
A Fast Algorithm for Finding Correlation Clusters
in Noise Data

Jiuyong Li1, Xiaodi Huang2, Clinton Selke3, and Jianming Yong4

1 School of Computer and Information Science, University of South Australia, Mawson Lakes
Adelaide, Australia, 5095jiuyong.li@unisa.edu.au ,

2 Department of Mathematics, Statistics and Computer Science, The University of New
England, Armidale, Australia, 2350,xhuang@turing.une.edu.au ,

3 Department of Mathematics and Computing, The University of Southern Queensland,
Australia,clinux rulz@hotmail.com ,

4 Department of Information Systems, University of Southern Queensland, Australia,
Jianming.Yong@usq.edu.au

Abstract. Noise significantly affects cluster quality. Conventional clustering meth-
ods hardly detect clusters in a data set containing a large amount of noise. Pro-
jected clustering sheds light on identifying correlation clusters in such a data set.
In order to exclude noise points which are usually scattered in a subspace, data
points are projected to form dense areas in the subspace that are regarded as cor-
relation clusters. However, we found that the existing methods for the projected
clustering did not work very well with noise data, since they employ randomly
generated seeds (micro clusters) to trade-off the clustering quality. In this paper,
we propose a divisive method for the projected clustering that does not rely on
random seeds. The proposed algorithm is capable of producing higher quality
correlation clusters from noise data in a more efficient way than an agglomer-
ation projected algorithm. We experimentally show that our algorithm captures
correlation clusters in noise data better than a well-known projected clustering
method.

Keywords: generalised projected clustering, SVD decomposition.

1 Introduction

Clustering is a classical technique in computing and statistics. Noise deteriorates cluster
quality significantly and prevents finding meaningful clusters when the amount of noise
is big. It is difficult to distinguish noise data objects from normal ones when we do not
have prior knowledge about the data. However, clustering can serve as the first step to
explore such a data set with noise, particularly when the prior knowledge about the data
is unavailable.

Generalised projected clustering sheds light on solving this problem by finding cor-
related clusters. When data objects are projected to a data subspace using Singular Value
Decomposition (SVD) or PCA, the correlation clusters are condensed to a small area

1 This work was done when J Li was with Department of Mathematics and Computing of Uni-
versity of Southern Queensland. This work was partially supported by Australian Research
Council Discovery Grant DP0559090.

jiuyong.li@unisa.edu.au�
xhuang@turing.une.edu.au�
clinux_rulz@hotmail.com�
 Jianming.Yong@usq.edu.au�

whereas noise data objects scatter across the projected space. Therefore, it is possible
to separate correlated data objects from noise ones.

Most existing projected clustering methods use agglomeration methods to find cor-
relation clusters. A big data set is randomly partitioned into a large number of mi-
cro clusters, and then an agglomeration approach is used to group correlation clusters.
When correlated data are split into a number of micro clusters, they themselves be-
come noise too. This process of randomly generated seeds affects the quality of found
clusters. When a process for noise elimination is employed, many data objects in the
correlation clusters are removed before they are grouped into clusters. Some well known
examples of generalized projected clustering are PROCLUS [2], ORCLUS [1], 4C [4],
CURLER algorithm [5] and HARP [7]. We do not consider axis-parallel projection
methods, also called subspace clustering, such as CLIQUE [3], and EPCH [6].

Instead of agglomerating randomly generated micro clusters into final clusters, we
partition a data set into clusters in a top-down manner. The key idea for such a divi-
sive method is to find a suitable criterion for data partition. We capture the direction
of the largest variance of data using the corresponding principle vector, thereby taking
small risk of partition correlation clusters into separate clusters. We employ grouping
technique used in agglomeration methods to group correlation clusters after partitions.
The proposed divisive projected clustering method preserves the essence of projected
clustering, overcoming the drawbacks of existing projected clustering methods. In ad-
dition, the proposed algorithm is significantly more efficient than most agglomeration
algorithms.

