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C L I M AT O L O G Y

Australia’s Tinderbox Drought: An extreme natural 
event likely worsened by human-caused climate change
Anjana Devanand1,2*†, Georgina M. Falster3,4, Zoe E. Gillett1,2, Sanaa Hobeichi1,2,  
Chiara M. Holgate3,4, Chenhui Jin5,6, Mengyuan Mu1,2, Tess Parker5,6‡, Sami W. Rifai1,2,7,  
Kathleen S. Rome1,2, Milica Stojanovic8, Elisabeth Vogel1,9,10, Nerilie J. Abram3,4,  
Gab Abramowitz1,2, Sloan Coats11, Jason P. Evans1,2, Ailie J. E. Gallant5,6, Andy J. Pitman1,2,  
Scott B. Power5,6,12,13, Surendra P. Rauniyar14, Andréa S. Taschetto1,2, Anna M. Ukkola1,2

We examine the characteristics and causes of southeast Australia’s Tinderbox Drought (2017 to 2019) that pre-
ceded the Black Summer fire disaster. The Tinderbox Drought was characterized by cool season rainfall deficits of 
around −50% in three consecutive years, which was exceptionally unlikely in the context of natural variability 
alone. The precipitation deficits were initiated and sustained by an anomalous atmospheric circulation that di-
verted oceanic moisture away from the region, despite traditional indicators of drought risk in southeast Australia 
generally being in neutral states. Moisture deficits were intensified by unusually high temperatures, high vapor 
pressure deficits, and sustained reductions in terrestrial water availability. Anthropogenic forcing intensified the 
rainfall deficits of the Tinderbox Drought by around 18% with an interquartile range of 34.9 to −13.3% highlight-
ing the considerable uncertainty in attributing droughts of this kind to human activity. Skillful predictability of 
this drought was possible by incorporating multiple remote and local predictors through machine learning, pro-
viding prospects for improving forecasting of droughts.

INTRODUCTION
Human-caused climate change results in changes in the distribution of 
average rainfall across the globe, as well as amplification of the inten-
sity of wet extremes and droughts (1, 2). Warming over land is also 
driving an increase in atmospheric moisture demand that has the po-
tential to further increase the likelihood and severity of droughts (1). 
Many regions have experienced an increase in observed drought 
intensity and frequency over the last few decades, particularly in 
mid-latitude regions of the northern and southern hemispheres, 
which support large proportions of the world’s population and agri-
cultural food security (2). There has also been an observed increase 
in compound events involving concurrent heatwaves with droughts 
(1). It is possible that drought characteristics are also changing, for 
example, through the recently identified phenomenon of “flash 
droughts” that have rapid onset and intensification (3). At the same 
time, paleo records identify multi-year to decadal “megadroughts” 
that were more intense and longer than any drought experienced 

during the instrumental period, indicating that far worse droughts are 
possible even without human-caused drought intensification. Future 
climate change simulations indicate that droughts will intensify in 
many regions with global warming, and that every fraction of a degree 
of additional climate warming can worsen the severity and frequency 
of droughts in already drought-prone regions (1).

Despite the potentially devastating impact of droughts (4, 5), the 
causes and predictability of individual drought events are usually 
poorly understood (6, 7). This is partly because each event is unique 
and involves multiple interacting components of the climate system, 
and because the observational record provides very few examples of 
multi-year drought to study. Furthermore, current global climate 
models have limited skill in replicating multi-year droughts (8). Di-
vergence of drought projections across multimodel ensembles also 
currently limits confidence in projected changes in many regions (9, 
10). The multifaceted nature and impacts of droughts means that 
these climate extremes cannot be adequately understood using sin-
gle and standardized global metrics applied to observations or cli-
mate simulations. Instead, detailed analysis of high-impact case 
studies provides an alternate approach to advance our understand-
ing of droughts.

Southeast Australia is a naturally drought-prone region and ex-
perienced a severe multi-year drought during 2017–2019. It was the 
driest 3-year period since comprehensive instrumental records be-
gan in 1911 (11–13) and demonstrated the potential for drought 
events to contribute to cascading and compounding impacts across 
socio-economic and natural sectors (14). The 2017–2019 drought 
brought rural townships to the brink of running out of water (15), 
caused severe agricultural losses (16), and threatened the water sup-
ply of Australia’s largest city, Sydney (17). The drought culminated 
in catastrophic forest fires in the spring and summer of 2019/2020 
that burnt more than 5.8 million hectares of forest (13, 18). The fires 
were unprecedented in the historical record for their spatial extent, 
radiative power, and the number of extreme pyroconvective events 
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(13). We name the 2017–2019 drought the “Tinderbox Drought,” in 
recognition of the exceptional dryness of the event and how it pre-
conditioned the region for unprecedented fire activity.

Some aspects of the development of the Tinderbox Drought were 
unexpected, raising urgent questions around why southeast Australia 
was in drought and how human-caused climate change might be in-
creasing drought risk and/or altering drought predictability. Here, we 
carry out a multidisciplinary assessment of the Tinderbox Drought to 
describe its characteristics, probability, drivers, and predictability. We 
use a broad range of observational sources, from in  situ measure-
ments to global satellite-based products, as well as different modeling 
and machine learning approaches to illuminate key aspects of the 
Tinderbox Drought. We begin with a comprehensive description of 
the spatiotemporal characteristics of the drought, including impacts 
on hydrology, vegetation and agriculture. We then assess how un-
usual the drought was in the context of observational data, followed 
by an exploration of the physical mechanisms that led to the extreme 
and sustained precipitation deficits. Finally, we assess the predictabil-
ity of the drought and how unusual the drought was in the context of 
simulated long-term climate variability and what role climate change 
may have played in exacerbating it. We conclude by drawing together 
the multifaceted analysis of the Tinderbox Drought, and the insights 
this event gives for droughts in a warming world.

RESULTS
Characterization and impacts of the drought
We begin by identifying the temporal and spatial characteristics of 
the Tinderbox Drought. Droughts commonly start as a precipitation 

deficit (meteorological drought), which propagates to other compo-
nents of the surface water cycle including streamflow and water 
storages (hydrological drought), soil moisture, and plant water stress 
(agricultural and ecological drought). While deficits in precipitation 
are an obvious driver of droughts, the development and intensifica-
tion of droughts are also influenced by temperature, radiation, wind, 
and humidity that alter atmospheric evaporative demand. For ex-
ample, the increased presence of high-pressure weather systems (an-
ticyclones) during droughts in southeast Australia reduces cloud 
cover, increasing the local incoming radiation. These changes affect 
land-atmosphere feedbacks, reducing rainfall recycling in some re-
gions, which can intensify precipitation deficits (19, 20). Further-
more, soil moisture deficits reduce evaporative cooling, increasing 
air temperatures through increased sensible heating, increasing 
evaporative demand, and thereby further depleting soil moisture via 
a positive feedback loop.

Here, we use drought metrics (see Materials and Methods) based 
on precipitation, potential evapotranspiration (PET), and soil mois-
ture to identify the focus region of the Tinderbox Drought. The im-
pact of the drought in this region is then characterized by examining 
water, atmospheric, vegetation, and agricultural datasets.
The drought focus region
The Australian Bureau of Meteorology (BoM) describes precipitation 
deficits during the 2017–2019 drought as primarily occurring during 
the cool season months of April to September (11). Focusing on the 
cool season months and using a combination of drought metrics (SPI-
3 and SPEI-3, see Materials and Methods) from multiple datasets, 
we calculate the spatial pattern of time spent in drought during the 
Tinderbox Drought (Fig. 1 and fig. S1A). Areas of southeast Australia 

Fig. 1. The drought focus region. (A) The thick blue line shows the outline of the region in drought during 2017–2019. Basemap colors denote elevation. The map also 
shows agricultural areas, the Murray Darling Basin (MDB, thin aqua line), smaller river basins, locations of streamflow stations, and borewells. (B) The proportion of time in 
drought during April to September 2017–2019 based on standardized drought metrics. The thick black line denotes the drought area. The fraction of time spent in 
drought is calculated here as the mean proportion of time SPI-3/SPEI-3 ≤ −1 for data encompassing only the cool season months (April to September) of 2017–2019 based 
on three precipitation and two potential evapotranspiration (PET) datasets (Materials and Methods; fig. S1).
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between 25° and 35°S, and east of 137°E were commonly (>50% of the 
time) in drought during the cool seasons of 2017–2019. Consistent 
results are found when repeating this analysis using all months of 
2017–2019 (fig. S1B). The identified drought region is further consis-
tent if simple rainfall thresholds (fig. S1, C and D) or a threshold ap-
proach based on root zone soil moisture data (fig. S1, E and F) is used.

We therefore define the Tinderbox Drought region (Fig. 1) based 
on these consistent spatial patterns of the proportion of time in 
drought derived from different assessment methods (fig.  S1). The 
boundaries of the Tinderbox Drought region show a strong corre-
spondence with the Murray-Darling Basin (MDB). The drought af-
fected virtually all of the New South Wales (NSW) and southern 
Queensland parts of this major drainage basin and the agricultural 
land it supports (Fig. 1A). Sustained cool season drought over the 
full 2017–2019 interval was not evident along the coastal fringe of 
eastern Australia or the majority of Victoria, although some of these 
regions did experience drought impacts during some parts of the 
Tinderbox Drought. This is particularly true for the final year of the 
drought (2019) when most of southeast Australia experienced ex-
ceptionally dry conditions that were sustained throughout almost 
the full year (figs.  S2 and S3), including the forested coastal and 
mountain regions of southeast Australia where the subsequent Black 
Summer fires were concentrated. The region defined here for the 
Tinderbox Drought (Fig. 1) is used throughout this study.
Tinderbox Drought rainfall deficits in a historical context
The Tinderbox Drought was the most intense 3-year drought expe-
rienced in our study region since Australia’s gridded observational 
record began in 1900 (Fig. 2). It was the most severe 3-year deficit in 
April to September rainfall, with 2017, 2018, and 2019 all experienc-
ing cool season rainfall that was below the 10th decile based on all 
years since 1900 (Fig. 2A). Previous years that experienced such in-
tense rainfall deficits have generally been single-year events followed 
by median to high rainfall years. Other multi-year events with below 

median rainfall, such as the 3-year 1927–1929 drought event, did not 
have the same sustained intensity as the Tinderbox Drought.

The accumulated 3-year rainfall anomalies by the end of the 
Tinderbox Drought were also the most severe in the historical record 
of rainfall over our drought focus region (Fig. 2B). These accumu-
lated anomalies are based on rainfall in all months. They demon-
strate that the extreme April to September rainfall deficits during 
the Tinderbox Drought were not abated by rainfall in the interven-
ing October–March months.

