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Abstract

The fractional Fourier transform (FRFT), a generalization of the Fourier

transform, has proven to be a powerful tool in optics and signal processing.

Most existing sampling theories of the FRFT consider the class of band-

limited signals. However, in the real world, many analog signals encountered

in practical engineering applications are non-bandlimited. The purpose of

this paper is to propose a sampling theorem for the FRFT, which can pro-

vide a suitable and realistic model of sampling and reconstruction for real

applications. First, we construct a class of function spaces and derive basic

properties of their basis functions. Then, we establish a sampling theorem

without band-limiting constraints for the FRFT in the function spaces. The

truncation error of sampling is also analyzed. The validity of the theoretical

derivations is demonstrated via simulations.
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1. Introduction

The fractional Fourier transform (FRFT), which generalizes the Fourier

transform (FT), has received much attention in recent years due to its nu-

merous applications [1–5], including in the areas of optics, signal and image

processing, communications, etc. The FRFT of a continuous signal or func-

tion f(t) is defined as [2]

Fα (u) = Fα {f (t)} (u) =
∫

R

f (t)Kα (u, t) dt (1)

where Fα denotes the FRFT operator, and kernel Kα(u, t) is given by

Kα(u, t) =





Aαe

(
j u2+t2

2
cotα−jut cscα

)

, α 6= kπ

δ(t− u), α = 2kπ

δ(t+ u), α = (2k − 1)π

(2)

where Aα =
√

1−j cotα
2π

, k ∈ Z, cotα = cosα/sinα, and cscα = 1/sinα. For

α ∈ [−π, π], the square root factor Aα can be rewritten without ambiguity

as [1]

Aα =
e−j[α2 −

π
4
sgn(α)]

√
2π| sinα|

(3)

2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

where sgn(·) denotes the sign function. When α is outside the interval [−π, π],

we simply need to replace α by its modulo 2π equivalent lying in this interval

and use this value in (3). The u axis is regarded as the fractional Fourier

domain. The inverse FRFT with respect to angle α is the FRFT with angle

−α, i.e., f(t) = F−α {Fα(u)} (t) =
∫
R
Fα (u)K∗

α (u, t) du, where ∗ in the

superscript denotes the complex conjugate. In general, we only consider the

case of 0 < α < π, since the definition can easily be extended outside the

interval [0, π] by noting that F2πn is the identity operator for any integer

n and that the FRFT operator is additive in angle, i.e., Fα1+α2 = Fα1Fα2 .

Whenever α = π/2, (1) reduces to the FT given by

F (ω) = F{f(t)}(ω) = 1√
2π

∫

R

f(t)e−jωtdt (4)

with f(t) ∈ L1(R)
⋂
L2(R), where F indicates the FT operator. Conversely,

the inverse FT is written as f(t) = 1√
2π

∫
R
F (ω)ejωtdω. It follows that the

FRFT exists, for α not multiple of π, whenever the FT of f(t)e(j/2)t2 cotα

exists. Since the complex exponent in (2) has a constant magnitude, the

FRFT can also be defined in most domains in which the FT can be defined.

In digital signal and image processing, digital communications, etc., a

continuous signal is usually represented by its discrete samples. Then, a

fundamental problem of FRFT theory is how to represent a continuous signal

in terms of a discrete sequence. For a fractional band-limited signal f(t), Xia

[6] found a Shannon-type sampling theorem for the FRFT. The sampling

3
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process of this theorem can be viewed as an approximation procedure in the

space of fractional band-limited functions

Bα =

{
∑

n∈Z
f [n] sinc(t− n)e−j t2−n2

2
cotα

∣∣∣∣ f [n] ∈ ℓ2(Z)

}
(5)

where sinc(·) ,
sinπ(·)
π(·) . Xia’s sampling theorem provides an exact repre-

sentation by the signal’s uniform samples {f [n]}n∈Z and has been currently

generalized to many other forms. Zayed and Garćıa derived a new sampling

expansion using the Hilbert transform in [7]. In [8], Stern extended Xia’s re-

sult to the generalized form of the FRFT, which is called the linear canonical

transform [1]. Tao et al. discussed sampling and sampling rate conversion

of band-limited signals in the fractional Fourier domain in [9]. Bhandari and

Marziliano [10] proposed a uniform sampling and reconstruction algorithm

for sparse signals in the fractional Fourier domain. Furthermore, authors in

[11, 12] studied multi-channel sampling for the FRFT. However, these ex-

tensions and modifications of Xia’s sampling theorem [6] were derived from

the band-limited signal viewpoint. In the real world, many analog signals

encountered in practical engineering applications are non-bandlimited. Re-

cently, Liu et al. [13] introduced new sampling formulae of the generalized

FRFT for non-bandlimited signals by constructing a class of function spaces

Bh,m
M,ΩM

(m = 1, 2, 3). Unfortunately, as the authors of [13] pointed out, there

are no normative rules at present for determining the parameters M,h,ΩM

in practical implementations.