2 Problem definitions

Projected clustering searches for hidden subspaces together with a set of data objects
such that data objects are closed with each other in the lower dimensional subspaces.
The hidden data spaces are found by using SVD decomposition. Eigenvectors corre-
sponding to eigenvalues with low spreads forms a subspace. The intuitive explanation
for this is as follows (see more justifications in Section 4). When the covariance matrix
of a set of correlated points is decomposed by SVD, some eigenvalues should be zero
or close to zero. All the points are projected along a line in the subspace spanned by
eigenvectors corresponding to these zero eigenvalues. In other words, the tightness of
objects in the subspace defined by eigenvectors associated with the lowest eigenvalues
is an alternative to measuring the correlation level of data objects.

Formally, letD be a dataset ofm data objects (row vectors) being treated asd-
dimensional feature (column) vectors.oi ∈ D stands for thei-th object inD where
oi = (oi1, oi2, . . . , oid). Simply, we haveD = [oij], 1 ≤ i ≤ m, and1 ≤ j ≤ d.

Definition 1. Generalised projected clustering
Given the user-specifiedl andk, a data setD is partitioned intok disjoint subsetsD1,
D2, . . . , Dk horizontally, such that, for all1 ≤ p ≤ k, Sp containsl close to zero
eigenvalues, whereUpSpV

T
p = cov(Dp) (cov is the covariance matrix ofDp, the SVD

decomposition of which results inUp, Sp, andV T
p).

Data points are clustered based on their closeness in some projected subspaces in-
stead of the original space. This clustering captures correlations among data points.

To measure the closeness of data points in a subspace, the projected distance is
defined as following.

Definition 2. Projected distance
LetDp be a subset of a dataD. UpSpV

T
p = cov(Dp) (cov(Dp) is thed×d covariance

matrix of Dp, andUp, Sp, and V T
p are results of SVD decomposition). LetE be the

set of eigenvectors corresponding tol smallest eigenvalues. A data objectp ∈ D is
projected toE = (e1, e2, . . . , el) space as(p · e1,p · e2, . . . ,p · el). The projected
distance of objectsp andq, denoted byPdist(p,q, E),is their Euclidean distance in
projected spaceE.

The projected distance between two data points is the Euclidean distance between
their projected images in a subspace. This distance varies in different subspaces.

To measure the projected distance variation over a group of data points in a sub-
space, the projected energy is defined as the following.

Definition 3. Projected energy
The projected energy of data setDp is defined asEnergy(Dp, E) =

∑i=N
i=1 Pdist(oi, c, E)/N ,

whereN is the number of objects inDp, c the centroid of all objects inDp, andE an
associated subspace.

The smaller the projected energy, the denser the data point in the subspace. In clus-
tering, low projected energy is preferred.

In projected clustering, the traditional distances between data objects are replaced
by the projected distances in subspaces. However, there are no uniform and invariant
distances in projected clustering since each tentative cluster has its own subspace. In
other words, the distance between two objects varies in different subspaces.

Projected distances have been studied in statistics. The Mahalanobis distance [8]
measures distance between two objects by using a set of reference data. But the Maha-
lanobis distance is the projected distance in the entire space. The generalised projected
distance is defined in a subspace, and is a generalised Mahalanobis distance.

As mentioned before, the ORCLUS algorithm [1] presents a variant agglomerative
method to findk projected clusters. First,D are randomly partitioned intok0 initial
data subsetsD1, D2, . . . , Dk0 , wherek0 >> k. If each data object is considered as
an initial micro cluster, then the computational cost will be too expensive. The smaller
k0, the faster the ORCLUS. However, the high quality of clusters is sacrificed ifk0 is
small.

Second, ORCLUS performs the following two iterations:

1. Merge pairs of clusters with the smallest, combined project energy until the number
of clusters is down tokp (determined by a parameter for the step sizeα).

2. Redistribute all data objects to thekp clusters according to their respective, pro-
jected distance to each cluster center. An object is assigned to the cluster with the
smallest, projected distance.