Sustained and intensifying rainfall deficits during 2017 resulted 
in the majority of NSW moving into drought watch conditions from 
mid-2017, and by October of 2017, drought conditions had become 
established in some regions (21). In some locations, the drought also 
involved rapid intensification as a flash drought (22). The intense 
rainfall deficits of the Tinderbox Drought form part of a multi-
decadal drying trend over southeast Australia (23). In the two de-
cades leading to the Tinderbox Drought (2000–2019), 15 of the 
20 years experienced rainfall below the long-term average (13). Wet 
years have become less frequent and generally less intense since 
2000 compared to the last century, and average rainfall has been 
around 10% lower than the last century (1900–1999) (24).
Temporal evolution of the water cycle during the drought
The Tinderbox Drought affected all aspects of the water cycle. The 
meteorological drought conditions shown in Fig.  2 resulted from 
precipitation being below average for 31 out of 36 months in 2017–
2019 (relative to a 1980–2016 baseline to allow for comparison across 
a range of different hydroclimate measures, Fig. 3A). Rainfall deficits 
during the cool seasons of these 3 years were about −50% (ranging 
from −46 to −56%). Summer precipitation was also substantially re-
duced, with deficits of −27% in 2016/2017, −26% in 2017/2018, and 
−54% in 2018/2019. Evapotranspiration (ET) deficits intensified as 
the multi-year drought progressed, reaching −57% by the end of 
2019 (Fig. 3A). Using P minus ET (P − ET) as a measure of water 
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Fig. 2. Historical context for the Tinderbox Drought. (A) Total April to September rainfall over the drought focus region using the Australian Gridded Climate Data 
(AGCD) historical rainfall dataset. Shading indicates the decile over the full record length (1900–2022), where darkest brown indicates rainfall in the lowest 10% of all years 
and darkest green indicates rainfall in the highest 10% of all years. (B) Moving 3-year accumulated rainfall anomalies, relative to the 1961–1990 mean. Accumulated 
anomalies are based on all months and are plotted for the final month of each 3-year interval. Gray shading indicates the 2017–2019 Tinderbox Drought interval, and 
dashed horizontal line indicates the maximum 3-year accumulated rainfall anomaly at the end of the Tinderbox Drought.
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Fig. 3. Monthly anomalies in water cycle components in the drought focus region. (A) Precipitation and evapotranspiration (ET) (%), (B) vapor pressure deficit (%), 
and Tmax (°C) (C) soil moisture from the European Space Agency dataset (%) and terrestrial water storage from Gravity Recovery and Climate Experiment (GRACE) data 
(mm), with error bars indicating uncertainty estimates from the same datasets. (D) Monthly anomalies in water table depth (m) from borewell data. The water level 
anomalies in the Murrumbidgee and Upper Murray are shown on the right y axis. (E) Seasonal anomalies in streamflow (%). Anomalies are calculated with respect to a 
baseline (1980–2016), unless constrained by data availability. The figure shows the period covering 1 year before and after the drought (2016–2020), and vertical shading 
in (A) to (C) indicates the cool seasons of the Tinderbox Drought.
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availability, average deficits ranging from −5 to −15 mm month−1 
occurred during the cool seasons and summers of 2017–2019. These 
negative water availability anomalies contributed to strong declines 
in water stores and streamflow (Fig. 3, C to E).

Maximum air temperatures (Tmax) and atmospheric dryness 
were exceptionally high during the Tinderbox Drought, culminat-
ing in several severe heatwaves that further intensified the drought 
conditions and fire risk (13, 25). Through the drought, there was a 
significant inverse relationship between monthly precipitation and 
Tmax anomalies (Fig. 3, A and B), with months of higher-temperature 
anomalies coinciding with months of greater precipitation deficits 
(r  =  −0.39, t test two-tailed P  <  0.05). This monthly covariance 
between temperature and precipitation anomalies is also a robust 
feature of the longer-term interannual climate variability of this re-
gion (13). Tmax was on average 1.6°C higher than the 1980–2016 
mean over the drought focus region, with the largest anomalies 
over summers (1.8 to 2.8°C) (Fig.  3B). Anthropogenic warming 
over the 20th century also means that the 1980–2016 baseline used 
here is 0.3°C above the 1911–1940 average. The exceptional heat 
during the Tinderbox Drought differentiates this event from previ-
ous drought events in southeast Australia that have typically been 
associated with temperatures around 1.0°C above the long-term 
mean (11).

Vapor pressure deficit (VPD) is a measure of the ability of the 
atmosphere to take up water from the surrounding landscape. VPD 
is determined by atmospheric temperature and humidity and is an 
important driver of ecological stress. Between November 2016 and 
January 2020, 34 of the 39 months experienced above average VPD 
anomalies, and over the 3 years of the Tinderbox Drought, the mean 
VPD anomaly was 15% greater than the 2002–2016 baseline mean 
(Fig. 3B). We estimate VPD anomalies here from a shorter baseline 
for consistency with assessments using satellite-based vegetation 
datasets.

Surface and groundwater datasets demonstrate the progressive 
worsening of hydrological drought during 2017–2019 (Fig. 3, C to 
E). During 2017, surface soil moisture was on average −11% relative 
to the predrought 2010–2016 mean. In 2018, the soil moisture anom-
aly intensified to −18%, and in 2019, it intensified again to −22% 
(Fig.  3C). By 2019, these moisture deficits amounted to around a 
100-mm lowering of terrestrial water storage (TWS; below the 2010–
2016 mean). Water table depths also declined progressively through 
the drought (Fig. 3D), with maximum lowering of −6.1 m measured 
for the Murrumbidgee and Upper Murray basin region in early 2020. 
By spring of 2019, streamflow anomalies had declined to −91 to 
−100% below long-term 1980–2016 levels in all river basins of our 
study region except the Upper Murray (−64%) where flows are less 
variable than other basins (Fig. 3E). Drought monitoring in NSW 
saw drought indicators from soil moisture and plant growth deficits 
appear several weeks ahead of meteorological drought indicators 
during both the 2017 drought onset and the drought intensification 
in 2019 (13).

The Tinderbox Drought ended with positive precipitation anom-
alies during February to April 2020, which were also accompanied 
by negative Tmax and VPD anomalies. Soil moisture across the 
drought region recovered quickly in February/March 2020. Recov-
ery of streamflow occurred variably through 2020 as rain fell across 
different parts of the drought-affected region. An exception was the 
Border and Condamine-Culgoa river basins in the northern part 
of the drought focus region, where negative streamflow anomalies 

continued to persist through to the end of 2020. Water table and 
TWS anomalies demonstrate a much slower recovery from the im-
pacts of the Tinderbox Drought. Although positive water table 
trends were seen from early 2020, negative anomalies persisted in all 
basins until at least mid-2020. By the end of 2020, nearly a year after 
the drought-breaking rainfall that ended the meteorological drought, 
negative water table anomalies of about −2.9 m still remained in the 
Murrumbidgee and Upper Murray basin regions.
The impact of the drought on vegetation
Sustained soil moisture and VPD anomalies and the resulting im-
pacts on vegetation were a defining feature of the Tinderbox Drought 
and subsequent Black Summer fires. Soil moisture droughts reduce 
the water supply to plants, whereas atmospheric droughts (anoma-
lously high VPD) increase the atmospheric demand for water from 
the plant. Plants generally respond to increasing VPD by closing sto-
mata (26), which reduces photosynthesis and transpiration. The re-
duction of transpiration reduces latent cooling, causing leaves to 
heat up and potentially exceed their photosynthetic optimum tem-
perature. Even if plants shed leaves to reduce water loss, the lack of 
soil moisture and the high VPD can still lead to serious impacts (27). 
High VPD can also increase fuel dryness leading to elevated fire 
risk (28).

VPD was a key difference between the Tinderbox Drought and 
earlier major droughts in southeast Australia (Fig. 4, A and B). In 
2016, VPD was already high over the northeastern half of the 
drought region, indicating the potential for ecological stress to in-
crease before soil moisture deficits developed across the region 
(Fig. 4C). Positive VPD anomalies became more widespread and in-
tense throughout the Tinderbox Drought, so that VPD was between 
25 and 50% higher than average across the drought focus region by 
spring [September to November (SON)] of 2019 (Fig. 4B). The pro-
gressive intensification of VPD anomalies through the drought sug-
gests a role in sustaining and intensifying the Tinderbox Drought. In 
contrast, the Millennium Drought in our study region only had a 
10% VPD anomaly during a single year, 2002, and did not show a 
sustained increase in VPD through the drought event (Fig.  4A). 
However, we do note that the Millennium Drought was focused on 
the southern MDB (primarily Victoria) and did not affect the full 
study area assessed here for the Tinderbox Drought. Previous work 
has demonstrated that there has been a sustained positive trend in 
VPD over southeast Australia, such that during the Tinderbox 
Drought, the long-term VPD conditions had emerged outside of the 
range of historical (1950–1999) experience (13).

A clear progression of vegetation stress occurred during the 
Tinderbox Drought, which we illustrate for spring (SON) of each year 
(Fig. 4, C and D). Vegetation optical depth (VOD), a remote sensing 
proxy of plant canopy moisture content, was high in 2016 but was 
followed by an accumulation of increasingly negative anomalies as 
the Tinderbox Drought developed and intensified through to the 
end of 2019 (Fig. 4C). This effect can also be seen using the Normal-
ized Difference Vegetation Index (NDVI), a long-established proxy 
of canopy leaf area (Fig. 4D). In 2016, there were widespread posi-
tive NDVI anomalies (i.e., higher canopy area), but this was fol-
lowed by a precipitous drop in the subsequent drought years. By 
spring of 2019, more than 96% of the drought region experienced 
negative NDVI anomalies, with a mean anomaly of −22% (Fig. 4D). 
The spatial development of vegetation stress closely resembled the 
intensification of positive VPD anomalies (Fig. 4B), demonstrating 
how VPD exacerbated the drought’s impact on vegetation. The lack 
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of plant moisture and canopy area also reduced evaporative cooling 
over the drought region. This is evident via the close correspon-
dence of the spatial distribution and intensity of NDVI and surface 
temperature anomalies during the Tinderbox Drought, leading to 
an increase of land surface temperatures as the drought progressed 
(Fig. 4E).

Agricultural impacts during the drought
Australia is one of the top 10 producers and exporters of wheat, bar-
ley, and cotton worldwide. Australian wheat accounts for almost 
10% of global wheat trade, amounting to a 2018–2021 average ex-
port value of 5.3 billion AUD (29). Australian barley production ac-
counts for 30 to 40% of the world’s malting barley trade and 20 to 

Fig. 4. The evolution of the drought impacts on vegetation in southeast Australia. (A) The 12-month rolling mean of vapor pressure deficit (VPD; 15:00 hours reading 
from AGCD) across the focal region is shown for 1981–2020. The shadings show the inner 50% and 90% range of the focal region’s VPD. The mean annual VPD and 10% 
deviation are overlaid. The Millennium and Tinderbox droughts are highlighted. (B) The relative VPD anomaly expressed as a percent deviation from the 2002–2016 mean 
annual value. (C) The relative anomaly of the vegetation optical depth (VOD) during September to November (SON) is plotted as a percent deviation from the 2002–2016 
SON seasonal mean. (D) The relative anomaly of the Normalized Difference Vegetation Index (NDVI) is plotted as a percent deviation from the 2002–2016 seasonal (SON) 
mean. Regions that experienced burning during the 2019 Black Summer fires are denoted by orange points. (E) The annual mean of the daytime (13:30 overpass time) 
land skin temperature anomaly (LST; °C) as derived from the MODIS AQUA platform.
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30% of global feed barley trade amounting to a 2017–2021 average 
export value of 2 billion AUD (30). Southeast Australia is the major 
center for this agricultural production, providing around 40% of the 
nation’s total agricultural output.

