, and 0.571 to 0.951 from 
2011 to 2017, respectively (Figure A4a and Table 
A2). Similarly, in the validation, the RMSE, r2, NSE, 
and p values ranged from 0.620 to 0.676 t ha−1, 
0.462 to 0.782, 0.108 to 0.660, and 0.130 to 0.953, 
respectively (Figure A4b and Table A3). While 
there were small disagreements attributable to 

subpixel heterogeneity, overall, the simulated 
rice yields corresponded with the observed values 
(Figure 8).

Discussion

In most previous studies, rice cultivation area and 
yield at the national scale have been estimated 
using one type of satellite, especially polar orbit 

Figure 6. Spatial distribution of simulated (a) mean rice yield and (b) standard deviation (sd) in northeast asia from 2011 to 2017 based 
on communication, ocean, and meteorology satellite (COMS) images integrated into the RSCM for rice.
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satellite (mostly MODIS) (Kontgis, Schneider, and 
Ozdogan 2015; Zhang and Zhang; Zhang et al. 
2017). Although the previous studies have reported 
reliable results, they highlighted the systemic limita-
tions of polar orbit satellites in terms of data acquisi-
tion. In particular, there are challenges with regard to 
the observation of time-dense vegetation indices of 
rice-growing periods, especially under the rainy mon-
soon season (Xiao et al. 2006; Yeom and Kim 2015). 

This study estimated rice area and yield in Northeast 
Asia after addressing the aforementioned problems, 
based on a newly adopted high temporal resolution 
GOCI geostationary satellite. With regard to the clas-
sification of rice area, discontinuous vegetation index 
profiles attributed to cloudiness were resolved by 
capturing distinctive spectral signals of rice growth 
patterns from the GOCI satellite. Furthermore, rice 
yield was estimated based on GOCI by stably 

Figure 7. County- (or province-) wide spatial distribution of (a) simulated rice yields and (b) standard deviation (SD) in northeast asia 
from 2011 to 2017 based on communication, ocean, and meteorology satellite (COMS) images integrated into the RSCM for rice.
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observing the vegetation indices in the growing sea-
sons, which is essential for the determination of rice 
final yield (Kastens et al. 2005; Mkhabela et al. 2011; 
Wu et al. 2011; Zhang et al. 2017).

The present study showed that the synthetic appli-
cation of polar orbit and geostationary satellites could 
complement their limitations to facilitate the acquisi-
tion of more comprehensive information on crops in 
large-scale applications.

Additional considerations in rice area classification

The classification approach used in this study has 
been widely applied to detect the distribution of 
paddy fields and irrigated and flooded areas within 
optical satellite images (Sakamoto et al. 2007; Peng et 
al. 2011; Dong et al. 2016; Clauss, Yan and Kuenzer 
2016) since it was first suggested by Xiao et al. (2002). 
The approach applies a simple concept and clear logic 
that reflect the spectral time series characteristics of 
paddy fields. Studies have shown that this approach 
produces reliable results, making it applicable to most 
remote-sensing data equipped with optical spectral 
bands, including the SWIR band. It can also simulta-
neously detect transplanting dates, a key indicator of 
the onset of rice growth, and is used as a key input to 
RSCM and other crop models. The advantages of the 
classification method used in this study, along with its 
potential errors and pitfalls, are discussed below.

The most important threshold in this classification 
approach is the T value of the LSWI, which serves to 
detect paddy fields among pixels mixed with other 

vegetation by increasing the sensitivity to irrigated 
water. The T value can vary depending not only on 
the land cover features of the study site, but also on 
the spectral responses of the satellite sensors. It was, 
therefore, important to define the appropriate thresh-
old value for the approach used in this study. We 
believe that the T values determined in this study 
(between 0.05 and 0.20) were appropriate (Xiao et 
al. 2006; Sun et al. 2009; Teluguntla et al. 2015), 
given previous results. However, we did not consider 
the fact that in double cropping regions, the T values 
for double rice crops or single crops after a winter 
crop can differ significantly in late-season rice fields 
(Peng et al. 2011). Therefore, a more accurate classifi-
cation would have been possible if the double- 
cropped regions had been distinguished from sin-
gle-cropped regions, and a different threshold for 
single-rice crop regions had been applied.

