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This study introduces a probabilistic framework for assessing active earth pressures in soils exhibiting 
spatial variability in friction angles and unit weight. These properties are modeled using random 
fields with log-normal distributions and spatial correlation lengths. Monte Carlo simulations (MCS) 
are integrated with finite element limit analysis (FELA) to evaluate the failure probability under 
different design safety factors. To improve computational efficiency and prediction accuracy, machine 
learning models, such as Multivariate Adaptive Regression Splines (MARS), are utilized to predict 
failure probabilities based on key spatial variability parameters. A two-phase optimization approach, 
combining Random Search and Adaptive Sampling, is employed to refine the hyperparameters of 
the machine learning model. Confidence intervals are incorporated to quantify prediction reliability, 
providing engineers with robust decision-making tools under uncertainty. Furthermore, adaptive 
finite element meshes are applied to capture irregular stochastic failure mechanisms, offering deeper 
insights into the impact of spatial variability. The study produces parametric results in the form of 
practical contour design charts, aiding engineers in optimizing safety margins while accounting for soil 
variability. By combining computational methods, machine learning, and uncertainty quantification, 
this research enhances geotechnical design practices, ensuring more reliable and cost-effective 
solutions.
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Accurate estimation of active earth pressures is essential for the design and stability assessment of retaining 
walls. Classical methods, such as Rankine’s1 and Coulomb’s2 theories, have long served as the foundation for 
geotechnical analysis, providing simplicity and computational efficiency based on assumptions of homogeneous 
soil properties, linear pressure distributions, and smooth failure surfaces. More recent approaches, such as the 
rigorous solutions proposed by Nguyen3, Nguyen et al.4 have enhanced analytical precision. However, these 
methods often rely on key simplifications that do not fully account for real-world complexities, including spatial 
variability in soil properties, depth-dependent behaviors, and irregular failure mechanisms. Soils, shaped by 
processes such as weathering, deposition, and stress history, are inherently heterogeneous. Ignoring this 
variability can lead to designs that are either overly conservative or insufficiently robust, ultimately compromising 
the structural integrity of retaining walls5.

Spatial variability in soil parameters, such as unit weight and internal friction angle, plays a significant role 
in geotechnical performance6–8. Early studies by Fenton et al.9 demonstrated how random fields influence active 
pressure distributions and failure mechanisms, emphasizing the need for probabilistic models to address these 
uncertainties. Similarly, Phoon and Kulhawy10 highlighted the importance of quantifying geotechnical variability 
to enhance design reliability. Building on this foundation, Soubra and Macuh11 utilized kinematic limit analysis 
to derive active and passive pressure coefficients, while Al-Bittar and Soubra12 applied sparse polynomial chaos 

1Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam. 2Smart Computing in Civil 
Engineering Research Group, Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam. 
3School of Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia. 4Laboratory for 
Computational Mechanics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho 
Chi Minh City, Vietnam. 5Faculty of Civil Engineering, School of Technology, Van Lang University, Ho Chi Minh City, 
Vietnam. email: nguyentan@tdtu.edu.vn

OPEN

Scientific Reports |         (2025) 15:8823 1| https://doi.org/10.1038/s41598-025-93091-5

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-93091-5&domain=pdf&date_stamp=2025-3-14


expansions (SPCE) to assess strip footings on spatially random soils. These studies underline the crucial role of 
advanced probabilistic approaches in capturing the effects of spatial heterogeneity.

Recent advancements have further refined the understanding of variability effects. Qian et al.13 highlighted 
the limitations of linear models in capturing irregular failure surfaces and active pressure distributions in non-
homogeneous soils. Building on this, Li and Yang14 incorporated soil cohesion and tensile strength cut-offs 
into three-dimensional (3D) retaining wall analyses, demonstrating that 3D effects provide more accurate 
stability predictions compared to two-dimensional models. Pan and Dias15 showcased the efficiency of sparse 
polynomial chaos expansions (SPCE) in high-dimensional probabilistic evaluations, illustrating its ability to 
reduce computational demands without sacrificing accuracy.

Despite these advancements, significant gaps remain in understanding active earth pressures under spatially 
variable and heterogeneous conditions. While research by Yang and Li16 investigated 3D seismic active earth 
pressures using kinematic limit analysis, few studies have systematically integrated spatial variability17, depth-
dependent soil behaviors18, and machine learning-based frameworks into probabilistic design19. Additionally, 
practical tools that provide actionable insights, such as uncertainty quantification, confidence intervals, 
sensitivity analyses, and design charts, are still lacking, leaving engineers with limited means to address these 
challenges in real-world applications. These gaps collectively emphasize the increasing reliance on probabilistic 
frameworks to model geotechnical systems under uncertainty.

Monte Carlo Simulations (MCS) remain the cornerstone of probabilistic geotechnics, providing a reliable 
method for quantifying failure probabilities and safety factors20,21. However, their computational intensity 
limits their practical application, especially when coupled with detailed finite element analyses. To address this 
challenge, surrogate modeling techniques and machine learning approaches, such as Multivariate Adaptive 
Regression Splines (MARS), have emerged as powerful tools for improving efficiency and accuracy in 
probabilistic analysis22. Machine learning has been increasingly employed for various geotechnical applications, 
including tunnel lining crack detection using deep learning-based models23, geostress classification through 
automatic machine learning frameworks24, and prediction of aftershock ground motions using generative 
adversarial networks25. In addition, recent advancements in neural networks have demonstrated significant 
improvements in site response analysis based on large-scale seismic databases26, underground seismic intensity 
measure predictions using conditional generative adversarial networks27, and spectral acceleration prediction 
of aftershocks with deep learning methods28. These advancements highlight the growing role of data-driven 
techniques in geotechnical engineering, demonstrating their potential to enhance efficiency, accuracy, and 
reliability in probabilistic modeling.

Among these data-driven techniques, MARS has emerged as a particularly effective surrogate model for 
probabilistic geotechnical analysis, offering both computational efficiency and interpretability. MARS excels 
in capturing complex, nonlinear relationships among variables while maintaining interpretability, which is an 
essential requirement for practical geotechnical applications. To enhance its performance, this study employs 
an optimization method for tuning the hyperparameters of the MARS model, including the maximum number 
of terms and maximum polynomial degree. A two-phase strategy combining Random Search and an Adaptive 
Sampling approach is implemented29, ensuring an effective balance between exploration and exploitation of the 
hyperparameter space to identify optimal configurations.

In summary, this study seeks to address these gaps by developing a comprehensive probabilistic framework 
for assessing active earth pressures in spatially random frictional soils. The research combines Finite Element 
Limit Analysis (FELA)30 with Monte Carlo Simulations (MCS) to evaluate failure probabilities under varying 
safety factors. To improve computational efficiency and interpretability, Multivariate Adaptive Regression Splines 
(MARS) are utilized as a surrogate model, with hyperparameters optimized through a two-phase strategy that 
integrates Random Search and Adaptive Sampling.

The study further introduces confidence intervals to quantify prediction reliability31,32, providing engineers 
with a robust measure for decision-making under uncertainty - an aspect often overlooked in traditional 
geotechnical probabilistic models. In addition, advanced sensitivity analysis tools, including Partial Dependence 
Plots (PDPs) and feature importance assessments, are employed to provide a more interpretable, data-driven 
understanding of the influence of key geotechnical parameters such as the Factor of Safety (FoS), Coefficient 
of Variation (COV), and Spatial Correlation Length Ratio (SCLR). Unlike previous studies that primarily focus 
on probabilistic failure prediction, this research systematically integrates machine learning with FELA-based 
probabilistic modeling to improve computational efficiency while preserving interpretability. A novel two-phase 
optimization strategy combining Random Search and Adaptive Sampling is proposed to enhance the accuracy and 
generalizability of MARS-based surrogate models. Furthermore, this study develops comprehensive probabilistic 
design charts, bridging the gap between theoretical probabilistic modeling and practical engineering applications 
by offering actionable tools that correlate safety factors with failure probabilities. By addressing the limitations of 
traditional deterministic approaches, this research significantly advances reliability-based geotechnical design, 
enabling more efficient and robust engineering solutions under spatially variable soil conditions.