The impacts of the Tinderbox Drought on wheat and barley pro-
duction across the drought-affected region were considerable, espe-
cially in the second and third year of the drought (fig. S4). Wheat 
and barley are winter crops and predominantly rainfed, leading to 
high sensitivity to interannual variations in cool season rainfall. 
Wheat production in 2018 and 2019 dropped by 73% and 63%, and 
barley production dropped by 47% and 43% compared to the 1990–
2016 average. Wheat showed negative yield anomalies in all 3 years 
of the drought. Within the observation period for which yields at 
the sub-national scale are available (starting in 1990), negative yield 
anomalies over three or more years have only been seen previously 
during the Millennium Drought (in 2002–2004 and 2006–2009). 
Similarly, barley exhibited negative yields in two consecutive years 
(2018 and 2019), which had only been observed once before in 
2006–2007 of the Millennium Drought.

Agricultural production data for rice and cotton are only available 
at a national scale; however, the major production areas for these crops 
occur within the focus region of the Tinderbox Drought. Rice and cot-
ton are irrigated summer crops with a growing season ranging from 
spring to autumn, and are particularly vulnerable to reduced availabil-
ity of irrigation water. Rice was the most negatively affected of all four 
assessed crops, with reductions in rice production of more than 90% 
in the 2018/2019 and 2019/2020 growing seasons, compared to the 
long-term 1990–2016 average (fig. S4C). These production losses were 
driven by strong decreases in the area harvested, which was reduced 
by 92 to 95% in 2018/2019 and 2019/2020. The area used for cotton in 
2018–2019 dropped to 10% below the long-term average, and produc-
tion reduced to a +12% anomaly, down from +71% in the previous 
year. Severe decreases in cotton production were then seen in the 

2019/2020 growing season when cotton production dropped to −74% 
compared to the 1990–2016 average, the lowest value since 1982/1983. 
This drop was driven by a strong reduction in the harvested area to 
−79% compared with the long-term mean.

The production data underline the severity of the Tinderbox 
Drought for agricultural producers in southeast Australia. The im-
pacts of meteorological drought appear to be particularly evident for 
wheat and barley production, which were affected by deficits in cool 
season rainfall particularly in 2018 and 2019 (Fig. 3A and fig. S4, A 
and B). Because rice and cotton are irrigated crops, their production 
is strongly linked to access to irrigation water and fluctuations in wa-
ter markets. These irrigated crops appear to have been affected pri-
marily by the intensification of hydrological drought as the Tinderbox 
Drought progressed, causing extreme water table and streamflow 
deficits by 2019 (Fig. 3, D and E, and fig. S4, C and D).

Probability of drought occurrence
The Tinderbox Drought involved extreme and sustained precipita-
tion deficits, but how unusual were these in the context of natural 
climate variability? It is well established that the short length of the 
observational rainfall record in southeast Australia is insufficient to 
capture the full possible range of natural hydroclimatic variability 
(31–33). However, existing paleoclimate proxy-based assessments of 
long-term Australian rainfall variability were developed for specific 
regions that do not match the region used consistently throughout 
this study. Therefore, to address this limitation and test how unusual 
the three sequential years of 2017–2019 were, we use two comple-
mentary approaches. First, we assess randomly resampled 3-year 
anomalies of cool season rainfall using the 1900–2019 observed 
rainfall data for the drought focus region. Second, we use linear in-
verse models (LIMs) as an empirically based null hypothesis for the 
observed precipitation deficits occurring due to internal climate 
variability (Materials and Methods; Fig. 5).
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Fig. 5. Probability that the 2017–2019 southeastern Australian meteorological drought occurred within the range of internal variability. (A) The observed deficit 
in cool season (April to September, AMJJAS) rainfall of the Tinderbox Drought (2017–2019; red dashed line) relative to the first 60 years of the observational period 
(1900–1959). The likelihood of the observed 2017–2019 rainfall deficit is assessed relative to random resampling of the full historical period (1900–2019) 10,000 times and 
computing the precipitation anomaly of the last 3 years compared to the first 60 years of the resampled data (gray shaded distribution). The black dashed line indicates 
the 1% significance level based on the bootstrapping relative frequency distribution. (B) Probability of occurrence of the least severe annual (black), cool season (AMJJAS; 
blue), and summer (December to February, DJF; salmon) precipitation deficit observed during the 2017–2019 drought, for one, two, and three sequential years as esti-
mated from the LIMs. The solid line shows the distribution constructed using SST data from COBE, and the dotted line shows the distribution constructed using SST from 
ERSSTv5. Dashed horizontal gray lines show 5% and 1% significance levels.
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The likelihood of 3-year cool season rainfall deficits equivalent to 
what occurred during the Tinderbox Drought is exceptionally low 
(Fig.  5A). Random resampling of individual years (with replace-
ment) from the full observational rainfall record for the drought 
region demonstrates that the observed Tinderbox Drought anoma-
lies were at the 0.02% level of 10,000 random rearrangements of the 
historical record. This suggests that the likelihood of the observed 
2017–2019 cool season rainfall deficits happening due only to natu-
ral climate variability was exceptionally low.

The precipitation deficits of the Tinderbox Drought were also ex-
ceptionally unlikely when assessed against an empirically based null 
hypothesis (Fig.  5B). Unlike the random resampling of observed 
precipitation (Fig. 5A), the LIM precipitation trajectories maintain 
temporal autocorrelations (Materials and Methods). This allows as-
sessment of the temporal evolution of the drought, and how unusu-
al this was in the context of mostly ocean-forced internal climate 
variability. The probability of experiencing a single-year cool season 
precipitation deficit equal to that of 2017—the least severe year of 
the Tinderbox Drought—was between 0.9 and 2%. The full annual 
precipitation deficit for 2017 had a likelihood of 6 to 8%. Expanding 
the assessment to examine sequential precipitation deficits at least as 
severe as 2017 demonstrates an increasingly low likelihood (Fig. 5B). 
Three sequential years of cool season deficits at least as severe as 
2017 are outside the range of simulated variability, occurring at a 
rate of 0% in the LIM simulations. The observed Tinderbox Drought 
was even more severe than this, given 2017 had the least dry cool 
season of the three drought years. Three sequential years of annual 
and summer deficits at least as severe as the least dry year of the 
drought are also extremely unusual (<1%) within the range of inter-
nal precipitation variability.

Together, these assessments indicate that the likelihood of experi-
encing a meteorological drought as severe as the 2017–2019 event is 
much less than 1%, if we assume that the event and the historical record 
were wholly driven by internal climate variability. This means that the 
Tinderbox Drought was either an exceptionally rare natural event, or 
that anthropogenic forcing played a role in exacerbating this drought.

Mechanisms driving the drought
Large-scale climate drivers
Australia’s highly variable rainfall is frequently linked to large-scale 
modes of climate variability. Dry conditions in southeast Australia 
are commonly associated with El Niño or positive Indian Ocean Di-
pole (IOD) events, while the Southern Annular Mode (SAM) causes 
differing rainfall impacts between the cool and warm seasons. The 
state of these modes of variability contribute to long-range (season-
al) rainfall outlooks, and previous major multi-year droughts in 
southeast Australia have been linked to these drivers. For example, 
the Federation Drought (1895–1902) has been linked to high El 
Niño activity and a positive phase of the Interdecadal Pacific Oscil-
lation (34), while the World War II Drought (1937–1945) has been 
related to cool sea surface temperatures (SSTs) in the eastern Indian 
Ocean (34). The Millennium Drought (or Big Dry, 1997–2009) was 
influenced by a positive SAM phase, and a series of Central Pacific 
El Niño events (34, 35). Recent work has also highlighted the im-
portance of the rain-promoting phases of the modes of variability—
specifically La Niña and negative IOD events—in ending droughts 
over southeast Australia (36–38).

Large-scale ocean variability played some role in driving rain-
fall deficits during the Tinderbox Drought, although with notable 

differences to the large-scale modes of variability that have com-
monly been used to assess the drivers of past droughts. Interan-
nual rainfall variability during April to September in the Tinderbox 
Drought region is significantly correlated with SST in the tropical 
oceans around northern Australia (Fig. 6, A and C; r = 0.77 for the 
region 5° to 20°S, 100° to 160°E), with the highest correlations ob-
served in the eastern Indian Ocean and Coral Sea sectors (Fig. 6A). 
This confirms previous studies that have identified the importance 
of ocean temperatures to the north of Australia for rainfall in the 
southeast of the country (39–41). The correlation strength between 
the ocean north of Australia and cool season rainfall anomalies 
over the drought region surpasses those from the traditional El 
Niño Southern Oscillation (ENSO) indices commonly used to in-
form seasonal outlooks of rainfall, i.e., Niño3.4 index (r = −0.52; 
Fig. 6E), Niño4 index (r = −0.54; Fig. 6D), and the Southern Oscil-
lation Index (r = 0.58).

ENSO was neutral in April to September of 2017, developed into 
a weak and short-lived La Niña by the end of 2017, and returned to 
neutral conditions by mid-2018 (Fig. 6F). The sign and strength of 
the tropical Pacific SST suggest that ENSO was unlikely to have pro-
moted the large rainfall anomalies in southeast Australia at the start 
and intensification of the drought. A weak Central Pacific El Niño 
developed in late 2018 and persisted through winter 2019 (Fig. 6F, 
blue line), and has been suggested to have contributed to the cool 
season rainfall deficits of the final year of the Tinderbox Drought 
(42) and into the Black Summer of 2019/2020. However, the absence 
of sustained and/or strong El Niño conditions during the Tinderbox 
Drought suggests that ENSO was not a major driver for this drought, 
despite the longer-term importance of tropical Pacific climate vari-
ability for rainfall in eastern Australia in both the cool and warm 
seasons (Fig. 6, D and E, and fig. S5).

The IOD was weakly positive in April to September of 2017 and 
2018, and a record positive IOD event occurred in 2019 (Fig. 6F), 
promoting below-average winter-spring rainfall in southeast Australia 
(13). The relationship with the Dipole Mode Index (DMI) and cool 
season rainfall in our study region (r = −0.61) is dominated by SST 
anomalies in the eastern pole used for the DMI (r = 0.69, Fig. 6, A 
and B). SSTs in the eastern IOD region were consistently below their 
climatological mean for all 3 years of the Tinderbox Drought. Previ-
ous studies have also pointed to the eastern pole of the IOD being 
the element that is important for Australian rainfall variability (40). 
Cool SST anomalies in the eastern Indian Ocean (and the absence 
of warm SST anomalies from negative IOD events) have also been 
suggested to be more important than tropical Pacific Ocean condi-
tions in establishing and sustaining previous major droughts in 
southeast Australia (36). Our findings suggest that the importance 
of eastern Indian Ocean SST anomalies also held true for the Tin-
derbox Drought.

