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ABSTRACT

In this paper, we study the transformation of surface envelope solitons traveling over a bottom step in water of a finite depth. Using the
transformation coefficients earlier derived in the linear approximation, we find the parameters of transmitted pulses and subsequent
evolution of the pulses in the course of propagation. Relying on the weakly nonlinear theory, the analytic formulas are derived which
describe the maximum attainable wave amplitude in the neighborhood of the step and in the far zone. Solitary waves may be greatly
amplified (within the weakly nonlinear theory formally, even without a limit) when propagating from relatively shallow water to the deeper
domain due to the constructive interference between the newly emerging envelope solitons and the residual quasi-linear waves. The theoreti-
cal results are in good agreement with the data of direct numerical modeling of soliton transformation. In particular, more than double wave
amplification is demonstrated in the performed simulations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0054806

I. INTRODUCTION

The problem of wave transformation in the water of a variable
bathymetry has a long history and still remains one of the topical
problems in the classical hydrodynamics with applications to physical
oceanography, hydraulic theory, and other fields of practical hydrody-
namics. In the case of the simplest bathymetry with a single bottom
step shown in Fig. 1, the problem was intensively studied in the linear
approximation in the 1950s through the 1960s; the review of the
results obtained can be found in Kurkin et al. (2015a; 2015b). As was
shown in those studies, a countable number of evanescent modes arise
in the neighborhood of a bottom step. These modes vanish exponen-
tially with distance away from the step but play an important role in
the wave transformation.

The efficient way to determine the transformation coefficients
(the transmission T and reflection R coefficients) for the quasi-
sinusoidal surface wave has been found after a thorough problem
study by many researchers [see Kurkin et al. (2015a; 2015b) and refer-
ences therein]. In addition to the determination of the transformation
coefficients, the coefficients of excitation of evanescent modes have

been obtained in the cited papers too; all these require solution of an
infinite set of algebraic equations, in general. However, the set of equa-
tions can be truncated at a finite number of modes for the practical
application; this allows one to determine the excitation coefficients for
the first Nm evanescent modes. The accuracy of such an approach can
be very high if the appropriate number of modes is taken into consid-
eration because the coefficients quickly decrease with the mode num-
ber. The choice of Nm depends on the required accuracy of the wave
field representation in the neighborhood of a bottom step; in particu-
lar, the smoothness of the surface elevation depends on Nm. In Kurkin
et al. (2015a), the excitation coefficients were calculated numerically
up toNm¼ 500 evanescent modes.

In the meantime, the values of the transformation coefficients are
not so sensitive to the choice of the number of evanescent modes. In
particular, as was shown by Miles (1967), the transformation coeffi-
cients of surface waves can be evaluated with a 95% accuracy by
neglecting all the evanescent modes. A simple heuristic approach to
the evaluation of the transformation coefficients was suggested in
Giniyatullin et al. (2014) and Kurkin et al. (2015a), which provides the
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same or even better accuracy as the Miles’ method but contains much
simpler formulas. The expressions for the transformation coefficients
naturally reduce to the classical Lamb formulas (Lamb, 1933) in the
long-wave approximation,

T ¼ 2
1þ c2=c1

¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
h2=h1

p ; R ¼ 1� c2=c1
1þ c2=c1

¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffi
h2=h1

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
h2=h1

p ;

(1)

where c1;2 ¼
ffiffiffiffiffiffiffiffiffi
gh1;2

p
are the speeds of long linear waves, g is the accel-

eration due to gravity, and h1,2 are the water depth on each side of the
bottom step (see Fig. 1).

The nonlinear effects in the shoaling zone play a profound role
leading to the strong changes of the water wave spectra and individual
wave shapes. The problem of the nonlinear wave transition above fast
depth variations has received much interest in recent years, particu-
larly due to the realization of the anomalous wave statistics in the
vicinity of the abrupt depth change. In particular, the probability of
appearance of waves of extremely high amplitudes noticeably increases
over a shoal zone (Sergeeva et al., 2011; Trulsen et al., 2012; and Zeng
and Trulsen, 2012); this is a matter of obvious practical importance in
the context of risk assessment posed by anomalous waves in coastal
zones. The understanding of this problem turns out to be complicated
because many physical effects interplay whereas the traditional simpli-
fying assumptions are not always efficient. The comprehensive over-
views of the performed research were given in the recent publications
by Trulsen et al. (2020) and Li et al. (2021a; 2021b) (see the summariz-
ing diagrams in Fig. 1 in the cited papers). Other results of recent
numerical simulations may be found in Zheng et al. (2020) and Zhang
and Benoit (2021). The most fascinating effect is that the surface eleva-
tion can have a local maximum of skewness and kurtosis above the
shallower part of the shoal. The bar-profile or step-profile bottoms
were considered in the cited works, where the waves traveled from the
deeper to shallower water. The shallower domains usually corre-
sponded to the essentially small-depth conditions, kh< 1, where k is
the wavenumber.

Though the trend in the research seems to move toward the
experimental and fully nonlinear simulations of irregular waves, never-
theless, a qualitative understanding of the working physical mecha-
nisms as well as simplified but efficient models capable of providing
quantitative estimations is strongly required. The second-order theory
for wave groups traveling over a bottom step was developed in Li et al.
(2021a; 2021b) and then validated numerically and experimentally.

The consideration of the model groups allowed the authors to obtain a
detailed theoretical description of nonlinear processes which underlie
the strong deformation of the wave envelope and generation of new
wave groups. Similar to other works, in Li et al. (2021a; 2021b) the
focus was made on such cases when waves experienced a fast transi-
tion to the shallower domains.

In the present work, we investigate the transformation of weakly
nonlinear wave trains in the form of envelope solitons that pass over
the stepwise depth change. We show that an emerged solitary wave
group can be amplified a few times when it travels from a sufficiently
shallow domain to a much deeper domain. In Sec. II, we use a combi-
nation of linear and weakly nonlinear theories for slowly modulated
waves to obtain the analytic description of the main wave characteris-
tics, including the estimation of the wave amplitude after passing the
bottom step. The soliton transmission coefficient is thoroughly ana-
lyzed in Sec. III, where the regimes of the maximum wave enhance-
ment are determined. The effect of wave group amplification due to
the generation of new envelope solitons and interaction with them is
studied in Sec. IV by means of the direct numerical simulation within
the weakly nonlinear model. The analytic description of the maximum
attainable wave amplitude is proposed. The discovered effects of the
envelope soliton transformation are further verified in Sec. V by means
of direct numerical simulation of the primitive set of the hydrody-
namic equations for the potential motion (which will be called hereaf-
ter the Euler equations) by means of the high-order spectral method
(HOSM). The accuracy of the analytic estimations is examined in this
section as well. We are completing the paper with concluding remarks
in Sec. VI.

