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Abstract
Climate change is varying the availability of resources, soil physicochemical proper-

ties, and rainfall events, which collectively determines soil physical and chemical

properties. Soil constraints—acidity (pH < 6), salinity (pH ≤ 8.5), sodicity, and

dispersion (pH > 8.5)—are major causes of wheat yield loss in arid and semiarid

cropping systems. To cope with changing environments, plants employ adaptive

strategies such as phenotypic plasticity, a key multifaceted trait, to promote shifts

in phenotypes. Adaptive strategies for constrained soils are complex, determined by

key functional traits and genotype × environment × management interactions. The

understanding of the molecular basis of stress tolerance is particularly challenging for

plasticity traits. Advances in sequencing and high-throughput genomics technologies

have identified functional alleles in gene-rich regions, haplotypes, candidate genes,

mechanisms, and in silico gene expression profiles at various growth developmen-

tal stages. Our review focuses on favorable alleles for enhanced gene expression,

quantitative trait loci, and epigenetic regulation of plant responses to soil constraints,

including heavy metal stress and nutrient limitations. A strategy is then described for

quantitative traits in wheat by investigating significant alleles and functional char-

acterization of variants, followed by gene validation using advanced genomic tools,

and marker development for molecular breeding and genome editing. Moreover, the

review highlights the progress of gene editing in wheat, multiplex gene editing, and

novel alleles for smart control of gene expression. Application of these advanced

genomic technologies to enhance plasticity traits along with soil management prac-

tices will be an effective tool to build yield, stability, and sustainability on constrained

soils in the face of climate change.

Abbreviations: ABA, abscisic acid; CRISPR, clustered regularly interspaced short palindromic repeats; ESP, exchangeable sodium percentage; G × E,

genotype by environment; gRNA, guide ribonucleic acid; pH, potential of hydrogen; snpEff, single nucleotide polymorphism effect; VIGS, virus-induced

gene silencing; WUE, water use efficiency.
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1 INTRODUCTION

The world’s population is projected to reach 8 billion in 2022,

8.5 billion in 2030, and 9.7 billion in 2050 (Carvajal-Yepes

et al., 2019; UN, 2022), and global agriculture production

must increase at least by 70% to meet food demand and secu-

rity. Wheat is a major global cereal crop cultivated in more

than 100 countries and is a staple food resource for 40% of

the global population. Climate change has resulted in vary-

ing rainfall events, and the impacts are more acute in arid

and semiarid cropping systems. Of the major cereals, wheat

is grown in the most hostile and lowest yielding environ-

ments. Soil constraints (acidity, salinity, sodicity, and soil

dispersion) significantly pose challenges to wheat produc-

tion globally, and the intensity of yield losses is increasing

with climate change (Reynolds & Braun, 2022). Developing

climate-resilient wheats with enhanced plasticity for soil con-

straints will enhance food security to feed the future growing

population.

Soil constraints arise naturally and are an ever-increasing

problem due to anthropogenic activities and climate change.

Globally, the FAO (2020) estimated that there were 434 and

397 million hectares of sodic and saline soils, respectively.

Soil constraints are usually caused by high salt, disruption in

soil structure and integrity, variable pH (potential of hydro-

gen), mineral deficiencies or toxicities, and climate change,

which reduces cereal production. These constraints are get-

ting more severe due to the shortage of water of high quality,

deterioration of the soils, and efforts from the communi-

ties to shift away from the use of chemical intervention

in agricultural production. The high levels of soil salinity

and sodicity common in arid and semiarid areas present

obstacles to the maintenance of global food security and

environmental sustainability. Salt stress in soils is becom-

ing increasingly common across both irrigated and dryland

ecosystems (Husen, 2021). The soil management practices

include the addition of lime on acid soils (pH < 4.5) and

gypsum on saline–sodic and dispersive soils (pH > 8.0) to

improve crop performances (Table 1) (DPIRD Report, 2018).

However, there is a greater need to comprehend the genetic

inheritance and mechanisms of tolerance to soil constraints

to develop climate-proof elite cultivars for food security and

farm sustainability.