In addition, it was necessary to apply an additional 
algorithm to remove land covers with temporal NDVI 
and LSWI patterns similar to those of paddy fields, 
such as wetlands, snowmelt cover during the spring 
season, or land following heavy rain. Several condi-
tions (or thresholds) were therefore applied, namely: 
maximum and minimum NDVIs, periods with specific 
NDVI values, and a normalized difference snow index 
to remove snowmelt cover. In some studies, temporal 
windows to define the period available for cultivation 
based on the MODIS land surface temperature (LST) 
have been used (Dong et al. 2016; Zhang et al. 2015). 
In this study, air temperature instead of LST and the 
rate of increase in the NDVI were used to remove 

Figure 8. Comparisons of observed and simulated rice yields for (a) 27 calibration and (b) 54 validation counties or provinces (refer to 
Fig. 1) in northeast asia from 2011 to 2017. The dotted lines are 1:1 lines. RMSE, NSE, and p represent root mean square errors, nash- 
sutcliffe efficiencies, and p values of two-sample t tests (α = 0.05). refer to Table 5 for the detailed statistical analysis results of the (a) 
calibration and (b) validation, respectively.
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misleading pixels. Because of tillage and irrigated 
water, initial NDVI values are lower in paddy fields 
than in other types of fields but increase rapidly to a 
maximum value within 2 months of transplanting. 
Wetlands and other water-related land covers show 
lower rates of NDVI increases because of their low 
maximum NDVIs. The detection error caused by 
heavy rainfall was resolved using the condition that 
irrigated fields had to remain in the data for more 
than one week, which was enabled by our use of GOCI 
data to provide a stable daily NDVI.

Finally, the use of satellite imagery with a coarse 
spatial resolution, such as GOCI or MODIS, results in 
errors caused by mixed-pixel effects, including, most 
significantly, a tendency toward underestimation in 
small paddy patches and overestimation in large 
paddy patches, particularly in areas with a large het-
erogeneity in land cover (Jeong et al. 2012; Peng et al. 
2011; Sakamoto et al. 2007). This tendency is even 
more noticeable when making an assessment based 
on a comparison of paddy areas, because small 
patches are likely to be undetectable, whereas for 
large patches, each detected pixel is likely composed 
solely of paddy fields (Jeong, Ko, and Yeom 2018; Xiao 
et al. 2006; Ozdogan and Gutman 2008). Despite 
these errors, using coarse resolution imagery with 
high temporal resolution is necessary, not only for 
continuous and consecutive land cover classification, 
but also for the monitoring of critical crop growth 
information over broad areas, from national to global 
scales.

Spatial extensibility of the RSCM model and its 
limitations

Before applying remotely sensed satellite images 
to paddy productivity simulations in North Korea, 
we calibrated RSCM-rice using an experimental 
field site in Cheorwon, South Korea, and then vali-
dated the approach using geospatial data from 
two administrative districts bordering North Korea 
(data not shown), similar to the approach in the 
earlier study by Yeom et al. (2018). The spatial 
distribution of the simulated rice yields in 
Northeast Asia from 2011 to 2017 (Figures 6, 7) 
show a consistent classification of the actual rice- 
growing areas and trends in the four countries, 