II. THE ANALYTIC THEORY FOR THE
TRANSFORMATION OF AN ENVELOPE SOLITON
AT THE BOTTOM STEP

We consider weakly nonlinear quasi-monochromatic wave
groups propagating in the domains X1 and X2 as shown in Fig. 1 far
from the bottom step. Such wave groups can be described by the non-
linear Schr€odinger (NLS) equation [see, e.g., Djordjevic and Redekopp
(1978) and Mei et al. (2005)],

i
@A1;2

@x
þ 1
C1;2

@A1;2

@t

� �
þ b1;2

@2A1;2

@t2
þ a1;2jA1;2j2A1;2 ¼ 0; (2)

where Aj(x,t) are the complex amplitudes of the incident and transmit-
ted wavetrains in the domains X1 (j¼ 1) and X2 (j¼ 2), respectively.
The fate of the reflected wave will not be of our interest, but the

FIG. 1. Sketch of the problem with two configurations of incident and transformed wave trains for the wave traveling to shallower (a) and to deeper (b) areas.
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reflected wave will be taken into account in the wavetrain transforma-
tion at the step. According to the NLS theory, the surface displace-
ments gj(x, t) are specified through the relations

gj x; tð Þ ¼ Re Aj exp ixt � ikjx
� �� �

; j ¼ 1; 2: (3)

The carrier frequency x and wavenumbers kj are related through the
dispersion relations for the finite-depth water in each domain,

x ¼
ffiffiffiffiffiffiffiffiffiffi
gkjrj

q
; rj ¼ tanhðkjhjÞ; j ¼ 1; 2; (4)

where hj are the water depths in the corresponding domains. Note that
in the stationary case when the medium parameters do not vary in
time, the frequency conserves; therefore, all waves participating in the
transformation (incident, transmitted and reflected) possess the same
frequency. The wave group velocities, Cj, in Eq. (2) as well as the dis-
persion and nonlinear coefficients, bj, and aj, respectively, depend on
the local water depth and are given by the following expressions [see,
e.g., Zeng and Trulsen (2012)]:

C ¼ @x
@k
¼ g

2x
rþ kh 1� r2ð Þ½ �; (5)

b ¼ 1
2C3

@2x
@k2
¼ 1

2Cx
1� C2

LW

C2
1� khrð Þ 1� r2ð Þ

	 

; (6)

a ¼ xk2

16r4C

�
9� 10r2 þ 9r4 � 2r2C2

C2
LW � C2

�
�
4
C2
p

C2
þ 4

Cp

C
1� r2ð Þ þ C2

LW

C2
1� r2ð Þ2

��
; (7)

where Cp ¼ x
k , is the phase velocity, and CLW ¼

ffiffiffiffiffi
gh

p
is the velocity of

long linear waves. The subscripts denoting the number of the domain
are omitted here for the sake of brevity. It is well known that the coeffi-
cients C and b are positive at any depth, whereas the coefficient a is
negative for kh< 1.363 and is positive otherwise. Further, it is conve-
nient to use the following dimensionless wavenumbers in the respec-
tive water domains: j1¼ k1h1 and j2¼ k2h2.

A. Transformation of a wavenumber

Due to the frequency conservation in the process of wave trans-
formation, one can consider the relation x2/g¼ k tanh(kh)¼ const for
the function k¼ k(h)> 0. Then, it can be straightforwardly shown
that dk/dh< 0 and d(kh)/dh> 0. Hence, the wavenumber of the trans-
mitted wave increases when the incident wave arrives from a deeper
domain; in the opposite case, when the incident wave comes from a
shallower domain, the wavenumber of the transmitted wave decreases.
Due to the frequency conservation in a stationary medium, we can
find the relationship between the wavenumbers of carrier waves in the
domainsX1 andX2 through the equation

k2tanh k2h2ð Þ ¼ k1tanh k1h1ð Þ: (8)

The ratio of the wavenumbers as a function of the depth jump is
shown in Fig. 2. In the limiting case of the long-wave approximation,
when j1! 0 and j2! 0, Eq. (8) simplifies and reduces to the well-
known Lamb’s formula k2/k1¼ (h1/h2)

1/2 (Lamb, 1933). A similar plot
was presented in the paper (Giniyatullin et al., 2014) where there was
a misprint in the definition of q¼ k2h2, which should be q¼ k2h1.

As one can see from Fig. 2, the change of the wavenumber can be
very big when a wave enters the shallower region, i.e., when h2/h1! 0.
In another limit, all curves asymptotically approach some constant val-
ues (k2/k1)lim, which depends on j1,

k2=k1ð Þlim ¼ lim
h2=h1!1

tanhk1h1
tanhk2h2

¼ tanhj1; (9)

this is illustrated by Fig. 3. If j1� 1, then the hyperbolic tangents in
Eq. (9) turn to unity, and the wavenumber of the transmitted wave
becomes equal to the wavenumber of the incident wave. Therefore, the
dependence (k2/k1)lim asymptotically approaches unity when j1!1
(see, for example, the case j1¼ 10 in Fig. 2). Practically, k2 becomes
equal to k1 when j1 > 3, frequently considered as the deep-water
threshold for water waves.

B. Transformation of an envelope soliton

When a wave train passes over the bottom step, it splits into
the transmitted and reflected pulses; besides, the evanescent modes
are generated in the neighborhood of the step. The amplitude of
the transferred wave can be determined through the transforma-
tion coefficient T(j1, j2), which depends on the depth drop [see,
e.g., Kurkin et al. (2015a; 2015b) and references therein]. Adopting
this description to the case of narrow-band spectrum waves, we
relate the solution in the domain X2 with the transmitted wave by
the boundary condition at x¼ 0 (the position where the bottom
jumps from h1 to h2),

A2 x ¼ 0; tð Þ ¼ TA1 x ¼ 0; tð Þ: (10)

FIG. 2. The dependence of the wavenumber ratios as the function of the depth
jump h2/h1 for the different values of the normalized wavenumber of incident wave,
j1¼ k1h1.

FIG. 3. The dependence of (k2/k1)lim on the dimensionless wavenumber j1 of the
incident wave.
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Let us define the scaled amplitude and coordinate of the trans-
mitted wavetrain as

~A2 ~x; tð Þ ¼ SA2 x; tð Þ; S ¼
ffiffiffiffiffiffiffiffiffi
a2b1

a1b2

s
; ~x ¼ x

b2

b1
: (11)

Then, the dynamics of the transmitted wave train is described by the
following NLS equation for ~x � 0:

i
@~A2

@~x
þ 1

~C2

@~A2

@t

 !
þ b1

@2~A2

@t2
þ a1j~A2j2~A2 ¼ 0; ~C2 ¼ C2

b2

b1
:

(12)

Equation (12) for ~A2ð~x; tÞ differs from Eq. (2) with j¼ 1 in the advec-
tive part only; the envelopes A1 and ~A2 evolve along the x axis simi-
larly but with the different speeds. Note that the relations (11) imply
that the parameter a has the same sign on both sides of the bottom
step [we recall that according to Eq. (6), the coefficient b is positive].
The matching condition at x¼ 0 specifies the Cauchy problem for
~A2ð~x; tÞ to be solved for Eq. (12); according to Eqs. (10) and (11), the
condition reads

~A2 ~x ¼ 0; tð Þ ¼ lA1 x ¼ 0; tð Þ; l � TS: (13)