Since the Arabidopsis thaliana reference genome was

decoded in 2000 (The Arabidopsis Genome Initiative, 2020),

more than 100 crops have been sequenced over the last

two decades, including the most important cereals wheat,

rice, maize, and barley (Purugganan & Jackson, 2021;

Varshney et al., 2021). The advancement in technologies

from short-read sequencing to combined highly accurate

long-read sequencing, optical mapping, and chromosome

conformation capture enables the decoding of genomes

more efficiently and cost-effectively (Athiyannan et al.,

Core Ideas
∙ Genetic and genomic research on tolerance to soil

constraints in wheat in the wake of climate change.

∙ Tolerances to complex belowground constraints

are quantitatively inherited.

∙ Modern genetic and genomic tools bring out rapid

pre-breeding solutions.

∙ Rapid genetic solutions accelerate breeding pro-

gram.

∙ High-yielding wheat cultivars with stable traits

also enable farm sustainability.

2022; Garg et al., 2021). Recently, the first fully anno-

tated reference genome of the Triticum aestivum variety

“Chinese Spring” was accomplished (Alaux et al., 2018),

which can significantly boost research combined with breed-

ing practices for developing the next-generation varieties

of wheat with climate resilience. Despite the bread wheat

genome’s size and intricacy, high-quality pangenome rep-

resenting 16 wheat genotypes has also become available

(Walkowiak et al., 2020). The pangenome not only enriches

the genomic pool of sequence and structure variations

among wheat germplasms but also serves as an invaluable

resource for genome mining and gene editing. In particular,

the pangenome accessions may offer a selection of diverse

genetic backgrounds for targeted trait improvement through

gene editing (Khan et al., 2020), which can partially bypass

the genotype dependency on the wheat transformation ref-

erences such as Bobwhite and Fielder (Wang et al., 2022).

The wheat diversity panel also paves the way for functional

gene discovery and subsequent development of cultivars with

improved adaptation to various environments.

There is a greater need to address crop improvement in a

specific target environment. Many agronomic traits related

to soil constraints are complex in nature and subject to

high genotype × environment × management interactions

(G × E × M) (Chenu, 2015; Chenu et al., 2018). Crop

improvement programs for complex soil constraints should

incorporate a number of components—climatic variations,

local management practices, type of soil constraints, genetic

variability for the target environment, heritability of complex

traits, and precise phenotyping and resourceful genotyping

systems. Interactions amongst the favorable genes controlling

plasticity in changing environment and management prac-

tices affect the rate of selection progress and genetic gain in

breeding programs (Mace et al., 2013; Messina et al., 2011).

Chromatin profiling is the current advancement in root trait

assessment under changing soil conditions. Chromatin profil-

ing has been attempted in cereals (Li et al., 2019; Omrane
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et al., 2017; Reynoso et al., 2022) to identify functional ele-

ments, including genes, promoters, enhancer-like elements,

transcription factors, and transposons. Identification of new

genic regions and cis-regulatory elements by studying pat-

terns of chromatin for root traits will offer a comprehensive

view of gene expressions and transcription factors control-

ling cellular events. The epigenomic map for annotations of

cis-regulatory elements is now available for bread wheat (Li

et al., 2019), and this resource can be successfully deployed

in pre-breeding research to analyze root and phenotypic plas-

ticity traits for soil constraints. Tolerances to soil constraints

are quantitative traits. The review highlights soil constraints

(acidity, salinity, sodicity, and dispersion) and the effect of

climate change on wheat yield. Mechanisms and epigenetic

regulation of plasticity primary and secondary traits are dis-

cussed. The mapped genomic locations for plasticity traits

in wheat are also summarized. The demonstration of best

genetic and genomic tools and potential tools available for

pre-breeding investigations, specifically molecular, genome

editing, and validation tools to identify potential alleles and

allele mining are discussed for quantitative traits.