The above procedure terminates untilkp = k with a parameterα to control the
step size. If the step parameter is big, then a lot of merge occur in one iteration and the
quality of final clusters is not guaranteed. If the step parameter is small, the execution
time is increased.

A significant computational cost of the algorithm is from the decomposition of a
data subsetDi. The complexity of such a decomposition is determined by the the num-
ber of dimension (attributes). Specifically, it costsO(d3). Moreover, the computation
has to be done in each merger of two data subsets. The complexity of the ORCLUS
algorithm is therefore as high ask3

0 + k0Nd + k2
0d

2
0.

A heuristic way of speeding up the ORCLUS algorithm is to makek0 small and to
conduct more merges in each step. However, the quality of clustering has been traded
off. This problem is caused by the fact that ORCLUS is an agglomerative algorithm
and too many merges are required to form a small number of clusters. In contrast, the
divisive method needs much less steps to form clusters.

3 Divisive Projected clustering (DPCLUS)

Large computational costs of projected clustering lie in computing covariance matrixes
and SVD (or PCA) decomposition. The computational costs of covariance matrixes
and SVD (or PCA) decomposition is largely determined by the number of attributes,d,
rather than the number of objects in a data setNi.

In most applications, we havek << m wherem is the number of objects in the data
set, andk is the number of clusters. Therefore, a top-down method (divisive method)
needs significantly less number of computations of covariance matrixes and SVD (or
PCA) decomposition than a bottom-up one (agglomerative method).

A key question is how to partition the data. Given a dataset, the projected cluster
problem can be regarded as the one of partition of the dataset intok clusters such that
the sum of the projected distance of each data object to its cluster centroid is mini-
mized. Compared to the clustering in full-dimensional space, the projected clustering
makes use of the projected distance instead of the full-dimensional distance. Recall that
we need to find a best subspace and their associated subsets of data objects such that
the sum of the projected distances of data objects to their centroids is minimized. The
number of the projected clusters in our algorithm is given. So it is to determine only the
directions of spanning vectors. Within one cluster the optimal direction of the vector to
which its associated data objects are projected should reflect the minimal variance of
these data. An eigenvalue is numerically related to the variance it captures. The higher
the value, the more variance it has captured. The principal vector defines a projection
that encapsulates the maximum amount of variation in a dataset. This principal vector
is in fact the eigenvector with the highest corresponding eigenvalue.

We make use of the principle vector of eigenvectors. All data objectsD are projected
to the principle vector as discussed in the previous section, and the centroid separates
data into two groups:D1 andD2. D1 contains data objects whose projected values are
greater than or equal to the means, andD2 contains the rest.

The pseudo code of the algorithm is listed below.

DPCLUS algorithm (Divisive Projected clustering)
Input: data setD, cluster numberk, subspace dimensionl, the minimum object numberminN ,
and the minimum distance for excluding outliersδ
Output: ≥ k projected clusters

initialise an empty treeT ;
let the root ofT storeD;
where(the number of leaves ofT < k)

foreachDi stored in a leaf of the newest layer
Partition (Di);

Redistribute (all data sets stored in the leaves of the newest layer);
outputdata sets stored in all leaves ofT ;

Function Partition(Di)
if Di satisfies Definition 1 or|Di| < minN

thenterminate the leaf storingDi andreturn;
split Di into Di1 andDi2 by the centroid in the principal vector;
insert two son leaves of the node storingDi to storeDi1 andDi2;

Function Redistribution(all data sets stored in the newest layer)
foreachdata objectp in all data sets stored in the newest layer

foreachdata setDj stored in the newest layer
computethe projected distance betweenp and the center ofDj ;
if projected distances ofp to all data sets> δ

thenexcludep from future clustering;
elseassignp to the data set with the smallest projected distance;

The DPCLUS algorithm partitions a data set into clusters in a top- down manner.
The splitting point is the centroid of data objects projected to the principal vector. This
saves a lot of computation for covariance matrixes and SVD decompositions as done in
the ORCLUS algorithm. The sole dependence on the principal vector to separate data is
rough and does not produce quality clusters. We design theRedistribution function to
minimise the projected energy of each clusters after clusters are formed by partitions.

