REVIEW ARTICLE

Hamstring Injury Mechanisms and Eccentric Training-Induced Muscle Adaptations: Current Insights and Future Directions

Max H. Andrews D. Anthony J. Shield Glen A. Lichtwark Patricio A. Pincheira A.

Accepted: 18 July 2025 / Published online: 26 August 2025 © The Author(s) 2025

Abstract

Hamstring injuries are a major concern in sports owing to their high incidence and recurrence rates, highlighting the need for a deeper understanding of their mechanisms and prevention. This narrative review aims to inform hamstring injury prevention strategies by examining: (1) the causes of hamstring injuries, (2) the effectiveness of eccentric training in reducing injury risk, and (3) muscle adaptations from eccentric training that may offer protective effects. Hamstring injuries often occur during the late swing phase of running, potentially due to insufficient or delayed neural activation or an inability to generate the necessary force to decelerate the leg and resist active overstretching. In this phase, the hamstrings must produce large eccentric forces while operating at long lengths, placing them in a vulnerable position. Despite the potential of eccentric training to induce muscle adaptations that may reduce injury risk, current research has overly focused on architectural changes, particularly resting fascicle lengthening, without adequately exploring how these adaptations influence the functional behavior of hamstrings during exercise. In addition, the lack of research into adaptations of non-contractile and neural elements in the hamstrings following eccentric training represents a significant gap in the literature. This review argues for a broader focus on these underexplored areas to enhance hamstring injury prevention strategies. Further research is essential to fully understand the mechanisms behind muscle fascicle lengthening after eccentric training. Exploring functional and regional differences in hamstring adaptations and delving deeper into non-contractile and neural elements could enhance injury prevention strategies, potentially reducing the incidence of hamstring injuries.

1 Introduction

Hamstring injuries are prevalent in running sports, contributing to approximately 10% of all injuries in field-based sports [1], with recurrence rates ranging from 15 to 70% [2–6]. Hamstring injuries impact athlete performance and team success [7, 8], which has physical and financial consequences [9]. Despite decades of research and the implementation of strategies, such as resistance training, aimed at improving hamstring strength to mitigate injury risk, the prevalence of hamstring injuries has shown minimal change [10, 11]. This persistent issue highlights the need

- Max H. Andrews max.andrews@uq.net.au
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Health and Medical Sciences, The University of Southern Queensland, Ipswich, QLD 4305, Australia

Key Points

Hamstring injuries often occur during the late swing phase of running due to delayed or insufficient neural activation and the high eccentric forces required at long muscle lengths.

While eccentric training is known to increase resting muscle fascicle length, current research overlooks how these adaptations influence hamstring function during exercise.

Greater focus on non-contractile (e.g., titin stiffness, tendon compliance) and neural adaptations (e.g., motor unit recruitment, inhibition) is needed to improve hamstring injury prevention strategies. for a deeper understanding of the causes of hamstring injuries and the development of more effective prevention and rehabilitation strategies.

Despite the high prevalence of hamstring injuries, there is limited consensus on their causes or the factors that might mitigate injury risk [12]. A comprehensive understanding of the underlying causes of these injuries is essential for developing effective prevention strategies. However, compared with the causes of injury, even less is known about the specific muscle adaptations to training that may provide protective benefits. Understanding these adaptations, particularly in response to interventions such as eccentric training, is crucial for optimizing injury prevention programs. By integrating insights from both injury mechanisms and training adaptations, more effective training strategies can be designed to reduce the incidence of hamstring injuries.

Eccentric training programs that increase knee flexor strength effectively reduce the risk of hamstring strain injuries, especially when adherence to the program is high [13–15]. Although eccentric training appears effective in reducing hamstring injury risk, the underlying protective mechanisms remain unclear, as current prevention strategies [16–19] are largely premised on early animal studies conducted decades ago [20–22]. Whether this empirical evidence is sufficient to base hamstring injury and rehabilitation training programs on is questionable. Thus, there is a need to re-examine these theories in light of new evidence and recent technological advances.

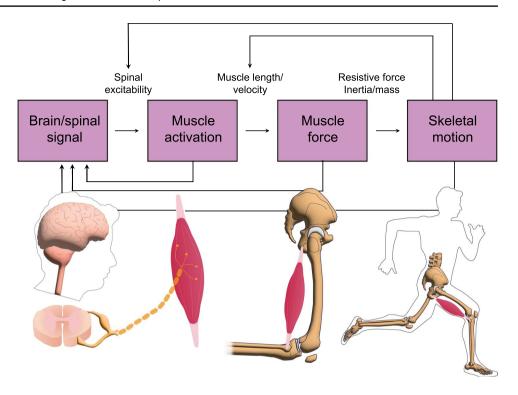
This narrative review synthesizes current literature to address three predefined research questions: (1) What are the causes of hamstring injuries, including mechanisms during high-speed running and established risk factors? (2) Is eccentric training effective in preventing hamstring injuries? (3) How do muscles adapt to eccentric training across contractile, non-contractile, and neural domains? These questions shaped the scope of the review and informed the selection of literature.

2 Methods

Relevant literature for this narrative review was identified through systematic searches of PubMed and SPORTDiscus, covering studies published up to and including May 2025. Common search terms used across all searches included "hamstring," "biceps femoris," "semitendinosus," and "semimembranosus." For injury mechanisms and risk factors, these terms were combined with "injury mechanism," "strain," "sprinting," "high-speed running," "muscle activation," "muscle tendon unit," "EMG," and "risk factors." To identify studies on the effectiveness of eccentric training in injury prevention, terms included "eccentric training," "Nordic hamstring exercise," "injury prevention," and "injury

risk." For studies on eccentric training-induced adaptations, search terms included "eccentric training," "fascicle length," "sarcomere," "strength," "extracellular matrix," "titin," "tendon," "muscle function," "motor unit," and "neural adaptation." Titles and abstracts were screened for relevance, and full-text articles were retrieved when aligned with the research questions. Reference lists of included articles were also reviewed to identify additional sources.

3 Causes of Hamstring Injuries: A Prelude to Prevention Strategies


3.1 Mechanisms of Hamstring Injury in High-Speed Running

Over 80% of hamstring injuries occur during high-speed running, predominantly affecting the biceps femoris long head (BFlh) muscle [23, 24]. As such, this review focuses specifically on running-related hamstring injuries. Despite extensive research, conflicting views persist regarding the precise etiology of these injuries [25]. High-speed running requires precise coordination of multiple elements of the neuromusculoskeletal system (Fig. 1). Disruptions at any point in this coordination may lead to hamstring injuries. Evidence indicates that running-related hamstring injuries typically occur during two distinct phases: opposing external forces during early stance [23] or active lengthening in the late swing phase [26].

3.1.1 Hamstring Injury Risk in Early Stance

The early stance phase of running has been argued to be a potential point for hamstring injury [27, 28]. During this phase, the neural system activates the hamstrings prior to foot contact to generate the necessary hip extension and knee flexion torques. These torques are required to produce the ground reaction forces needed for decelerating the shank [29]. The high forces, and hence, high stresses (i.e., force per unit cross-sectional area) may expose the hamstrings to injury [12, 30]. Another potential contributing factor is anterior pelvic tilt, which may increase hamstring strain by amplifying both active lengthening and passive tension demands during stance [31–33], though evidence supporting this link remains limited. Despite the substantial loads, hamstring muscles do not appear to undergo lengthening contractions during early stance in running [26, 34]. Moreover, the muscle lengths in the early stance phase of running are well within their normal operating range [35], which suggests the hamstring muscle fibers are unlikely to be stretched considerably in the early stance phase of running. However,

Fig. 1 Integration of neural, muscular, and skeletal systems to produce running

it is possible that incorrect force generation or delayed activation could result in unexpected hamstring lengthening and increase the risk of injury [36, 37].

3.1.2 Hamstring Injury Risk in Late Swing

The hamstrings play an important role in terminating the swing phase of running, where they must sufficiently generate force to decelerate the leg [37]. This process requires precise control of the neuromusculoskeletal system to prevent injury from increased strain or rapid force increases. During late swing, as the hip reaches peak flexion and the shank accelerates forward, the hamstrings act eccentrically, generating large hip extension and knee flexion moments [12, 29]. This places the hamstrings in a vulnerable position, requiring them to produce large eccentric forces to resist stretching at long lengths. Animal studies suggest that muscle injuries are most often incurred when exposed to high strains at long muscle lengths [38–40]. High activation is necessary to generate the required force to resist this overstretching, but if it fails to adequately resist muscle stretching, even a small strain can cause injury [41]. Therefore, hamstring injuries during late swing in running may result from insufficient or delayed neural activation, or an inability to produce sufficient force to decelerate the leg and resist active overstretching.

Maximal activation of the hamstring muscles appears to coincide with peak muscle-tendon unit (MTU) stretch during running [26, 34, 42, 43]. During late swing in running, the hamstring MTUs are at significantly longer lengths

compared with the rest of the gait cycle [44, 45]. Musculoskeletal modeling of running suggests that BFlh MTU length peaks at 112% of upright standing length—2–3% more than semimembranosus and semitendinosus [34]. This places significantly more strain on the BFlh MTU [26, 34]. As running speed increases, the hamstrings are activated to a greater extent [46, 47], and during accelerative running, they are stretched to longer lengths and at faster lengthening velocities [48]. Animal experiments suggest that muscle injury is influenced not only by the magnitude of strain but also by the combination of strain and activation [38]. Given the maximal activation and extensive lengthening of the BFlh in the late swing phase of running, it may be more susceptible to strain injuries compared with other hamstring muscles [26, 34, 42, 43].