The 3 years of the Tinderbox Drought were characterized by cool 
SST anomalies across widespread areas in the eastern Indian Ocean 
and Southern Ocean (fig. S6). These cool SST anomalies continued 
to intensify and spread further east from 2017 to 2019, such that 
by April to September of 2019, almost all of the ocean area around 
Australia was below average. The exception to this was the warm SST 
anomalies that persisted off eastern Australia, adjacent to the drought 
region. The synoptic processes that help explain the observed con-
nections between remote SST anomalies, moisture transport, and 
rainfall anomalies during the Tinderbox Drought are investigated in 
the subsequent sections.
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In addition to tropical climate drivers and their associated SST 
anomalies, rainfall variability in southeast Australia is also influenced 
by atmospheric variability of the SAM. The positive phase of the SAM 
(poleward shift of the mid-latitude jet) is associated with decreased 
rainfall over parts of southern and eastern Australia during the cool 
season (43). However, no significant relationship is evident in the cor-
relation of the cool season SAM with rainfall anomalies averaged 
across our study region (r = −0.05, P = 0.69, 1958–2022), possibly 
owing to opposing rainfall effects of the SAM in the northern and 
southern parts of the drought region (13). The SAM was mostly neu-
tral throughout the 2017–2019 drought and switched regularly be-
tween its positive and negative phases (Fig. 6F). An exception to this 
was the strong and sustained negative SAM that developed following 
a Sudden Stratospheric Warming event over Antarctica in the spring 
of 2019. This event likely exacerbated drying and increased bushfire 
risk toward the end of the Tinderbox Drought (13, 44).
Moisture sources
Although there is a significant connection between distant climate 
drivers and SST anomalies to precipitation over the Tinderbox 
Drought region, the actual sources of moisture for this region are 

generally more local. The primary source of moisture contributing 
to southeast Australia’s rainfall comes from the Coral and Tasman 
Seas, immediately to the east of Australia (20). Here, we use the 
Lagrangian model named FLEXPART to understand how moisture 
sources varied during the drought event (see Materials and Meth-
ods for further details). The Lagrangian model estimates that, on 
average, 95% of moisture supplied to the Tinderbox Drought re-
gion comes from local sources near eastern Australia, extending to 
the Tasman and Coral Seas [(20); fig. S7]. About 30% (71.4 mm) of 
these moisture sources occur during the cool season from April to 
September, i.e., the time of the year when rainfall was consistently 
low during the Tinderbox Drought. Of those cool season moisture 
sources, 65.7% are from the nearby ocean, while 34.3% come 
from the land.

Analysis of moisture source regions suggests that the Tinderbox 
Drought was initiated and sustained by a decline in oceanic mois-
ture supply to the drought region in 2017–2019, and exacerbated in 
2018 and 2019 by reduced moisture supply from terrestrial sources. 
Our analysis indicates that in the 2017 cool season (April to July) 
the moisture supplied by the oceanic sources was 16% weaker than 

Fig. 6. Sea surface temperature and large-scale influences on rainfall in the Tinderbox Drought region. (A) Spatial correlation of April to September rainfall anoma-
lies in our study region (hatching) with SST anomalies, showing only correlations significant at P < 0.1. Colored boxes show the southeast tropical Indian Ocean (purple, 
0 to 10°S and 90° to 110°E), northern Australia (orange, 5° to 20°S and 100° to 160°E), Niño4 (blue, 5°N to 5°S and 160°E to 150°W), and Niño3.4 (red, 5°N to 5°S and 120° to 
170°W) regions explored further in (B) to (E). (B to E) Relationship between rainfall anomalies in our study region with SST averaged over regions indicated in (A), for April 
to September anomalies between 1982 and 2020 (circles), with the 2017–2019 Tinderbox Drought years indicated by diamonds. Data in this figure use the OISST v2 
0.25° × 0.25° SST product and the ACGD rainfall product (Materials and Methods). All data in (A) to (E) are linearly detrended to isolate interannual variability and the 
Niño3.4 relative index (D) is calculated by first removing the tropical ocean mean (83). Anomalies in (B) to (E) are relative to 1982–2016 climatology (Methods). (F) Time 
series of the Niño3.4 (red), Niño4 (blue), DMI (purple), and SAM (orange) indices between 2016 and 2020. Months that exceed 1 SD of the respective index (computed over 
1980–2016) are indicated with markers. Gray shading denotes the cool seasons of the Tinderbox Drought.

D
ow

nloaded from
 https://w

w
w

.science.org on M
ay 08, 2024



Devanand et al., Sci. Adv. 10, eadj3460 (2024)     6 March 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

10 of 22

usual (Fig. 7A and fig. S8A). The decline in oceanic moisture supply 
to the region intensified in the cool season of the following year 
(Fig. 7B), worsening the drought in 2018 (28% lower). In 2019, the 
oceanic moisture contribution was on average only slightly lower 
than usual (5% lower). This was characterized by increased oceanic-
sourced moisture in the western part of the drought region that 
partly offset continued negative anomalies from oceanic sources in 
the eastern part of the Tinderbox Drought region (Fig. 7C). Addi-
tionally, the cumulative rainfall deficit over the Tinderbox Drought 
region also led to anomalously low moisture contribution from ter-
restrial sources in 2018 and 2019 (Fig. 7, E and F; 25% less moisture 
in 2018, and 27% less in 2019), which exacerbated the severity of the 
drought.

SSTs in the Coral and Tasman Seas were warmer than usual dur-
ing much of the Tinderbox Drought, which might have been ex-
pected to increase oceanic moisture to the drought region (fig. S6). 
Warm SSTs combined with increased wind speed (Fig. 7, G to I) and 
below normal specific humidity (fig. S8, G to I) did indeed promote 
evaporation (fig. S8, D to F) from the main oceanic source regions. 
However, anomalous anticyclonic circulation (Fig. 7, G to I) trans-
ported moisture away from the Tinderbox Drought region toward 
the northern parts of Australia and the Maritime Continent. This is 
evidenced by the positive oceanic moisture sink anomalies over 
Queensland in 2017–2018 and extending over the Northern Terri-
tory in 2019 (Fig. 7, A to C).
Synoptic factors
Reductions in seasonal-scale rainfall during the Tinderbox Drought 
were partly connected to remote SST anomalies and transport of 
oceanic-sources moisture, but were ultimately the result of changes 
to synoptic scale weather systems on daily time scales. Rain-bearing 

weather systems reduced in frequency and produced less rainfall 
during the drought.

Rainfall deficits during past droughts in southeast Australia 
have, in previous studies, been associated with changes in the fre-
quency of rain-bearing weather systems (45, 46) and the amount of 
rainfall falling per system (45). In particular, the absence of weather 
systems that bring heavy rainfall, equivalent to around the 95th per-
centile or higher of daily rainfall amounts, are the dominant cause of 
rainfall deficits during drought in southeast Australia (47). The re-
duction or absence of heavy rain-bearing weather systems can be 
influenced by large-scale modes of climate variability, stochastic 
changes to weather regimes, or combinations of both (48, 49). Con-
currently, the frequency and intensity of weather systems that limit 
rainfall over southeast Australia increase during drought, with an 
increased occurrence and intensity of synoptic-scale anticyclones 
(that form the quasi-stationary subtropical ridge) during past multi-
year drought periods (50).

During the Tinderbox Drought, there was a shift toward lower 
daily rainfall totals across the distribution of daily rainfall data from 
2017 to 2019, compared with a 1980–2016 climatology. These distri-
butions were computed using rain days only, which were defined as 
days above 0.01 mm/day, at each grid point within the drought region 
(Materials and Methods). However, the nature of rainfall also changed, 
with a relatively larger decline in heavy rainfall days (Fig. 8A). The 
Tinderbox Drought region typically receives half or more of its sea-
sonal rainfall from “heavy rain days” where the rainfall totals are above 
the climatological 90th percentile of rain days from 1980 to 2016. Sea-
sonally, December to February (DJF), March to May (MAM), June to 
August (JJA), and SON receive a median of 63, 59, 51, and 51%, re-
spectively, of their seasonal rainfall accumulations from these heavy 

Fig. 7. Sources of moisture during the Tinderbox Drought. Anomalies of (A to C) oceanic moisture sink (mm/day), (D to F) terrestrial moisture sink (mm/day), and (G to 
I) 850 hPa winds (m/s, vectors) and wind speed (m/s, shading). Anomalies are calculated relative to April to July 1980–2016 climatology from April to July for [(A), (D), and 
(G)] 2017, [(B), (E), and (H)] 2018, and [(C), (F), and (I)] 2019 relative to April to July 1980–2016 climatology. Note that the analysis uses a shorter cool season (April to July) 
due to ERA-Interim data availability (stops in August 2019). April to September moisture source and sink anomalies for 2017 and 2018 can be seen in fig. S9.
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rain days. That is, half or more of the seasonal accumulation occurs on 
just 10% of the days when it rains.

Despite the overall reduction in rainfall from all rain days during 
the Tinderbox Drought, the relative contribution from heavy rain-
fall to the seasonal accumulation decreased considerably more than 
non-heavy rainfall (i.e., rain days <90th percentile). The relative 
contribution of heavy rain days to seasonal totals was lower than 
normal during all seasons from DJF 2016/2017 to DJF 2019/2020 
with the exception of MAM 2019, with median reductions ranging 
from +3 to −49% (Fig. 8A). Median changes to non-heavy rain days 
ranged from −3 to +49%, as expected. The largest reductions in 
heavy rain days were during winter (JJA), when the contribution of 
heavy rainfall to the seasonal total decreased by 26%, 39%, and 49% 
in 2017, 2018, and 2019, respectively. Given the climatological con-
tribution of heavy rainfall days is 51% for JJA, this shows that there 
were very few, if any, heavy rain days during the Tinderbox Drought 
winters. An analysis at the gridbox scale shows that there were no 
heavy rain days during some winters in some parts of the domain.

The changes to daily rainfall described above can be associated 
with different types of synoptic weather systems. Six weather objects 
[i.e., anticyclones, cyclones, fronts, warm conveyor belts, and poten-
tial vorticity (PV) streamers and cutoff lows] were examined during 
the winters (JJA) of the Tinderbox Drought when rainfall reduc-
tions were most pronounced. Daily rainfall data were then attribut-
ed to each object (Materials and Methods). Throughout the three 
winters of the Tinderbox Drought, the intensity and frequency of 
rainfall decreased for every type of weather object examined here 
(Fig.  8, B to E). The largest declines were mainly associated with 
warm conveyor belts and PV streamers. In the winter of 2017, the 
total rainfall reduction was due to decreased frequencies of rainfall 
from each type of weather system, with frequency changes for all 
objects ranked in the lowest 10 years of the 40-year record (Fig. 8C). 
Decreases in the intensity of weather-associated rainfall were more 
important during the winters of 2018 and 2019 (Fig. 8, D and E). In 
2019, the rainfall frequency reductions related to cyclones, warm 
conveyor belt inflows, and ascents were the second lowest in the 40-
year record, and fronts were the third lowest on record. Similarly, 
the rainfall intensity reductions related to cyclones, warm conveyor 
belts, and cutoffs were the third or second lowest on record, while 
the rainfall intensity reductions related to PV streamers were the 
lowest on record (Fig. 8E).

These results suggest that Rossby wave breaking and warm con-
veyor belts occurred less often in the winter of 2017, and produced 
less intense rainfall over the domain in the following two winters. 
The reduced rainfall associated with warm conveyor belts was likely 
due to reduced moisture at the inflow level of warm conveyor belts 
and/or weaker ascending air in warm conveyor belts as a result of 
weakened upward motion forced by the upper-level wave breaking 
(51). In combination with the results from the analyses of moisture 
sources, it appears that reduced moisture inflow to warm conveyor 
belts is likely to have been a major source of the synoptic-scale rain-
fall reduction during the Tinderbox Drought.
Land-atmosphere feedbacks during the drought
Sustained water deficits during droughts can feedback through land-
atmosphere coupling to intensify atmospheric heating, and it is nota-
ble that the final year of the Tinderbox Drought was Australia’s driest 
and hottest year on record, both in southeast Australia and nationwide 
(13). We examined the impact of soil moisture drought on summer 
temperatures using the WRF model by contrasting simulations where 

soil moisture was varied to reflect drought and climatological condi-
tions (Materials and Methods).