4
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The purpose of this paper is to propose a sampling theorem associated

with the FRFT, which can provide a suitable and realistic model of sampling

and reconstruction for real applications. First, we introduce a class of func-

tion spaces with a single generator and derive basic properties of their basis

functions. Then, we derive a sampling theorem for the FRFT in the function

spaces. Moreover, the truncation error of sampling and some potential ap-

plications of the derived results are presented. The validity of the theoretical

derivations is demonstrated via simulations.

The outline of this paper is organized as follows. In Section 2, notations

and some facts for the FRFT are first introduced, and then the concept of

fractional convolution is given. In Section 3, a sampling theorem for the

FRFT without band-limiting constraints is established, and the truncation

error of sampling and some potential applications are also discussed. Finally,

concluding remarks are given in Section 4.

Nomenclature

FT Fourier transform

DTFT discrete-time Fourier transform

FRFT fractional Fourier transform

DTFRFT discrete-time fractional
Fourier transform

F FT operator

Fα FRFT operator

F̃α DTFRFT operator

F (u cscα) FT (with its argument scaled

by cscα) of f(t)

F̃ (u cscα) DTFT (with its argument
scaled by cscα) of f [n]

Fα(u) FRFT of f(t)

F̃α(u) DTFRFT of f [n]

Θα continuous fractional convolution op-
erator

s

Θα semi-discrete fractional convolution
operator

5
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2. Preliminaries

2.1. Notation

Throughout this paper, we consider real-valued signals. Continuous sig-

nals are denoted with parentheses, e.g., f(t), t ∈ R, and discrete signals with

brackets, e.g., c[n], n ∈ Z. We denote the inner L2-product between f(t) and

g(t) by

〈f, g〉L2 =

∫

R

f(t)g∗(t)dt, (6)

and the ℓ2-inner product between two sequences c[n] and d[n] by

〈c, d〉ℓ2 =
∑

n∈Z
c[n]d∗[n]. (7)

Correspondingly, we denote the L2-norm by ‖f‖2
L2 = 〈f, f〉L2, and the ℓ2-

norm by ‖c‖2ℓ2 = 〈c, c〉ℓ2.

Let H be a Hilbert space and {ϕn(t)}n∈Z be a complete set of functions

in H. The set is a Riesz basis for H if and only if there exist constants

0 < A ≤ B < +∞ such that [14]

A ‖c[n]‖2ℓ2 ≤
∥∥∥∥∥
∑

n∈Z
c[n]ϕn(t)

∥∥∥∥∥

2

L2

≤ B ‖c[n]‖2ℓ2 , ∀ c[n] ∈ ℓ2(Z) (8)

with equality if and only if the basis is orthonormal, i.e., when A = B = 1.

For a measurable function f(t) on R, let ‖f(t)‖∞ = ess sup |f(t)| and

‖f(t)‖0 = ess inf |f(t)| be the essential supremum and infimum of |f(t)|,

6
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respectively.

2.2. Some facts for the FRFT

The Parseval formula of the FRFT can be expressed as [1]

‖f(t)‖2
L2 = ‖Fα(u)‖2L2 . (9)

The relationship between the FRFT and FT is given by [15]

Fα{f(t)}(u) =
√
2πAαe

j u2

2
cotαF

{
f(t)ej

t2

2
cotα
}
(u cscα) . (10)

The discrete-time FRFT (DTFRFT) of f [n] ∈ ℓ2(Z) is defined as [16]

F̃α(u) = F̃α{f [n]}(u) =
∑

n∈Z
f [n]Kα(u, n) (11)

where Kα(·, ·) is defined in (2). When α = π/2, (11) reduces to the discrete

time Fourier transform (DTFT) [1]. Correspondingly, the inverse DTFRFT

is given by

f [n] =

∫

I

F̃α(u)K∗
α(u, n)du, I , [0, 2π sinα]. (12)

The Parseval formula of the DTFRFT can be expressed as

‖f [n]‖2ℓ2 =
∫

I

∣∣∣F̃α(u)
∣∣∣
2

du (13)

which implies that for any f [n] ∈ ℓ2(Z), F̃α(u) ∈ L2(I). Moreover, the

7



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

DTFRFT has the following chirp-periodicity [16]:

F̃α(u+ 2kπ sinα)e−j
(u+2kπ sinα)2

2
cotα = F̃α(u)e

−j u2

2
cotα, k ∈ Z. (14)

Due to (11) and (2), we have

F̃α(u)e
−j u2

2
cotα =

∑

n∈Z
c[n]ej

n2

2
cotα−jun cscα

(15)

where c[n] = Aαf [n]. Meanwhile, inserting (2) into (12) gives the rise to

c[n] =
1

2π sinα

∫

I

(
F̃α(u)e

−j u2

2
cotα
)
e−j n2

2
cotα+jun cscαdu. (16)

Note that if F̃α(u) is in L2(I), its product by chirp e−(j/2)u2 cotα is also in

L2(I). It follows from (15) and (16) that functions belonging to L2(I) in the

fractional Fourier domain can be expanded into a series defined in (15).