3.2 Risk Factors for Hamstring Injuries

Elevated muscle fiber stress at extended lengths, while the muscle is stretching, likely contributes to hamstring injuries. As established above in Sect. 3.1, these factors can be influenced by eccentric strength (the ability to generate and resist high forces) and fascicle length (which affects net strain).

3.2.1 Eccentric Strength

Greater eccentric strength is believed to help reduce injury risk by generating more force to oppose excessive strain on the hamstrings [49]. However, evidence regarding the predictive value of eccentric hamstring strength for injury

risk is mixed. Some studies have indicated that athletes with lower eccentric hamstring strength are at greater risk of hamstring injury [37]. For example, Australian Rules football and soccer players with pre-season eccentric strength below 279 N and 337 N, respectively, had a greater than fourfold increased risk of injury in the subsequent season [24, 50]. Moreover, the risk of hamstring injury decreased by about 9% for every 10 N increase in eccentric knee flexor strength [24]. Conversely, other research, including a meta-analysis, has not found a significant association between eccentric strength and future injury risk [51–53], which may be attributed to several limitations commonly present in these studies. These limitations often include small sample sizes that impede the detection of small-to-moderate associations, a lack of multiple measurements throughout the season, and an absence of player exposure data [54]. Despite these inconsistencies, eccentric strength remains an important risk factor to consider for injury prevention because it may play a role in the ability of the hamstring muscles to withstand excessive muscle strain during active lengthening [55].

3.2.2 Muscle Fascicle Length

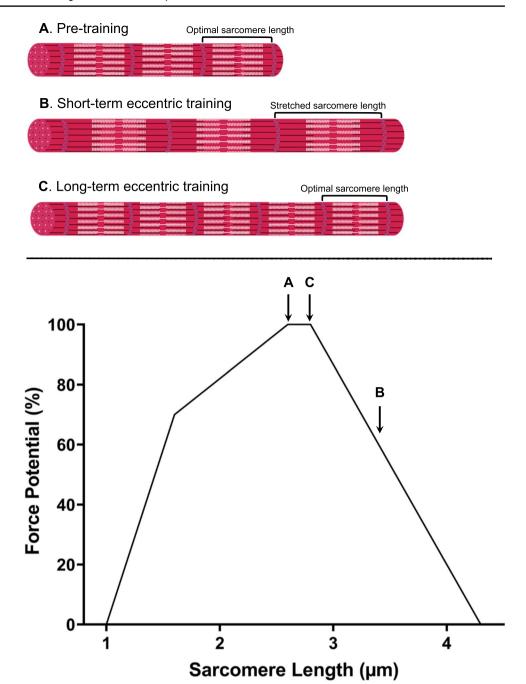
A large prospective study found that athletes with resting fascicle lengths shorter than 10.56 cm are 4.1 times more likely to suffer a hamstring strain [24]. Athletes with a history of hamstring injury typically have shorter resting fascicle lengths [56], which shifts the optimum length (relative to the force-length relationship) to shorter lengths [57]. In contrast, eccentric training has been shown to increase resting fascicle length [17, 18, 58, 59], with every 0.5 cm increase associated with a 21% reduction in hamstring injury [24]. While this reduction in injury risk is thought to result from decreased fiber strain due to serial sarcomerogenesis [16–19], there is currently limited human muscle data to support this assertion [60, 61]. Consequently, the relationship between fascicle length, sarcomere adaptations, and the resultant effect on injury risk remains largely theoretical. Evidence of the roles of muscle adaptations to eccentric training and the potential effect on injury are discussed in detail below.

4 Preventing Injury: How Muscles Adapt to Eccentric Training

Eccentric training interventions, particularly those incorporating the Nordic hamstring exercise (NHE), demonstrate evidence for reducing hamstring strain injury risk [62–65]. Meta-analytic evidence indicates that programs including the NHE reduce injury incidence by approximately 51% [66, 67]. Although one meta-analysis did not observe a

statistically significant effect [13], this finding appears attributable to poor adherence across several included studies [64, 68, 69]. When analyses are restricted to compliant participants, eccentric training demonstrates substantial protective effects, with injury risk reductions approaching 65% [13]. The weight of evidence supports including eccentric training as a primary strategy in hamstring injury prevention, provided that the program is adhered to.

The remainder of this section examines how eccentric training may confer this protective effect by exploring adaptations in the hamstring muscles. This section synthesizes current evidence on these adaptations, focusing on eccentric training in human hamstrings. Where direct evidence is lacking, relevant findings from animal models, other muscle groups, or general resistance training are included. Most of the research on eccentric training of the hamstrings has focused on contractile adaptations, but there has been comparatively little investigation into changes in non-contractile tissues or neural control in the hamstrings. Investigating these underexplored areas could shed light on how specific muscle adaptations from eccentric training contribute to reducing hamstring injury risk.


4.1 Contractile Tissue Adaptations

4.1.1 Adaptation of Fascicle Length

A key target for training is to improve tolerance to active muscle fiber stretch, particularly during high tension when strain injuries are more likely [41]. Protective adaptations are likely induced by training that combines high muscle force and strain, a characteristic of eccentric training [70, 71]. Early weeks of eccentric training typically induce rapid increases in resting hamstring fascicle length [17, 18, 59, 61]. Subsequent training leads to gradual increases in resting fascicle length over extended periods [17, 72, 73]. However, it remains unknown if this increase in resting fascicle length reduces the strain experienced by muscles during lengthening (i.e., operating lengths).

While eccentric training has the potential to increase resting fascicle length in the BFlh muscle [18, 19], the precise mechanisms underpinning this have not been fully established. Eccentric training is postulated to stimulate an increase in fiber length through either an increase in serial sarcomere number or elongation of individual sarcomeres [74]. These two adaptations would have different effects on the risk of hamstring muscle strain injury (Fig. 2). Eccentric training forces the muscle to operate in an elongated state [75], which may stretch sarcomeres beyond their optimal length [76]. Sarcomeres have a reduced capacity to produce force outside their optimum length because they have less actin-myosin overlap at short or long lengths [77]. As such,

Fig. 2 Theoretical relationship between sarcomere length and force-generating potential as a function of eccentric training: A Sarcomeres at their optimal length ($\sim 2.64 \mu m$) before undertaking eccentric training, yielding maximum force potential (100%); B sarcomeres in series stretched to ~3.4 μm, reducing force potential (~50%) due to suboptimal filament overlap, representing early eccentric training adaptation; and C increased number of sarcomeres in series at or near optimal lengths, restoring high force potential (~100%) and illustrating the long-term adaptation of sarcomerogenesis after eccentric training. This figure illustrates the progression from initial sarcomere elongation to increased serial sarcomere number

sarcomere length appears to be highly regulated, so that sarcomeres operate within their optimum length range [78]. According to the sarcomerogenesis hypothesis, muscles adapt to maintain optimal sarcomere lengths for functional tasks undertaken [79, 80]. When muscles are required to produce force at longer lengths, fascicles presumably adapt by increasing the number of sarcomeres in series, reducing the stretch experienced by individual sarcomeres at these longer lengths [76, 79–81]. This adaptive response highlights that sarcomerogenesis is seemingly driven by the need

to optimize sarcomere length within the force-length relationship [82].

Of the potential adaptations to eccentric exercise that might enhance hamstring resistance to strain injury, sarcomerogenesis has received the most attention. Only recently has it been possible to understand how sarcomeres adapt to eccentric hamstring exercise, using a technique known as microendoscopy to directly measure sarcomere length [83, 84]. Initial increases in fascicle length from early (3 weeks) eccentric training stem mainly from increased resting sarcomere length rather than serial sarcomere number [61].

After 3 weeks of eccentric training, average sarcomere length increases at rest, which places sarcomeres in an overstretched position with reduced force-generating capacity due to fewer actin–myosin cross-bridges [77].

More recent evidence suggests that after 9 weeks of eccentric training, sarcomeres return to pre-training lengths while fascicles are significantly elongated, suggesting that serial sarcomerogenesis had occurred [60]. This increase in serial sarcomere number likely helps protect against muscle strain injuries by potentially enabling sarcomeres to operate on the ascending limb of the force–length curve, maintaining optimal lengths and avoiding overstretching during eccentric contractions. Thus, serial sarcomere addition appears to reduce the strain on individual sarcomeres and likely enhances the ability of the hamstring muscles to generate force effectively without becoming overstretched. However, the implications for injury prevention remain unclear, as there are no measurements of fascicle or sarcomere behavior during active muscle stretching.

Variable muscle morphology in the hamstrings could contribute to a heterogeneous strain distribution within muscles [85, 86], which in turn may influence adaptive responses. For instance, the BFlh has nonuniform fascicle lengths, with longer fascicles proximally and shorter ones distally [87], accompanied by heterogeneous sarcomere lengths [61]. Computational modeling studies suggest that strain amplitude in the hamstrings during high-speed running is often greatest near the musculotendon junction [88, 89]. However, very little is known about in vivo operating fascicle and sarcomere lengths during exercise, especially considering the biarticular nature of the hamstrings, where differing contributions from the hip and knee joints likely lead to varied fascicle behavior during force generation. Heterogeneous adaptations have been demonstrated in BFlh in response to eccentric training [60, 61]. In a knee-dominant exercise such as the NHE, the longer proximal fibers should experience less strain than the shorter distal fibers if all fibers stretch by a similar absolute amount [90], possibly driving greater adaptive responses observed in the distal region [60, 61]. This inference, however, remains largely untested, highlighting the need for further research to understand the strain distribution across the muscle during eccentric exercises and to explain how these regional differences in strain patterns relate to nonuniform muscle adaptation.