Let us consider in detail the case when a1b1 > 0 and a2b2 > 0;
hence, the modulation (Benjamin–Feir) instability [see, e.g., Mei et al.
(2005)] can develop in both domains X1 andX2; this secures the possi-
bility of existence of envelope solitons. We assume that the incident
wave represents an envelope soliton of the NLS equation with the real
amplitude a and the carrier frequency x,

A1 x; tð Þ ¼ a exp
i
2
a2a1x

� �
sech a

ffiffiffiffiffiffiffi
a1
2b1

r
t � x

C1

� �" #
: (14)

Then, the boundary condition at ~x ¼ 0 for Eq. (12) has the form of the
sech-shape envelope with the amplitude factor l,

~A2 ~x ¼ 0; tð Þ ¼ l a sech
ffiffiffiffiffiffiffi
a1
2b1

r
a t

 !
: (15)

In the course of propagation in the domain X2, the transmitted
pulse will experience a nonlinear evolution. The problem of pulse evo-
lution, when the initial condition has the sech-shape, was studied in
Slunyaev et al. (2017) both by means of the exact analytic solution
obtained by Satsuma and Yajima (1974) and numerically. According
to this solution, the number of secondary envelope solitons N which
emerge from the sech-type initial condition, and their amplitudes, ~an,
are given by the following expressions:

N ¼ E lþ 1
2

� �
; ~an ¼ 2a l� nþ 1

2

� �
; n ¼ 1; 2; …;N; (16)

where E(�) stands for the integer part of the argument. When a soliton
group passes over a step, it keeps its shape but changes the amplitude.
As follows from Eq. (16), if the parameter l ranges from 0.5 to 1,
then at least one soliton can emerge from the transmitted pulse, but if
l < 0.5, the transmitted pulse completely disintegrates into a quasi-
linear dispersive wavetrain. When l > 1, the soliton amplitude
increases, and other secondary envelope solitons can emerge from the

transmitted pulse if l > 1.5. In particular, two solitons asymptotically
emerge when 1.5 < l < 2.5. The unlimited number of solitons can
formally emerge if l ! 1; the amplitudes of generated solitons
increase infinitely too. The validity of the approximate solution given
by Eq. (16) for ~an was verified in the numerical simulations of the
Euler equations in the case of infinitely deep water (Slunyaev et al.,
2017). In that paper, the range of parameters 0.2	 l 	 1.2 was exam-
ined for the emergence of envelope solitons up to the relatively high
steepness k1a
 0.25.

Solution (16) is written for the auxiliary function ~A2ð~x; tÞ and
should be rewritten for the original problem scales with the help of Eq.
(11). Then, the soliton amplitudes an in the second domain X2 are
determined by the following equations:

an ¼ 2
a
S

l� nþ 1
2

� �
; n ¼ 1; 2;…;N;

N ¼ E lþ 1
2

� �
; l ¼ ST:

(17)

Note that solutions (16) and (17) provide the same number of enve-
lope solitons, but their amplitudes can be remarkably different. In par-
ticular, for the fixed coefficient T in the limit S! 1, the number of
solitons N also goes to infinite, but their amplitudes in the domain X2

are limited from above by the value an < 2Ta. This condition realizes,
in particular, when the incident wavetrain travels from the region of
the minimal permissible depth where j1 
 1.363 to the deeper region
(the nonlinear coefficient a1 vanishes in the region with the critical
depth j1¼ 1.363). In general, the amplitude of the leading envelope
soliton a1 is greater or smaller than the amplitude of the incident enve-
lope soliton a depending on the relation between the parameters S and
T; a1> a, if

S >
1

2T � 1
; (18)

and a1< a, in the opposite case. Consequently, for the given S the soli-
ton amplitudes increase if T> 1 and decrease if T< 1.

If more than one soliton emerges in the domain X2, then all of
them possess the same carrier frequency and are located in the same
point which drifts with the group velocity C2. Therefore, within the
NLS theory they remain coupled in the course of evolution and exhibit
breathing-type envelopes. In addition to the new solitons, a dispersive
wave train can be generated which spreads with time.

Therefore, within the employed assumptions which simplify the
problem, the parameter l plays a crucial role; it determines both the
number of envelope solitons which arise in the transmitted wave field
and their amplitudes. We refer further to the parameter l as to the
main parameter determining the soliton transmission. Below we con-
sider the dependence of l on the problem parameters in detail.

III. COEFFICIENTS OF SOLITON TRANSMISSION

As mentioned previously, we consider such a case when “bright”
envelope solitons can exist in both domains X1 and X2, i.e., when ajbj

> 0, j¼ 1, 2. In this case, a plane wave is affected by the modulation
instability [see, e.g., Zakharov and Ostrovsky (2009) and Mei et al.
(2005)]. These inequalities restrict water depths from below, jj

> 1.363. Functions rj(jj) in Eq. (4) are limited from below, rj

> 0.877, under these conditions; they approach a unity exponentially
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quickly when jj increases. As the result, the carrier wavenumber
does not change too much; as follows from Eq. (8), (k2 – k1)/k1< coth
(1.363) �1
 0.14. The smaller the water depth change, the less is the
variation of the carrier wavenumber.

According to the results obtained in Giniyatullin et al. (2014) and
Kurkin et al. (2015a; 2015b), the transmission coefficient T can be cal-
culated with a rather high accuracy using the empirical formula

T ¼ 2C1

C1 þ C2
; (19)

where C1 and C2 are the group velocities of the incident and transmit-
ted waves, respectively. This formula was validated by comparison
with the results of direct numerical simulation within the set of primi-
tive hydrodynamic equations. In what follows, we use this formula to
calculate the transmission coefficient T for the envelope solitons
assuming that they have a narrow spectrum. We also assume that the
characteristic length of the process of the wave transmission over a
bottom step is much shorter than the characteristic distance of mani-
festation of nonlinear effects, i.e., the process of transformation can be
described within the linear theory. Then, the coefficient T depends on
the parameters j1 and j2 only.

The isolines of the coefficient T in Eq. (19) as a function of j1
and the depth ratio h2/h1 are plotted in Fig. 4. It can be readily shown
from Eq. (5) that the group velocity as a function of depth h for a fixed
x is always positive and attains maximum at the point j1 
 1.200
which is the root of the equation j1¼ coth j1. Therefore, in the situa-
tion of our interest, j1 > 1.363, the group velocity decreases when h
increases, and T grows in this case. Consequently, waves increase in
amplitude (T> 1) when they travel to the deeper domain and decrease
(T< 1) in the opposite case. Note that this conclusion is valid to suffi-
ciently deep water, kh> 1.2. In shallower basins, kh< 1.2, the change
of the wave amplitude over a bottom step will be opposite as discussed
in Kurkin et al. (2015a). The local minimum of function T for a given
j1 should be reached at j2
 1.2, which corresponds to the defocusing
regime in the domain X2, when a2b2 < 0 (the white area in Fig. 4). As
one can see from Fig. 4, the values of T noticeably differ from the unity

in the rather localized ranges of parameters: they are significantly
greater than one in the range of small depths j1 < 3 when h2 > h1
and are significantly smaller when the depth in the second domain
tends to the limit j2¼ 1.363 (the lower edge of the colored area in Fig.
4). In general, for j1 > 1.363 and j2 > 1.363 the range of coefficients
T(j1, j2) is confined within the interval from T (1, 1.363)
 0.88 to T
(1.363,1)
 1.12. The linear wave amplification could be much larger
if the basins were shallower (Kurkin et al., 2015a).