Problem statement
Finite element limit analysis
Figure 1 presents a representative example of an adaptive mesh used in the analysis of active earth pressure. The 
mesh is densely refined near the failure region to capture stress localization and soil deformation with higher 
accuracy while maintaining computational efficiency. In this case, a rigid wall is subjected to a normal velocity 
to induce active failure, with the resulting normal tensile pressure (PA) exerted by the soil on the rigid wall being 
evaluated.

The wall-soil interface is assumed to be perfectly smooth (R = 0), and the wall height is indicated by (H). 
The backfilled sand is modeled as a Mohr-Coulomb material, defined by its unit weight (γ) and internal friction 
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angle (ϕ). Standard boundary conditions are applied: the lateral edges of the domain are fixed in the horizontal 
direction (x), while the bottom boundary is constrained in both horizontal (x) and vertical (y) directions.

The study considers a coefficient of variation (COV) ranging from 5 to 30%, allowing the internal friction 
angle (ϕ) and unit weight (γ) of the soil to fluctuate around their average values (ϕ = 30°, γ = 18 kN/m³). While 
a 30% COV does not encompass all real-world cases, it ensures a sufficiently comprehensive dataset for analysis 
while balancing computational efficiency and feasibility. While a 30% COV does not encompass all real-world 
cases, it ensures a sufficiently comprehensive dataset for analysis while balancing computational efficiency and 
feasibility. Thus, the selected conditions maintain a practical yet rigorous scope33.

The ultimate load for various scenarios, accounting for factors such as cohesion, internal friction angle, 
and unit weight, is determined using Terzaghi’s bearing capacity34 equation combined with the principle of 
superposition. For the case of active failure, detailed calculations are presented in Eq.  (1), following the 
methodology employed by Nguyen and Shiau35.

 pa = −cFc + σsFs + γHFγ  (1)

For the sandy soil backfills considered in this study, it is assumed that the cohesion factor is zero and no surface 
load is applied. This approach simplifies the analysis and reduces Eq. (1) to  (2), allowing the investigation to 
concentrate on the effects of other parameters such as the internal soil friction angle.

 
Nγ = Fγ = Pa

γH
 (2)

Where Fγ  is the soil unit weight factor that is equal to the stability factor,Nγ , as defined in this paper. Pa is the 
active earth pressure exerted on the rigid wall under a critical active failure state. This value is to be determined 
by using the adaptive finite element limit analysis in this paper.

Random field analysis
In geotechnical engineering, the lognormal distribution is widely used in random field analysis to represent the 
spatial variability of sand properties, especially the soil friction angle. This distribution is preferred because it 
ensures that all values are positive, which is a critical requirement for parameters like the soil friction angle that 
cannot take negative values. Using a normal distribution in such cases could lead to unrealistic negative values, 
which are not physically meaningful (refer to Eq. (3)).

The assumption of a lognormal distribution for soil properties is widely used in geotechnical engineering, 
as it ensures strictly positive values for parameters such as unit weight (γ) and friction angle (ϕ), which are 
inherently non-negative. This assumption is supported by previous studies36,37, which have demonstrated its 
suitability for modeling soil variability. However, we acknowledge that real-world soil data may sometimes 
deviate from a strict lognormal distribution due to site-specific heterogeneity and measurement uncertainties.

The lognormal distribution is characterized by two parameters: the mean (µ) and the standard deviation 
(σ), which describe the central tendency and variability of the data, respectively. It is derived from applying an 
exponential transformation to a normal distribution, ensuring the positivity of the data. This transformation 
introduces skewness to the distribution, making it more suitable for modeling parameters that naturally exhibit 
non-symmetric variability. The lognormal distribution is derived through an exponential transformation 

Fig. 1. A typical adaptive FELA mesh used for deterministic active earth pressure analysis under a smooth 
rigid wall assumption (ϕ = 30°, γ = 18 kN/m³).
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applied to a normal distribution, with its probability density function (PDF) defined in Eq. (4). This equation 
provides a quantitative representation of the distribution, enabling its use in probabilistic and statistical analyses 
for modeling soil properties. 

 
f (x) = 1
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, for x ≥ 0 and x < 0 (3)

 
f (x) = 1

xσln x

√
2π

exp

[
−1

2

(
ln x − µln x

σln x

)2
]

, forx > 0 (4)

 
where,

 
µln x = ln µx − 1

2σ2 ln x (5)

 σln x =
√

ln (1 + COV 2) (6)

Equations  (5) and (6) define the mean and standard deviation of the soil’s internal friction angle, with the 
coefficient of variation (COV) providing a practical measure of soil variability as the ratio of standard deviation 
to mean. The cumulative distribution function (CDF), derived by integrating the probability density function 
(Eq. 4) and expressed in Eq. (7) using the complementary error function, offers an alternative way to quantify 
probabilities38,39.

 
f (x) = 1

2erfc

(
− ln x − µln x

σln x

√
2

)
 (7)

Beyond the mean and coefficient of variation (COV), spatial variability is a key factor in accurately characterizing 
soil properties. This variability is particularly important in capturing the inherent heterogeneity of geotechnical 
materials, which directly impacts their mechanical behavior. The scale of fluctuation (Ѳ) is a widely used 
parameter in the implementation of random fields, particularly in two-dimensional analyses. It quantifies the 
spatial extent over which soil properties exhibit significant correlation within a given region. However, a key 
limitation of Ѳ is that its interpretation depends on the chosen autocorrelation model, making direct comparisons 
between studies difficult. Additionally, in anisotropic soils, defining Ѳ separately for different directions can be 
challenging, as the transition between correlation lengths is not always well-defined40.

To address these challenges, spatial correlation lengths (SCL), denoted as SCLx and SCLy, provide a more 
flexible and intuitive measure of spatial variability41. These parameters explicitly define the degree of correlation 
between soil properties at two distinct points along the horizontal and vertical directions, respectively, allowing 
for a more accurate representation of anisotropic variability. A high spatial correlation indicates that soil 
properties at nearby points are strongly related, whereas low correlation suggests greater variability over short 
distances. In other words, small values of SCLx or SCLy  correspond to a highly variable random field, where 
individual points exhibit minimal spatial dependence.

By using SCL instead of Ѳ, stochastic soil models can incorporate various autocorrelation structures without 
being restricted to a specific model, improving their adaptability in different geotechnical scenarios. This 
makes SCL a more practical and robust choice, particularly for cases where vertical and horizontal correlation 
lengths differ significantly, as is commonly observed in natural soil deposits. These correlations are essential for 
generating realistic random fields that can accurately model the complex behavior of soils under various loading 
conditions. Equation (8) defines the random field, incorporating the absolute horizontal and vertical distances 
between discrete points i and j.

 
ρ(τxij , τyij) = exp

(
− τxij

SCLx
− τyij

SCLy

)
 (8)

In the present study on active earth pressures, it is assumed that the spatial correlation lengths in the horizontal 
(SCLx ) and vertical (SCLy ) directions are equal. This simplification allows the correlation length to be represented 
by a single parameter. The correlation length is further expressed as a dimensionless ratio, termed the Spatial 
Correlation Length Ratio (SCLR), which is defined in Eq.  (9). This ratio is normalized by the height of the 
rigid wall (H), as depicted in Fig. 1. By normalizing the correlation length, the analysis accounts for the relative 
influence of spatial variability in soil properties with respect to the geometry of the problem, enabling a more 
scalable and consistent interpretation of the results.