4.1.2 Adaptation of Muscle Size and Strength

Increasing hamstring muscle size not only enhances the force-generating capacity [91] but also theoretically reduces muscle fiber stress at a given level of muscle force, as stress is inversely proportional to area. This increased strength and reduction in stress may contribute to the ability of the

hamstring muscles to resist overstretching and potentially prevent hamstring strain injuries [16, 49, 72]. Consequently, hypertrophy may play an important role in preventing hamstring strain injuries. Indeed, hypertrophy of hamstrings has been observed within 6–10 weeks of eccentric training [72, 92]. It is important to mention that not all resistance training methods equally stimulate hypertrophy across all hamstring muscles. Several studies have shown that exercises such as the NHE preferentially induce hypertrophy in the semitendinosus rather than the BFlh [72, 93, 94]. A recent study suggests that hypertrophy of the BFlh requires exercises that allow for greater excursions than typically experienced in the NHE [93]. Further evidence has demonstrated nonuniform hypertrophy within the hamstrings, with greater increases in the central regions of the semitendinosus and BFlh following 10 weeks of training, particularly with hip extension exercises [95]. However, this nonuniform hypertrophy does not necessarily indicate that fibers in the central regions are larger, as these differences could be related to anatomical constraints or the ability of the muscle to bulge, accommodating increases in fiber cross-sectional area and length. Strength is also not only a function of muscle structure but also the ability to activate muscle tissue for force generation. The ability of the nervous system to stimulate muscle fibers to generate force is explored in Sect. 4.3.

4.2 Non-contractile Tissue Adaptations

4.2.1 Adaptation to Extracellular Matrix

Extracellular matrix (ECM) remodeling may protect muscles such as the hamstrings following resistance training by contributing to passive tension during stretch and reducing strain on muscle fibers [96]. These adaptations occur more rapidly than contractile changes and may contribute to resisting stretch and preventing excessive strain [97]. However, the specific adaptations of the ECM from eccentric training of the hamstrings are poorly understood. Initial ECM changes after eccentric training, observed in animal models and other human muscles (but not yet in the hamstrings), involve de-adhesion, facilitated by tenascin-C, which creates an adaptive environment necessary for remodeling but can temporarily reduce strength [98–101]. These ECM adaptations appear to occur quickly, preceding contractile changes [97]. The de-adhesive phase may increase vulnerability to injury, highlighting the need for a clearer understanding of the ECM adaptation timeline [97]. Later stages of ECM remodeling show increased collagen synthesis [102], potentially contributing to greater stiffness of the ECM and tensile strength. Such non-contractile tissue adaptations might help redistribute stress across the hamstrings, potentially reducing injury risk [103]. Despite the potential role of ECM adaptations in preventing hamstring strain injuries, most current knowledge is speculative and based on research involving other muscles, with limited direct evidence for the hamstrings.

4.2.2 Adaptation to Titin

Eccentric training may protect hamstring muscles from strain injuries by increasing titin stiffness [104]. This increased stiffness may reduce the extensibility of sarcomeres during active lengthening and increase force generation by modulating the actin–myosin interaction [105, 106]. Titin stiffness increases more during active lengthening [107] due to Ca²⁺ influx, which appears to promote titin binding to actin [108]. Although speculative, eccentric training might affect titin's role in regulating sarcomere stiffness and reducing strain injury risk, highlighting the need for further research to confirm these postulations.

4.2.3 Adaptation to Tendinous Tissue

During the late swing phase of high-speed running, while the MTU experiences the greatest active lengthening, muscle fibers themselves may undergo minimal length change [109, 110]. The degree of strain experienced by muscle and tendinous tissue depends on the force generated and the stiffness of the tendon and aponeurosis [111]. Aponeurosis geometry may also influence strain magnitudes at the muscle-tendon junction [112], with long-length eccentric training potentially inducing increases in the aponeurosis area [93]. More compliant tendinous tissues could potentially enable muscles to remain closer to their optimal lengths during eccentric contractions [90, 113, 114]. That is, as force increases, the tendinous tissue stretches instead of the muscle fibers. However, the effects of eccentric training on hamstring tendinous tissues are not well understood. Recent work has shown that while eccentric training stimulates hamstring muscle hypertrophy, there are minimal changes to aponeurosis or free tendon geometry [95]. In addition, findings from shortterm training studies suggest that changes in tendon modulus largely account for stiffness adaptations [115]. Thus, while tendon compliance may theoretically reduce muscle fiber strain, further research is needed to explore how eccentric training affects muscle and tendinous tissue behavior.

The role of tendinous tissue strain in protecting muscle fibers from excessive strain during lengthening contractions requires more research. Modeling studies of the hamstrings in running have demonstrated discrepancies between MTU and fiber length changes during contractions [89, 116], with fibers operating within a narrower length range and producing force at more optimal lengths [117, 118]. Ultrasound and musculoskeletal modeling have shown that BFlh elastic tendinous tissue stretches more than muscle fibers during

slow eccentric contractions [90, 113, 114], supporting previous simulations [89, 116]. This relationship is likely task-dependent, as changes in joint configuration can alter MTU and fascicle length mechanics [90]. While the effects of eccentric training on these dynamics remain unclear, no studies have investigated how the mechanical properties of the hamstring muscle, such as MTU compliance and fascicle stretch, change in response to training. Existing studies have only examined these properties at a single time point [90, 113, 114]. While these cross-sectional studies have shown that the MTU absorbs much of the stretch during eccentric contractions, fascicle stretching occurs predominantly when force is highest [90, 113, 114]. Given the limited understanding of MTU interactions during exercise, further research is needed to fully explore the potential for tendinous tissues to buffer stretch in muscle fibers during eccentric contractions and the implications for hamstring injury prevention.

4.3 Neural Adaptations

4.3.1 Increasing Neural Drive

Adaptations to the nervous system that increase the force-generating capacity of muscle might also reduce the risk of hamstring injury. Eccentric training at high intensities appears to induce greater increases in strength compared with concentric training [119, 120], largely because eccentric contractions generate more force for a given level of neural activation [121, 122]. While neural adaptations leading to improved voluntary activation have been reported in several muscles following eccentric training [123, 124], there is limited evidence for these changes in the hamstrings specifically. Investigating these neural adaptations in the hamstrings could provide valuable insights into reducing injury risk and improving performance.

4.3.2 Motor Unit Adaptations

Motor unit adaptations following resistance training may further enhance force generation, as strength is influenced by motor unit size and firing frequency [125]. Research on other muscles indicates that, early in resistance training, thresholds for motor unit recruitment appear to decrease [126, 127]. However, these changes seem to revert with continued training, as muscle fiber adaptations become more prominent [128]. While increased firing frequencies have been proposed to improve force production [127], research findings remain inconsistent [129, 130] and no studies have specifically investigated these adaptations in the hamstrings. Recent research suggests that hamstring motor unit behavior is influenced by joint angle and muscle length [131, 132]. However, the complexity of the biarticular nature of the

hamstrings poses challenges in assessing their motor unit properties, which likely contributes to the limited research in this area. Understanding these neural adaptations is crucial for improving training protocols to enhance hamstring force production and prevent injuries.

Research should focus on motor unit properties such as recruitment and de-recruitment thresholds, mean discharge rate, discharge rate variability, and motor unit firing—torque relationships [133, 134]. Evidence indicates that neural drive to muscles varies according to functional demands, with lower recruitment thresholds in faster contractions [135] and higher mean discharge rates contributing to increased force production [136]. In addition, analyzing motor unit firing—torque relationships can shed light on the conversion and transmission of neural drive to muscle force [133, 134], which is essential for optimizing performance and reducing injury risk.

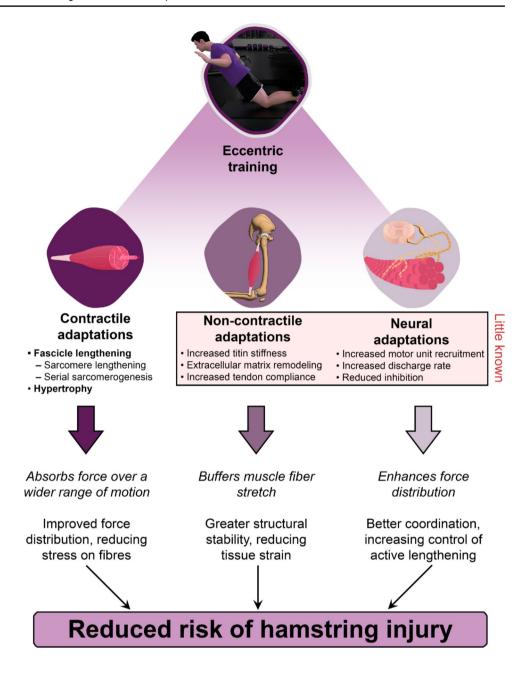
4.3.3 Inhibitory Neural Control Mechanisms

Eccentric training may reduce inhibitory neural mechanisms, enabling the hamstrings to generate greater force [137]. Protective mechanisms such as the stretch response from muscle spindles or tension-limited inhibition from the Golgi tendon organs [138–140] can protect muscles from excessive stress and strain. However, this inhibition may also limit strength adaptations. Indeed, inhibitory responses appear to be upregulated in previously injured limbs, which may impede rehabilitation progress and elevate reinjury risk [141, 142]. By downregulating these inhibitory responses, eccentric training may increase force generation during lengthening contractions [122, 143]. While untrained individuals show increased muscle activation and force with superimposed nerve stimulation during eccentric contractions, this effect diminishes with training, indicating improved neural recruitment [144, 145]. Nonetheless, direct evidence on whether eccentric training reduces hamstring neural inhibition and if this downregulation protects against injury is lacking, warranting future research.