2.3. Fractional convolution

It was shown in [5] that there are several definitions of fractional convo-

lution in the literature. The relationships among them were investigated in

[5] in detail. We use the one introduced in [12], which has a simple structure.

For two continuous functions f(t) and φ(t), continuous fractional convo-

8
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lution is denoted by f(t)Θαφ(t) using the Θα symbol [12], i.e.,

f(t)Θαφ(t) = e−j t2

2
cotα ·

[(
f(t)ej

t2

2
cotα
)
∗ φ(t)

]

=

∫

R

f(τ)φ(t− τ)e−j t2−τ2

2
cotαdτ

(17)

where ∗ denotes the ordinary convolution operator, and the continuous frac-

tional convolution theorem is expressed as [12]

f(t)Θαφ(t)
Fα

←→
√
2πFα(u)Φ (u cscα) . (18)

Since ej
t2

2
cotα has a constant magnitude, the continuous fractional convolu-

tion can also be defined in most domains, in which the ordinary convolution

can be defined. For instance, using Young’s inequality [17], for any f(t) ∈

L1(R) and φ(t) ∈ L1(R)
⋂
L2(R), we have (f(t)Θαφ(t)) ∈ L1(R)

⋂
L2(R).

Let φ(t) be a continuous function in L2(R). We assume that the sampling

period is equal to one, and we define the semi-discrete fractional convolution

operator
s

Θα as a linear map from ℓ2(Z) to L2(R) such that

s

Θα : f [n] 7→ f [n]
s

Θαφ(t) = e−j t2

2
cotα ·

[(
f [n]ej

n2

2
cotα
)

s∗ φ(t)
]

(19)

where
s∗ denotes the semi-discrete ordinary convolution operator. The semi-

9
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discrete fractional convolution can be rewritten as

f [n]
s

Θαφ(t) =
∑

n∈Z
f [n]φ(t− n)e−j t2−n2

2
cotα (20)

which satisfies

f [n]
s

Θαφ(t)
Fα

←→
√
2πF̃α(u)Φ (u cscα) . (21)

3. Sampling and reconstruction of signals in the fractional Fourier

domain without band-limiting constrains

3.1. A sampling theorem for the FRFT without band-limiting constraints

Most known sampling theories of the FRFT consider the class of band-

limited functions, which can be expanded in terms of translation and chirp-

modulation of the sinc function [6–9, 11, 12, 16], see (5). To derive a sampling

theorem for the FRFT without band-limiting constraints, we start with an

appropriate function φ(t) ∈ L2(R), and define the function space as

Vα(φ) =
{
∑

n∈Z
c[n]φ(t− n)e−j t2−n2

2
cotα

∣∣∣∣ c[n] ∈ ℓ2(Z)

}
(22)

where φ(t) ∈ L2(R) is called the generator of Vα(φ). Intrinsically, the present

formulation has the same conceptual simplicity as the band-limited model

(φ = sinc) defined in (5). For simplicity, we let

φn,α(t) , φ(t− n)e−j t2−n2

2
cotα. (23)

10
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The definition of the space Vα(φ) in (22) makes sense if there exists a positive

number 0 < B < +∞ such that

∥∥∥∥∥
∑

n∈Z
c[n]φn,α(t)

∥∥∥∥∥

2

L2

≤ B ‖c[n]‖2ℓ2 (24)

for all c[n] ∈ ℓ2(Z). If, in addition, we have the lower bound

A ‖c[n]‖2ℓ2 ≤
∥∥∥∥∥
∑

n∈Z
c[n]φn,α(t)

∥∥∥∥∥

2

L2

(25)

where A > 0, then it follows from [14] that Vα(φ) is a closed subspace of

L2(R), and the set of functions {φn,α(t)}n∈Z is a Riesz basis for Vα(φ) ⊂

L2(R). Note that if the sequence
∑

n∈Z c[n]φn,α(t) of elements in Vα(φ)

is convergent in L2(R), then the inequality in (25) implies that {c[n]}n∈Z
is a Cauchy sequence in ℓ2(Z). Thus, it converges to an element c′[n] ∈