As the coefficient T does not vary much, the isolines of the func-
tions S and l¼TS look almost alike. One can readily confirm that the
ratio a/b grows when the depth increases, hence S> 1 if h2 > h1 and
S< 1 in the opposite case h2 < h1, similar to the transmission coeffi-
cient T. The contour plot in Fig. 5 illustrates the dependence of the
parameter l on j1 and h2/h1. The panel (a) pertains to the case when
a wavetrain penetrates from the shallower to deeper domain, and the
panel (b) pertains to the opposite case.

If an envelope soliton travels from the shallow to deep water,
then l > 1; the amplitude of the transmitted soliton increases, and the
number of secondary solitons can be greater than 1, see Fig. 5(a). A
bigger depth drop is required to cause more significant modification
in the wavetrain. Soliton parameters are the most sensitive to the
abrupt deepening, when an incident soliton arrives from the relatively
shallow water where j1 < 2. Different colors in Fig. 5(a) show the
domains where the different number N of secondary envelope solitons
can emerge in the transmitted wavefield as per Eq. (17).

As the ratio a/b grows when the depth increases, in the limiting
case kh!1, the maximum value of this ratio is attained,ffiffiffi

a
b

r
�!
kh!1

ffiffiffiffiffiffiffi
a1
b1

r
¼ x3

g
: (20)

Then, the maximum value of j1, when a second envelope soliton can
emerge from an incoming soliton, corresponds to the case when the
depth changes from h1 to infinite. It is prescribed by the condition,
which yields the threshold value of j1,

l j1;j2 ¼ 1ð Þ > 1:5; when j1 < j1
ð2 solÞ 
 2:859: (21)

When the soliton propagates initially in deeper water, j1 > j1
(2 sol),

new envelope solitons cannot emerge. Three solitons emerge when
l(j1, j2¼1)> 2.5; this requires j1 < j1

(3 sol) 
 1.820. If the depth
in the second domain of water is finite, the values of j1

(2 sol) and j1
(3 sol)

further decrease.
Similarly, the condition

l j1 ¼ 1; j2ð Þ < 0:5; when j2 < j2
ðdestrÞ 
 2:149; (22)

provides the upper limit on the depth behind the bottom step, when
the transmitted envelope soliton gets completely destroyed. With the
use of Eq. (8), the critical condition (22) on the depth in the second
zone can be reformulated in terms of the wavenumber of the incident
envelope soliton k1h2 
 2.091. If the depth behind the step is deeper,
then an incident envelope soliton will recover as the transmitted soli-
ton after the depth change but with the reduced amplitude. If the
depth prior to the step is finite, the transmitted pulse disintegrates at
the shallower domain X2.

The fact that the transmission coefficient l is monotonic with
respect to the depth change h2/h1 for the given j1 leads to the conclu-
sion that the soliton amplitude (the leading soliton amplitude, if

FIG. 4. Isolines of the linear transition coefficient T as per Eq. (19). The uncolored
area corresponds to the defocusing domain X2 where j2 < 1.363.
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several are generated) always grows when h2 > h1 and diminishes
when h2 < h1. According to Eq. (17), the maximum amplification of
the envelope soliton amplitude, a1/a, is restricted by the value of 2T in
the limit of large l, when the number of generated secondary solitons
is big. Within the NLS theory, the number N of generated solitons and
the amplification factors an/a do not depend on the amplitude of the
incident pulse. The solution for the soliton amplitudes according to
Eqs. (17) and (19) is shown for a few values of j1 in Fig. 6. It turns out
that the amplitude of the leading soliton a1 can exceed the limit of
double amplitude of the incident soliton, 2a, only when the soliton
comes to a very deep domain from extremely shallow water, j1< 1.39

(not shown in the figure). In the case when the soliton travels from
deep to shallower water, either at least one soliton of reduced ampli-
tude emerges in the transmitted wavefield or the transmitted pulse
completely disintegrates.

For the waves traveling from deep to shallower water, the param-
eter l< 1, as shown in Fig. 5(b), and therefore, only one envelope soli-
ton can emerge in the domain X2 (see the area for N¼ 1). The
amplitude of the transmitted soliton is smaller than the amplitude of
the original incident soliton arriving from the domain X1. The trans-
mitted pulse can completely disintegrate if l < 0.5; see the domain
marked with N¼ 0 below the isoline l¼ 0.5. The white area in Fig.
5(b) shows the range of parameters where envelope solitons cannot
exist in the shallower domain X2 because j2 < 1.363. Note the non-
monotonic shape of isolines in the intermediate depth interval where
2< j1< 4.

IV. NUMERICAL SIMULATION OF SOLITON
TRANSFORMATION WITHIN THE NONLINEAR
SCHR €ODINGER EQUATION

In Sec. III, the transformation of an envelope soliton on a bottom
step was analyzed in terms of soliton amplitudes in the transmitted
domain X2. This provides us with the asymptotic solution far from the
bottom step when x ! þ1. Let us consider the transient dynamics
which occurs in the domain X2 right after the step in more detail. To
this end, the NLS equation in this domain, Eq. (2) with j¼ 2, was
solved numerically. The parameters of the incident envelope soliton
were chosen such that the steepness was k1a¼ 0.12. In what follows,
the results will be presented in the following dimensionless spatial and
temporal coordinates,

n2 ¼
k2
2p

x; s2 ¼
x2

2p
t � x

C2

� �
: (23)

These variables represent the number of wavelengths and wave peri-
ods, respectively, in the domain X2. A different choice of the steepness
will cause different characteristic scales of the evolution but will not
change the dynamics qualitatively.

Let us consider first the case which is usually called the
“intermediate” depth, when j1¼ 2. The situations when solitons
recover in the transmitted domain X2 are illustrated in Fig. 7 where
the transitions from the deeper to shallower domains occurs [h2/
h1¼ 0.8, left frames (a) and (c)] and vice versa—from the shallower to

FIG. 5. Contour plots of the transmission parameter l¼ TS when an envelope soli-
ton propagates to deeper (a) and shallower (b) domains (note the different limits of
the axes). Different colors show the domains where different number N of solitons
emerge in the transmitted wave field. The white area in the panel (b) corresponds
to the condition when the waves in the shallower domain are modulationally stable,
j2 < 1.363.