both spatially and temporally. In North Korea, in 
particular, the inter-annual variation in rice yields 
was found to be higher than in the other countries 
because of the country’s poor irrigation infrastruc-
ture. Our results were generally comparable to 
those of earlier studies conducted using the 
GRAMI model (Kim et al. 2017; Jeong, Ko, and 
Yeom 2018; Yeom et al. 2018). These studies 
demonstrated that the satellite image-integrated 
rice model could reproduce the regional and 
nation-wide rice yield and productivity. However, 
our study widened the application of RSCM to 
cover several countries, while the scope of pre-
vious studies was more limited and focused on 
the farm field or national scale. The accuracy of 
our results and those of previous studies suggest 
that integration of various types of remote-sensing 
data, including satellite imagery, into the RSCM 
system, can be useful for monitoring crop produc-
tivity and support decision making in crop man-
agement in a variety of fields and regions. We 
demonstrated earlier that the current hybrid mod-
eling approach could be efficiently applied to 
retrieve and deliver information on rice area and 
yield for a data-sparse or inaccessible region (Yeom 
et al. 2018). The methodology can also be 
employed to monitor rice yield and production of 
a nation of interest to secure the current and 
future food crop production, as an essential agri-
cultural resource (Jeong, Ko, and Yeom 2018).

The input parameters involved in RSCM repre-
sent a possible source of error in simulation. The 
parameters used to define the relationships 
between the LAI and specific VIs are critical to 
the RSCM system and can substantially affect its 
simulation results. According to Doraiswamy et al. 
(2005), the relationship between the LAI and NDVI 
used in the calibration procedure might vary by 
research application, as a result of changes in soil 
features, plant population densities, and other 
environmental aspects. If the relationship between 
the LAI and VI falls outside the optimal range of 
the preset parameters, the resulting error could be 
severe (Ko et al. 2015). To address this issue, we 
applied log-log-linear regression models, with cor-
relations between the LAI and either canopy reflec-
tance values or the VIs (e.g., MTVI, NDVI, RDVI, and 
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OSAVI) framed collectively. As discussed above, we 
assumed that the relationship between the LAI and 
reflectance or VI could be described using a log- 
log regression design with a slope of approxi-
mately two-thirds. A Bayesian method for para-
meter estimation was formulated in the RSCM 
regime to enable an agreement between simula-
tion and observation according to the Quasi- 
Newton optimization method (Nash 1990) for 
pixel-based geospatial simulation cases. Our opti-
mization approach was framed to integrate various 
remote-sensing data into RSCM, which allowed us 
to rely heavily on the LAI inputs estimated from 
remotely sensed information. This approach of 
assimilating remote-sensing data into RSCM can 
have several benefits. First, it allows the use of a 
modest input state, in which existing observations 
are introduced as a crucial driver for the character-
ization of environmental conditions. Second, it 
allows the RSCM system to advance simulation 
performance. Third, it allows RSCM to assimilate 
remote-sensing information obtained from a vari-
ety of platforms, including unmanned aerial sys-
tems (Jeong, Ko, Choi, Xue, and Yeom 2018) and 
operational optical satellite-based sensors, with 
varying spatial resolutions (Kim et al. 2017; Yeom 
et al. 2018). Finally, it renders RSCM applicable to 
any area of interest on the Earth’s surface, assum-
ing satellite imagery can be obtained. Yeom et al. 
(2018) demonstrated this aspect, reporting rice 
productivity and geographical variability in inac-
cessible North Korea.

At the same time, the optimization approach of 
RSCM has several limitations, such as including imper-
fect representations of remote-sensing information, 
along with the limited observations obtainable during 
the crop season. These restrictions can ultimately 
result in a degree of dissimilarity between simulations 
and observations, reproducing an inaccurate crop 
productivity. Nevertheless, the simple input para-
meters and variable requirements of RSCM have 
some important advantages, predominantly concern-
ing unapproachable and data-sparse regions. 
Although the RSCM approach has some limitations 
in such regions, including a constant dependence 
on remote-sensing data, satellite observation-based 
crop modeling is generally more important; it would 

be nearly impossible to reproduce and monitor crop 
productivity without the use of satellite images.