The simulated soil water stress experienced by vegetation in-
creased by 10 to 50% during the Tinderbox Drought relative to cli-
matological conditions across southeast Australia (fig. S10, A and F), 
leading to a decline of 5 to 60 W m−2 in the latent heat flux (fig. S10, 
B and G) and a consequential increase in the sensible heat flux 
(fig. S10, C and H) across widespread areas. As a result, the drier soil 
moisture increased the summer-mean daily maximum temperature 
by ~0.25° to 1.5°C (fig. S10, D and I) and decreased air humidity by 2 
to 16% from the east coast extending to ~400 km inland. During 
heatwave periods (e.g., 14 to 26 January 2019 and 16 December 2019 
to 7 January 2020), the soil moisture drought exerted an increasingly 
strong constraint on transpiration (fig. S10, K and P). Overall, the 
drought conditions and the consequential changes in sensible and 
latent heat fluxes amplified heatwaves by up to 2.5°C, as well as tend-
ed to dry the lower atmosphere. These changes, in turn, are likely to 
have led to further drying and the elevated fire risk that culminated 
in the Black Summer fire disaster.

Predictability of the drought
The development of the Tinderbox Drought in mid-2017 occurred 
during a time when more normal rainfall conditions were expected 
in southeast Australia (52). Neutral states of the ENSO and mild 
positive IOD anomalies during 2017 and 2018 winters (Fig.  6F) 
meant that traditional indicators (e.g., Niño3.4 and DMI) that often 
guide public discourse around heightened drought risk were not 
prominent. As shown in our earlier analysis (Fig.  6), these tradi-
tional indicators may not provide an optimal representation of the 
large-scale drivers of drought risk in our study region. Other aspects 
of the drought, including the development of soil and agricultural 
drought indicators ahead of meteorological indicators, and the 
heightened temperature and high VPD conditions in which this 
drought formed compared with previous droughts, all point to the 
challenging and changing conditions that may have affected pre-
dictability of the Tinderbox Drought. Here, we apply prediction 
methods that have been developed in prior work to understand 
drought likelihood (53) and drought-breaking probabilities (54) to 
the Tinderbox Drought (Materials and Methods).
Machine learning–based insights into predictability
Machine learning may offer insights into the predictability of drought, 
particularly given the multitude of factors that together resulted in 
the Tinderbox Drought. Here, we apply the explainable machine 
learning method used by Hobeichi et  al. (53) to the Tinderbox 
Drought. This method initially constructs a damage function with 
Random Forest (RF) to model the relationship between observed 
drought impacts and concurrent climate conditions. The set of cli-
mate predictors encompasses large-scale modes of variability and 
local-scale climate variables (see Materials and Methods), ensuring 
high accuracy in identifying drought events (fig. S11B). The trained 
RF yields scores indicating the importance of each predictor in the 
model. Additionally, it can predict the probability of drought occur-
rence based on the prevailing climate conditions (fig. S11C).

Concentrating on 2019 (due to data availability, see Materials 
and Methods), the feature importance analysis indicates that ENSO 
was not a dominant driver of the drought in 2019 (fig. S12). This is 
despite Australian droughts overall being sensitive to large-scale cli-
mate drivers, and ENSO in particular, as shown by an analysis of all 
drought events that have occurred since 2000 (fig. S12, blue bars). 
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Drought sensitivity in 2019 to other climate modes that are com-
monly associated with droughts in southeast Australia decreased for 
the IOD and slightly increased for SAM, yet both offered some pre-
dictability of the drought probability in 2019.

In contrast, the local climate, as represented by 3-month precipi-
tation accumulation, soil moisture, ET, and PET, provided the most 

relevant information for predicting drought probability in 2019. For 
each of these local climate-based predictors, their importance to 
predictability of the Tinderbox Drought in 2019 was far greater 
than in other droughts of the past two decades. This may reflect 
the importance of land-atmosphere processes that intensified the 
Tinderbox Drought during its final year.
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Fig. 8. Rainfall anomalies associated with heavy rainfall days and weather systems during the Tinderbox Drought. (A) The distribution of the anomalous propor-
tion (%) of seasonal rainfall stemming from heavy rain days from DJF 2015/16 to SON 2020, computed for each grid box in the Tinderbox Drought domain. The anomalous 
proportion is defined as the proportion of the seasonal rainfall total that falls on days exceeding the climatological 90th percentile of rain days (>0.01 mm/day). Whiskers 
show the 5th/95th percentiles, the box shows the interquartile range, and the median and mean are denoted by the horizontal line and dot, respectively. For example, if 
the climatological mean contribution of heavy rain days to a seasonal rainfall total is 70% and during a given year of the drought it was 20%, the value shown is −50%. 
(B to E) The attribution of weather object frequency and intensity change to the daily rainfall anomalies (in mm/day) averaged over the Tinderbox Drought domain are 
shown for winter (JJA) of (B) 2016, (C) 2017, (D) 2018, and (E) 2019. Darker colored bars represent rainfall changes related to changes in object frequency, and the lighter 
shading to the intensity of rainfall associated with each object. The numbers within each bar are the rankings of the frequency and intensity anomalies compared to the 
full 40 years of data from 1980 to 2019, with 1 being the largest negative anomaly and 40 being the largest positive anomaly. The daily rainfall anomalies are calculated 
with respect to all winter days in the period 1980–2016. The numbers indicated in the bottom of (B) to (E) indicate the area mean rainfall anomaly for each JJA in mm/day 
equivalent.
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Overall, the machine learning method suggests that ENSO did 
not play a major role in predicting the likelihood of drought in 2019 
(confirming our results from the section Large scale climate drivers). 
Instead, local climate features played the largest role in determining 
drought probability. This suggests that information from both large-
scale climate drivers and local climate is necessary for accurate pre-
diction of the conditions associated with the Tinderbox Drought 
in 2019.

Using the same RF approach, we quantified how the probability of 
drought derived from the local climate and the large-scale modes of 
variability evolved over time and space during 2016–2020 (fig. S11). 
In 2016, the prevailing climate conditions made drought less likely to 
occur during the winter and spring months (June to November). In 
contrast, climate conditions during the winters of 2017, 2018, and 
2019 indicated a high likelihood (>0.5 and typically higher than 0.7) 
of drought. Between February 2019 and February 2020, the probabil-
ity of drought was very high across the entire region (most months 
>0.7), in particular July to August 2019 and October 2019 to February 
2020. The multivariate machine learning approach demonstrates that 
skillful prediction of the Tinderbox Drought was possible, even in 
the absence of extreme anomalies in a single predictor of drought.
Probability of drought breaking
Predicting when droughts are likely to end is also a critical aspect for 
adaptation responses to multi-year droughts. We examine another 
aspect of predictability by analyzing the influence of large-scale climate 
drivers on drought-breaking probabilities during the Tinderbox 
Drought. This draws on recent advances suggesting that the role of 
the major modes of variability in inhibiting drought-breaking rain, 
and thus allowing droughts to develop and continue, may be more 
important than their role in generating the dry conditions that lead 
to drought (38). Our results show that, in 2017, neither ENSO nor 
IOD contributed substantially to lower the probability of drought 
breaking. In 2018, ENSO contributed to some degree, and in 2019, 
IOD contributed more strongly to lowering the probability of drought 
breaking (Materials and Methods).

We use a logistic regression method (54) to estimate the proba-
bility of soil moisture drought breaking within the next 8 weeks dur-
ing the Tinderbox Drought. The method estimates drought-breaking 
probabilities as a function of time of year, current soil moisture state, 
and ENSO and IOD, and has been shown to perform well in south-
eastern Australia (54). Soil moisture drought is defined based on 
percentile thresholds that vary by day of year. Figure S13 shows the 
area average probability (green line) and the area average probability 
contributions from the status of the climate modes (light and dark 
green shading) in the drought focus region for periods when more 
than half the grids in the Tinderbox Drought focus region experi-
enced soil moisture drought. The status of the climate modes re-
duced the probability of drought breaking in the cool season.

There is a seasonal pattern in soil moisture drought spells in the 
drought focus region. More than half the grids in the region experi-
enced soil moisture drought from July to October of all 3 years of the 
Tinderbox Drought, following the cool season deficits in rainfall 
(fig. S13, black line). More than half the grids also experienced soil 
moisture drought during some months in the warm seasons in 2019 
and 2020 (January to March 2019, December 2019 to January 2020). 
In 2017, the probability of drought breaking was higher than 50%, 
and the states of ENSO and IOD did not contribute substantially to 
this probability. In the winters of 2018 and 2019, the probability of 
drought breaking was lower (around 40%). The main contributor to 

the lower probabilities of drought breaking was ENSO in 2018 and 
IOD in 2019. The state of the climate modes reduced the overall 
probabilities by 10 to 15%. The higher influence of IOD in 2019 
from this method is consistent with the inference from the machine 
learning model for impact-based drought metrics. In contrast to the 
cool season, the probability contributions of the IOD and ENSO 
were minimal for drought spells during the warm periods in 2019 
and 2020, resulting in drought-breaking probabilities that were 
high (≥60%).

The role of climate change in exacerbating the drought
The severity of the Tinderbox Drought and the different characteris-
tics of this drought relative to previous droughts in southeast Australia 
lead to questions about the extent to which the Tinderbox Drought 
may have been worsened by human-caused climate change. The con-
tribution of anthropogenic forcing to the Tinderbox Drought was 
estimated following the method described by Rauniyar and Power 
(8) using climate model simulations from the Coupled Model Inter-
comparison Project phase 6 (CMIP6).

We first estimated how unusual the rainfall anomaly observed 
during the Tinderbox Drought was in the context of unforced 
variability in preindustrial control simulations. Our results show 
that the observed 3-year cool season rainfall deficit during the 
Tinderbox Drought was unusually large compared to internal (i.e., 
unforced) model variability; it is estimated that there was only a 
0.06% probability of occurrence of such an extreme rainfall deficit 
arising from modeled internal variability alone (Fig. 9C). This com-
plements our earlier assessments (Fig.  5) that the rainfall deficits 
were also highly unusual compared to the expected range of internal 
variability based on historical observations. Such an anomalous 
rainfall deficit could be explained by the Tinderbox Drought being 
an exceptionally rare natural event (i.e., very bad luck), or an ex-
treme event that has been exacerbated by anthropogenic forcing of 
the climate.