FIG. 6. Amplitudes an of envelope solitons generated in the domain X2, normalized
by the amplitude of the incident soliton a, according to Eqs. (17) and (19) for differ-
ent values of j1. The numbers in brackets indicate the cases.
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the deeper domains [h2/h1¼ 1.5, right frames (b) and (d)]. The spatio-
temporal evolution of envelopes of the transmitted wavetrains jA2j are
shown in Figs. 7(a) and 7(b), while Figs. 7(c) and 7(d) show by solid
lines the evolution of maxjA2j as function of distance. The amplitudes
of envelope pulses experience quasi-periodic oscillations in both cases.
The horizontal blue dashed lines in Figs. 7(c) and 7(d) show the scaled
amplitudes a1/a of envelope solitons in the transmitted domain X2 cal-
culated according to Eqs. (17) and (19). It is clearly seen that maxjA2j
gradually converges to the theoretical value when n2!1. When the
water depth decreases, the maximum of the envelope pulse drops
down at the step and then experiences decaying oscillations gradually
approaching the amplitude of the envelope soliton a1 < a [Fig. 7(c)].
In the opposite case when the water depth increases, the maximum of
the envelope pulse increases right after the depth change due to T> 1;
then, it further grows and finally experiences decaying oscillations
around the theoretically predicted amplitude of the envelope soliton,
a1> a [Fig. 7(d)].

Oscillations of amplitudes of pulse envelopes in the domain X2

become even more pronounced when two secondary solitons emerge;
this is illustrated by Fig. 8. The two-soliton solution of the NLS equa-
tion, when solitons are located in one point, was considered by
Satsuma and Yajima (1974) and Peregrine (1983). Such a solution is
known as the bound solitons or bi-solitons. It represents a nonlinear
beating between two solitons with the dimensional distance Lb, where

Lb ¼
4p

a2 a21 � a22
� � : (24)

In the process of beating, the amplitude of the envelope is limited by
the sum of amplitudes of two solitons, maxjA2j 	 a1 þ a2. The two-
soliton solution is one-humped at any time moment, if

a2
a1
<

3�
ffiffiffi
5
p

2

 0:38; (25)

and the minimum value of the envelope amplitude is bounded from
below, maxjA2j � a1 � a2 (we assume hereafter, that a1 > a2).
According to Eq. (17), the condition (25) requires approximately l
< 2.12; this is always fulfilled for the choice of parameters in the first
domain X1 where j1¼ 2, as illustrated by Fig. 8. Thus, the maximum
value of two-soliton solution oscillates between the bounds

a1 � a2 	 maxjA2j 	 a1 þ a2: (26)

Blue dashed horizontal lines in Figs. 8(c) and 8(d) show the bounds of
two-soliton solution given by Eq. (26). These bounds indeed capture
rather well the limits of amplitude oscillations in the transmitted
domain X2 far from the bottom step. The first local maxima in
Figs. 8(c) and 8(d) occur a little bit later than it is predicted by the
estimate (24).

The shapes of the numerically simulated envelopes and predicted
by the exact two-soliton solution at the instants when the envelope
amplitudes attain maximum and minimum values [shown by red dots
in Figs. 8(c) and 8(d)] are compared in Figs. 8(e) and 8(f). The enve-
lope shapes obtained in simulations are given by thick lines, and exact
solutions for the soliton amplitudes a1 and a2 calculated from Eq. (17)
are shown by thin lines. As one can see, the envelope shapes agree
quite well, but not perfectly. In the numerical simulations, the bound-
ary condition at n2¼ 0, in contrast to the pure two-soliton solution,
contains not only the envelope solitons but also a quasi-linear wave-
train. The wavetrain disperses and decays extremely slowly; its contri-
bution to the solution can be seen in the right-side parts of Figs. 8(e)
and 8(f) where the tails of exact and numerical solutions are shown in
semilogarithmic axes.

The obtained solution in the domain X2 in the neighborhood of
the point x¼ 0 can be interpreted as the nonlinear superposition of
envelope solitons and a quasi-linear plane wave of effective amplitude
apw. We assume that the dynamics of such a wavegroup possesses the
characteristic features of a beating process well-known for linear waves

FIG. 7. Results of numerical simulations
of the transmitted pulse evolution origi-
nated from the incident soliton with
k1a¼ 0.12 and j1¼ 2 within the NLS
equation for h2/h1¼ 0.8 (left) and h2/
h1¼1.5 (right). In frames (a) and (b), the
evolutions of the envelope are shown, and
in frames (c) and (d), the dependences of
the envelope amplitudes on distance are
shown. Horizontal dashed blue lines in
frames (c) and (d) show the values of the
predicted soliton amplitudes a1; red solid
lines show the value (a1 þ apw)/a. Left:
a1/a
 0.78, apw/a
 0.09, right: a1/a

 1.26, apw/a
 0.22.
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with different frequencies. In the course of interaction, the compo-
nents of the formation contribute to the wave maximum with their
partial amplitudes in a quasi-linear manner. The linear superposition
of partial amplitudes in nonlinear structures was observed in the colli-
sions of many envelope solitons (Akhmediev and Mitzkevich, 1991
and Sun, 2016), long-wave solitons (Slunyaev and Pelinovsky, 2016
and Slunyaev, 2019), in the dynamics of breathers (Slunyaev et al.,
2002 and Slunyaev, 2006), and rational multi-breathers of the NLS
equation (Wang et al., 2017). This underpins our assumption.

In this study, we assume that the wavefield amplitude at x¼ 0þ
can be presented as the linear superposition of a solitonic component
and a background plane wave, Ta¼ asol 6 apw. The soliton

component is the “most asynchronous” superposition of secondary
solitons with the amplitudes a1> a2> � � � > aN> 0. According to the
results obtained in Slunyaev (2019), the amplitude of the solitonic
component is asol¼ a1 � a2 þ a3 � � � � þ (�1)Nþ1aN. Then, the
amplitude of the background wave apw> 0 can be estimated as

apw ¼ jasol � Taj: (27)

The attainable maximum of the solution, amax, is estimated as the
amplitude of the “most synchronized” wave

amax ¼ a1 þ a2 þ � � � þ aN þ apw: (28)

FIG. 8. Results of numerical simulations of transmitted pulse evolution originated from the incident soliton with k1a¼ 0.12 and j1¼ 2 within the NLS equation for h2/h1¼ 2.5
(left) and h2/h1¼10 (right). In frames (a) and (b), the evolutions of the envelope are shown, and in frames (c) and (d), the dependences of the envelope amplitudes on distance
are shown. In frames (c) and (d) the horizontal blue dashed lines show the values (a1 þ a2)/a and (a1 � a2)/a; red solid lines show the value (a1 þ a2 þ apw)/a. In frames (e)
and (f), the thick green and thick red lines represent the simulated envelope shapes at the distances where the wave amplitude attains local maximum and minimum; thin black
and dotted lines correspond to the exact two-soliton solutions of the NLS equation (see the legend). Left: a1/a
 1.44, a2/a
 0.12, and apw/a
 0.26, right: a1/a
 1.51, a2/a

 0.32, and apw/a
 0.13.
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The values of amax are shown in Figs. 7(c) and 7(d) and Figs. 8(c) and
8(d) by horizontal red solid lines. One can conclude that the values of
amax provide remarkably accurate estimates of the maximum wave
field in all cases. In the case when waves travel from deep to shallower
water, solution (28) becomes trivial as it simply reduces to amax¼Ta.