 
SCLR = SCLx

H
= SCLy

H
 (9)

Random field analysis relies on three essential parameters: the mean value, the standard deviation, and the 
spatial correlation lengths in both the horizontal and vertical directions. These parameters collectively define the 
statistical and spatial characteristics of the soil properties being analyzed. To simulate random fields effectively 
for stability analysis, the Karhunen-Loève (KL) expansion method is utilized42,43. The KL method is a powerful 
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mathematical tool that calculates the covariance between random variables within the field. By doing so, it 
facilitates the generation of thousands of random field realizations, ensuring that the variability and correlation 
of soil properties are accurately captured.

Moreover, the KL method computes the eigenvalues and eigenvectors of the covariance function, which 
serve as a basis for approximating the random field. This decomposition enables the representation of complex 
spatial variability with a reduced number of terms, making the analysis computationally efficient while retaining 
accuracy. For a detailed discussion of the theoretical and computational aspects of the KL method, readers are 
referred to Adhikari and Friswell44, Betz et al.45, and Zheng et al.46, which provide comprehensive insights into 
its application and implementation in random field analysis.

In recent years, geotechnical engineers have placed greater emphasis on integrating probability of failure 
assessments into design practices by utilizing specific Factors of Safety (FoS)47. This approach enhances reliability 
and risk management in geotechnical designs48. In the present study, active failure is defined as the condition 
when the computed stability factor for unit weight (Nγ , see Eq. (2) ) in each Monte Carlo Simulation (MCS) 
is less than the deterministic value (Nrd) corresponding to a selected FoS. This probabilistic criterion ensures 
that the analysis accounts for uncertainties in soil properties and loading conditions. Equation (10) formalizes 
this definition, providing a clear mathematical framework for evaluating the probability of active failure. This 
approach enables systematic assessment of failure likelihood, offering insights that can guide safer and more 
efficient design decisions.

 Active failure is identified when Nc < (Ncd/F oS)for 1000 MCs (10)

 P F = P [Nc < (Ncd/F oS)] for 1000 MCs (11)

Using Eq. (10), the probability of failure for a given “designed” Factor of Safety (FoS) is determined by counting 
the number of instances that meet the failure criterion defined in the equation and dividing this count by the 
total number of Monte Carlo Simulations (MCS). In this study, 1000 simulations were performed to ensure 
statistical reliability33,49, and the detailed calculation procedure is provided in Eq. (11).

This probabilistic interpretation, as outlined in Eq. (11), facilitates a systematic analysis of how random field 
design parameters, such as the coefficient of variation (COV), the scale of fluctuation ratio (SCLR), and the 
selected FoS, affect the likelihood of failure. By considering the inherent variability and spatial correlations in 
soil properties, this approach provides a more realistic assessment of geotechnical risks compared to traditional 
deterministic methods.

However, it is important to note that this probabilistic framework demands significantly higher 
computational resources, approximately 1000 times more than a single deterministic analysis. Despite the 
increased computational cost, this methodology offers critical insights into the influence of uncertainty on 
design performance, enabling more informed decision-making in geotechnical engineering designs.

Figure  2 provides a detailed visualization of the variability in results obtained through Monte Carlo 
Simulations (MCS) for a soil configuration characterized by a coefficient of variation (COV) of 15% and a spatial 
correlation length ratio (SCLR) of 0.6. Each point in the scatter plot corresponds to a single realization of the 
random field, showcasing the variability inherent in the stochastic modeling of soil properties.

The data reveals a significant spread of results, highlighting the influence of spatial variability, even when COV 
and SCLR values are fixed. The scatter plot also exhibits clustering around a central trend, representing the mean 
behaviour of the system. For the chosen SCLR of 0.6, which represents moderate spatial correlation among soil 

Fig. 2. A typical scatter plot for (COV = 15%, SCLR = 0.6).
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properties, the observed spread aligns with expected behavior where localized variability significantly influences 
the outcomes. The lack of outliers in the scatter plot suggests that the MCS model is robust, effectively capturing 
variability without producing unrealistic results, further validating the computational approach used.

This variability illustrates the importance of accounting for the stochastic nature of soil properties in 
geotechnical analysis. It challenges the assumptions made in deterministic approaches, which often assume 
uniform soil characteristics. Practically, this highlights the need for probabilistic methods to account for 
variability, as deterministic models often overlook such effects. Engineers can use these insights to refine safety 
factors and design decisions. Future analyses incorporating statistical metrics or varying COV and SCLR values 
could further enhance understanding of spatial variability’s influence on geotechnical stability.

Figure 3 presents the distribution of Factor of Safety (FoS) values derived from Monte Carlo Simulations 
(MCS) for a coefficient of variation (COV) of 15% and a spatial correlation length ratio (SCLR) of 0.6. The 
histogram shows a slightly skewed distribution, with the majority of values concentrated around the mean and a 
noticeable tail extending toward lower FoS values. This tail highlights the importance of considering these lower 
FoS values in risk assessment.

The Probability Density Function (PDF) smooths the variations observed in the histogram, providing 
a continuous representation of the distribution. This smooth curve enables a clearer understanding of the 
likelihood of different FoS outcomes. Meanwhile, the Cumulative Distribution Function (CDF) further enhances 

Fig. 3. A typical histogram for (COV = 15%, SCL = 0.6).
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the analysis by indicating the probability of achieving specific FoS thresholds, offering a useful tool for assessing 
the reliability of soil stability design under varying conditions.

In summary, this representation emphasizes the probabilistic nature of soil stability and its critical 
implications for design reliability. The histogram, along with the Probability Density Function (PDF) and 
Cumulative Distribution Function (CDF), provides engineers with a clearer understanding of the variability in 
stability outcomes, reinforcing the need for probabilistic analyses.

In the following sections, further analysis of the distributions across varying coefficient of variation (COV) 
and spatial correlation length ratio (SCLR) values is presented. This additional analysis will help deepen the 
understanding of how spatial variability influences stability results, providing valuable insights for refining 
design practices and decision making using a traditional FoS design approach.

Results and discussion
Comparison of results
Figure 4 presents a comparative analysis of deterministic solutions for the soil unit weight factor Fγ  (as defined 
in Eq. (1), the stability factor (Fγ) obtained using three different methods: adaptive meshing, uniform meshing, 
and the results from random field modeling with 1000 Monte Carlo Simulations (MCS) with SCLR = 2 and 
various seed values. These results are benchmarked against the Finite Element Limit Analysis (FELA) method 
by Nguyen and Shiau35 and the analytical solution proposed by Lancellotta50.

To assess variability in computed stability factors, Fig. 4 includes multiple realizations of the random field 
with different seed values (Seed = 1, 55, 111, 250, 500, 1000) under a coefficient of variation (COV) of 30% and 
SCLR of 2. The results show a wider spread compared to deterministic solutions from uniform and adaptive 
FELA meshes, highlighting the impact of soil heterogeneity on stability predictions. While deterministic 
solutions remain within the probabilistic range, the variability underscores the need for stochastic analyses 
in geotechnical design, as relying solely on deterministic values may overlook risks associated with spatially 
random soil properties.

The mean values from the 1000 Monte Carlo simulations closely align with deterministic predictions, 
confirming the robustness of the probabilistic approach. The agreement between the random field-based mean 
response and established solutions further validates the Monte Carlo framework.

Moreover, adaptive meshing outperforms uniform meshing in computational precision and convergence 
efficiency, yielding solutions that better match reference benchmarks. The incorporation of spatial variability 
through random field modeling provides a more realistic representation of soil heterogeneity, which is crucial 
for geotechnical stability analysis.