We estimated the contribution from anthropogenic forcing to 
the rainfall anomaly during the Tinderbox Drought by assessing 
2017–2019 cool season rainfall anomalies for the drought region 
across future climate change scenarios (see Materials and Methods). 
The distribution of 3-year cool season rainfall anomalies simulated 
for 2017–2019 in the models demonstrates a negative shift relative 
to the distribution of unforced rainfall anomalies (Fig. 9A). The me-
dian percentage contribution of anthropogenic forcing to the ob-
served cool season rainfall deficit during the Tinderbox Drought 
was 18.4% with an interquartile range of 34.9 to −13.3% across the 
multimodel ensemble. Assessment of the Millennium Drought in 
Victoria using the same method produced similar results, suggest-
ing an ~20% anthropogenic contribution to the cool season drying 
that occurred during that event (8). These results are consistent 
with future climate change assessments suggesting that southeast 
Australia is likely to experience a long-term decline in cool season 
rainfall during the 21st century, but these assessments also currently 
have low confidence due to the large intermodel spread (55).

We do note, however, that even with the incorporation of anthro-
pogenic forcing, very few CMIP6 simulations (3 out of 123) simu-
late 3-year cool season anomalies drier than −50%, and none are 
able to simulate the full magnitude of the observed deficit in rainfall 
during 2017–2019 (Fig. 9A). This remains true even if we account 
for interannual variability by examining the driest 3-year periods 
simulated by the models during the decade from 2014 to 2023 
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(Fig. 9B), rather than specifically 2017–2019 (Fig. 9A). In Fig. 9B, 
only one simulation is as dry as the observed rainfall deficit during 
the Tinderbox Drought and six simulations are drier than −50%. 
This suggests that in addition to anthropogenic intensification of the 
drought, the natural component of the Tinderbox Drought event 
was still highly unusual.

The rarity of CMIP6 simulations with 3-year cool season rainfall 
deficits as extreme as the Tinderbox Drought means that common 
event attribution methods are not able to be applied for the 2017–
2019 event occurring during the decade surrounding it (Fig.  9, A 

and B). However, by instead interrogating a 20-year interval cen-
tered on the drought (2009–2028), the CMIP6 simulations yield 
nine 3-year periods as dry as the Tinderbox Drought from a total of 
2460 samples across all scenarios. On the basis of this probability 
(0.37%) compared with the natural preindustrial probability (0.06%), 
the fraction of attributable risk for the Tinderbox Drought occurring 
during the 2009–2028 interval was 0.84. This suggests that climate 
change made the rainfall deficits of the Tinderbox Drought around 
six times more likely to occur than in preindustrial times.

An alternate approach presented in Fig. 9C further illustrates the 
combined internal and external factors involved in the Tinderbox 
Drought. The blue probability distribution in Fig. 9C is the relative 
frequency distribution of internal variability, after it has been shifted 
to the left (i.e., made drier) by the estimated externally forced re-
sponse for 2017–2019 (i.e., a 10% cool season rainfall reduction, the 
median value in Fig. 9A). This shifted curve represents the modeled 
estimate of the relative frequency distribution of possible precipita-
tion anomalies in the Tinderbox Drought region during 2017–2019, 
arising from both internal variability and external forcing, assuming 
that the shape of the tails of the rainfall distribution remain the same 
as the climate changes. The dry-shifted distribution has a larger tail 
area below the observed rainfall anomaly than the preindustrial dis-
tribution does (gray curve in Fig. 9C), but the probability of occur-
rence of the observed rainfall anomaly remains very small (0.45%) 
and consistent with the assessment of the fraction of attributable 
risk above. Taking the models at face value therefore suggests that 
the Tinderbox Drought was an extreme natural event that was made 
more likely and more intense by human-caused climate change.

DISCUSSION
Australia’s Tinderbox Drought was a very extreme and impactful 
event. The drought encompassed meteorological, hydrological, and 
ecological/agricultural drought, causing sustained stresses on water 
resources and large decreases in agricultural yields leading to severe 
economic and societal impacts. It helped create favorable conditions 
for the most intense and widespread outbreak of forest fires ever 
recorded in southeast Australia, earning the name “Tinderbox 
Drought.” Figure 10 summarizes the key characteristics, drivers, and 
impacts of the Tinderbox Drought.

The Tinderbox Drought was sustained and intensified across three 
consecutive years (2017–2019), characterized by an ~50% decline in 
cool season rainfall and a 15% decline in surface soil moisture from 
the 1980–2016 baseline (Figs. 3 and 10). While the rainfall anomalies 
were most pronounced during the cool season, there were also very 
few months of positive rainfall anomalies in the intervening warm 
seasons. As such, sustained declines of ET, streamflow, and water stor-
age characterized the intensification of the Tinderbox Drought to its 
peak in the summer of 2019/2020. Temperature and VPD were also 
unusually high during the Tinderbox Drought, which amplified the 
drought impacts on vegetation, with widespread declines observed in 
vegetation cover during the drought (Figs. 3 and 4). The maximum 
temperatures during 2017–2019 were 1.6°C above the 1980–2016 
baseline, and VPD was 15% higher than the 2002–2016 baseline.

Low rainfall and, more specifically, the absence of heavy rainfall 
events related to substantial declines in the intensity of rain-bearing 
systems, during the Tinderbox Drought was caused by oceanic 
moisture from the Tasman and Coral Seas being diverted away from 
southeast Australia and toward northern Australia (Figs. 7 and 10). 
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Fig. 9. Contribution of anthropogenic forcing. Percentage changes in area-
averaged cool season rainfall of (A) the Tinderbox Drought (2017–2019) period, 
and (B) the driest 3-year period between 2014 and 2023 relative to the 1900–1959 
period average in CMIP6 models. Box plots show the spread of change in rainfall 
based on historical simulations (to 2014) extended to year 2024 with 33 models 
under SSP5.85, 28 models under SSP3.70, and 31 models under SSP2.45 and 
SSP1.26 scenarios. We group all SSPs together for this analysis owing to the similar-
ity of forcing in 2017–2019 across all scenarios. The vertical line in the box indicates 
the median, the box represents the interquartile range, and the whiskers indicate 
the 5th and 95th percentiles. (C) The range of a possible 3-year change due to inter-
nal variability alone based on CMIP6 models under preindustrial conditions. One 
and two SDs of the distribution due to internal variability alone are shown as verti-
cal dashed lines in black and orange colors. The blue probability distribution is the 
same as the shaded curve, except that it is shifted left by the median value (i.e., our 
estimate of the externally forced response) of the box plot shown in (A). The ob-
served % change is indicated using the thick vertical red dashed line in all panels.
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Fig. 10. Characteristics, drivers, and impacts of the Tinderbox Drought. (A) Map showing the area most affected by the drought, highlighting regions of warm and 
cool SST anomalies likely to have influenced the evolution of the drought. Aqua arrows show the path of moisture deflected away from the drought region, resulting in 
precipitation deficits. Graphics in the drought area show some of the major characteristics of the drought. (B) Timeline of key events and amplifiers of the drought, show-
ing the magnitude of anomalies in relevant metrics (blue and warm colors), and the strength of remote climate drivers (browns). The intensity of shading indicates the 
strength of the respective drivers and anomalies.
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While SST anomalies related to tropical climate variability are known 
to have strongly influenced past droughts in southeast Australia, 
ENSO did not play a role in the initiation of dry conditions during 
the Tinderbox Drought. Rather cool tropical SST anomalies to the 
north and west of Australia, including in the eastern region of the 
IOD, appear to have been more important in setting up the large-
scale conditions that inhibited rainfall over southeast Australia in 
2017–2019 (Fig. 6). After being initiated and sustained by remote 
oceanic conditions, local factors then acted to intensify the Tinder-
box Drought and its impacts. Land-atmosphere feedbacks, which 
result from a strong association of dry and hot conditions in south-
east Australia, amplified the intensity of heatwave events in 2018 
and 2019 (Fig. 4 and fig. S10). Reduced water availability also re-
sulted in a reduction of local moisture sources over the drought 
region in 2018 and 2019 (Fig. 7). Drought-breaking rainfall in 
February of 2020 ended the Tinderbox Drought, though some ele-
ments of the hydrological cycle still had not recovered to predrought 
levels almost a year after the meteorological drought broke (Fig. 3).

Climate variability in southeast Australia is high, and the region is 
renowned for its large swings between “drought and flooding rains,” 
but evidence points to the Tinderbox Drought being more than just 
very bad luck. The Tinderbox Drought was exceptionally rare in its 
severity—in terms of both the 3-year mean rainfall deficit and in the 
occurrence of three consecutive dry years—against assessments of 
natural variability in observational data (Fig. 5) and climate simula-
tions (Fig.  9). Studies have highlighted observed reductions to the 
frequency of fronts and cyclones, and increases in anticyclones over 
the region (56, 57). Moreover, southeast Australia is expected to un-
dergo sustained declines in cool season rainfall as climate change con-
tinues this century, causing a southward shift in rain-bearing Southern 
Ocean storms (1, 55, 58). Climate simulations suggest that human-
caused drying may have already intensified the cool season rainfall 
deficits of the Tinderbox Drought by around 18% (Fig. 9). However, 
the Interquartile Range (34.9 to −13.3%) highlights the considerable 
uncertainty in this estimate, resulting from the inability of current cli-
mate simulations to accurately capture rainfall processes in our study 
region. This includes considerable intermodel spread in projected 
mean rainfall changes due to human-caused climate change, and lim-
itations in model representations of multi-year drought due to a lack 
of persistence of simulated rainfall deficits (2) and systematic errors in 
land surface models (58). The observed linear decline in April to 
September rainfall since 1900 is not statistically significant, and it is 
expected that the length of the observational record is currently too 
short for significant anthropogenically forced differences in drought 
metrics to emerge (59). However, cool season rainfall this century 
(since 2000) has averaged 165 mm (±62 mm; 1σ) over the Tinderbox 
Drought region compared with an average of 192 mm (±63 mm; 1σ) 
during the 20th century. This ~14% reduction in rainfall is similar to 
the broader 10% decline in cool season rainfall that has occurred over 
southeast Australia (24). The observations are also consistent with the 
median 10% decline of cool season rainfall simulated across CMIP6 
models for the 2017–2019 interval (Fig. 9A). Together, it appears like-
ly that human-caused climate change played a role in worsening the 
rainfall deficits of the Tinderbox Drought.

There are also multiple other ways in which human-caused cli-
mate change may have worsened the Tinderbox Drought. Elevated 
temperatures over southeast Australia during 2017–2019 can be un-
equivocally linked to anthropogenic forcing (1, 24), although the 
intensity of heatwaves later in this event were also amplified by the 

drought. The impacts of rising atmospheric temperature on increas-
ing VPD provides a high-confidence mechanism for anthropogenic 
forcing to increase drought (and fire) risk (28) beyond the more di-
rect climate change impacts on rainfall although the degree to which 
increasing VPD enhances these risks is poorly understood. Drought 
also feeds back to amplify VPD anomalies, and it is evident that 
land-atmosphere processes influenced the intensification of the 
Tinderbox Drought. Nevertheless, record-high VPD may have led 
to local intensification of the impacts of the Tinderbox Drought, 
something that sets this drought apart from historical conditions in 
southeast Australia (Fig. 4A). Drought monitoring also showed in-
dicators of hydrological and agricultural drought emerging ahead of 
meteorological drought indicators. It is possible that this reflects the 
additional stress on these systems by elevated background tempera-
ture and VPD. It is also possible that the hydrological system in 
southeast Australia was already under stress from the multi-decade 
dry phase that preceded the Tinderbox Drought, including incom-
plete recovery from the multi-year Millennium Drought. Anthropo-
genic climate change is also thought to be altering the way tropical 
climate variability operates. Trends toward more frequent central 
Pacific–type El Niño events, and stronger and more frequent posi-
tive IOD events, are seen in paleoclimate and observational data, 
and these drought-promoting trends are projected to continue in 
the future as a consequence of human-caused climate change (13).