Even more complicated and difficult for interpretation wavefield
dynamics behind the step was observed in another series of simula-
tions when the water depth in the domain X1 was shallower so that
j1¼ 1.5 (see Fig. 9). First, condition (25) is failed when h2/h1 > 2.47;
as a result, two-humped large wave groups can emerge [they can be
seen in Figs. 9(a) and 9(b)]; second, the lower limit in Eq. (26)
becomes incorrect.

One more complication arises when h2/h1 > 4.33 due to the
emergence of a third soliton [this case is shown in Figs. 9(b) and 9(d)].
The horizontal red lines in Figs. 9(c) and 9(d) show the estimates for
the maximal value of the wavefield as per Eq. (28); these estimates still
provide rather good agreement with numerical data for the attainable
wavefield maximum. Note that the wavefield absolute maximum is
not the first in the series of maxima shown in Figs. 9(c) and 9(d).

Formulas (27) and (28) can be re-written with the help of Eq.
(17) as

apw
a
¼ T

����Nl � 1

����; N ¼ E lþ 1
2

� �
; (29)

asol
a
¼

N
S
; whenN is even;

2T � N
S
; whenN is odd;

8>><
>>:

amax

a
¼

T 2N � 1ð Þ � N N � 1ð Þ
S

; whenN > l;

T 2N þ 1ð Þ � N N þ 1ð Þ
S

; otherwise:

8>>><
>>>:

As has been mentioned above, function E(�) returns the integer part of
its argument; N is greater than l when the fractional part of l is
greater than 0.5.

The results of a series of numerical simulations for the depths
j1¼ 2 and j1¼ 1.5 are compared in Figs. 10(a) and 10(b), respec-
tively, with the estimate (29). We also reproduce the curves for the
soliton amplitudes an from Fig. 6 and plot the values of apw.
Formula (29) describing the wave extremes amax in the domain X2

agrees well with the numerical simulations (the actual extremes,
maxjA2j, are plotted by circles) despite a complicated broken
dependence for amax. According to Fig. 10, amplitudes of nonlin-
ear wavetrains traveling from the domain X1, where j1 varies
between 1.5 and 2, toward a deeper domain X2, can increase in
2–3 times.

The process of beating between the emerged secondary solitons
and the background quasi-linear wave results in the remarkably
greater enhancement than the one predicted by the linear theory (see
Fig. 4) or based on the consideration of non-interacting solitonic com-
ponent only (see Fig. 6). The maximum amplification is achieved
when the water in the domain X2 is infinitely deep. Solution for this
limiting case, j2 ! 1, depends on the scaled water depth in the
domain X1 and is shown in Fig. 11. In the figure, the curves of the
wave maximum, of the soliton amplitudes and of the quasi-linear
wave component are plotted, similar to Fig. 10. While the amplitude
of the leading soliton a1 remains finite when j1 ! 1.363, the maxi-
mum attainable amplitude amax grows infinitely due to the infinite
number of secondary solitons which can superimpose (l tends to
infinity as a1 approaches zero, this asymptote is shown by the vertical
dashed line in Fig. 11).

Finally, we reiterate that the wave amplification amax/a obtained
within the NLS theory does not depend on the amplitude of the inci-
dent soliton.

FIG. 9. The same as in Fig. 7, but for the
transition from the domain X1 where
j1¼1.5 to the domain X2 where h2/h1
¼ 3.33 [(a) and (c)] and to h2/h1¼13.3
[(b) and (d)]. The horizontal red line shows
the value of amax/a according to Eq. (28).
Left column: a1/a
 1.71, a2/a
 0.80,
and apw/a
 0.17; right column: a1/a
 1.76,
a2/a
 0.95, a3/a
 0.15, and apw/a
 0.13.
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V. NUMERICAL SIMULATION OF SOLITON
TRANSFORMATION WITHIN THE PRIMITIVE SET
OF HYDRODYNAMIC EQUATIONS

The problem of transformation of an envelope soliton at a bot-
tom step has been studied also within the primitive set of equations for
the potential flow of ideal fluid in the planar geometry (see Fig. 1). A
numerical model based on the high-order spectral method (HOSM)
(Dommermuth and Yue, 1987 and West et al., 1987) and applicable to
a smooth variable topography was used (Gouin et al., 2016). The code
takes as a basis the open-source solver HOS-ocean (Ducrozet et al.,
2016). After a careful analysis of code convergence, the order of non-
linearity in the computations was fixed to 8 (i.e., up to nine-wave non-
linear interactions were considered). A lengthy spatial domain of the
total size of about 900 wavelengths was simulated imposing periodic

boundary conditions with the absorbing zones close to the boundaries
that effectively lead to the nonreflecting boundary conditions. When it
was necessary, the size of the domain X2 was further extended. The
capability of the code is limited by moderate and smooth variations of
the water depth. The bottom step in the middle of the computation
domain was specified by a smooth transitional profile using a piece of
a sinusoid of the horizontal size D, which was typically as long as three
dominant wave lengths, k1D¼ 6p. The validity of the numerical model
has been studied thoroughly by Gouin et al. (2016). Different test-
cases can be found with results validated with the bottom slopes up to
0.5 and water depth variation up to 75%. The study has demonstrated
that the convergence rate of the numerical scheme reduces when the
bottom variation and bottom slope increase. However, the method
allows one an accurate solution up to the aforementioned limits. In the
numerical results presented in this section, the bottom slope varies in
the range from 0.033 to 0.38, and the relative water depth variation in
the range from 11% to 60%. The numerical parameters of the study
have been chosen after a careful convergence analysis which secures
accurate computations. In particular, the energy integral was con-
served with an accuracy of at least 0.1%.

The HOSM code calculates the wave evolution in time, in con-
trast to the previously used spatial NLS equations (2). The initial con-
dition was specified in the form of the exact envelope soliton solution
of the NLS equation (2) for j¼ 1 located far enough in front of the bot-
tom step. The scaled amplitudes, which have the meaning of the wave
steepness, were k1a¼ 0.06 and k1a¼ 0.12 in different runs. Since the
initial conditions were not exact solutions of the hydrodynamic equa-
tions, their evolution at the early stage was accompanied by a radiated
trailing wave that ran behind a soliton prior it approached the bottom
step. As a result, the solitary nonlinear wavetrain had a well-formed
shape when it entered the zone where the depth becomes changing.
Since the actual incident wavetrain was slightly different from the ini-
tial pulse, the amplitude of the incident soliton was estimated as a half
of the wave heights averaged over 20 wave periods prior the depth

FIG. 10. Amplification factors of envelope solitons for the cases j1¼ 2 (a) and j1¼1.5 (b). The data of numerical simulation of the maximum value of jA2j/a obtained within
the NLS equation are compared with the estimated maximum wave amplitude in the domain X2 amax/a. The normalized soliton amplitudes an/a and the estimated value of the
background linear wave apw/a are also shown.