ℓ2(Z). The inequality in (24) then implies that
∑

n∈Z c[n]φn,α(t) converges to

∑
n∈Z c

′[n]φn,α(t) ∈ Vα(φ) as n tends to infinity. Finally, if
∑

n∈Z c[n]φn,α(t) =

0, then (25) implies that c[n] = 0 for all n ∈ Z. Hence, {φn,α(t)}n∈Z is a basis

of Vα(φ). Our goal is then to find conditions on φ(t) for Vα(φ) to be a well-

defined subspace of L2(R), and for {φn,α(t)}n∈Z to be its Riesz basis. Towards

this end, when taking the FRFT of an element
∑

n∈Z c[n]φn,α(t) ∈ Vα(φ), and

11
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using (9), (21), and (14), we arrive at

∥∥∥∥∥
∑

n∈Z
c[n]φn,α(t)

∥∥∥∥∥

2

L2

=

∫

R

∣∣∣
√
2πC̃α(u)Φ (u cscα)

∣∣∣
2

du

= 2π
∑

k∈Z

∫

I

∣∣∣C̃α(u+ 2kπ sinα)
∣∣∣
2

|Φ (u cscα + 2kπ)|2 du

= 2π

∫

I

∣∣∣C̃α(u)
∣∣∣
2

G2
φ,α(u)du

(26)

where Gφ,α(u) is defined as

Gφ,α(u) ,

(
∑

k∈Z
|Φ (u cscα + 2kπ)|2

) 1
2

. (27)

Clearly, if A ≤ 2πG2
φ,α(u) ≤ B, then it follows from (26) and (13) that

{φn,α(t)}n∈Z suffices (8), and (24) and (25) can be established. Overall, we

have proved the following theorem.

Theorem 1. Let φ(t) be a continuous function in L2(R). The space Vα(φ) is

a well-defined, closed subspace of L2(R) with Riesz basis {φn,α(t)}n∈Z if and

only if there exist two positive constants 0 < A ≤ B < +∞ such that

A ≤ 2πG2
φ,α(u) ≤ B, a.e. u ∈ R (28)

Based on the above facts, we have the following sampling theorem for the

12
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FRFT without band-limiting constraints.

Theorem 2. Let φ(t) be a continuous function in L2(R). Suppose that

{φn,α(t)}n∈Z is a Riesz basis for the subspace Vα(φ) of L2(R) such that the

sampling sequence at integers {φ[n]}n∈Z belongs to ℓ2(Z). Then, there exists

a function s(t) ∈ L2(R) with s(t)e−j t2

2
cotα ∈ Vα(φ) such that

f(t) =
∑

n∈Z
f [n]s(t− n)e−j t2−n2

2
cotα

(29)

holds for all f(t) ∈ Vα(φ) in L2(R) sense, if and only if

1√
2πΦ̃ (u cscα)

∈ L2(I) (30)

holds. In this case, S(u cscα) = Φ(u cscα)√
2πΦ̃(u cscα)

holds for a.e. u ∈ R.

Proof. Sufficiency: First assume that (30) holds. Thus, Φ̃ (u cscα) 6= 0

holds for a.e. u ∈ R. By (15), there exists a sequence {c[n]}n∈Z ∈ ℓ2(Z) such

that

1√
2πΦ̃ (u cscα)

=
∑

n∈Z
c[n]ej

n2

2
cotα−jun cscα

(31)

13
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holds in the L2(I) sense. Next, since Φ̃ (u cscα) is 2π sinα periodic, we derive

∫

R

∣∣∣∣∣
Φ (u cscα)√
2πΦ̃ (u cscα)

∣∣∣∣∣

2

du =
∑

k∈Z

∫

I

∣∣∣∣∣
Φ (u cscα + 2kπ)√

2πΦ̃ (u cscα)

∣∣∣∣∣

2

du

=

∫

I

G2
φ,α(u)∣∣∣

√
2πΦ̃ (u cscα)

∣∣∣
2du

(32)

from which along with (28), it follows that

∫

R

∣∣∣∣∣
Φ (u cscα)√
2πΦ̃ (u cscα)

∣∣∣∣∣

2

du ≤ ‖Gφ,α(u)‖2∞
∫

I

1
∣∣∣
√
2πΦ̃ (u cscα)

∣∣∣
2du (33)

which implies that Φ(u cscα)√
2πΦ̃(u cscα)

∈ L2(R). Thus, we can derive

S (u cscα) = F {s(t)} (u cscα) , Φ (u cscα)√
2πΦ̃ (u cscα)

. (34)

Then, substituting (31) into (34) gives the rise to

S (u cscα) = Φ (u cscα)
∑

n∈Z
c[n]ej

n2

2
cotα−jun cscα. (35)

Using (10) and (34) yields

Fα
{
s(t)e−j t2

2
cotα
}
(u) =

√
2πAαe

j u2

2
cotαF {s(t)} (u cscα)

=
√
2πΦ (u cscα)

∑

n∈Z
c[n]Kα(u, n)

=
√
2πC̃α(u)Φ (u cscα) .