The number of final clusters can be greater thank because the number of leaves is
not tested until all data sets stored in the newest tree layer are split and redistributed.

Outliers affect the quality of final clusters very much since they change the orien-
tations of data objects greatly. Some data objects may not belong to any cluster and
are considered outliers. To deal with this problem, we set an outlier threshold in Re-
distribution step, sayδ. When the projected distance of a data object to any cluster is
greater thanδ, then the data object is considered as an outlier and is excluded from the
subsequent clustering.

We discuss the complexity of the algorithm in the following.
It is assumed thatk denotes the number of final classes,N the number of data

objects,d the dimension of the data set, andl the dimension of subspace.
The cost for partition iskd3/2. d3 comes from computing covariance matrices and

SVD decomposition for a cluster. Since the partition is conducted in a binary way,
the number of total partitions isk. Each partition requires a SVD decomposition to
determine the subspace.

After the partition, each cluster has to be decomposed again to determine whether
or not it satisfies the projected clustering requirement. If no, it will participate in redis-
tribution. The number of such decomposition is2k, and hence the costs for the decom-
positions is2kd3. All clusters are projected tol dimensional subspaces, and each data
object has to be checked against each cluster. Therefore, the total costs for distribution
is kNl.

In sum, the computational complexity for the DPCLUS algorithm isO(3kd3 +
kNd). Note that we could not do much for termd3 since it is for computing a covariance
matrix and a SVD decomposition. However, the proposed algorithm has reduced the
number of such computations significantly.

Our DPCLUS algorithm is faster than most exiting generalised projected clustering
algorithms. We compare the time complexities in the table below.

Algorithms Time complexities
ORCLUS [1] O(k3

0 + k0Nd + k2
0d

2
0)

4C [4] O(d2NlogN + d3N)(with data index)
O(d2N2 + d3)(without data index)

CURLER [5] O(k0Nd2 + k0d
3) + O(Nl2 + k2

0), wherek0 > k
HARP [7] O(d2N2 + N2log2N)
DPCLUS O(3kd3 + kNd)

It should be noted that in order to speed up, some algorithms make use of techniques
such as heuristics, small number of micro-clusters, and random samples. However, these
techniques come with a price; that is, some of the clustering quality must be sacrificed.

4 Experimental evaluation

4.1 Efficiency comparison to ORCLUS

We use synthetic data sets for this experiment. More details about how these data sets
were generated will be given in the following subsection.

For the test of scalability with the size of data sets, the data sets each contain 10
attributes and up to 300,000 objects. For the test of scalability with the number of at-
tributes, the data sets each contain 100,000 objects and up to 50 attributes. The number
of embedded clusters is fixed to 20 for the above two tests.

l is set to 10 for both methods.k0 is set to15× k to make ORCLUS efficient.δ for
both methods is set as 0.01.minN varies for different data sets, but is set as the same
for both methods. A value less than 0.0001 is consider as 0 in the experiments to test
the satisfaction of Definition 1.

Figure1 shows that DPCLUS is more efficient than ORCLUS in large data sets as
well as in high dimensional data sets. Consider that most computational time for pro-
jected clustering is spent on data decomposition, whose time complexity is cubic to
the dimension and independent of the data set size. DPCLUST outperforms ORCLUS
significantly in high dimensional data sets since it reduces the number of data decom-
positions significantly.

1 1.5 2 2.5 3

x 10
4

400

600

800

1000

1200

1400

1600
Running time vs The number of objects

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

The number of objects

ORCLUS
DPCLUS

10 20 30 40 50
1000

1500

2000

2500
Running time vs The number of attributes

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

The number of attributes

ORCLUS
DPCLUS

Fig. 1.The scalability of DPCLUS in comparison to that of ORCLUS

4.2 Clustering quality

To demonstrate the clustering quality of DPCLUS, we compare it to three clustering
methods on a synthetic data set. We embedded 20 clusters that are correlated in some
subspaces over a set of random data objects. The data set contains 10,000 data objects,
with each object having 20 attributes. Each embedded cluster contains 250 data ob-
jects, which have 10% variations from the original pattern. Other 5,000 data objects are
random data objects generated by the uniform distribution.