Fig. 4. Comparison of deterministic solutions obtained by adaptive, uniform meshing, random field 1000MCs 
of present solution, Nguyen and Shiau35 FELA approach, and Lancellotta50 analytical solution.
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This comparison highlights the importance of selecting appropriate modeling approaches, particularly 
where spatial variability and uncertainty are significant. By integrating deterministic and probabilistic methods, 
this study enhances the reliability of geotechnical design, balancing computational efficiency with predictive 
accuracy.

Normalized mean critical stability number (Nc, m/Nc, d)
Figure 5 illustrates the relationship between the normalized mean critical stability number (,/,) and the spatial 
correlation length ratio (SCLR) for various coefficients of variation (COV). The normalized stability number 
allows a direct comparison between probabilistic results (,) and their deterministic counterpart (,), highlighting 
the effects of spatial variability.

As SCLR increases, the normalized mean critical stability number decreases for all COV values, showing 
that longer spatial correlations lead to reduced stability due to more pronounced soil heterogeneities. The 
effect of spatial variability is especially pronounced at higher COV values, where deviations from deterministic 
predictions become more significant. For small SCLR values, the normalized stability numbers converge 
toward deterministic results, particularly at lower COVs, reflecting the limited influence of variability when soil 
properties are highly localized.

The figure also suggests that the impact of SCLR diminishes beyond a certain threshold, as the stability 
number approaches an asymptotic value. This indicates that, while spatial correlation significantly influences 
stability, its effect becomes less critical for very large correlation lengths. These findings demonstrate how 
probabilistic results deviate from deterministic predictions, emphasize the limitations of deterministic models 
in capturing the effects of spatial variability.

Figure 6 illustrates the relationship between the normalized mean critical stability number (,/,) and spatial 
correlation length ratios (SCLR) for various coefficients of variation (COV). This plot provides valuable insights 
into how spatial variability and correlation length impact the stability of geotechnical systems. The plot reveals 

Fig. 5. Normalized mean critical stability number (Nc, m/Nc, d) vs. the spatial correlation length ratio (SLR) for 
various COV.
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that as SCLR increases, the normalized stability number consistently decreases for all COV values, signifying that 
greater spatial correlation in soil properties generally reduces stability. This effect is particularly pronounced at 
higher COV values, where the variability of soil properties has a more significant impact on stability outcomes.

For larger SCLR values, the rate of decline in the stability number with increasing COV becomes slower. This 
trend suggests that more globally correlated soil properties (i.e. higher SCLR) moderate the effects of variability. 
This behavior aligns with the expectation that spatial correlation length moderates the effects of random 
variability, with larger SCLR values distributing heterogeneities more evenly over the domain. The convergence 
of the normalized stability number for low COV values across all SCLR reinforces the reliability of deterministic 
models when soil variability is minimal. In such cases, deterministic approaches provide predictions close to 
those of probabilistic models, reducing the need for complex stochastic analyses.

From a practical perspective, Fig.  6 highlights the importance of accounting for both COV and SCLR in 
stability assessments. For soils with high variability (e.g. COV > 20%) and small correlation lengths, relying 
on deterministic stability predictions could lead to overestimation of safety. The trends observed in the figure 
provide engineers with a clear framework for understanding how variability impacts stability, helping to refine 
probabilistic methods and improve design reliability.

Probability of failure (PF)
Figure 7 demonstrates the relationship between the Probability of Failure (PF) and the Coefficient of Variation 
(COV) for various Factors of Safety (FoS), with SCLR held constant at 0.2. The results highlight distinct behaviors 
for different FoS values. For a low FoS of 0.5, the PF remains consistently at 1.0 across all COV values. This 
indicates a highly unstable system where failure is certain, irrespective of variability in COV values. Conversely, 
for high FoS values of 2.0 and 2.5, the PF is uniformly zero, reflecting a robust design where failure is essentially 
impossible regardless of COV fluctuations. These results are expected, as extreme FoS values inherently dominate 
the system’s response, rendering the effect of COV negligible.

Fig. 6. Normalized mean critical stability number (Nc, m/Nc, d) vs. COV % for various spatial correlation length 
ratios (SCLR).
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Of particular interest is the case of a design FoS of 1.0. Here, the PF starts at 50% when COV is minimal, 
aligning with the probabilistic interpretation of safety margins. As COV increases, the PF exhibits a slight 
decline, suggesting that higher variability in input parameters introduces some measure of statistical balance that 
marginally reduces the likelihood of failure. For intermediate FoS values (e.g., 1.25, 1.5, or 1.75), the PF shows 
a gentle but noticeable upward trend as COV increases. Overall, these patterns emphasize the interrelationship 
between FoS and COV in influencing system reliability, providing valuable insights for risk assessment and 
design optimization.

Figure 8 explores the relationship between the Probability of Failure (PF) and the Factor of Safety (FoS) for 
different Spatial Correlation Length Ratios (SCLR) at a fixed Coefficient of Variation (COV) of 30%. The results 
show a consistent inverse relationship between PF and FoS, with PF decreasing sharply as FoS increases. For 
the chosen study of high COV value, PF is less sensitive to changes in SCLR. As FoS increases beyond 1.5, PF 
converges across all SCLR values, with negligible failure probability at FoS ≥ 2.0. The results highlight the non-
linear interaction between FoS and SCLR, with SCLR playing a more critical role in designs with lower safety 
margins.

Figure  8 suggests that increasing the safety factor effectively reduces the influence of spatial correlation, 
making the system more robust to variability. From a practical perspective. It further highlights the importance 
of considering spatial correlation in geotechnical design, particularly for scenarios with low FoS and high COV. 
Understanding how SCLR and FoS affects PF allows engineers to better anticipate risks and make informed 
decisions about design safety margins.

Demonstration of random field vs. failure mechanism
Figure 9 demonstrates the spatial variability of the soil friction angle (ϕ) through two typical plots. Figure 9a 
demonstrates how random distributions of ϕ vary across different spatial correlation length ratios (SCLR) under 

Fig. 7. PF vs. COV for various FoS (SCLR = 0.2).
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fixed parameters (COV = 20% and SCLR = 1), while Fig. 9b highlights how the spatial distribution of ϕ changes 
with varying seed numbers for the same COV and simulation seed.

Figure 9a illustrates the influence of SCLR on the spatial distribution of ϕ. At lower SCLR values (e.g., 0.2), the 
distribution exhibits sharp transitions, reflecting highly localized variability. As SCLR increases (e.g., 1.0 or 2.0), 
the spatial variations become more gradual, with smoother transitions across the domain. Figure 9b highlights 
the stochastic nature of random field modeling. Each seed generates a unique realization of ϕ, revealing distinct 
spatial patterns while preserving overall statistical characteristics such as mean, variability, and correlation 
length. This variability fulfills the necessity of running multiple simulations in Monte Carlo analyses to capture 
a wide range of potential outcomes.

Figure 10 demonstrates how spatial variability affects strain localization in soils. It is divided into two parts: 
subfigure 10a examines the effect of varying SCLR under fixed randomness (Seed = 555, COV = 30%), while 
subfigure 10b explores how the potential slip curve changes with varying seed numbers for a constant SCLR 
(SCLR = 0.6, COV = 30%).

In Fig.  10a, the results show that strain localization is very sensitive to changes in SCLR. When SCLR is 
small (e.g., 0.2), the strain differences are tightly focused, forming small zones of intense deformation. As SCLR 
increases (e.g., 1.0 or 2.0), the strain spreads out more evenly across larger areas. This means that shorter spatial 
correlations lead to concentrated instability, while longer correlations result in more uniform deformation. 
These insights are important for understanding how failures happen, as localized strains often trigger failure 
zones, which can greatly affect stability.