(36)

14
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Now combining (36), (21), and (20), we derive

s(t)e−j t2

2
cotα =

∑

n∈Z
c[n]φ(t− n)e−j t2−n2

2
cotα

(37)

which implies that
(
s(t)e−j t2

2
cotα
)
∈ Vα(φ) since

{
φ(t− n)e−j t2−n2

2
cotα
}

n∈Z

forms a Riesz basis for Vα(φ). Moreover, by assumption, for any continuous

function f(t) ∈ Vα(φ), it follows that

f(t) =
∑

m∈Z
p[m]φ(t−m)e−j t2−m2

2
cotα, t ∈ R (38)

where p[m] ∈ ℓ2(Z). Then, combining (38), (20), and (21) shows

Fα(u) =
√
2πP̃α(u)Φ (u cscα) (39)

from which along with (34), it follows that

Fα(u) = 2πP̃α(u)Φ̃ (u cscα)S (u cscα) . (40)

Next, by (38), we let

f [n] =
∑

m∈Z
p[m]φ[n−m]e−j n2

−m2

2
cotα, n ∈ Z. (41)

Then, {f [n]}n∈Z ∈ ℓ∞(Z) is well defined since {p[n]}n∈Z and {φ[n]}n∈Z are

15
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both ℓ2(Z) sequences. In fact,

f [n]→ 0 as |n| → ∞. (42)

The proof of (42) is as follows. Since P̃α(u) and Φ̃ (u cscα) are both in

L2(I), clearly P̃α(u)Φ̃ (u cscα) 2πe−j u2

2 cotα
√
1−j cotα

belongs to L1(I). Then, the Fourier

coefficients of this L1(I) function are derived as

1

2π sinα

∫

I

(
P̃α(u)Φ̃ (u cscα)

2πe−j u2

2
cotα

√
1− j cotα

)
ejnu cscαdu

=
cscα√

1− j cotα

∫

I

∑

m∈Z
p[m]Kα(u,m)Φ̃(u cscα)e−j u2

2
cotαejun cscαdu

=
1√
2π

∫

I

(
∑

m∈Z
p[m]ej

m2

2
cotα

)
Φ̃(u cscα)e−j(n−m)u cscαd(u cscα)

=
∑

m∈Z
p[m]ej

m2

2
cotα


 1√

2π

∫

I

Φ̃(u cscα)e−j(n−m)u cscαd(u cscα)




=
∑

m∈Z
p[m]φ[n−m]ej

m2

2
cotα

= f [n]ej
n2

2
cotα.

(43)

Due to the Riemann–Lebesgue Lemma [18], f [n]ej
n2

2
cotα as the Fourier co-

efficients of the L1(I) function tends to 0 as n tends to infinity. This implies

16
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that (42) holds. Next, taking the inverse FRFT of both sides of (40) yields

f(t) =

∫

R

2πP̃α(u)Φ̃ (u cscα)S (u cscα)K−α(u, t)du

=

∫

R

2π
∑

m∈Z
p[m]Kα(u,m)

1√
2π

∑

n′∈Z
φ[n′]e−jn′u cscα

× S (u cscα)K−α(u, t)du

=
∑

n′∈Z

∑

m∈Z
p[m]φ[n′]e−j t2−m2

2
cotα

× 1√
2π

∫

R

S (u cscα) ej(t−n′−m)u cscαdu cscα

=
∑

n′∈Z

∑

m∈Z
p[m]φ[n′]e−j t2−m2

2
cotαs(t− n′ −m)

=
∑

n∈Z

∑

m∈Z
p[m]φ[n−m]e−j t2−m2

2
cotαs(t− n)

(44)

Then, substituting (41) into (44) gives the rise to (29).

Necessity: On the contrary, suppose that there exists a function s(t) ∈

L2(R) with s(t)e−j t2

2
cotα ∈ Vα(φ) such that (29) holds in the L2(R) sense.