We set the parameters of DPCLUS asl = 10, k = 20, minN = 50, andδ = 0.01.
The results from DPCLUS are shown in Figure2. DPCLUS is able to find all embedded
clusters correctly. Althoughk is set as 20 in the experiment, the number of final clusters
can be any integer number between 20 to 32, because the number of clusters is not
tested until all data sets stored in the newest tree layer are split and redistributed. The
number of the found clusters are greater than 20, since some clusters are split into
two. For example, clusters at row 2: 1 and 2 are from the same cluster. DPCLUS has
successfully identified cluster patterns from random data.

We set the parameters of ORCLUS ask = 20, l = 10, k0 = 350, andδ = 0.01.
Figure2 shows a good result. ORCLUS identified fewer than a half of embedded clus-
ters with high quality. Since initial micro-clusters in ORCLUS is randomly chosen, the
final clusters vary in different executions.

We further show that bothk-means and hierarchical clustering methods failed to
find quality clusters in such noise data in Figure3. Data is sampled for hierarchical
clustering method because of efficiency constraint.

Fig. 2.Left: clusters found by DPCLUS, Right: clusters found by ORCLUS.

Fig. 3.Left: clusters found by kmeans. Right: Clusters found by hierarchical clustering.

5 Conclusions

We have presented a divisive, projected clustering algorithm for detecting correlation
clusters in highly noised data. The distinction of noise points from correlated data points
in a projected space offers benefits for projected clustering algorithms to discover clus-
ters in noise data. The proposed algorithm mainly explores this potential. Further, the
proposed algorithm is faster than most existing general projected clustering algorithms,
which are agglomerative clustering ones. Unlike those agglomerative algorithms, the
produced clusters by the proposed algorithm do not rely on the choice of randomly
generated initial seeds, and are completely determined by the data distribution. We ex-
perimentally show that the proposed algorithm is faster and more scalable than than
ORCLUS, a well-known agglomerative projected clustering, and that the proposed al-
gorithm detects correlation clusters in noise data better than ORCLUS.

References

1. C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in high dimensional
spaces. InProceedings of the 2000 ACM SIGMOD international conference on Management
of data (SIGMOD), pages 70–81, 2000.

2. C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast algorithms for projected
clustering. InProceedings of the ACM SIGMOD Conference, pages 61-72, 1999.

3. R. J. Aggrawal, J. Gehrke, D.Gunopulos, and P. Raghavan. Automatic subspace clustering
of high dimensional data for data mining applications. InProceedings of the ACM SIGMOD
Conference, pages 94-105, 1998, Seattle, WA.

4. C. Bhm, K. Kailing, P. Krger, and A. Zimek. Computing Clusters of Correlation Connected
objects. InProceedings of the ACM SIGMOD international conference on Management of
data, June 13-18,2004, Paris, France.

5. A. K. H. Tung, X. Xu, and B. C. Ooi. CURLER: finding and visualizing nonlinear correlation
clusters. InProceedings of the ACM SIGMOD international conference on Management of
data,pages 467-478, 2005.

6. E. Ng, A. Fu, and R. Wong. Projective Clustering by Histograms.IEEE Transactions on
Knowledge and Data Engineering, Vol. 17, No. 3, pages 369-383, March 2005.

7. K. Y. Yip, D. W. Cheung, and M. K. Ng. HARP: A Practical Projected Clustering Algorithm.
IEEE Transactions on Knowledge and Data Engineering, Vol. 16, No. 11, pp. 1387-1397,
Nov. 2004.

8. G. Taguchi, R. J. Taguchi, and R. Jugulum.The Mahalanobis-Taguchi Strategy: A Pattern
Technology System. John Wiley & Sons, 2002.