On the other note, Fig. 10b illustrates how using different random seeds affects strain distribution, even when 
the spatial variability parameters are the same. While the overall slip patterns look similar, the exact locations 
and intensities of strain zones differ. This highlights how randomness influences failure behavior, even if the 
soil’s statistical properties stay unchanged. It also emphasizes the importance of running multiple simulations to 
capture a full range of possible outcomes and better account for uncertainty in geotechnical studies.

Fig. 8. PF vs. FoS for various SCL (COV = 30%).
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Design charts
Figure 11 presents a series of design charts for determining the probability of failure (PF) as a function of the 
coefficient of variation (COV) and spatial correlation length ratio (SCLR) for different Factors of Safety (FoS). 
Subfigures (a) through (e) correspond to FoS values ranging from 1.0 to 2.5, providing a detailed view of how soil 
variability and safety margins interact to influence PF.

For lower safety factors, such as FoS = 1.0 in subfigure (a), PF is consistently high across a broad range of 
COV and SCLR values. This indicates that designs with minimal safety margins are highly sensitive to variability, 
particularly for soils with high COV (> 20%) and short SCLR (< 0.6). As FoS increases, seen in subfigures (b) 
through (e), PF decreases significantly. For example, at FoS = 2.0, PF is negligible for most combinations of COV 
and SCLR, demonstrating that higher safety factors effectively mitigate the risks posed by spatial variability.

The role of SCLR is particularly notable at lower FoS values. For designs with FoS = 1.0 or 1.25, shorter 
correlation lengths amplify failure risks due to localized variability, resulting in higher PF values. Conversely, 
longer SCLR values reduce PF by spreading variability more evenly across the domain. However, as FoS increases 
to 2.0 or 2.5, the influence of SCLR diminishes, with PF becoming uniformly low across all SCLR values. This 
convergence highlights that higher safety margins can effectively reduce the effects of spatial correlation.

These design charts offer practical insights for geotechnical engineers. They emphasize the importance of 
selecting appropriate safety factors based on site-specific soil variability. For scenarios involving highly variable 
soils and short correlation lengths, increasing FoS is essential to achieve acceptable reliability. In contrast, for 
soils with moderate variability and longer correlation lengths, designs with lower FoS may still perform reliably, 
offering opportunities to optimize costs without compromising safety. These charts bridge the gap between 

Fig. 9. (a) Demonstration of random distribution of ϕ for various SCLR (Seed = 1, COV = 20%); (b) Material 
(ϕ) plot for various seed numbers of ϕ (COV = 20, SCLR = 1).
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probabilistic analysis and practical decision-making, reinforcing the manuscript’s emphasis on modern, 
variability-aware design practices.

Soft computing approach
A major challenge in applying machine learning to geotechnical engineering is the trade-off between 
interpretability and model complexity. Traditional regression models (e.g., multiple linear regression) are 
easy to interpret but lack the flexibility to capture nonlinear relationships and spatial dependencies inherent 
in geotechnical data. Complex models such as decision trees, random forests, or deep learning models can 
capture intricate dependencies but are often considered “black box” models, making it difficult to derive explicit 
mathematical relationships. In this study, we offer a middle ground. Multivariate Adaptive Regression Splines 
(MARS) is employed as a surrogate model to predict the Probability of Failure (PF) based on key geotechnical 
parameters exhibiting spatial variability. MARS is a nonlinear regression technique that automatically partitions 
the input space into multiple regions and fits piecewise linear regression functions. One of its key advantages is 
its ability to balance model interpretability and predictive complexity, making it a suitable choice for geotechnical 
engineering applications where understanding model behavior is as important as achieving high accuracy.

By utilizing input parameters such as the coefficient of variation (COV), safety-critical load ratio (SCLR), and 
factor of safety (FoS), and training on datasets generated through Monte Carlo Simulations (MCS) combined 
with Finite Element Limit Analysis (FELA), the method effectively captures complex non-linear relationships. 

Fig. 10. (a) Contour plot of principal strain difference for various SCLR of ϕ (Seed = 555, COV = 30%); (b) 
Contour plot of principal strain difference for various seed numbers (COV = 30%, SCLR = 0.6).
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This approach not only ensures accurate predictions but also facilitates the creation of practical and interpretable 
tools for geotechnical design applications.

Theory of multivariate adaptive regression splines (MARS)
Multivariate Adaptive Regression Splines (MARS) is a machine learning technique designed to model complex, 
non-linear relationships through the use of piecewise linear models. The method employs basis functions, 
known as hinge functions, which are expressed mathematically as:

Fig. 11. PF design chart for various FoS: (a) FoS = 1.0; (b) FoS = 1.25; (c) FoS = 1.5; (d) FoS = 2.0; (e) FoS = 2.5.
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 h(x) = max (0, x − t) or h(x) = max (0, t − x) (12)

where t is a knot that defines intervals of the predictor variable. These hinge functions enable MARS to adapt 
dynamically to changes in the relationship between variables by partitioning the data space into segments and 
fitting a linear model within each segment51. The model construction involves two stages:

 1.  Forward Pass: Basis functions are incrementally added to minimize residual error.
 2.  Backward Pass: The model is pruned using generalized cross-validation (GCV) to balance complexity and 

accuracy.

MARS automatically picks the most important features, captures non-linear patterns, and finds interactions 
between variables, making it easy to understand and flexible to use. In this study, MARS is used to predict 
geotechnical parameters, providing a simple yet reliable way to model complex relationships.

Optimizers
The optimization method used to tune the hyperparameters max_terms and max_degree of the Multivariate 
Adaptive Regression Splines (MARS) model follows a two-phase strategy29. This strategy combines Random 
Search with an Adaptive Sampling (RSAS) approach to efficiently determine suitable hyperparameters for 
predicting Probability of Failure (PF) in geotechnical systems. A critical aspect of this approach is its ability to 
balance computational cost and optimization efficiency compared to Grid Search and Metaheuristic Optimization. 
Grid Search exhaustively evaluates all hyperparameter combinations, ensuring the global optimum but at a high 
computational cost (assuming a sufficiently dense grid). Metaheuristic algorithms, such as GA and PSO, explore 
search spaces more efficiently but introduce additional computational overhead and require tuning their own 
hyperparameters. In contrast, RSAS adaptively refines the search space, reducing unnecessary evaluations while 
maintaining the accuracy of the MARS model, making it a more simple and efficient approach.

The performance of Multivariate Adaptive Regression Splines (MARS) depends significantly on the choice 
of max_terms (the maximum number of basis functions) and max_degree (the maximum order of interaction 
terms). The initial ranges for max_terms and max_degree are defined as:

 max_terms ∈ [1, 30] , max_degree ∈ [1, 10] , (13)

It should be noted that these ranges are not universally applicable to all MARS models. The appropriate 
hyperparameter range should be determined based on the nonlinear complexity of each problem, as different 
datasets may require different levels of model flexibility. If an optimal solution is found at the boundary of a 
search range, the range should be expanded to verify the true optimum. However, in this study, the optimized 
hyperparameters were located within the middle of the initial range, indicating that the selected range was 
appropriate.

A set of 20 initial samples is randomly generated within the specified ranges for max_terms and max_degree. 
For each sampled pair, the MARS model is trained using the training data, and its performance is evaluated 
on the test set. The evaluation uses the Mean Squared Error (MSE) metric with the k-fold cross-validation 
technique to ensure reliability (Eq. (14)).

 
MSE = 1

n

n∑
i=1

(yi − ŷi)2 (14)

The sampled configurations are ranked in ascending order based on their MSE values. The top 5 configurations 
with the lowest MSE are selected to define a promising region in the hyperparameter space for further tuning 
and refinement.