Since φn,α(t) ∈ Vα(φ) holds for any n ∈ Z, it follows that φ0,α(t) ∈ Vα(φ),

i.e., φ(t)e−j t2

2
cotα ∈ Vα(φ). Then, replacing f(t) with φ(t)e−j t2

2
cotα in (29)

yields

φ(t)e−j t2

2
cotα =

∑

n∈Z

(
φ[n]e−j n2

2
cotα
)
s(t− n)e−j t2−n2

2
cotα

(45)

17
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which reduces to

φ(t)e−j t2

2
cotα =

∑

n∈Z
φ[n]s(t− n)e−j t2

2
cotα. (46)

Now, taking the FRFT of both sides of (46) yields

√
2πAαe

j u2

2
cotα 1√

2π

∫

R

φ(t)e−jtu cscαdt

= 2πAαe
j u2

2
cotα 1√

2π

∑

n∈Z
φ[n]e−jnu cscα

× 1√
2π

∫

R

s(t− n)e−j(t−n)u cscαdt

(47)

Then, we derive

Φ (u cscα) =
√
2πΦ̃ (u cscα)S (u cscα) (48)

which implies that suppΦ (u cscα) ⊂ supp Φ̃ (u cscα) holds for a.e. u ∈ R,

i.e., suppΦ (u cscα + 2kπ) ⊂ supp Φ̃ (u cscα) holds for all k ∈ Z and for a.e.

u ∈ R due to the fact that Φ̃ (u cscα) is 2π sinα periodic. We show

⋃

k∈Z
suppΦ (u cscα + 2kπ) = R (49)

holds except for a zero measure subset of R. Otherwise, there is a measurable

subset δ with measure |δ| 6= 0 such that δ = R−
⋃

k∈Z suppΦ (u cscα + 2kπ).

Then, Φ (u cscα + 2kπ) = 0 holds for any u ∈ δ and for all k ∈ Z. Therefore,

18
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Gφ,α(u) =
(∑

k∈Z |Φ (u cscα + 2kπ)|2
) 1

2 = 0 holds for any u ∈ δ. However,

by (28), Gφ,α(u) 6= 0 holds for a.e. u ∈ R. It forces (49) to hold for a.e.

u ∈ R. Hence, supp Φ̃ (u cscα) ⊃
⋃

k∈Z suppΦ (u cscα + 2kπ) holds for a.e.

u ∈ R, i.e., Φ̃ (u cscα) 6= 0 for a.e. u ∈ R. Then, (48) can be rewritten as

Φ (u cscα)√
2πΦ̃ (u cscα)

= S (u cscα) . (50)

Since S (u cscα) ∈ L2(R), we have from (50) and (28)

∞ >

∫

R

|S (u cscα)|2 du =
∑

k∈Z

∫

I

∣∣∣∣∣
Φ (u cscα+ 2kπ)√

2πΦ̃ (u cscα)

∣∣∣∣∣

2

du

=

∫

I

G2
φ,α(u)∣∣∣

√
2πΦ̃ (u cscα)

∣∣∣
2du

≥ ‖Gφ,α(u)‖20
∫

I

1
∣∣∣
√
2πΦ̃ (u cscα)

∣∣∣
2du

(51)

which implies that (30) holds. This completes the proof of Theorem 2.

Corollary 1. If the generator φ(t) of the subspace Vα(φ) of L2(R) is chosen

as the sinc function sinc(t), then Theorem 2 reduces to the FRFT sampling

theorem for band-limited signals [6].

Proof. The continuity of φ(t) implies that the samples {φ[n]}n∈Z ∈ ℓ2(Z).

By applying Poisson’s summation formula of the FT [1], it follows that

Φ̃ (u cscα) =
∑

k∈Z Φ(u cscα + 2kπ). Then, we derive 1√
2πΦ̃(u cscα)

= 1 ∈

L2(I). This result implies that Theorem 2 can be applied. Note that
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S(u cscα) = Φ(u cscα)√
2πΦ̃(u cscα)

= Φ(u cscα). Hence, we have s(t) = sinc(t). Then,

the FRFT sampling theorem for band-limited signals [6] is established.

Sampling in space Vα(φ) that is not band-limited is a suitable and realistic

model for a variety of real applications, e.g., for real acquisition and recon-

struction devices, for modeling signals with smoother spectrum than is the

case with band-limited functions, or for numerical implementation. These

requirements can often be met by choosing an appropriate generator φ(t) of

Vα(φ). This may mean that φ(t) has a shape corresponding to a particular

“impulse response” of a device, or that it is compactly supported, or that it

has a spectrum |Φ(u cscα)| that decays smoothly to zero as |u| → ∞.

3.2. Truncation error

When the sampling theorem is applied to recover signals, we should know

how many items we need to calculate so that the recovered signal is close to

the original one as excepted. Then, the truncation error defined as

e(t) =
∑

|n|≥N

f [n]s(t− n)e−j t2−n2

2
cotα (52)

for f(t) ∈ Vα(φ) should be estimated. However, we need a slightly stronger

constraint to be imposed on the generator φ(t) of Vα(φ) than in Theorem 2.