FIG. 11. Amplification factors of envelope solitons in the limiting case when the
water depth in the domain X2 is infinite.
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change, a¼<Acr þ Atr>/2, where Acr¼max(g1) and Atr¼�min(g1)
are the momentary maximum and minimum of the wavetrain, and
the angular brackets denote an average value. These slightly reduced
values of a (see the example below in Fig. 15) were used for the com-
parative simulations of the NLS equation.

The dynamics of the transition of a solitary group with the steep-
ness k1a¼ 0.12 from the domain X1 where j1¼ 2 to the domain X2

with the depth jump h2/h1¼ 2.5 is illustrated in Fig. 12; the conditions
are similar to the ones shown in the left column of Fig. 8. The evolu-
tion in time, simulated by the HOS code, was recalculated to the evolu-
tion in space, using the linear wave group velocity in the domain X2,
n2¼ k2C2 t/(2p). The solid curves represent the normalized envelope
amplitudes, maxjA2j, of the wavefield calculated from the simulation
within the NLS equation (line 1) and from the Euler equations (line 2).
The latter is estimated through the momentary wavetrain maximum
and minimum, (Acrþ Atr)/2, while the interval between the values Acr

and Atr is filled with color. The wavetrain maxima and minima are not
equal in absolute value due to the vertical wave asymmetry caused by
nonlinearity. They experience fast oscillations, owing to the difference
between the velocities of the individual wave and wavetrain. The
horizontal lines, like in Fig. 8(c), show the normalized values of amax,
a1þ a2 and a1� a2.

In the simulation of the Euler equations, the envelope amplitude,
which is amplified due to the depth increase, is a little bit smaller com-
pared to the simulation with the NLS equation. The rate of the wave
enhancement right after the bottom step is somewhat slower, and the
period of oscillations is longer in the simulations within the HOSM.
The dynamics of self-modulation of a quasi-periodic wave group was
observed in the numerical simulations within the Euler equations; the
dynamics looks qualitatively similar to the results of simulation within
the NLS equations; the bands of oscillations are similar as well. Due to
the vertical wave asymmetry, the amplification of wave crests can
exceed the value predicted by the approximate theory as per Eq. (29),
though the maximum wave half-height (Acr þ Atr)/2 is smaller than
the envelope amplitude within the weakly nonlinear framework. Due
to the non-integrability of the Euler equations, one can expect that the
soliton-like groups can be changed in the course of inelastic interac-
tions. Therefore, in the longer-term evolution, the solution can signifi-
cantly differ from that obtained within the NLS equation.

The upper parts of Figs. 10(a) and 10(b) are reproduced in
Figs. 13(a) and 13(b) correspondingly, where maximum wave
enhancements observed in the series of numerical simulations within

the Euler equations are also shown. The cases when the solitary groups
originally propagate over the depths with j1¼ 2 and j1¼ 1.5 are pre-
sented separately in frames (a) and (b), respectively. The vertical bars
show the bands of maximum amplification of the wavetrain maxima
and minima. They represent the intervals [max(Atr)/a, max(Acr)/a],
where the maxima were calculated in the domain X2. The cases of two
different wave steepness of the incident soliton, k1a
 0.06 and
k1a
 0.12, have been studied (see the legends in Fig. 13). The results
of the weakly nonlinear theory, the estimate amax/a as per Eq. (29) (the
thick solid curves), and the amplifications obtained in the direct
numerical simulation of the NLS equation (circles) are reproduced for
the comparison. The largest soliton amplitude a1/a (the thin solid
curve) is also shown for the reference.

As one can see from Fig. 13(a) for j1¼ 2, the maximum wave
amplification in the simulations of the HOSM follows the theoretical
curve. The bars that correspond to the simulations of small-amplitude
waves agree better with the weakly nonlinear solution, whereas steeper
waves result in longer bars (because the wavetrains possess stronger
vertical asymmetry), which are still described reasonably well by the
analytic curve for amax. The agreement is noticeably worse when the
domain X1 is shallower so that j1¼ 1.5 [see Fig. 13(b)], though
the amplification is greater than in the previous case. In the case with
j1¼ 2, the NLS theory predicts the emergence of a second soliton after
the depth transition only when h2/h1¼ 3; then a1/a
 1.46 and a2/a

 0.18, and the second soliton is small. In another case with j1¼ 1.5,

FIG. 12. The dependence of wave amplitude on distance obtained in the direct
numerical simulation within the Euler equations compared with the result of simula-
tion of the NLS equation. The simulation conditions are similar to those shown in
Figs. 8(a) and 8(c).

FIG. 13. Maximum wave amplification for the envelope soliton transition from the
domain X1 to X2 with the depth parameters j1¼ 2 (a) and j1¼1.5 (b). The bars
represent the result obtained within the numerical simulation of the HOSM for h2/
h1¼ 0.8, 1.5, 2.5, 3 (a); and h2/h1¼1.3, 2, 3.3, 4 (b). The thick solid line shows
the solution provided by the weakly nonlinear theory amax/a as per Eq. (29), and the
open circles represent the result of numerical simulation within the NLS equation.
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two solitons emerge in all simulations shown in Fig. 13(b) for h2 > h1;
in the case h2/h1¼ 4, the soliton amplitudes are evaluated according to
Eq. (17) are as much as a1/a
 1.72 and a2/a
 0.85. It is important to
note that the employed method of simulation of the Euler equations
becomes less accurate when the depth drop h2/h1 becomes too large.
Therefore, the deviation of two rightmost bars in Fig. 13(b) from the
theoretical thick line can be caused by the shortcomings of the numeri-
cal code.

In our theoretical consideration presented in Sec. III, it was
assumed that the wave transformation over the bottom step is much
quicker in comparison with the characteristic times of manifestation
of nonlinear and dispersion effects; this legitimates the use of the
transmission coefficient T (19) found within the linear theory for
monochromatic waves. This coefficient was verified in Giniyatullin
et al. (2014) and Kurkin et al. (2015a) by direct numerical simulation
of the primitive set of hydrodynamic equations for small amplitude
waves. In Fig. 14, we compare theoretical formula (19) with the esti-
mation of the quick wave amplification in the direct numerical simula-
tions within the Euler equations. To this end, we consider the
evolution of the maximum wave amplitude (Acr þ Atr)/2 as the func-
tion of time. This quantity experiences a quick change when the group
passes over the bottom step, as shown in Fig. 15. The time moments
when the quick change of wave amplitude occurs was selected by eye
and the wave amplitudes were calculated then by averaging over 20
wave periods in front of the step (ai 6 Dai) and 5 wave periods past
the step (at 6 Dat) (the standard deviations were used as the confi-
dence intervals). Then, the numerically estimated transmission

coefficients T were plotted in Fig. 14 as the bands [(at � Dat)/(ai
þ Dai), (at þ Dat)/(ai � Dai)] for two different amplitudes of an inci-
dent soliton. Solution for the linear uniform waves as per Eq. (19) is
shown in Fig. 14 by solid lines. As one can see, there is a good agree-
ment between the coefficient T in Eq. (19) and the results of direct
numerical simulation for strongly nonlinear modulated waves. Some
discrepancy between these data are observed for j1¼ 1.5 and h2/
h1¼ 4, but this can be caused by the numerical artifacts as has been
mentioned above.