Conclusions

In the present study, we successfully classified 
paddy areas and reproduced the national rice 
yields in North and South Korea, Japan, and the 
northeast region of China using an RSCM for rice in 
combination with geostationary satellite-based 
GOCI images. The overall classification accuracy of 
paddy field area was 78.8% based on synthetic 
applications of dense-time GOCI vegetation and 
MODIS water indices, indicating dependable repre-
sentations of the spatial distributions of the paddy 
rice areas in each country. In the case of rice yield, 
there were no significant differences (p- 
value = 0.235) between simulated and measured 
rice yields according to a sample t-test (α = 0.05) 
for the entire period (from 2011 to 2017), showing 
an agreement with RMSEs of 0.674 t ha−1, r2 of 
0.823, and NSEs of 0.524. The overall accuracy 
metrics, comparing simulated and observed vari-
ables, were statistically acceptable, given the con-
tinental scale of our study, and in spite of the 
subpixel heterogeneity of the satellite images aris-
ing from their rough spatial resolution. The current 
study results are, therefore, potentially useful in 
the development of methods to provide a more 
accurate real-time understanding of regional crop 
cultivation areas and productivity, using the inte-
gration of GOCI images into crop models. Such 
information could be invaluable in helping to man-
age staple food production in the countries of 
Northeast Asia. We believe that our assimilation 
of GOCI imagery into the RSCM system could 
help provide diagnostic information for the mon-
itoring of crop conditions and contribute to an 
agricultural decision delivery system for simulating 
crop growth and monitoring crop yield and pro-
duction for various terrestrial divisions from a 
region to a nation. Further development would 
add value to the current integration scheme and 
its capability to simulate other major staple crops, 
and it would incorporate the fundamental ecophy-
siology of crop productivity (e.g., carbon assimila-
tion and evapotranspiration).
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Highlights

● Northeast Asian paddy field areas were classified based on 
Sun- and Geo-synchronous satellite images.

● Dense vegetation index profiles of a geostationary satellite 
were integrated into a crop model.

● Spatiotemporal maps of rice yields in Northeast Asia were 
simulated with reasonable accuracy.

● The method can be applied to monitor rice area and yield in 
large-scale applications.
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Appendix Equations

ΔD ¼ Max½T � Tb; 0� (A1) 

where ΔD is a daily change in growing degree days, T is the 
average daily air temperature (°C), and Tb is the crop-specific 
base temperature. Daily increase in the aboveground dry mass 
(ΔM) was calculated using the equationΔG ¼ P2 � ΔM, where ε 
is the crop-specific radiation use efficiency (RUE), and Q is the 
daily total photosynthetically active 

Q ¼ β � R � ð1 � e� k�LAIÞ (A2) 

where Q is the absorption of photosynthetically active radiation, R 
is the incident daily total solar irradiance (MJ m−2), β is the fraction 
of total solar irradiance that is PAR, and k is the crop-specific light 
extinction coefficient. Daily LAI increase with new leaf growth (ΔL) 
was obtained using the equationΔL ¼ ΔM � P1 � Ls, where ΔM is 
the daily increase in AGDW, P1 is the fraction of ΔM allocated to 
new leaves, and Ls is the specific leaf area. 

P1 ¼ Max½1 � pa � epb �D; 0� (A3) 

where P1 is a dimensionless leaf-allocation parameter, pa 

and pb are parameters that control the magnitude and 
shape of the function, and D is the cumulative GDD. The 
leaf senescence used in the model was formulated by 
assuming that the leaves would start to senesce after 
attaining the maximum LAI and that the senescence rate 
varies depending on plant genetic traits and environmen-
tal conditions. Daily increase in grain (ΔP) was calculated 
using the equationΔG ¼ P2 � ΔM, where P2 is the fraction of 
ΔM partitioned to the grains and ΔM is the daily increase 
in AGDW. 