Some aspects of the Tinderbox Drought were unexpected. Our 
study shows that the traditional indices used to represent the tropical 
modes of variability may not be optimal for guiding the communica-
tion of seasonal outlooks of drought risk in southeast Australia. 
ENSO, as represented by the Niño3.4 index, provided far less predic-
tive skill of the unfolding rainfall anomalies during the Tinderbox 
Drought than during previous drought events (fig. S12). The eastern 
pole of the IOD appears more important as a predictor than the full 
DMI, while tropical SSTs to the north of Australia appear to have 
more skill in determining cool season rainfall anomalies over our 
study region than any of the traditional climate mode indicators 
(Fig. 6). However, our study also highlights the importance of local 
climate factors in drought intensification and predictability. Further-
more, there are promising pathways forward for the skillful prediction 
of drought risk when multiple predictors are used simultaneously 
through machine learning approaches (fig. S12). This is particularly 
important as the Tinderbox Drought demonstrates that extreme and 
impactful droughts are able to develop without any particular indica-
tor of drought risk being in an extreme state.

The Tinderbox Drought illustrates the necessity for multidisci-
plinary approaches in improving our understanding of the causes, im-
pacts, and predictability of multi-year droughts. What is considered a 
single event can be associated with multiple interacting drivers and 
impacts that evolve during the event. Past research has tended to focus 
on understanding droughts and other climate extremes by a single ex-
planation. This study demonstrates how drawing together a diversity 
of research expertise, and using powerful research tools including ma-
chine learning, can greatly advance our understanding of complex 
events. Extending this approach to other droughts in southeast 
Australia, and to multi-year droughts in other regions of the world, 
provides avenues to advance our understanding of past droughts and 
future drought risk.

Our study has demonstrated that the Tinderbox Drought was an 
extreme natural event that was likely worsened by human-caused 
climate change. Future projections of climate change indicate that in 
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many regions of the world, including parts of our study region, cli-
mate change is expected to make droughts more frequent and more 
severe (60). However, there are serious limitations in the ability of 
current climate models to simulate multi-year droughts such as the 
Tinderbox Drought that hinders our understanding of the nature 
and drivers of Australian droughts. It is also evident that the obser-
vational record is not sufficient to capture the full range of possible 
natural variability in multi-year droughts. Continued quantification 
of the processes that interact to initiate, sustain, and end multi-year 
droughts, and improved representation of these processes in mod-
els, will be required to improve projections of future drought risk 
and support adaptation decisions. Although not quantified in our 
study, increasing human demand on water resources also represents 
a potential further anthropogenic component to the Tinderbox 
Drought. Changes in human demand for water are not readily in-
corporated into future projections of drought, but water manage-
ment practices will be key to managing the risks of future multi-year 
droughts in southeast Australia and other drought-prone regions.

MATERIALS AND METHODS
Data
The datasets used for analyses are listed in table S1.

Drought metrics
We used standardized metrics and percentile thresholds to identify 
areas that experienced meteorological and agricultural/ecological 
drought during the years 2017 to 2019. Metrics based on precipita-
tion, PET, and soil moisture from the multiple datasets listed in ta-
ble S1 are used to calculate the drought metrics.

The Standardized Precipitation Index (SPI) (61) is an index that is 
widely used to characterize meteorological drought. SPI quantifies the 
deficit in accumulated precipitation in terms of probability on various 
timescales, typically between 1 and 36 months. To calculate SPI, a de-
fined baseline record is fitted to a probability distribution (the gamma 
distribution) and transformed to a normal distribution. The SPI val-
ues are standard normal deviates, and the index indicates units of SD 
from the long-term mean. We assess deficits in precipitation using the 
3-month SPI (SPI-3) values less than −1. The −1 threshold corre-
sponds to moderate dryness (61). SPI-3 was calculated from three 
precipitation datasets (AGCD, MSWEPv2.8, and CHIRPS-2.0). The 
Australian Gridded Climate Data (AGCD) is a gauge-based product 
providing monthly and daily precipitation, temperature, and vapor 
pressure data at 0.05° × 0.05° spatial resolution (62). Multi-Source 
Weighted-Ensemble Precipitation (MSWEPv2.8) is a global gridded 
precipitation product that merges gauge, satellite, and reanalysis data 
at a spatial resolution of 0.1°. Climate Hazards Group InfraRed Pre-
cipitation with Station data (CHIRPS-2.0) is another merged product 
that incorporates satellite imagery and station data to create gridded 
precipitation data at 0.05° resolution between 50°N and 50°S.

The 3-month Standardized Precipitation Evapotranspiration Index 
(SPEI-3) (63), which includes the additional water balance component 
of PET, is used to identify areas in agricultural/ecological droughts us-
ing the same threshold of −1 from two sets of datasets. The Global 
Land Evaporation Amsterdam Model (GLEAMv3.5) provides esti-
mates of actual and PET (AET and PET) globally at a spatial resolution 
of 0.25°. Historical estimates of AET and PET are provided from the 
Australian Water Resources Assessment Landscape (AWRA-L) model 
(64) at a spatial resolution of 0.05°. SPEI-3 is calculated using two sets 

of datasets: (i) precipitation from the AGCD and PET from AWRA-L, 
and (ii) precipitation from MSWEPv2.8 and PET from GLEAMv3.5. 
We also assess seasonal and annual precipitation accumulations and 
root zone soil moisture below the corresponding 15th percentile 
thresholds, which broadly corresponds to an SPI/SPEI of −1 and is 
chosen for consistency. The root zone soil moisture from GLEAMv3.5 
and AWRA-L datasets are used for this assessment. All baseline calcu-
lations for SPI-3, SPEI-3, and the 15th percentile are for 1980 to 2016.

Calculation of hydrometeorological anomalies
We use gridded precipitation and actual ET from multiple datasets to 
estimate monthly and seasonal anomalies. We calculate the average 
precipitation anomalies from AGCD, MSWEPv2.8, and CHIRPS-2.0 
datasets. We calculate average ET anomalies using estimates from 
AWRA-L and GLEAMv3.5. We also calculate maximum temperature 
anomalies from the AGCD dataset. Soil moisture from the European 
Space Agency Climate Change Initiative dataset is used to quantify 
anomalies in surface soil moisture. Monthly and seasonal anomalies 
in all variables are computed with respect to a baseline period of 1980 
to 2016 for datasets except CHIRPS-2.0. A baseline of 1981 to 2016 is 
used for the CHIPRS-2.0 due to data availability constraints.

We also use shorter records from satellite datasets and field mea-
surements to study changes in other water cycle variables during the 
drought. Total TWS anomalies from the GRACE data are used to 
study changes in deeper soil storages. Combined data from the 
GRACE and GRACE follow-on missions are available for the period 
2002 to 2021 and we estimate monthly TWS anomalies with respect 
to a shorter baseline of 2002 to 2016. Because of the time lag be-
tween the two GRACE missions, TWS data during a year of the 
drought (mid 2017–2018) is missing from this dataset. Point mea-
surements of streamflow and water levels in borewells are available 
at some locations in the region of interest. Streamflow data at high-
quality hydrologic reference stations are available from BoM, and 
the length of the record varies by station. Here, we study anomalies 
in streamflow at stations that receive inflows from catchment areas 
larger than ~1000 km2 (Fig. 1). Streamflow in the drought focus re-
gion is highly variable on short timescales. Most months have 
streamflow below the baseline (1980–2016) mean, interspersed with 
sporadic very high streamflow events. To better identify trends in 
streamflow during the Tinderbox Drought, we average the stream-
flow data to a seasonal resolution (Fig.  3E) instead of presenting 
monthly resolution data. We use borewell observations from the 
Australian groundwater explorer (65) to study changes in water ta-
ble depth, after removing the measurements flagged as low quality. 
Borewell water level measurements that cover the region and period 
of interest are generally scarce, but some spatial clusters of data are 
available primarily for a shorter period from 2010 to 2021 (Fig. 1). 
Some clusters of borewells in Darling, Murrumbidgee & Upper 
Murray, Hunter & Namoi, Lachlan, Gwydir, and Condamine basin 
regions contain data that cover more than 80% of the period from 
2010 to 2021. Hence, we estimate the monthly water level anomalies 
in these regions with respect to a shorter baseline of 2010 to 2016. 
The relatively slowly varying TWS and soil moisture anomalies are 
also estimated with respect to the same shorter baseline to present 
anomalies consistent with the changes in borewell water levels.

Calculation of vegetation-related anomalies
Vegetation anomalies were calculated with respect to 2002–2016, 
owing to data availability constraints from the satellite datasets. We 
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calculated anomalies on remote sensing–derived data and VPD from 
the AGCD dataset using data from the satellite-derived estimates of 
VOD using the LPDR v3 product, which broadly corresponds with 
canopy water content; the NDVI from MYD13A2 collection 6.1, 
which is a well-known proxy of canopy area and vegetation produc-
tivity; and land skin temperatures from the MYD11A1 collection 6.1 
product, which can serve to indicate departures in canopy latent heat 
flux due to changes in canopy transpiration. VOD and NDVI anoma-
lies during spring (SON) were, on average, the most severe during 
the drought.

We obtained agricultural statistics from two datasets (listed in ta-
ble S1) to assess the impact of the Tinderbox Drought on these crops. 
We use wheat and barley statistics from the Australian Bureau of Ag-
ricultural and Resource Economics and Sciences (ABARES) farm sur-
vey data reported for sub-regions within the drought focus region to 
estimate regional anomalies (https://agriculture.gov.au/abares/data/
farm-data-portal). In the case of rice and cotton, sub-national statis-
tics are not available. However, as most of the rice and cotton pro-
duced in Australia are grown in the Murray Darling Basin (5), we use 
national statistics from the United Nations Food and Agricultural Or-
ganization's Corporate Statistical Database (https://fao.org/faostat/
en/#data/QCL) to assess the impact on these crops. The agricultural 
datasets are used to estimate the growing season anomalies in area 
harvested, crop yield, and agricultural production of these crops with 
respect to a baseline of 1990 to 2016. We use a shorter baseline due to 
data availability constraints in the ABARES farm survey dataset.

Linear inverse modeling
Multi-year seasonal precipitation deficits that contribute to droughts 
may occur due to natural variability, or require anthropogenic forc-
ings. Determination of whether a particular drought is anomalous 
(and hence potentially anthropogenically forced) requires a long 
“baseline” against which to compare that event. We can estimate the 
long-term background (unforced) precipitation variability in climate 
models via long (hundreds of years) simulations with unchanging 
external forcings. However, we do not know how accurately climate 
models simulate long-term Australian precipitation variability, par-
ticularly in terms of extremes. The observational record of precipita-
tion in southeastern Australia is not long enough to quantify the full 
natural range of precipitation variability, particularly in terms of the 
statistics of multi-year events (31, 33).