In contrast to the previously used NLS theory, the numerical sim-
ulations within the primitive set of hydrodynamic equations were per-
formed for the bottom profile, when the depth change was prescribed
by a smooth function with the horizontal size D of three dominant
wavelengths. In Fig. 15, we present a comparison of the evolution of
solitary wavetrain for three values of D consisting of 3, 10, and 30
wavelengths for the following parameters: j1¼ 2, h2/h1¼ 2.5,
k1a
 0.06. As one can see, the characteristic length D of the bottom
step has practically no influence on either the quick amplitude increase
in the very vicinity of the bottom step (see the inset), or the pulse evo-
lution past the step.

VI. CONCLUSION

In this work, the transformation of envelope solitons on a bottom
step was studied analytically within the weakly nonlinear theory for
slowly modulated waves using the transformation coefficient for linear
waves suggested in Giniyatullin et al. (2014) and Kurkin et al. (2015a).
This was also studied numerically using the simulations within the
nonlinear Schr€odinger equation and primitive set of hydrodynamic
equations for the potential flow. The wide range of water depths was
considered from the relatively shallow water up to infinitely deep
water. The wave parameters were chosen such that the effects of non-
linearity and dispersion could be balanced to support long-living soli-
tary wave groups. Such structurally stable nonlinear groups with high
amplitudes and steepnesses up to k0Acr
 0.3 were observed in labora-
tory simulations [Slunyaev et al. (2013; 2017)]. It was confirmed that
soliton-like patterns embedded into irregular wave trains can propa-
gate for a long distance (Viotti et al., 2013; Wang et al., 2020; and
Slunyaev, 2021); therefore, they represent both the theoretical and
practical interests.

FIG. 14. Estimation of the transmission coefficient T in the direct numerical simula-
tions within the Euler equations shown in Fig. 13 (bars) for j1¼ 2 (a) and j1¼1.5
(b). Solid lines show solution (19) obtained in the linear approximation.

FIG. 15. Dependence of the maximum wave amplitude as a function of distance in
the direct numerical simulation within the primitive set of hydrodynamic equations
for j1¼ 2, h2/h1¼ 2.5 and the incident envelope soliton steepness k1a
 0.06.
Three curves show the numerical results for different lengths of the bottom step
D¼ 3, 10, and 30 wavelengths. The process of pulse passing over the bottom step
is shown in the magnified insertion.
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When an envelope soliton propagates from the deep to shallower
water, its amplitude decreases right after the step and later on. The
transmitted wavetrain can completely disperse if the depth in the shal-
lower domain is too small. When an envelope soliton enters a deeper
domain, its amplitude right after the depth change increases, and the
transmitted wavetrain can split into one or several envelope solitons
and a trailing quasi-linear wave. The wave pattern forms a bound state
and interacts in a quasi-linear fashion; in the result, it can produce a
high-amplitude wave in the course of propagation.

The observed wave amplification occurs after a quick transforma-
tion of a quasi-linear wave train at the bottom step and consequent
nonlinear evolution of the transmitted wave packet. Its evolution
resembles the effect of modulational instability triggered by head-one
currents or strong winds (Onorato et al., 2011 and Slunyaev et al.,
2015). As the result, the leading envelope soliton that is generated after
the depth drop theoretically can have the amplitude of more than two
times greater than the amplitude of incident wave group. Within the
integrable NLS equation, the solitons represent the asymptotic solution
in the transmitted wavefield after the bottom step. As for the third
effect, a large number of secondary solitons can emerge from the
transmitted wave group if the depth drop is sufficient. They can have
significant amplitudes and create big-amplitude waves in the course of
propagation behind the bottom step due to the constructive interfer-
ence between them and with the quasilinear residual.

The analytic formula for the maximum wave amplification
obtained within the framework of the nonlinear Schr€odinger equation
is proposed in this paper; it can provide a very big value at a relevant
relationship between the depths in two domains. The numerical simu-
lation within the NLS equation confirms the correctness of the theoret-
ical description. The results of the direct numerical simulation within
the primitive set of hydrodynamic equations agree well with the
weakly nonlinear theory, though demonstrate noticeable deviation
when the depth change is too big; this can be explained by limitations
of the adapted numerical scheme based on the high-order spectral
method. The maximum wave amplification attained in the series of
numerical simulations exceeded factor two; therefore, the wave trains
in such case can be referred to rogue waves (Kharif et al., 2009).

To conclude, when an envelope soliton enters a deeper region,
the amplification of the soliton amplitude is stronger than the one of
linear waves; the transmitted wave group can disintegrate into several
solitons and a quasi-linear trailing wave. The interaction between the
solitons and the quasi-linear wave further enhances the amplification
considerably. Note that though we limited the consideration by the
conditions when envelope solitons may exist in both water domains
requiring that kjhj > 1.363 for j¼ 1, 2, the restriction can be slightly
weakened for the first domain from which the envelope soliton
approaches the bottom step. The nonlinear mechanisms of wave
amplification add to the linear wave enhancement if an envelope soli-
ton emerges right after the step. Similarly, the incident wavetrain can
have the shape different from the NLS envelope soliton. It should be
also mentioned that the threshold of the modulational instability
kh¼ 1.363 alters when higher order effects are considered. This prob-
lem was analyzed in Slunyaev (2005) and Agafontsev (2008), where
the shift of the instability boundary to shallower water was concluded
[in contrast to some other works, see a discussion in Slunyaev (2005)].
It was shown in Grimshaw and Annenkov (2011) that solitary wave
packets which propagate shoreward can either penetrate into shallow

water, kh< 1.363, or even not reach this depth depending on the
group characteristics.

The developed theory based on the 1D NLS equation can
describe the 3D problem when the wavevectors of the carrier and
envelope waves are at an angle to each other within the band of insta-
bility (slanted envelope solitons, see Chabchoub et al., 2019).
The effective 1D NLS equation for the envelope will have the form of
Eq. (2) with the modified coefficients C1,2 and b1,2 and with the similar
statement of the problem. Envelope solitons are known to be unstable
with respect to transverse perturbations (Zakharov and Rubenchik,
1974 and Ablowitz and Segur, 1979); therefore, they cannot propagate
for a long distance in the open sea. However, narrow channels or
waveguides formed by lateral inhomogeneities can stabilize the soliton
(see Shrira and Slunyaev, 2014) and hence increase the feasibility of
the described effects in nature.

Though a hydrodynamic example is considered in this work, the
obtained qualitative understanding obviously has a broader applica-
tion to other nonlinear media that support the propagation of enve-
lope solitons. The analytic description (29) should remain applicable if
the nonlinear Schr€odinger equation serves as the leading-order
approximation. It can be a challenge to experimentalists to validate the
results obtained in this paper by the data of laboratory modeling or
field observations. Such works were conducted for the observation of
transformation of KdV solitons on bottom steps (Seabra-Santos et al.,
1987; Losada et al., 1989).
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