Theorem 3. Let φ(t) be a continuous function in L2(R). Assume that

{φn,α(t)}n∈Z is a Riesz basis for the subspace Vα(φ) of L2(R) such that

{φ[n]}n∈Z ∈ ℓ2(Z) and 1

Φ̃(u cscα)
∈ L∞(I). Then, the truncation error is
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bounded by

‖e(t)‖L2 ≤



∑

|n|≥N

|f [n]|2



1
2 ∥∥∥∥∥

Gφ,α(u)

Φ̃(u cscα)

∥∥∥∥∥
∞

. (53)

Proof. Taking the FRFT of both sides of (52) gives the rise to

Eα(u) = Fα {e (t)} (u) =
√
2π
∑

|n|≥N

f [n]Kα (u, n)S(u cscα) (54)

from which along with (9), it follows that

‖e(t)‖2
L2 =

∥∥∥∥∥∥

√
2π
∑

|n|≥N

f [n]Kα(u, n)S(u cscα)

∥∥∥∥∥∥

2

L2

=

∫

R

∣∣∣∣∣∣

√
2π
∑

|n|≥N

f [n]

√
1− j cotα

2π
ej

n2

2
cotαe−jnu cscαej

u2

2
cotαS(u cscα)

∣∣∣∣∣∣

2

du

= cscα

∫

R

∣∣∣∣∣∣

∑

|n|≥N

f [n]ej
n2

2
cotαe−jnu cscα

∣∣∣∣∣∣

2

|S(u cscα)|2 du.

(55)

For simplicity, we let f̃ [n] = f [n]ej
n2

2
cotα. Since e−jnu cscα is 2π sinα periodic,
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(55) can be rewritten as

‖e(t)‖2
L2 = cscα

∑

k∈Z

∫

I

∣∣∣∣∣∣

∑

|n|≥N

f̃ [n]e−jn(u+2kπ sinα) cscα

∣∣∣∣∣∣

2

|S(u cscα + 2kπ)|2 du

= cscα
∑

k∈Z

∫

I

∣∣∣∣∣∣

∑

|n|≥N

f̃ [n]e−jnu cscα

∣∣∣∣∣∣

2

|S(u cscα + 2kπ)|2 du

= cscα

∫

I

∣∣∣∣∣∣

∑

|n|≥N

f̃ [n]e−jnu cscα

∣∣∣∣∣∣

2

∑

k∈Z
|S(u cscα + 2kπ)|2 du.

(56)

Then, applying (50), (28), and Parseval’s formula of the DTFT [1] yields

‖e(t)‖2
L2 = cscα

∫

I

∣∣∣∣∣∣
1√
2π

∑

|n|≥N

f̃ [n]e−jnu cscα

∣∣∣∣∣∣

2

G2
φ,α(u)∣∣∣Φ̃(u cscα)

∣∣∣
2du

≤
∥∥∥∥∥

Gφ,α(u)

Φ̃(u cscα)

∥∥∥∥∥

2

∞

∫

I

∣∣∣∣∣∣
1√
2π

∑

|n|≥N

f̃ [n]e−jnu cscα

∣∣∣∣∣∣

2

d (u cscα)

=

∥∥∥∥∥
Gφ,α(u)

Φ̃(u cscα)

∥∥∥∥∥

2

∞

∑

|n|≥N

|f̃ [n]|2 =
∥∥∥∥∥

Gφ,α(u)

Φ̃(u cscα)

∥∥∥∥∥

2

∞

∑

|n|≥N

|f [n]|2

(57)

so that (53) can be established.

3.3. Applications

In many problems of practical interest one is interested in the samples of

a chirp signal f(t) which is ubiquitous in radar, sonar, and communications

systems [2, 19]. The FRFT sampling theory states [9] that the Nyquist rate
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for sampling a chirp signal is lower than the one used in conventional Fourier

theory. The signal f(t) can be derived as follows [6]:

f(t) =
∑

n∈Z
f [n] sinc(t− n)e−j t2−n2

2
cotα. (58)

In practice one only has a finite number of samples of the function of interest,

and therefore, this methodology is rarely used in real applications because

of the slow decay of the sinc function. Now, we focus on the same problem

based on the established FRFT sampling theory.

Based on the derived results, we can rewrite f(t) as an expansion in terms

of a general interpolation function s(t) in (29). By Corollary 1, (58) can

be viewed as a special case of (29) with φ(t) chosen as sinc(t) in Theorem

2. Our objective is then to choose a generator φ(t) of Vα(φ), which has

faster time decay than the sinc function. For instance, we choose φ(t) =

β3(t), which is the cubic spline [20]. By applying the results of [20], we

derive Φ(u cscα) = sinc4
(
u cscα
2π

)
. By Theorem 4.5 of [22], it follows that

A3 ≤ Gφ,α(u) ≤ 1, where A3 is the positive number defined in (4.2.21) with

m = 3 in [22]. Hence, β3(t) satisfies the conditions for a Riesz basis in Vα(φ).