Once the top-performing configurations are identified, the search focuses on the potential region, which is 
defined by the ranges of max_terms and max_degree from the top 5 configurations. This step refines the search 
by narrowing down the hyperparameter space (Eqs. (15 and (16)). The new search ranges are dynamically set 
based on the minimum and maximum values of max_terms and max_degree from the top 5 configurations.

 max_terms_range = [min (top_max_terms) , max (top_max_terms)] (15)

 max_degree_range = [min (top_max_degree) , max (top_max_degree)] (16)

A larger set of 30 adaptive samples is generated within the refined ranges. The model is retrained and evaluated 
for each new sample, and the results are added to the ranking of configurations. The top 5 configurations are 
updated after each sampling round, further narrowing the search region. The optimization process concludes 
with the configuration that achieves the lowest MSE among all sampled combinations, which is considered the 
optimal choice for the hyperparameters.

The proposed optimization method is particularly advantageous for hyperparameter tuning in MARS models, 
where the number of hyperparameters is relatively low. By combining Random Search and Adaptive Sampling, 
the method achieves an effective balance between exploration and exploitation, enabling a comprehensive 
search of the hyperparameter space while focusing on refining the search around promising configurations. The 
dynamic adjustment of search ranges, guided by top-performing configurations, ensures targeted and efficient 
exploration. Unlike grid search, which becomes computationally expensive even for a modest number of 
hyperparameters, this approach significantly reduces computational cost and is much faster while maintaining 
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robustness in finding optimal configurations. This efficiency is critical for MARS models, as it ensures effective 
hyperparameter tuning, leading to accurate predictions and minimized generalization errors.

Dataset properties
The performance and generalization ability of the MARS model depend on an effective training-test split 
strategy. In this study, the dataset is divided into 80% for training and 20% for testing, ensuring that the model 
learns from a sufficiently large portion of the data while maintaining an independent evaluation set. To preserve 
the statistical distribution of key geotechnical parameters, random sampling is used. Figures 12 and 13 provide 
an in-depth view of the dataset’s properties, illustrating the relationships between key input variables and the 
target variable, Probability of Failure (PF). Together, these figures highlight the dataset’s structure, variability, 
and its potential for predictive modeling in geotechnical engineering.

Figure 12 focuses on pairwise relationships between the primary input parameters, namely Coefficient of 
Variation (COV), Spatial Correlation Length Ratio (SCLR), and Factor of Safety (FoS), and their impact on 
the Probability of Failure (PF). The scatter plots reveal clear trends: PF decreases sharply as FoS increases, 
highlighting the strong mitigating effect of higher safety margins. COV shows a positive correlation with PF, 
indicating that higher variability in soil properties raises the likelihood of failure. The impact of SCLR is more 
complex, with shorter correlation lengths (lower SCLR values) linked to greater variability in PF. Color-coded 
PF values (ranging from blue for low to red for high) emphasize these relationships, while density plots along 
the diagonal show the distributions of individual variables. For example, COV is skewed toward lower values, 

Fig. 12. Pairwise relationships between input parameters (COV, SCLR, FoS) and Probability of Failure (PF), 
illustrating parameter distributions and trends such as the inverse correlation between FoS and PF.
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reflecting typical geotechnical conditions, and FoS forms distinct clusters, aligned with standard engineering 
practices.

Figure 13 complements these findings by illustrating the frequency distributions of the key variables through 
histograms and density plots. The PF histogram reveals a concentration of lower failure probabilities, which 
aligns with scenarios designed for higher safety margins. The distributions of COV and SCLR emphasize the 
realistic variability captured in the dataset, ensuring it reflects practical geotechnical conditions. Similarly, the 
clustered nature of FoS values corresponds to commonly used safety margins, indicating that the dataset aligns 
well with real-world engineering standards.

In summary, the insights from Figs. 12 and 13 demonstrate the dataset’s robustness and its ability to capture 
complex interactions between the input parameters and PF. The variability and trends observed across the 
dataset ensure that the machine learning models can effectively learn and predict failure probabilities under 
diverse conditions. These figures highlight how well the dataset represents real-world scenarios and its potential 
for supporting accurate, data-driven geotechnical design.

Model’s optimization
Figure  14 illustrates the iterative trajectory from initial to optimal parameters, refining the number of basis 
functions and maximum degree to minimize Mean Squared Error (MSE) and maximizing coefficient of 
determination (R2). The systematic search ensured broad exploration early on, followed by focused adjustments 
for precision.

The combined insights from Fig.  14 (RSAS approach) and Table  1 (manual search) demonstrate the 
effectiveness of our hyperparameter optimization strategy, emphasizing the balance between model complexity, 

Fig. 13. Histograms and density plots of (a) FoS, (b) COV, (c) SCLR, and (d) PF, showing their frequency 
distributions and variability.
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accuracy, and generalizability. In Table 1, a manual grid search approach evaluates discrete increments of 5, 10, 
15, 20, 25, 30 basis functions, observing that performance substantially improves with increasing complexity. 
For instance, the testing R² increases from 0.699 at 5 basis functions (degree 1) to nearly 1.000 at 30 basis 
functions (degree 7 or 8), while the MSE decreases from 0.0476 to 0.00004. However, beyond 30 basis functions 
and degree 7, performance gains begin to plateau, indicating that further complexity offers marginal benefits. 
By contrast, the RSAS approach (Fig. 14) identifies an optimal configuration at 27 basis functions and degree 7, 
closely matching the near-ideal performance found by the manual search yet avoiding the unnecessary increase 
to 30 basis functions. The minimal performance difference between 27 and 30 basis functions indicates that 
the additional complexity does not yield significant improvements-highlighting the RSAS method’s strength 
in converging to a parsimonious yet highly accurate solution. Moreover, the tight alignment between training 
and testing metrics in both approaches underscore the robustness of the final model. These results collectively 
confirm that the proposed optimization process effectively navigates the trade-off between complexity and 
predictive power, ultimately yielding a generalizable, high-performing MARS model for geotechnical failure 
probability analyses.

No. basic function Max degree

Training Testing

MSE MAE R^2 MSE R^2

5

1 0.0501 0.1920 0.645 0.0476 0.1774 0.699

2 0.0083 0.0707 0.941 0.0095 0.0836 0.940

3 0.0084 0.0713 0.941 0.0095 0.0836 0.940

4 0.0035 0.0440 0.975 0.0028 0.0370 0.982

5 0.0035 0.0440 0.975 0.0028 0.0370 0.982

10

4 0.0035 0.0440 0.975 0.0028 0.0370 0.982

5 0.0003 0.0112 0.998 0.0003 0.0109 0.998

6 0.0003 0.0113 0.998 0.0003 0.0107 0.998

15
6 0.0003 0.0114 0.998 0.0002 0.0106 0.999

7 0.0002 0.0093 0.998 0.0002 0.0087 0.999

20

6 0.0003 0.0117 0.998 0.0002 0.0107 0.999

7 0.0001 0.0062 0.999 0.0001 0.0059 1.000

8 0.0001 0.0062 0.999 0.0001 0.0059 1.000

30
7 0.00004 0.00429 0.99969 0.00004 0.00453 1.000

8 0.00006 0.00509 0.99961 0.00008 0.00645 1.000

Table 1. Model performance across hyperparameter configurations by search manual. Significant values are in 
bold.

 

Fig. 14. Hyperparameter optimization trajectory showing the search through maximum degree and maximum 
terms, with the black dot as the starting point and the green dot indicating the optimized value.
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Model’s performance
Figures 15 and 16 provide a comprehensive evaluation of the machine learning models’ performance, highlighting 
their predictive accuracy and generalizability. These figures collectively demonstrate the effectiveness of different 
modeling approaches for predicting the Probability of Failure (PF) in geotechnical systems.