Here, we use a recently developed approach that allows estima-
tion of the full distribution of southeastern Australian precipitation 
variability, based on the spatial and temporal covariance structure of 
the observed climate system (assuming stationarity of these struc-
tures). Specifically, we assessed whether the 2017–2019 drought was 
unusual relative to a stochastically forced system with stationary sta-
tistics. We used LIMs to calculate an ensemble of precipitation tra-
jectories that maintain the spatial and temporal correlation structure 
of the observational record. Our approach, based on (66) and (67), 
uses a LIM of the form

where X is a state vector, L is a deterministic feedback matrix describ-
ing spatial and temporal autocorrelations, and ζ is a white noise term 
where data may be correlated in space but not time. To form X, we 
used linearly detrended monthly global SST anomalies, and linearly 
detrended monthly precipitation amount anomalies over Australia. 

Inherent in this detrending step is the assumption that long-term 
trends have an anthropogenic component. We excluded the tropics 
due to the highly nonlinear precipitation. SST data were from two 
sources: the NOAA Extended Reconstructed SST V5 (ERSST), and 
the Centennial In Situ Observation-Based Estimates (COBE) listed in 
table S1. ERSST is available on an approximately 2° × 2° grid, span-
ning 1854 to present. COBE is available on a 1° × 1° grid, spanning 
1891 to present. Both products are derived from observations from 
the International Comprehensive Ocean-Atmosphere Data Set. Pre-
cipitation data were from the AGCD. In both cases, we applied a 
3-month running mean before construction of the LIMs, and clipped 
the SST data to 60°S to 60°N. As in (67), the precipitation portion of 
X was heavily down-weighted such that SST affects precipitation in L, 
but precipitation does not affect SST. We ran each LIM version (one 
with SST from ERSST and one with SST from COBE) 100 times, for 
117 years, resulting in 11,700 years of simulated 3-month–smoothed 
monthly precipitation variability driven by each SST product.

We used our LIM-derived estimate of long-term natural variabil-
ity to calculate the probability of experiencing one, two, and three 
sequential years with precipitation deficits equal to or greater than 
the least severe deficit of the 3 years of the drought. For the annual-
mean and April to September (AMJJAS), this was 2017. For DJF, this 
was 2018. This forms a null hypothesis against which to test the 
proposition that this drought occurred within the expected range of 
long-term natural variability.

Moisture tracking model
Southeast Australia’s rainfall is affected by moisture supply from 
nearby oceans (20) and influenced by remote climate drives such as 
ENSO and IOD. Apart from the strong 2019 IOD that coincided 
with the late stages of the drought, the remote climate drivers could 
not fully explain the onset and development of the drought (12). 
Here, we look into local processes and explore the role of moisture 
sources and transport to the region as alternative mechanisms for 
understanding the genesis and evolution of the Tinderbox Drought.

We use the Lagrangian FLEXible PARTicle (FLEXPARTv9.0) 
dispersion model (68) to track water vapor in the atmosphere and 
identify the sources and sinks of moisture during the drought event. 
In this model, the global atmosphere is divided into approximately 
2 million finite elements, called “particles,” with constant mass 
transported using 3D wind fields. The model calculates changes in 
freshwater flux (evaporation, e, minus precipitation, p) associated 
with each particle for every time step, i.e., e – p = m(dq/dt), where q 
is the specific humidity of each particle and m is the mass of the 
particle. The total (E − P) surface freshwater flux is then calculated 
by adding (e − p) for all the particles residing in the atmospheric 
column over a given area. Details of the model can be found in (68).

We use ERA-Interim Reanalysis to provide the 6-hourly data for 
winds and humidity at 61 atmospheric levels at 1° × 1° resolution. 
FLEXPART has been shown to provide a satisfactory representation 
of the hydrological cycle (69).

The Lagrangian model is integrated backward in time to identify 
the source regions that supply moisture for the precipitation over 
the region. The model is then integrated forward in time from the 
identified moisture sources to obtain the individual contribution 
from ocean and land to precipitation. The integration time is equiv-
alent to the residence time of water vapor in the atmosphere and 
varies according to regions and seasons (70). For Australia, the opti-
mum integration time is 6–10 days [(71); table S2].

dX

dt
= LX + ζ
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Weather feature analysis
Weather feature datasets are used to investigate the behavior of 
weather systems over Australia to identify anomalous weather pat-
terns during the drought. The datasets are established based on ob-
jective identification of weather or flow phenomena, and they allow 
analyzing the occurrence frequency, spatial distribution, and tempo-
ral variability of a specific weather system (72). Weather features are 
synoptic weather systems objectively identified in the ERA5 reanaly-
sis, using the methods (72) applied to the ERA-Interim reanalysis. 
All weather or flow features are identified as hourly two-dimensional 
binary fields, with the value 1 representing the occurrence of the 
weather system at grid points and the value 0 indicating no weather 
system identified. A meaningful set of weather or flow phenomena 
that affect rainfall over the region of interest (Fig. 1) is selected in the 
analysis, including extratropical cyclones, fronts, and anticyclones 
[e.g., (73, 74)]. In addition, warm conveyor belts, PV streamers, and 
cutoffs (indicating the Rossby wave breaking near the extratropical 
tropopause) are considered. Warm conveyor belts are the major pre-
cipitating part of extratropical cyclones (75), and PV streamers and 
cutoffs act as a precursor for heavy rainfall events [e.g., (76)]. The 
identification algorithms of cyclones, anticyclones, warm conveyor 
belts, and PV streamers and cutoffs are detailed in (72).

Whether the changes in rainfall are due to changes in the fre-
quency and intensity of the rainfall from a particular weather system 
is investigated in a similar way to (77). We note that the rainfall at-
tributed to each weather object does not amount to the total rainfall 
for that season for two reasons. The first is that rainfall is not exclu-
sively attributed to an object, as weather objects can overlap with 
each other, reflecting the nature of co-occurrence of weather sys-
tems, such as PV streamers and cutoff lows. As a result, the relative 
contribution of overlapped weather objects to rainfall cannot be 
quantified. Second, it could be that no object described here was in 
the vicinity when rainfall was recorded, since there are likely to be 
other rainfall-producing processes not captured by the six weather 
objects. However, the vast majority of rainfall is accounted for by the 
weather objects examined.

Land-atmosphere model simulations
To analyze the impact of drought on summer temperatures and heat-
wave extremes, we implement the WRF-LIS-CABLE modeling sys-
tem, which includes the Community Atmosphere Biosphere Land 
Exchange (CABLE) land surface model (LSM) and the National 
Aeronautics and Space Administration (NASA) Unified Weather 
Research and Forecasting (NU-WRF) model version 9.2. The ver-
sion of CABLE LSM includes an explicit groundwater aquifer and 
has been evaluated at scales ranging from a site to global scales in-
cluding for southeast Australia during the Tinderbox Drought (78). 
To obtain the equilibrated initial land states, we force the standalone 
CABLE LSM using the resampled 3-hourly AGCD dataset (62) for 
90 years with fixed CO2 concentrations, and then for the period 
1970–2019 with varying CO2 concentrations [see (79)].

We use the WRF atmospheric physics configurations suggested 
by Hirsch et al. (80) for southeast Australia. This includes the WRF 
Single-Moment 5-class microphysics scheme, the Mellor-Yamada-
Janjic boundary layer and surface layer schemes, and the New Goddard 
shortwave and longwave radiation schemes. The simulations of the 
2017–2019 drought (hereafter DROUGHT) are initialized using 
the equilibrated land conditions from the offline simulation on 
30 November 2018 and on 30 November 2019, separately, and then run 

through the 2018/2019 and 2019/2020 summers forced by the 
ECMWF Reanalysis v5 (ERA5) dataset at 4-km resolution over 
southeast Australia. We also run a simulation with climatological 
soil moisture by using the 1970–1999 averaged soil and aquifer 
moisture on 30 November 2018 and 2019 (hereafter CLIM).

Impact-based drought indicators using machine learning
To complement the analyses of local hydrological variables and the 
large-scale modes of variability, we also examined what these climate 
features and their interactions can collectively tell us about the tem-
poral and spatial development of this drought. To achieve this, we 
analyze written drought impact reports, noting the time, location of 
“drought” and “no drought” events, coincident climate conditions, 
and values of large-scale climate indicators. Then, using machine 
learning, we establish a predictive model of drought impact, based 
on climate conditions and large-scale climate modes as predictors.

We follow Hobeichi et al. (53), but develop an equivalent database 
of drought events for the region of interest in Australia. Monthly 
drought impacts reported by BoM, the NSW Department of Primary 
Industries, and NSW Department of Planning, Industry & Environ-
ment were used (table  S4). Several local drought-related variables 
(precipitation, cumulative precipitation of current and two preceding 
months, soil moisture at root zone, ET, PET, deep drainage, and run-
off) were used together with large-scale modes of climate variability 
(Niño 3.4 SST, IOD, and SAM) at monthly time steps as predictors 
for these events, simply labeled as binary “drought” or “no drought” 
events. In total, 935 labeled samples are used to train and validate a 
machine learning drought indicator, with the number of samples 
varying by year. Table S1 lists the data sources of the predictors.

The relationship was derived using an RF classifier (81) at a 
monthly timescale. The trained RF model, which we referred to as 
the “RF-drought indicator” was then used to calculate the probabil-
ity of drought over the region of interest for 2016 to 2021. This al-
lows us to build a nonlinear multivariate drought index that can 
predict the conditional probability of drought and also provide in-
formation about which predictors have the most predictive power in 
discerning “drought” and “no drought” events. The performance of 
the RF-drought indicator is tested using data not used for training. 
Using the RF model, we additionally perform a feature importance 
analysis to quantify the importance of each predictor in the model. 
We use this analysis to identify the drivers of the 2019 drought con-
ditions, concentrating on this year due to a higher number of avail-
able samples from the impact reports.

Soil moisture drought-breaking probabilities
We apply the logistic regression method documented in (54) to esti-
mate the probability of ongoing soil moisture drought events ending 
within the next 8 weeks. We use the results to assess the contribu-
tions of the climate modes to drought-breaking probabilities. We 
briefly summarize the method below and direct the reader to the 
original paper for more detail.

Soil moisture drought spells are identified using root zone soil 
moisture from the AWRA-L model historical dataset based on per-
centile thresholds calculated separately for each day of the year. A 
drought spell starts when the soil moisture falls below the 10th per-
centile and ends when it increases above the 30th percentile. The soil 
moisture change required to end an ongoing drought event is calcu-
lated as the amount of moisture change required to exceed the 30th 
percentile. Historical data are then used to estimate the probability of 
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exceedance of the requisite soil moisture changes (i.e., the drought-
breaking probability) as a function of the states of the climate modes. 
We use historical data from 1911 to 2016 to train the logistic regres-
sion models and estimate drought-breaking probabilities within 
8 weeks. We also use the results to study the evolution of the contri-
butions of ENSO and IOD to the drought-breaking probabilities.

Estimating the role of climate change
We used monthly precipitation for the first ensemble member (i.e., 
r1i1p1f1) of the preindustrial and historical experiment and four dif-
ferent future emission scenarios (see table S3 for the list of models 
used). The magnitude of the anthropogenic-forced drying in the 
2017–2019 period in models is estimated by averaging the multimod-
el median (MMM) values across four emission scenarios, weighted by 
the number of models used under that scenario [see (82)]. Finally, the 
anthropogenically forced component is estimated by determining the 
proportional contribution of the averaged MMM value to the ob-
served change. The interquartile range of the individual model esti-
mates is also provided.
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