4.3.4 Regional Adaptations to Muscle Activation

The number and size of activated motor units appear to vary between muscles and across regions within a muscle [146, 147]. Evidence suggests that the activation of the hamstring muscles is nonuniform [148–150], which may lead to regional differences in stress and strain distribution. While it is theorized that areas of muscle with greater neural drive can produce more force and may therefore be more resistant to lengthening, these ideas remain speculative. Existing studies are cross-sectional and only provide a snapshot of hamstring activation during exercise without assessing how

regional activation changes with training or its impact on strain-based adaptation.


The recruitment patterns of hamstring muscles are influenced by the relative contributions of the hip and knee joints during exercise. For instance, knee-dominant exercises, such as the NHE, typically activate the semitendinosus more than hip-dominant exercises, which tend to activate the hamstrings more uniformly [148, 151–153]. Previous studies have shown that muscle hypertrophy patterns may align with the metabolic activity observed through functional magnetic resonance imaging (fMRI) [72, 151]. fMRI detects the extent of muscle activation following exercise by capturing signal intensity changes related to metabolic activity within the muscle [154].

However, surface electromyography (sEMG) studies have shown inconsistent results regarding preferential recruitment of hamstring muscles under different activities. For example, some studies indicated similar activation levels of semitendinosus and BFlh during knee-dominant exercises [155, 156], while others report higher BFlh activation during knee-dominant and hip-dominant exercises [157, 158]. Despite BFlh often being less activated and experiencing less hypertrophy than other hamstring muscles during the NHE, numerous studies demonstrate significant BFlh activation [157, 159], particularly compared with the eccentric phase of other exercises [151].

Understanding the common techniques for assessing muscle activation is crucial for interpreting the varying results seen across studies. sEMG provides an indirect measure of net motor unit activity by detecting the sum of all action potentials from recruited and active motor units [160], although its lower spatial resolution may contribute to discrepancies in findings. In contrast, high-density EMG (HD-EMG) provides enhanced spatial resolution by recording electrical signals from multiple muscle compartments and can identify individual motor unit firing times using blind source separation, offering deeper insights into muscle activation patterns [133, 134]. However, HD-EMG is currently limited to isometric contractions and cannot estimate motor unit properties during dynamic contractions.

Understanding the within-muscle regional variation in hamstring activation is crucial to identifying the fundamental determinants of stress and strain distribution within the hamstring muscles, as well as how these regions adapt to training. While several studies have reported distinct activation patterns within the hamstring muscles, the methodologies employed warrant critical examination. For instance, the middle region of semitendinosus generally has the highest activity, while the distal region of the BFlh is the most active, especially during the NHE [161]. Kneedominant exercises such as the NHE lead to lower activity in the distal semitendinosus and higher activity in the middle and proximal regions, whereas hip-dominant exercises

Fig. 3 Illustration of potential mechanisms that may underlie the protective adaptations of the hamstrings in response to eccentric training, potentially reducing injury risk. While there is strong evidence for contractile adaptations such as fascicle lengthening and hypertrophy, less is known about non-contractile and neural adaptations in human hamstrings. Non-contractile changes, such as increased titin stiffness, extracellular matrix remodeling, and enhanced tendon compliance, are hypothesized but require further investigation. Neural adaptations, including increased motor unit recruitment, increased motor unit discharge rates, and reduced inhibitory feedback, may also play a role, though evidence for the hamstring muscles is limited

such as the stiff-leg deadlift show more uniform activation across regions [148]. These findings may be limited by single columns of electrodes, which restrict the recorded muscle area, whereas studies using larger matrices are recommended to enhance activation mapping resolution [133]. Recent research using larger electrode matrices has demonstrated that distinct neural drives exist between the proximal and distal regions of the semitendinosus during submaximal contractions [132]. These regional differences may arise from variations in muscle architecture and innervation patterns, highlighting the need for further research to examine how these muscles adapt to training. This need is particularly pertinent in light of evidence showing regional

differences in the amplitude from sEMG during dynamic movements [148, 161]. sEMG amplitude reflects the sum of muscle fiber action potentials [160], which can vary due to factors such as muscle length changes and electrode placement. However, these amplitude variations do not necessarily indicate regional differences in motor unit behavior, as motor unit action potentials themselves may not directly vary with regional activation patterns. More studies specifically investigating motor unit properties in the hamstrings are needed to fully understand these regional variations and their implications for muscle adaptation.

5 Conclusions

This review examined the complex mechanisms underlying hamstring injuries resulting from high-speed running, which are mainly caused by excessive strain and high muscle activation during running. The BFlh muscle is especially vulnerable owing to its maximal activation and lengthening during the late swing phase of running. Factors such as short resting fascicle lengths and low eccentric strength further reduce the ability of the hamstrings to resist overstretching, yet their behavior during exercise remains poorly understood. Although injury prevention strategies targeting increased muscle fascicle length and eccentric strength show promise, the underlying mechanisms remain unclear. Existing research predominately focuses on passive muscle fascicle lengths rather than operating lengths during contractions. In addition to contractile tissue adaptations, such as changes in muscle fascicle length, this review suggests that adaptations in non-contractile and neural elements may also offer protective benefits (Fig. 3). Exploring these less-studied areas could improve strategies for preventing hamstring injuries.

Acknowledgements We would like to thank Dr. Matthew Bourne for his valuable feedback and contributions to drafts of this article. His insightful comments and suggestions significantly enhanced the quality of this review.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Declarations

Author Contributions All authors contributed to the conception of this review. M.H.A. conducted the literature search, and all authors critically reviewed the literature. M.H.A. drafted the manuscript, and all authors critically revised the work. All authors read and approved the final manuscript.

Funding No sources of funding were used to assist in the preparation of this article.

Competing Interests Anthony Shield is a former shareholder in Vald Performance, a company that manufactures a device to assess hamstring strength. The remaining authors declare no competing interests relevant to the content of this review.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Maniar N, Carmichael DS, Hickey JT, Timmins RG, San Jose AJ, Dickson J, et al. Incidence and prevalence of hamstring injuries in field-based team sports: a systematic review and metaanalysis of 5952 injuries from over 7 million exposure hours. Br J Sports Med. 2023;57(2):109–16. https://doi.org/10.1136/bjsports-2021-104936.
- Diemer WM, Winters M, Tol JL, Pas HIMFL, Moen MH. Incidence of acute hamstring injuries in soccer: a systematic review of 13 studies involving more than 3800 athletes with 2 million sport exposure hours. J Orthop Sports Phys Ther. 2021;51(1):27–36. https://doi.org/10.2519/jospt.2021.9305.
- 3. Ekstrand J, Krutsch W, Spreco A, van Zoest W, Roberts C, Meyer T, et al. Time before return to play for the most common injuries in professional football: a 16-year follow-up of the UEFA elite club injury study. Br J Sports Med. 2020;54(7):421–6. https://doi.org/10.1136/bjsports-2019-100666.
- Lu Y, Pareek A, Lavoie-Gagne OZ, Forlenza EM, Patel BH, Reinholz AK, et al. Machine learning for predicting lower extremity muscle strain in National Basketball Association athletes. Orthop J Sports Med. 2022;10(7): 23259671221111742. https://doi.org/10.1177/23259671221111742.
- Roe M, Murphy JC, Gissane C, Blake C. Time to get our four priorities right: an 8-year prospective investigation of 1326 playerseasons to identify the frequency, nature, and burden of time-loss injuries in elite Gaelic football. PeerJ. 2018;6: e4895. https://doi. org/10.7717/peerj.4895.
- Zachazewski J, Silvers H, Li B, Pohlig R, Ahmad C, Mandelbaum B. Prevalence of hamstring injuries in summer league baseball players. Int J Sports Phys Ther. 2019;14(6):885–97. https://doi.org/10.26603/ijspt20190885.
- Eftekhari A, Cogan C, Pandya N, Feeley B. Hamstring injury epidemiology in the National Basketball Association over a fiveyear period. Muscles Ligaments Tendons J. 2022;12(2):79–93. https://doi.org/10.32098/mltj.02.2022.01.
- Verrall GM, Kalairajah Y, Slavotinek JP, Spriggins AJ. Assessment of player performance following return to sport after hamstring muscle strain injury. J Sci Med Sport. 2006;9(1):87–90. https://doi.org/10.1016/j.jsams.2006.03.007.
- Hickey J, Shield AJ, Williams MD, Opar DA. The financial cost of hamstring strain injuries in the Australian Football League. Br J Sports Med. 2014;48(8):729–30. https://doi.org/10.1136/bjspo rts-2013-092884.
- Ekstrand J, Bengtsson H, Waldén M, Davison M, Khan KM, Hägglund M. Hamstring injury rates have increased during recent seasons and now constitute 24% of all injuries in men's professional football: the UEFA elite club injury study from 2001/02 to 2021/22. Br J Sports Med. 2023;57(5):292–8. https:// doi.org/10.1136/bjsports-2021-105407.
- Ekstrand J, Waldén M, Hägglund M. Hamstring injuries have increased by 4% annually in men's professional football, since 2001: a 13-year longitudinal analysis of the UEFA elite club injury study. Br J Sports Med. 2016;50(12):731–7. https://doi. org/10.1136/bjsports-2015-095359.
- Sun Y, Wei S, Zhong Y, Fu W, Li LI, Liu YU. How joint torques affect hamstring injury risk in sprinting swing—stance transition. Med Sci Sports Exerc. 2015;47(2):373–80. https://doi.org/10.1249/MSS.00000000000004044.
- Goode AP, Reiman MP, Harris L, DeLisa L, Kauffman A, Beltramo D, et al. Eccentric training for prevention of hamstring injuries may depend on intervention compliance: a systematic review and meta-analysis. Br J Sports Med. 2015;49(6):349–56. https://doi.org/10.1136/bjsports-2014-093466.