Figure 15 presents a comparison between the predicted PF values and the exact values for both the training 
and testing datasets. The near-perfect alignment of data points along the 45-degree diagonal line reflects 
exceptional predictive performance. The model achieves an R2 value of 1.000 for both training and testing 
datasets, indicating that it has captured the underlying relationships in the data with remarkable precision. 
Moreover, the close clustering of points around the diagonal, coupled with minimal Mean Absolute Error (MAE) 
and Mean Squared Error (MSE), confirms that the model is not only highly accurate but also generalizes well 
to unseen data. This robustness is critical in geotechnical engineering, where model reliability across diverse 
conditions is essential due to the inherent variability of soil properties.

In Fig. 16, the performance of four machine learning models, i.e., Multivariate Adaptive Regression Splines 
(MARS), Multilayer Perceptron (MLP), Support Vector Machines (SVM), and Decision Trees (DT), is compared 
using MAE as the primary metric. The results reveal that MARS and DT outperform the other models, achieving 
the lowest MAE values for the dataset. MARS demonstrates superior accuracy by effectively capturing non-linear 
interactions and automatically selecting significant input features, making it particularly suited for complex 
geotechnical datasets. Similarly, DT performs well by hierarchically segmenting the data based on the most 
influential variables, providing accurate and interpretable predictions.

Fig. 16. Boxplots of MAE (left) and MSE (right) for different methods (MARS, MLP, SVM, DT), highlighting 
MARS and DT as the most accurate based on lower error values.

 

Fig. 15. Predicted versus exact probability of failure (PF) for training data (left) and testing data (right).
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Conversely, MLP and SVM exhibit relatively higher errors, suggesting that these methods may require 
additional optimization to handle the unique characteristics of the dataset. This performance gap underscores 
the importance of model selection and tuning when addressing specific geotechnical problems. The ability 
of MARS and DT to achieve high accuracy with moderate complexity makes them particularly appealing for 
practical applications where interpretability and computational efficiency are valued.

The findings presented in Figs. 15 and 16 highlight key aspects of model performance. Figure 15 demonstrates 
that the chosen model achieves exceptional accuracy and generalizability, with consistent results across training 
and testing datasets. Figure 16 emphasizes the variability in performance across models, with MARS and DT 
emerging as the most effective predictors due to their ability to balance flexibility, accuracy, and computational 
efficiency. These results underline the importance of selecting machine learning architectures that align with the 
characteristics of the dataset and the objectives of the analysis.

Importance-based sensitivity analysis
Feature importance analysis
Figures  17 and 18 offer valuable insights into the physical interpretation of the machine learning model’s 
predictions. Through sensitivity analysis and feature importance evaluation, they quantify the impact of input 
variables of Factor of Safety (FoS), Coefficient of Variation (COV), and Spatial Correlation Length Ratio (SCLR) 
on the output Probability of Failure (PF). These analyses connect data-driven predictions with geotechnical 
design principles, providing both validation and a deeper understanding of the model.

Figure 17 highlights the relative importance of each input feature by measuring the increase in prediction 
error for MSE (negative Mean Squared Error) when a feature is excluded from the model. Among the features, 
FoS emerges as the most critical, with its removal causing a significant drop in model performance. This finding 
aligns with physical intuition, as FoS directly governs the safety margin in geotechnical design and thus exerts 
the most substantial influence on PF.

COV ranks second in importance, underscoring the critical role of variability in soil properties in determining 
stability. Higher variability introduces greater uncertainty in the system, leading to elevated PF values. The 
parameter SCLR, while contributing less than FoS and COV, plays a supporting role by influencing the spatial 
distribution of variability.

SHAP analysis eliminates the complex relationships between features and PF, offering a complementary 
perspective to Fig. 17. In Fig. 18, we provide a detailed breakdown of feature contributions to individual PF 
predictions using SHAP (SHapley Additive exPlanations) values. FoS exhibits a strong inverse relationship with 

Fig. 17. Feature importance analysis showing the reduction in model performance (negative MSE) when each 
feature (FoS, COV, SCLR) is excluded.
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PF. This trend is consistent with geotechnical theory, where larger safety factors reduce the likelihood of failure. 
COV shows a positive relationship with PF, with higher SHAP values indicating an increase in failure probability 
as soil variability intensifies. This result highlights the critical impact of uncertainty in soil properties on stability. 
The influence of SCLR is more subtle and indirect, affecting PF mainly through its interaction with COV and FoS, 
rather than acting as a dominant factor on its own. Its role in modifying the spatial distribution of variability 
reinforces its importance in specific geotechnical scenarios, particularly in heterogeneous or anisotropic soils.

Figure 19 illustrates local explanations for individual data samples, providing insight into how each input 
feature (FoS, COV, SCLR) contributes to the predicted Probability of Failure (PF). Unlike global interpretations, 
which average contributions across the entire dataset, these local explanations reveal sample-specific interactions 
and highlight why certain points yield higher or lower failure probabilities. Figure 20 illustrates how the SHAP 
contribution of a primary feature Fos to the predicted Probability of Failure (PF) changes as its value varies along 
the horizontal axis. Each point represents an individual sample in the dataset, with its position on the x-axis 
indicating the actual value of the feature in question, and its position on the y-axis indicating the magnitude of 
that feature’s SHAP value (i.e., its contribution to PF). The color scale encodes another feature (COV and SCLR), 
allowing for the visualization of feature interactions.

Partial dependence plots (PDPs)
Figures 21 and 22 provide valuable insights into the relationships between input features FoS, COV, and SCLR 
and the output feature Probability of Failure (PF). By isolating the effects of individual features (Fig. 21) and 
feature pairs (Fig. 22), the Partial Dependence Plots (PDPs) offer a deeper understanding of how these variables 
influence failure probability.

Figure 21 illustrates the independent effects of each feature on PF. The relationship between PF and FoS is 
clear and intuitive: PF decreases sharply as FoS increases. This trend is particularly steep for FoS values below 1.5, 

Fig. 18. SHAP value analysis showing the contribution of features (FoS, COV, SCLR) to the prediction of PF.
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Fig. 21. Partial dependence plots (PDPs) showing the relationship of PF with COV, SCLR, and FoS.

 

Fig. 20. SHAP dependence plots.

 

Fig. 19. Local explanations in individual samples.
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where small increases in safety margins result in significant reductions in PF. Beyond a threshold (approximately 
FoS = 2.0), PF approaches zero, indicating that the likelihood of failure becomes negligible under conservative 
design conditions. This aligns with fundamental geotechnical principles, where safety margins are critical for 
ensuring stability.

The relationship between PF and COV is equally significant. PF increases monotonically with higher COV, 
reflecting the direct impact of soil variability on failure likelihood. The effect becomes more pronounced at 
higher COV values, highlighting the importance of addressing variability in probabilistic geotechnical analyses. 
In contrast, the relationship between PF and SCLR is more complex. At lower SCLR values, PF is relatively 
high due to localized variability that intensifies failure mechanisms. As SCLR increases, PF decreases gradually, 
indicating that spatial correlation moderates the effects of variability by spreading it more uniformly across the 
domain. However, this effect diminishes beyond a certain SCLR value, where further increases have a limited 
impact on reducing PF.

Figure 22 extends the analysis by examining the combined effects of feature pairs on PF. The interaction 
between COV and SCLR reveals that high PF values are concentrated in regions where COV is large, and SCLR 
is small. This indicates that localized variability combined with high uncertainty amplifies failure risks. As SCLR 
increases, the impact of high COV on PF diminishes, confirming that spatial correlation can mitigate the effects 
of variability.

The interplay between COV and FoS shows that increasing FoS significantly reduces PF, even at high levels 
of variability. However, the rate of PF reduction is more pronounced for lower COV values, meaning that higher 
variability requires much larger safety margins to achieve similar stability.

Finally, the interaction between SCLR and FoS demonstrates that while PF decreases with increasing FoS 
across all SCLR values, the effect is less pronounced at low SCLR due to the dominant influence of localized 
variability. Higher SCLR values enhance the effectiveness of FoS in reducing PF, reinforcing the importance of 
spatial correlation in design considerations.