P2 ¼ Max½1 � pa � epb�fGD ; 0� (A4) 

where P2 is a dimensionless grain-partitioning parameter, pa 

and pb are parameters that control the magnitude and shape 
of the function, and fGD is the grain partitioning factor based 
on the cumulative GDD.
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Figure. A1. Spatial distribution of classified paddy fields based on Geostationary Ocean Color Imager (GOCI) and Moderate Resolution 
Imaging Spectroradiometer (MODIS) from 2011 to 2017 (a–g, respectively) in Northeast Asia.
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Appendix Figures Appendix Tables

Figure. A2. Spatial distribution of simulated rice yields in Northeast Asia from 2011 to 2017 (a–g, respectively) based on 
Communication, Ocean, and Meteorology Satellite (COMS) images integrated into the RSCM for rice.
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Figure. A3. County- (or province-) wide spatial distribution of simulated rice yields in northeast asia from 2011 to 2017 (a–g, 
respectively) based on Communication, Ocean, and Meteorology Satellite (COMS) images integrated into the RSCM for rice.
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Table A1. Constant and parameter values used for RSCM for rice.

Symbol Description Unit♪ Value

ε Radiation use efficiency g MJ−1 3.49

k Light extinction coefficient na 0.6
Ls Specific leaf area m2 g−1 0.016
Tb Base temperature °C 12.0

L0 Leaf area index at transplant m2 m−2 0.2
a The parameter in the leaf allocation function na 0.325

b The parameter in the leaf allocation function na 0.00125
c The parameter in the leaf senescence function na 0.00125

♪1 µmol mol−1 is equivalent to 1 ppm.

Table A2. Root mean square errors (RMSE), coefficient of determination (r2), Nash-Sutcliffe efficiencies (NSE), and p values of two- 
sample t-tests (α = 0.05) between observed and simulated rice yields for the model calibration in 27 selected counties (or provinces) in 
Northeast Asia from 2011 to 2017.

Year Observation Simulation RMSE r2 NSE t test

- – – – – – – - t ha−1 – – – – – – - - - – p –

2011 5.97 5.95 0.535 0.758 0.699 0.951
2012 5.97 5.85 0.506 0.752 0.690 0.663

2013 6.06 6.09 0.367 0.834 0.802 0.901
2014 6.31 6.15 0.572 0.672 0.581 0.581

2015 6.14 6.08 0.680 0.749 0.705 0.863
2016 6.30 6.15 0.557 0.737 0.696 0.571
2017 6.14 6.02 0.592 0.661 0.621 0.676

Figure. A4. Comparisons of observed and simulated rice yields for (a) 27 calibration and (b) 53 validation counties (or provinces) in 
Northeast Asia from 2011 to 2017. The dotted lines are 1:1 lines. RMSE, NSE, and p represent root mean square errors, Nash-Sutcliffe 
efficiencies, and p values of two-sample t tests (α = 0.05). Refer to Tables 5 and 6 for the detailed statistical analysis results of the (a) 
calibration and (b) validation.
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Table A3. Root mean square errors (RMSE), coefficient of determination (r2), Nash-Sutcliffe efficiencies (NSE), and p values of two- 
sample t-tests (α = 0.05) between observed and simulated rice yields in 54 counties (or provinces) of interest in Northeast Asia from 
2011 to 2017.

Year Observation Simulation RMSE r2 NSE t test

- – – – – – – - t ha−1 – – – – – – - - - – p –

2011 6.02 6.10 0.673 0.623 0.478 0.683
2012 5.98 5.82 0.684 0.462 0.286 0.314
2013 6.24 6.27 0.685 0.589 0.353 0.894

2014 6.45 6.16 0.767 0.535 0.108 0.130
2015 6.36 6.16 0.726 0.782 0.596 0.454

2016 6.50 6.28 0.620 0.751 0.660 0.299
2017 6.26 6.27 0.658 0.685 0.543 0.953
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