- Hu C, Du Z, Tao M, Song Y. Effects of different hamstring eccentric exercise programs on preventing lower extremity injuries: a systematic review and meta-analysis. Int J Env Res Public Health. 2023;20(3):2057. https://doi.org/10.3390/ijerp h20032057.
- Shield AJ, Bourne MN. Hamstring injury prevention practices in elite sport: evidence for eccentric strength vs. lumbo-pelvic training. Sports Med. 2018;48(3):513–24. https://doi.org/10. 1007/s40279-017-0819-7.
- Bourne MN, Timmins RG, Opar DA, Pizzari T, Ruddy JD, Sims C, et al. An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2017;48(2):251–67. https://doi.org/10.1007/s40279-017-0796-x.
- Presland JD, Timmins RG, Bourne MN, Williams MD, Opar DA. The effect of Nordic hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand J Med Sci Sports. 2018;28(7):1775–83. https://doi.org/10.1111/sms.13085.
- Ribeiro-Alvares JB, Marques VB, Vaz MA, Baroni BM. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults. J Strength Cond Res. 2018;32(5):1254– 62. https://doi.org/10.1519/JSC.0000000000001975.
- Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Architectural adaptations of muscle to training and injury: a narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. Br J Sports Med. 2016;50(23):1467–72. https://doi.org/10.1136/bjsports-2015-094881
- Butterfield TA, Leonard TR, Herzog W. Differential serial sarcomere number adaptations in knee extensor muscles of rats is contraction type dependent. J Appl Physiol. 2005;99(4):1352–8. https://doi.org/10.1152/japplphysiol.00481.2005.
- 21. Morgan DL. New insights into the behavior of muscle during active lengthening. Biophys J. 1990;57(2):209–21. https://doi.org/10.1016/S0006-3495(90)82524-8.
- Morgan DL, Proske U. Popping sarcomere hypothesis explains stretch-induced muscle damage. Clin Exp Pharmacol Physiol. 2004;31(8):541–5. https://doi.org/10.1111/j.1440-1681.2004. 04029.x.
- Ekstrand J, Lee JC, Healy JC. MRI findings and return to play in football: a prospective analysis of 255 hamstring injuries in the UEFA elite club injury study. Br J Sports Med. 2016;50(12):738– 43. https://doi.org/10.1136/bjsports-2016-095974.
- Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50(24):1524–35. https://doi.org/10.1136/bjsports-2015-095362.
- Liu Y, Sun Y, Zhu W, Yu J. The late swing and early stance of sprinting are most hazardous for hamstring injuries. J Sport Health Sci. 2017;6(2):133–6. https://doi.org/10.1016/j.jshs.2017. 01.011.
- Chumanov ES, Heiderscheit BC, Thelen DG. Hamstring musculotendon dynamics during stance and swing phases of high-speed running. Med Sci Sports Exerc. 2011;43(3):525–32. https://doi.org/10.1249/MSS.0b013e3181f23fe8.
- Mann R, Sprague P. A kinetic analysis of the ground leg during sprint running. Res Q Exerc Sport. 1980;51(2):334–48.
- Orchard JW. Hamstrings are most susceptible to injury during the early stance phase of sprinting. Br J Sports Med. 2012;46(2):88– 9. https://doi.org/10.1136/bjsports-2011-090127.
- 29. Zhong Y, Fu W, Wei S, Li Q, Liu Y. Joint torque and mechanical power of lower extremity and its relevance to hamstring strain

- during sprint running. J Healthc Eng. 2017;2017:8927415–7. https://doi.org/10.1155/2017/8927415.
- Ono T, Higashihara A, Shinohara J, Hirose N, Fukubayashi T. Estimation of tensile force in the hamstring muscles during overground sprinting. Int J Sports Med. 2014;36(2):163–8. https://doi.org/10.1055/s-0034-1385865.
- Higashihara A, Nagano Y, Takahashi K, Fukubayashi T. Effects of forward trunk lean on hamstring muscle kinematics during sprinting. J Sports Sci. 2015;33(13):1366–75. https://doi.org/10. 1080/02640414.2014.990483.
- Schuermans J, Van Tiggelen D, Palmans T, Danneels L, Witvrouw E. Deviating running kinematics and hamstring injury susceptibility in male soccer players: cause or consequence? Gait Posture. 2017;57:270–7. https://doi.org/10.1016/j.gaitpost.2017.06.268.
- Mendiguchia J, Garrues MA, Schilders E, Myer GD, Dalmau-Pastor M. Anterior pelvic tilt increases hamstring strain and is a key factor to target for injury prevention and rehabilitation. Knee Surg Sports Traumatol Arthrosc. 2024;32(3):573–82. https://doi. org/10.1002/ksa.12045.
- Schache AG, Dorn TW, Blanch PD, Brown NAT, Pandy MG. Mechanics of the human hamstring muscles during sprinting. Med Sci Sports Exerc. 2012;44(4):647–58. https://doi.org/10. 1249/MSS.0b013e318236a3d2.
- Thelen DG, Chumanov ES, Hoerth DM, Best TM, Swanson SC, Li L, et al. Hamstring muscle kinematics during treadmill sprinting. Med Sci Sports Exerc. 2005;37(1):108–14. https://doi.org/ 10.1249/01.MSS.0000150078.79120.C8.
- Huygaerts S, Cos F, Cohen DD, Calleja-González J, Guitart M, Blazevich AJ, et al. Mechanisms of hamstring strain injury: interactions between fatigue, muscle activation and function. Sports. 2020;8(5):65. https://doi.org/10.3390/sports8050065.
- Kenneally-Dabrowski CJB, Brown NAT, Lai AKM, Perriman D, Spratford W, Serpell BG. Late swing or early stance? A narrative review of hamstring injury mechanisms during high-speed running. Scand J Med Sci Sports. 2019;29(8):1083–91. https://doi. org/10.1111/sms.13437.
- Lieber RL, Friden J. Muscle damage is not a function of muscle force but active muscle strain. J Appl Physiol. 1993;74(2):520–6. https://doi.org/10.1152/jappl.1993.74.2.520.
- Lieber RL, Friden J. Mechanisms of muscle injury gleaned from animal models. Am J Phys Med Rehabil. 2002;81(11):S70–9. https://doi.org/10.1097/00002060-200211001-00008.
- Liu H, Garrett WE, Moorman CT, Yu B. Injury rate, mechanism, and risk factors of hamstring strain injuries in sports: a review of the literature. J Sport Health Sci. 2012;1(2):92–101. https://doi. org/10.1016/j.ishs.2012.07.003.
- Brooks SV, Zerba E, Faulkner JA. Injury to muscle fibres after single stretches of passive and maximally stimulated muscles in mice. J Physiol. 1995;488(Pt 2):459–69. https://doi.org/10.1113/ jphysiol.1995.sp020980.
- 42. Chumanov ES, Schache AG, Heiderscheit BC, Thelen DG. Hamstrings are most susceptible to injury during the late swing phase of sprinting. Br J Sports Med. 2012;46(2):90. https://doi.org/10.1136/bjsports-2011-090176.
- 43. Yu B, Queen RM, Abbey AN, Liu Y, Moorman CT, Garrett WE. Hamstring muscle kinematics and activation during overground sprinting. J Biomech. 2008;41(15):3121–6. https://doi.org/10.1016/j.jbiomech.2008.09.005.
- Wan X, Qu F, Garrett WE, Liu H, Yu B. The effect of hamstring flexibility on peak hamstring muscle strain in sprinting. J Sport Health Sci. 2017;6(3):283–9. https://doi.org/10.1016/j.jshs.2017. 03.012.
- Higashihara A, Nagano Y, Ono T, Fukubayashi T. Relationship between the peak time of hamstring stretch and activation during