Fig. 22.  Partial dependence plots (PDPs) showing the interaction effects of PF with pairs of features: (1) COV 
and SCLR, (2) COV and FoS, and (3) SCLR and FoS.
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Design formula and confidence intervals
MARS based design formula
Equation (17) presents design formula that integrates key parameters, such as FoS, COV, and SCLR and PF into 
a detailed framework for evaluating active earth pressures. The formula’s higher-order terms highlight the need 
to account for nonlinearities when analyzing spatially variable soils, as simplistic linear models may overlook 
the combined influence of these parameters. These detailed relationships allow for a systematic understanding 
of how variability and spatial correlations impact active earth pressures under different safety factor conditions.

By capturing the complexity of soil behavior, this formula provides engineers with a robust tool for 
probabilistic analysis. It highlights the necessity of computational tools to facilitate its application, ensuring the 
accurate assessment of failure probabilities and enabling optimized design solutions for retaining wall stability.

 

−0.00307390374599276 ∗ CoV 2 ∗ F oS5 + 0.0233251259352408 ∗ CoV 2 ∗ F oS4−?
0.0669313645778268 ∗ CoV 2 ∗ F oS3 + 0.0896896089370779 ∗ CoV 2 ∗ F oS2−?
0.0551402339095862 ∗ CoV 2 ∗ F oS + 0.0121628833841137 ∗ CoV 2+?
0.00117632363446029 ∗ CoV ∗ SCLR4 − 0.00300604833431339 ∗ CoV ∗ SCLR3+?
5.73547700836679e − 5 ∗ CoV ∗ SCLR2 ∗ F oS3 + 0.0275378569955602 ∗ CoV ∗ SCLR ∗ F oS5−?
0.21309472588499 ∗ CoV ∗ SCLR ∗ F oS4 + 0.628022646338683 ∗ CoV ∗ SCLR ∗ F oS3−?
0.873011971052842 ∗ CoV ∗ SCLR ∗ F oS2 + 0.562079574127308 ∗ CoV ∗ SCLR ∗ F oS−?
0.125902653850613 ∗ CoV ∗ SCLR − 0.000829974636127525 ∗ CoV ∗ F oS5+?
0.00289629501966047 ∗ CoV ∗ F oS4 − 0.00528207076076614 ∗ CoV ∗ F oS2+?
4.75996575453427 ∗ F oS5 − 36.373459953245 ∗ F oS4+?
105.216179869232 ∗ F oS3 − 141.916468133753 ∗ F oS2+?
86.7619764651043 ∗ F oS − 17.9288699929336;

 (17)

Confidence intervals as a key to reliable predictions
To test the confidence intervals, where input noise is limited to 5% in Fig. 23, the model demonstrates strong 
performance. The predicted mean values closely follow the true values for most sample indices. The confidence 
intervals, especially the 80% and 95% bands, stay relatively narrow, showing low uncertainty and high confidence 
in the model’s predictions. While small deviations appear at sharp peaks and troughs (around sample indices 
11, 21, and 31), the overall alignment between predicted and true values confirms the model’s robustness under 
low-noise conditions.

In Fig.  24, with noise input increased to 10%, the model’s predictive accuracy declines, shown by more 
frequent and larger deviations from the true values. The uncertainty bands widen significantly compared to 
Fig. 23, especially around peaks and sharp transitions, such as near sample indices 11, 17, and 23. This widening 
of the confidence intervals reflects the model’s increased difficulty in maintaining reliable predictions as input 
variability rises. While the general trend is still captured, higher noise introduces noticeable discrepancies, 
particularly in areas with rapid changes. Figure 24 predicted mean values with 80% and 95% confidence intervals 
compared to true values, showing model performance under 10% input noise.

In summary, the comparison between the two figures highlights the sensitivity of the model to input noise. 
At 5%, the narrow confidence intervals and consistent predictions demonstrate the model’s ability to maintain 
accuracy and reliability under low-noise conditions. However, at 10% noise, the broader uncertainty bands 
and larger deviations emphasize the trade-off between input noise and prediction performance. The widening 

Fig. 23. Predicted mean values with 80% and 95% confidence intervals compared to true values, illustrating 
model performance under 5% input noise.
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confidence intervals serve as a useful measure of prediction uncertainty, providing a clearer understanding of the 
model’s limitations and highlighting the need for careful consideration of noise effects in practical applications.

Conclusion
This study has presented a comprehensive probabilistic framework for evaluating active earth pressures in 
geotechnical systems with spatially variable soil properties. By integrating advanced computational methods, 
including Finite Element Limit Analysis (FELA) and Monte Carlo Simulations (MCS), with machine learning 
techniques, the research effectively addressed the complexities of soil behavior variability and uncertainty. The 
proposed approach captured the stochastic nature of soil properties and provided valuable tools and insights 
into failure mechanisms.

The contributions of this study are as follows: (i) Development of a probabilistic framework integrating 
FELA and MCS to evaluate active earth pressures under spatial variability; (ii) Application of MARS to improve 
prediction accuracy, computational efficiency, and interpretability in probabilistic analysis; (iii) Implementation 
of a two-phase optimization strategy combining Random Search and Adaptive Sampling to tune MARS 
hyperparameters; (iv) Introduction of confidence intervals to quantify prediction reliability and support 
decision-making under uncertainty; (v) Employment of sensitivity analysis tools, such as PDPs, to provide 
insights into the relationships between key parameters and failure mechanisms; (vi) Creation of probabilistic 
design charts that serve as practical tools for engineers to optimize safety margins and manage soil variability 
effectively.

Key findings highlight the crucial role of the Factor of Safety (FoS) in reducing the Probability of Failure (PF), 
with machine learning models consistently identifying FoS as the most influential parameter. The Coefficient of 
Variation (COV) is a significant driver of uncertainty, increasing variability in failure probabilities. In contrast, 
the Spatial Correlation Length Ratio (SCLR) acts as a moderate factor, influencing the spatial distribution of 
soil properties. Rather than acting as a dominant factor on its own, the influence of SCLR on PF is more subtle 
and indirect, primarily occurring through its interaction with COV and FoS. The machine learning framework 
demonstrates strong predictive performance, achieving near-perfect accuracy (R² close to 1) and low error 
metrics across both training and testing datasets. Feature importance analyses, supported by SHAP evaluations 
and Partial Dependence Plots (PDPs), confirm the robustness and interpretability of the predictions, while 
confidence intervals provide quantifiable measures of reliability.

From a practical standpoint, the study contributes to geotechnical design by introducing probabilistic 
design charts and uncertainty quantifications. These tools allow engineers to optimize safety margins, manage 
variability effectively, and overcome the limitations of deterministic approaches. By bridging the gap between 
theoretical probabilistic models and real-world applications, the research provides great insights to develop safer 
and more resilient infrastructure.

Looking forward, future research could extend this probabilistic framework to more complex soil conditions, 
such as stratified or anisotropic soils, where spatial variability exhibits directional dependence52. Further 
studies could also explore its applicability to unsaturated or multi-layered soils, enhancing the model’s real-
world relevance. Additionally, integrating dynamic or cyclic loading conditions - particularly for seismic risk 
assessments - could improve the framework’s utility in earthquake-prone regions. To enhance computational 
efficiency, future work may leverage machine learning-based surrogate models to reduce the cost of large-scale 
Monte Carlo simulations while preserving accuracy. These advancements would further refine probabilistic 
geotechnical analysis, strengthening its role in optimizing engineering design under uncertainty.

Data availability
The authors confirm that the data supporting the findings of this study are available within the article [and/or] 
its supplementary materials.

Fig. 24. Predicted mean values with 80% and 95% confidence intervals compared to true values, illustrating 
model performance under 10% input noise.
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