Additionally, β3(t) has support on [0, 4), and its values on the integers are

β3(1) = β3(3) = 1
6
, β3(2) = 2

3
[20]. Then, it follows that Φ̃(u cscα) =

1
6
e−ju cscα (1 + 4e−ju cscα + e−j2u cscα) which has no zeros for real u. Indeed,

the polynomial 1 + 4z + z2 has zeros at z1 = −2 −
√
3, z2 = −2 +

√
3.

Hence, 1/Φ̃(u cscα) may be found by using its Laurent series [21], and the
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interpolation function s(t) can be derived as

s(t) =
√
3

∞∑

n=0

(
√
3−2)n+1β3(t−n+1)+

√
3

∞∑

n=1

(
√
3−2)n−1β3(t+n+1). (59)

For the purpose of illustration, we observe a signal given by

f(t) = [2 sin(0.4πt) + 5 sin(0.5πt) + 7 sin(0.6πt)] e−j0.5kt2 (60)

where k = 2. It is band-limited in the fractional Fourier domain with α =

arccot(k). The maximum FRFT-frequency value of the signal is 0.6π sinα.

Following Xia’s result in [6], the sampling rate ∆α should satisfy ∆α ≤
π sinα

2×0.6π sinα
. In our example, we choose ∆α = 1

2
. The original signal f(t)

and its corresponding samples are shown in Fig. 1.

�4 �2 0 2 4�15
10
505
101520

Time
A mpli t ud e

Original signalSampling points
(a)

74 92 0 2 4>15A10D505
101520

Time
A mpli t ud e

Original signalSampling points
(b)

Fig. 1: The original signal and sampling points: (a) Real parts and (b) Imaginary parts.

Now, we try to recover f(t), t ∈ [−4, 4] using (29) (with φ chosen as

a cubic spline) against the case of sinc interpolation (or φ = sinc) under

the condition that the number of sampling points is constrained to 19. The
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original and recovered signals are plotted in Fig. 2. Note that in Fig. 2,

n4 p3 r2 t 1 0 1 2 3 4{40~30�20� 10010
203040

Time
A mpli t ud e �0 .26 ¢0 .25 §0 .24¬6®5 .9²5 .8¶5 .7

Original signalRecovered signal using cubic splineRecovered signal using FRFT sinc functionRecovered signal using classic nonòFRFT sinc function
(a)

÷4 ù3 û2 ý1 0 1 2 3 4�40�30
20
10010
203040

Time
A mpli t ud e Original signalRecovered signal using cubic splineRecovered signal using FRFT sinc functionRecovered signal using classic non^FRFT sinc function

c0 .78 h0 .77 l0 .76 q0 .7577.27.4

(b)

Fig. 2: The original and recovered signals: (a) Real parts and (b) Imaginary parts.

the experimental results clearly show that for a finite number of samples and

truncated sinc function, the proposed sampling and reconstruction method

clearly outperforms the conventional sampling series expression given in (58).
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The normalized mean-square error (NMSE) of the proposed method is 6.725×

10−5, where the NMSE is defined as NMSE =
‖f̂(t)−f(t)‖2

L2

‖f(t)‖2
L2

, and f̂(t) denotes

the recovered signal. By comparison, when using (58) and the classic non-

FRFT sinc reconstruction, the NMSE are 2.0×10−3 and 0.4814, respectively.

Moreover, some of the ideas presented in this paper may be extended

to study problems associated with shift-invariant spaces (SISs) [14]. Let

V(φ) be the SIS generated by the L2-closure of the linear combination of

{φ(t− n)}n∈Z. The relationship between Vα(φ) and V(φ) is given by

f(t) ∈ Vα(φ)⇔ f(t)ej
t2

2
cotα ∈ V(φ). (61)

Consequently, {φn,α(t)}n∈Z is a Riesz basis (or a frame) for Vα(φ) if and only

if {φ(t− n)}n∈Z is a Riesz basis (or a frame) for V(φ), for which there are

many known results, e.g., nonuniform sampling and reconstruction, wavelets

and multiresolution analysis, oversampling, compressed sensing, and frames

of translates [14, 24–29].

4. Conclusion

In this paper, we first introduced a class of function spaces and derived

basic properties of their basis functions. Then, we established a sampling

theorem for the FRFT in the function spaces without band-limiting con-

straints. The truncation error of sampling and some potential applications

of the derived results were also presented.
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