- sprinting. Eur J Sport Sci. 2016;16(1):36–41. https://doi.org/10. 1080/17461391.2014.973913.
- Hegyi A, Gonçalves BAM, Finni T, Cronin NJ. Individual region- and muscle-specific hamstring activity at different running speeds. Med Sci Sports Exerc. 2019;51(11):2274–85. https://doi.org/10.1249/MSS.0000000000002060.
- Higashihara A, Ono T, Kubota J, Okuwaki T, Fukubayashi T. Functional differences in the activity of the hamstring muscles with increasing running speed. J Sports Sci. 2010;28(10):1085–92. https://doi.org/10.1080/02640414.2010. 494308
- Gurchiek RD, Teplin Z, Falisse A, Hicks JL, Delp SL. Hamstrings are stretched more and faster during accelerative running compared to speed-matched constant-speed running. Med Sci Sports Exerc. 2025;57(3):461–9. https://doi.org/10.1249/MSS. 00000000000003577.
- Garrett WE, Safran MR, Seaber AV, Glisson RR, Ribbeck BM. Biomechanical comparison of stimulated and nonstimulated skeletal muscle pulled to failure. Am J Sports Med. 1987;15(5):448–54. https://doi.org/10.1177/036354658701500504.
- Opar DA, Williams MD, Timmins RG, Hickey J, Duhig SJ, Shield AJ. Eccentric hamstring strength and hamstring injury risk in Australian footballers. Med Sci Sports Exerc. 2015;47(4):857– 65. https://doi.org/10.1249/MSS.0000000000000465.
- Bourne MN, Opar DA, Williams MD, Shield AJ. Eccentric knee flexor strength and risk of hamstring injuries in rugby union: a prospective study. Am J Sports Med. 2015;43(11):2663–70. https://doi.org/10.1177/0363546515599633.
- 52. Green B, Bourne MN, van Dyk N, Pizzari T. Recalibrating the risk of hamstring strain injury (HSI): a 2020 systematic review and meta-analysis of risk factors for index and recurrent hamstring strain injury in sport. Br J Sports Med. 2020;54(18):1081– 8. https://doi.org/10.1136/bjsports-2019-100983.
- 53. van Dyk N, Bahr R, Burnett AF, Whiteley R, Bakken A, Mosler A, et al. A comprehensive strength testing protocol offers no clinical value in predicting risk of hamstring injury: a prospective cohort study of 413 professional football players. Br J Sports Med. 2017;51(23):1695–702. https://doi.org/10.1136/bjsports-2017-097754.
- Bahr R, Holme I. Risk factors for sports injuries—a methodological approach. Br J Sports Med. 2003;37(5):384–92. https://doi. org/10.1136/bjsm.37.5.384.
- Yu B, Liu H, Garrett WE. Mechanism of hamstring muscle strain injury in sprinting. J Sport Health Sci. 2017;6(2):130–2. https://doi.org/10.1016/j.jshs.2017.02.002.
- Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris long head architecture: a reliability and retrospective injury study. Med Sci Sports Exerc. 2015;47(5):905–13. https://doi.org/10.1249/MSS.000000000000507.
- Brockett CL, Morgan DL, Proske U. Predicting hamstring strain injury in elite athletes. Med Sci Sports Exerc. 2004;36(3):379– 87. https://doi.org/10.1249/01.MSS.0000117165.75832.05.
- Kruse A, Rivares C, Weide G, Tilp M, Jaspers RT. Stimuli for adaptations in muscle length and the length range of active force exertion—a narrative review. Front Physiol. 2021;12(October):1–24. https://doi.org/10.3389/fphys.2021.742034.
- Timmins RG, Ruddy JD, Presland J, Maniar N, Shield AJ, Williams MD, et al. Architectural changes of the biceps femoris long head after concentric or eccentric training. Med Sci Sports Exerc. 2016;48(3):499–508. https://doi.org/10.1249/MSS.000000000000000000795.
- Andrews MH, Pai AS, Gurchiek RD, Pincheira PA, Chaudhari AS, Hodges PW, et al. Multiscale hamstring muscle adaptations following 9 weeks of eccentric training. J Sport Health Sci. 2025;14: 100996. https://doi.org/10.1016/j.jshs.2024.100996.

- Pincheira PA, Boswell MA, Franchi MV, Delp SL, Lichtwark GA. Biceps femoris long head sarcomere and fascicle length adaptations after 3 weeks of eccentric exercise training. J Sport Health Sci. 2022;11(1):43–9. https://doi.org/10.1016/j.jshs.2021. 09.002
- Arnason A, Andersen TE, Holme I, Engebretsen L, Bahr R. Prevention of hamstring strains in elite soccer: an intervention study. Scand J Med Sci Sports. 2008;18(1):40–8. https://doi.org/ 10.1111/j.1600-0838.2006.00634.x.
- Elerian AE, El-Sayyad MM, Dorgham HAA. Effect of pre-training and post-training Nordic exercise on hamstring injury prevention, recurrence, and severity in soccer players. Ann Rehabil Med. 2019;43(4):465–73. https://doi.org/10.5535/arm.2019.43.4.465.
- Petersen J, Thorborg K, Nielsen MB, Budtz-Jørgensen E, Hölmich P. Preventive effect of eccentric training on acute hamstring injuries in men's soccer: a cluster-randomized controlled trial. Am J Sports Med. 2011;39(11):2296–303. https://doi.org/ 10.1177/0363546511419277.
- 65. van der Horst N, Smits D-W, Petersen J, Goedhart EA, Backx FJG. The preventive effect of the Nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med. 2015;43(6):1316–23. https://doi.org/10.1177/0363546515574057.
- 66. Al Attar WSA, Soomro N, Sinclair PJ, Pappas E, Sanders RH. Effect of injury prevention programs that include the Nordic hamstring exercise on hamstring injury rates in soccer players: a systematic review and meta-analysis. Sports Med. 2017;47(5):907–16. https://doi.org/10.1007/s40279-016-0638-2.
- 67. van Dyk N, Behan FP, Whiteley R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: a systematic review and meta-analysis of 8459 athletes. Br J Sports Med. 2019;53(21):1362–70. https://doi.org/10.1136/bjsports-2018-100045.
- 68. Engebretsen AH, Myklebust G, Holme I, Engebretsen L, Bahr R. Prevention of injuries among male soccer players: a prospective, randomized intervention study targeting players with previous injuries or reduced function. Am J Sports Med. 2008;36(6):1052–60. https://doi.org/10.1177/0363546508 314432.
- Gabbe BJ, Branson R, Bennell KL. A pilot randomised controlled trial of eccentric exercise to prevent hamstring injuries in community-level Australian Football. J Sci Med Sport. 2006;9(1):103–9. https://doi.org/10.1016/j.jsams.2006.02.001.
- Douglas J, Pearson S, Ross A, McGuigan M. Chronic adaptations to eccentric training: a systematic review. Sports Med. 2017;47(5):917–41. https://doi.org/10.1007/s40279-016-0628-4.
- Lieber RL. Biomechanical response of skeletal muscle to eccentric contractions. J Sport Health Sci. 2018;7(3):294–309. https://doi.org/10.1016/j.jshs.2018.06.005.
- Bourne MN, Duhig SJ, Timmins RG, Williams MD, Opar DA, Al Najjar A, et al. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51(5):469–77. https://doi.org/10.1136/bjsports-2016-096130.
- Lovell R, Knox M, Weston M, Siegler JC, Brennan S, Marshall PWM. Hamstring injury prevention in soccer: before or after training? Scand J Med Sci Sports. 2018;28(2):658–66. https:// doi.org/10.1111/sms.12925.
- 74. Jorgenson KW, Phillips SM, Hornberger TA. Identifying the structural adaptations that drive the mechanical load-induced growth of skeletal muscle: a scoping review. Cells. 2020;9(7):1658. https://doi.org/10.3390/cells9071658.
- Herzog W. Why are muscles strong, and why do they require little energy in eccentric action? J Sport Health Sci. 2018;7(3):255–64. https://doi.org/10.1016/j.jshs.2018.05.005.

- Koh TJ. Do adaptations in serial sarcomere number occur with strength training? Hum Mov Sci. 1995;14(1):61–77. https://doi. org/10.1016/0167-9457(94)00047-I.
- Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol. 1966;184(1):170–92. https://doi.org/10.1113/jphysiol. 1966.sp007909.
- Burkholder TJ, Lieber RL. Sarcomere length operating range of vertebrate muscles during movement. J Exp Biol. 2001;204(9):1529–36. https://doi.org/10.1242/jeb.204.9.1529.
- Burkholder TJ, Lieber RL. Sarcomere number adaptation after retinaculum transection in adult mice. J Exp Biol. 1998;201(3):309–16. https://doi.org/10.1242/jeb.201.3.309.
- Herring SW, Grimm AF, Grimm BR. Regulation of sarcomere number in skeletal muscle: a comparison of hypotheses. Muscle Nerve. 1984;7(2):161–73. https://doi.org/10.1002/mus.88007 0213.
- 81. Williams PE, Goldspink G. Changes in sarcomere length and physiological properties in immobilized muscle. J Anat. 1978;127(Pt 3):459–68.
- Hinks A, Franchi MV, Power GA. The influence of longitudinal muscle fascicle growth on mechanical function. J Appl Physiol. 2022;133(1):87–103. https://doi.org/10.1152/japplphysiol.00114. 2022.
- Llewellyn ME, Barretto RPJ, Delp SL, Schnitzer MJ. Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature. 2008;454(7205):784

 –8. https://doi. org/10.1038/nature07104.
- 84. Sanchez GN, Sinha S, Liske H, Chen X, Nguyen V, Delp SL, et al. In vivo imaging of human sarcomere twitch dynamics in individual motor units. Neuron. 2015;88(6):1109–20. https://doi.org/10.1016/j.neuron.2015.11.022.
- Blemker SS, Pinsky PM, Delp SL. A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J Biomech. 2005;38(4):657–65. https://doi.org/10.1016/j.jbiomech.2004.04. 009.
- Fiorentino NM, Epstein FH, Blemker SS. Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction. J Biomech. 2011;45(4):647–52. https://doi.org/10.1016/j.jbiomech.2011.12.015.
- 87. Kellis E, Galanis N, Natsis K, Kapetanos G. Muscle architecture variations along the human semitendinosus and biceps femoris (long head) length. J Electromyogr Kinesiol. 2010;20(6):1237–43. https://doi.org/10.1016/j.jelekin.2010.07.012.
- Fiorentino NM, Blemker SS. Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running. J Biomech. 2014;47(13):3325–33. https://doi.org/10.1016/j.jbiomech.2014. 08 010
- Fiorentino NM, Rehorn MR, Chumanov ES, Thelen DG, Blemker SS. Computational models predict larger muscle tissue strains at faster sprinting speeds. Med Sci Sports Exerc. 2014;46(4):776–86. https://doi.org/10.1249/MSS.0000000000 000172.
- Pincheira PA, Riveros-Matthey C, Lichtwark GA. Isometric fascicle behaviour of the biceps femoris long head muscle during Nordic hamstring exercise variations. J Sci Med Sport. 2022;25(8):684–9. https://doi.org/10.1016/j.jsams.2022.05.002.
- Erskine RM, Fletcher G, Folland JP. The contribution of muscle hypertrophy to strength changes following resistance training. Eur J Appl Physiol. 2014;114(6):1239–49. https://doi.org/10. 1007/s00421-014-2855-4.
- 92. Seymore KD, Domire ZJ, DeVita P, Rider PM, Kulas AS. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength. Eur J Appl Physiol. 2017;117(5):943–53. https://doi.org/10.1007/s00421-017-3583-3.

- Maeo S, Balshaw TG, Nin DZ, Mc Dermott EJ, Osborne T, Cooper NB, et al. Hamstrings hypertrophy is specific to the training exercise: Nordic hamstring versus lengthened state eccentric training. Med Sci Sports Exerc. 2024. https://doi.org/10.1249/ MSS.00000000000003490.
- 94. Pai AS, Andrews MH, Gurchiek RD, Pincheira PA, Barbieri M, Friedrich T et al. Hamstring muscle architecture and microstructure changes following Nordic hamstring exercise training and detraining. J Sport Health Sci. 2025;(In press).
- Lazarczuk SL, Collings TJ, Hams AH, Timmins RG, Shield AJ, Barrett RS, et al. Hamstring muscle-tendon geometric adaptations to resistance training using the hip extension and Nordic hamstring exercises. Scand J Med Sci Sports. 2024;34(9): e14728.
- 97. Mackey AL, Kjaer M. Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury. J Appl Physiol. 2017;122(3):533–40. https://doi.org/10.1152/jappl physiol.00577.2016.
- Flück M, Mund SI, Schittny JC, Klossner S, Durieux A-C, Giraud M-N. Mechano-regulated tenascin-C orchestrates muscle repair. Proc Natl Acad Sci U S A. 2008;105(36):13662–7. https://doi.org/10.1073/pnas.0805365105.
- Flück M, Tunc-Civelek V, Chiquet M. Rapid and reciprocal regulation of tenascin-C and tenascin-Y expression by loading of skeletal muscle. J Cell Sci. 2000;113(Pt 20):3583–91. https://doi.org/10.1242/jcs.113.20.3583.
- 100. Mackey AL, Brandstetter S, Schjerling P, Bojsen-Moller J, Qvortrup K, Pedersen MM, et al. Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. FASEB J. 2011;25(6):1943–59. https://doi. org/10.1096/fj.10-176487.
- Murphy-Ullrich JE. The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? J Clin Invest. 2001;107(7):785–90. https://doi.org/10.1172/JCI12609.
- 102. Hyldahl RD, Nelson B, Xin L, Welling T, Groscost L, Hubal MJ, et al. Extracellular matrix remodeling and its contribution to protective adaptation following lengthening contractions in human muscle. FASEB J. 2015;29(7):2894–904. https://doi.org/10.1096/fj.14-266668.
- 103. Finni T, de Brito Fontana H, Maas H. Force transmission and interactions between synergistic muscles. J Biomech. 2023;152: 111575. https://doi.org/10.1016/j.jbiomech.2023. 111575.
- 104. Herzog W, Schappacher G, DuVall M, Leonard TR, Herzog JA. Residual force enhancement following eccentric contractions: a new mechanism involving titin. Physiology. 2016;31(4):300–12. https://doi.org/10.1152/physiol.00049.2014.
- Linke WA. Titin gene and protein functions in passive and active muscle. Annu Rev Physiol. 2018;80(1):389–411. https://doi.org/ 10.1146/annurev-physiol-021317-121234.
- 106. Nishikawa KC, Lindstedt SL, LaStayo PC. Basic science and clinical use of eccentric contractions: history and uncertainties. J Sport Health Sci. 2018;7(3):265–74. https://doi.org/10.1016/j. ishs.2018.06.002.
- Herzog W. Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions. J Appl Physiol. 2014;116(11):1407–17. https://doi.org/10.1152/japplphysiol. 00069.2013.
- 108. Nishikawa KC, Monroy JA, Uyeno TE, Yeo SH, Pai DK, Lindstedt SL. Is titin a 'winding filament'? A new twist on muscle

- contraction. Proc R Soc B. 2012;279(1730):981–90. https://doi.org/10.1098/rspb.2011.1304.
- Van Hooren B, Bosch F. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part I: a critical review of the literature. J Sports Sci. 2017;35(23):2313– 21. https://doi.org/10.1080/02640414.2016.1266018.
- Van Hooren B, Bosch F. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part II: implications for exercise. J Sports Sci. 2017;35(23):2322–33. https://doi.org/10.1080/02640414.2016. 1266019.
- Hoffman BW, Cresswell AG, Carroll TJ, Lichtwark GA. Muscle fascicle strains in human gastrocnemius during backward downhill walking. J Appl Physiol. 2014;116(11):1455–62. https://doi. org/10.1152/japplphysiol.01431.2012.
- Rehorn MR, Blemker SS. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J Biomech. 2010;43(13):2574

 –81. https://doi.org/10.1016/j.jbiomech.2010.05.011.
- Raiteri BJ, Beller R, Hahn D. Biceps femoris long head muscle fascicles actively lengthen during the Nordic hamstring exercise. Front Sports Act Living. 2021;3: 669813. https://doi.org/ 10.3389/fspor.2021.669813.
- 114. Van Hooren B, Van wanseele B, van Rossom S, Teratsias P, Willems P, Drost M, et al. Muscle forces and fascicle behavior during three hamstring exercises. Scand J Med Sci Sports. 2022;32(6):997–1012. https://doi.org/10.1111/sms.14158.
- 115. Lazarczuk SL, Maniar N, Opar DA, Duhig SJ, Shield A, Barrett RS, et al. Mechanical, material and morphological adaptations of healthy lower limb tendons to mechanical loading: a systematic review and meta-analysis. Sports Med. 2022;52(10):2405–29. https://doi.org/10.1007/s40279-022-01695-y.
- 116. Thelen DG, Chumanov ES, Best TM, Swanson SC, Heiderscheit BC. Simulation of biceps femoris musculotendon mechanics during the swing phase of sprinting. Med Sci Sports Exerc. 2005;37(11):1931–8. https://doi.org/10.1249/01.mss.0000176674.42929.de.
- Arnold EM, Delp SL. Fibre operating lengths of human lower limb muscles during walking. Philos Trans R Soc Lond B Biol Sci. 2011;366(1570):1530–9. https://doi.org/10.1098/rstb.2010. 0345.
- Bohm S, Mersmann F, Santuz A, Arampatzis A. The force-length-velocity potential of the human soleus muscle is related to the energetic cost of running. Proc R Soc Lond B Biol Sci. 2019;286(1917):20192560. https://doi.org/10.1098/rspb.2019. 2560.
- 119. Manfredini Baroni B, Silveira Pinto R, Herzog W, Aurélio Vaz M. Eccentric resistance training of the knee extensor muscle: training programs and neuromuscular adaptations. Isokinet Exerc Sci. 2015;23(3):183–98. https://doi.org/10.3233/IES-150580.
- 120. Roig M, O'Brien K, Kirk G, Murray R, McKinnon P, Shadgan B, et al. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med. 2009;43(8):556–68. https://doi.org/10.1136/bjsm.2008.051417.
- Duchateau J, Baudry S. Insights into the neural control of eccentric contractions. J Appl Physiol. 2014;116(11):1418–25. https://doi.org/10.1152/japplphysiol.00002.2013.
- Duchateau J, Enoka RM. Neural control of lengthening contractions. J Exp Biol. 2016;219(2):197–204. https://doi.org/10.1242/jeb.123158.
- Duclay J, Martin A, Robbe A, Pousson M. Spinal reflex plasticity during maximal dynamic contractions after eccentric training. Med Sci Sports Exerc. 2008;40(4):722–34. https://doi.org/10. 1249/MSS.0b013e31816184dc.

- Maeo S, Shan X, Otsuka S, Kanehisa H, Kawakami Y. Neuro-muscular adaptations to work-matched maximal eccentric versus concentric training. Med Sci Sports Exerc. 2018;50(8):1629–40. https://doi.org/10.1249/MSS.000000000001611.
- Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988;20(5):S135–45. https://doi.org/10.1249/00005768-198810001-00009.
- Dartnall TJ, Nordstrom MA, Semmler JG. Adaptations in biceps brachii motor unit activity after repeated bouts of eccentric exercise in elbow flexor muscles. J Neurophysiol. 2011;105(3):1225– 35. https://doi.org/10.1152/jn.00854.2010.
- 127. Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, et al. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J Physiol. 2019;597(7):1873–87. https://doi.org/10.1113/JP277250.
- 128. Sterczala AJ, Miller JD, Dimmick HL, Wray ME, Trevino MA, Herda TJ. Eight weeks of resistance training increases strength, muscle cross-sectional area and motor unit size, but does not alter firing rates in the vastus lateralis. Eur J Appl Physiol. 2020;120(1):281–94. https://doi.org/10.1007/s00421-019-04273-9.
- Pucci AR, Griffin L, Cafarelli E. Maximal motor unit firing rates during isometric resistance training in men. Exp Physiol. 2006;91(1):171–8. https://doi.org/10.1113/expphysiol.2005. 032094.
- Rich C, Cafarelli E. Submaximal motor unit firing rates after 8 wk of isometric resistance training. Med Sci Sports Exerc. 2000;32(1):190-6. https://doi.org/10.1097/00005768-20000 1000-00028.
- Kirk EA, Rice CL. Contractile function and motor unit firing rates of the human hamstrings. J Neurophysiol. 2017;117(1):243–50. https://doi.org/10.1152/jn.00620.2016.
- Sahinis C, Amiridis IG, Kannas T, Farina D, Enoka RM, Kellis E. Distinct neural drives along the semitendinosus muscle. Med Sci Sports Exerc. 2024;56(12):2338–48. https://doi.org/10.1249/MSS.00000000000003530.
- 133. Martinez-Valdes E, Enoka RM, Holobar A, McGill K, Farina D, Besomi M, et al. Consensus for experimental design in electromyography (CEDE) project: single motor unit matrix. J Electromyogr Kinesiol. 2023;68: 102726. https://doi.org/10.1016/j.jelekin.2022.102726.
- Martinez-Valdes E, Laine CM, Falla D, Mayer F, Farina D. Highdensity surface electromyography provides reliable estimates of motor unit behavior. Clin Neurophysiol. 2015;127(6):2534–41. https://doi.org/10.1016/j.clinph.2015.10.065.
- 135. Aeles J, Bellett M, Lichtwark GA, Cresswell AG. The effect of small changes in rate of force development on muscle fascicle velocity and motor unit discharge behaviour. Eur J Appl Physiol. 2022;122(4):1035–44. https://doi.org/10.1007/ s00421-022-04905-7.
- Conwit RA, Stashuk D, Tracy B, McHugh M, Brown WF, Metter EJ. The relationship of motor unit size, firing rate and force. Clin Neurophysiol. 1999;110(7):1270–5. https://doi.org/10.1016/S1388-2457(99)00054-1.
- 137. Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Halkjær-Kristensen J, Dyhre-Poulsen P. Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol. 2000;89(6):2249–57. https://doi.org/10.1152/jappl.2000.89.6.2249.
- Lewis DM, Proske U. The effect of muscle length and rate of fusimotor stimulation on the frequency of discharge in primary endings from muscle spindles in the cat. J Physiol. 1972;222(3):511– 35. https://doi.org/10.1113/jphysiol.1972.sp009812.

- Macefield VG, Knellwolf TP. Functional properties of human muscle spindles. J Neurophysiol. 2018;120(2):452–67. https:// doi.org/10.1152/jn.00071.2018.
- Pinniger GJ, Steele JR, Thorstensson A, Cresswell AG. Tension regulation during lengthening and shortening actions of the human soleus muscle. Eur J Appl Physiol. 2000;81(5):375–83. https://doi.org/10.1007/s004210050057.
- 141. Bourne MN, Opar DA, Williams MD, Al Najjar A, Shield AJ. Muscle activation patterns in the Nordic hamstring exercise: impact of prior strain injury. Scand J Med Sci Sports. 2016;26(6):666–74. https://doi.org/10.1111/sms.12494.
- 142. Fyfe JJ, Opar DA, Williams MD, Shield AJ. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Electromyogr Kinesiol. 2013;23(3):523–30. https://doi.org/10.1016/j.jelekin.2012.12.006.
- 143. Aagaard P. Spinal and supraspinal control of motor function during maximal eccentric muscle contraction: effects of resistance training. J Sport Health Sci. 2018;7(3):282–93. https://doi.org/10.1016/j.jshs.2018.06.003.
- 144. Amiridis IG, Martin A, Morlon B, Martin L, Cometti G, Pousson M, et al. Co-activation and tension regulating phenomena during isokinetic knee extension in sedentary and highly skilled humans. Eur J Appl Physiol Occup Physiol. 1996;73(1–2):149–56. https://doi.org/10.1007/bf00262824.
- 145. Westing SH, Seger JY, Thorstensson A. Effects of electrical stimulation on eccentric and concentric torque-velocity relationships during knee extension in man. Acta Physiol Scand. 1990;140(1):17–22. https://doi.org/10.1111/j.1748-1716.1990. tb08971.x.
- Higham TE, Biewener AA, Wakeling JM. Functional diversification within and between muscle synergists during locomotion. Biol Lett. 2008;4(1):41–4. https://doi.org/10.1098/rsbl.2007. 0472.
- 147. Wakeling JM. The recruitment of different compartments within a muscle depends on the mechanics of the movement. Biol Lett. 2009;5(1):30–4. https://doi.org/10.1098/rsbl.2008.0459.
- 148. Hegyi A, Péter A, Finni T, Cronin NJ. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff-leg deadlift defined with high-density electromyography. Scand J Med Sci Sports. 2018;28(3):992–1000. https://doi.org/10.1111/sms. 13016.
- Schoenfeld BJ, Contreras B, Tiryaki-Sonmez G, Wilson JM, Kolber MJ, Peterson MD. Regional differences in muscle activation during hamstrings exercise. J Strength Cond Res. 2015;29(1):159–64. https://doi.org/10.1519/JSC.0000000000 000598.
- 150. van den Tillaar R, Solheim JAB, Bencke J. Comparison of hamstring muscle activation during high-speed running and various hamstring strengthening exercises. Int J Sports Phys Ther. 2017;12(5):718–27. https://doi.org/10.26603/ijspt20170718.

- 151. Bourne MN, Williams MD, Opar DA, Al Najjar A, Kerr GK, Shield AJ. Impact of exercise selection on hamstring muscle activation. Br J Sports Med. 2017;51(13):1021–8. https://doi.org/10.1136/bjsports-2015-095739.
- 152. Fernandez-Gonzalo R, Tesch PA, Linnehan RM, Kreider RB, Di Salvo V, Suarez-Arrones L, et al. Individual muscle use in hamstring exercises by soccer players assessed using functional MRI. Int J Sports Med. 2016;37(7):559–64. https://doi.org/10.1055/s-0042-100290.
- 153. Messer DJ, Bourne MN, Williams MD, Al Najjar A, Shield AJ. Hamstring muscle use in females during hip-extension and the Nordic hamstring exercise: an fMRI study. J Orthop Sports Phys Ther. 2018;48(8):607–12. https://doi.org/10.2519/jospt.2018. 7748.
- 154. Cagnie B, Elliott J, O'Leary S, D'Hooge R, Dickx N, Danneels L. Muscle functional MRI as an imaging tool to evaluate muscle activity. J Orthop Sports Phys Ther. 2011;41(11):896–903. https://doi.org/10.2519/jospt.2011.3586.
- Guruhan S, Kafa N, Ecemis ZB, Guzel NA. Muscle activation differences during eccentric hamstring exercises. Sports Health. 2021;13(2):181–6. https://doi.org/10.1177/1941738120938649.
- 156. Zebis MK, Skotte J, Andersen CH, Mortensen P, Petersen HH, Viskær TC, et al. Kettlebell swing targets semitendinosus and supine leg curl targets biceps femoris: an EMG study with rehabilitation implications. Br J Sports Med. 2013;47(18):1192–8. https://doi.org/10.1136/bjsports-2011-090281.
- Boyer A, Hug F, Avrillon S, Lacourpaille L. Individual differences in the distribution of activation among the hamstring muscle heads during stiff-leg deadlift and Nordic hamstring exercises. J Sports Sci. 2021;39(16):1830–7. https://doi.org/10.1080/02640414.2021.1899405.
- Ono T, Higashihara A, Fukubayashi T. Hamstring functions during hip-extension exercise assessed with electromyography and magnetic resonance imaging. Res Sports Med. 2011;19(1):42–52. https://doi.org/10.1080/15438627.2011.535769.
- Comfort P, Regan A, Herrington L, Thomas C, McMahon J, Jones P. Lack of effect of ankle position during the Nordic curl on muscle activity of the biceps femoris and medial gastrocnemius. J Sport Rehabil. 2017;26(3):202–7. https://doi.org/10.1123/jsr. 2015-0130.
- Enoka RM, Duchateau J. Muscle function: strength, speed, and fatigability. In: Zoladz JA, editor. Muscle and exercise physiology. Academic Press; 2019. pp. 129–57.
- Hegyi A, Csala D, Péter A, Finni T, Cronin NJ. High-density electromyography activity in various hamstring exercises. Scand J Med Sci Sports. 2019;29(1):34–43. https://doi.org/10.1111/ sms.13303.