2 SOIL CONSTRAINTS

Soil constraints (acidity, sodicity, and salinity) are naturally

occurring soil conditions that affect wheat productivity. Soil

acidity results from a fall in soil pH (<5), which is induced

by the continuous addition of H+ and huge volumes of acid-

forming compounds, including urea and ammonia. All basic

cations, including Na, Ca, Mg, K, and Si, as well as pH-

buffering minerals, such as carbonates, are leached away

year-round in a warm, humid climate, exposing acidic Fe and

aluminum oxide minerals, which increases the proportion of

Al3+ and H+ in comparison to other cations (Caires et al.,

2008). Soluble aluminum and pyrite minerals release pro-

tons into the soil environment, increasing acidity (Figure 1b)

through the reaction, Al3+ + H2O → AlOH2+ + H+. Another

concern is the fact that soil acidity degrades the favorable

environment for bacteria, such as the rhizobia, earthworms,

and other soil organisms, reducing soil carbon pools. This type

of soil state most often results in a rise in the accessibility of

metals to toxic levels, specifically aluminum and manganese

(Figure 1b). There is sufficient genetic diversity for acidic soil

tolerance in wheat (Tang et al., 2003). High concentrations of

aluminum (Al) primarily affect the root growth and lead to a

weaker root system in sensitive wheat, whereas tolerant wheat

grows longer, deeper roots and secretes organic ligands from

its roots to complex with Al in the soil, reducing Al take-up

by plant systems (Tang et al., 2001).

Sodic-dispersive soils/sodicity are formed by a high

amount of sodium and clay-forming massive soils. These soils

have poor soil structure, pH (>8), and a harmful subsurface

element ionic strength, predominantly sodium ions, which

hinder wheat development (Sharma et al., 2022) (Figure 1c).

About 70% of Australia’s rangelands are arid and semiarid

lands, making it the world’s driest inhabited part of the

planet, where rainfall is low, and temperature is high (DPIRD

Report, 2018) (Figure 1c). In sodic soil, highly hydrated

sodium ions replace divalent cations (like calcium and magne-

sium ions) at the surface of negatively charged clay particles

and form cation shells around clay particles keeping soil

particles separated from each other, causing a loss of soil

integrity, and poor aeration and water infiltration (Figure 1c).

Sodic-diffusive loams possess higher pH (above 7), bulk

density, dispersion index, and metal ion concentration and

are saline-rich in chlorides (NaCl, CaCl2, and MgCl2) and

sulfates (Na2SO4) (Table 1) (DPIRD Report, 2018). From

an agricultural perspective, sodic soil is associated with a

high exchangeable sodium percentage >15 and pH > 8. This

decrease in soil porosity makes the soil duplex and rigid,

which significantly impacts seed germination rate, root devel-

opment, water use efficiency (WUE), and uptake of nutrients.

Therefore, sodicity has compound effects on agricultural

productivity.

Salinity is a major soil limitation that hinders crop advance-

ment and progression in growth by initiating ionic and

oxidative stresses in the cytoplasm, brought on by reactive

oxygen species, and this leads to a steady increase in phyto-

toxic ions. A nutritional imbalance results from the elevated

concentrations of Na+ and Cl− that are subsequently accu-

mulated, together with a loss in K+ within the plant cell.

The increased Na+/K+ ratios in the above and below plant

parts disrupt effective water uptake and other essential nutri-

ents such as Ca2+ and K+/N+ disequilibrium (Zörb et al.,

2019). Photosynthetic activity and water use efficiency are

the most significantly impacted components, which even-

tually slow down plant development and the production of

secondary metabolites. The tolerance mechanisms to salinity

for the improved productivity are brought about in two ways:

plants with the ability to impair the root system’s ability to

absorb salt, and/or an effective acclimation process to regu-

late the salts percentage and its distribution in the plant system

(Xiong et al., 2017).

Advances in genomics and cutting-edge technologies hold

greater solutions for quantitative traits. The association of

genetic sources along with desired characteristics, genetic and

genomic knowledge with a proper understanding of mech-

anisms for improved tolerance to soil constraints is vital to

improve the targeted varieties or lines. There is considerable

genetic variability for sodicity (Sharma et al., 2022) and salin-

ity (James et al., 2008; Rahnama et al., 2019). Advanced

genomic sequencing and the discovery of tolerant factors have

offered intensive pre-breeding knowledge that could be effec-

tively used to breed elite wheats with greater stability and

fitness for varying climatic conditions.
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F I G U R E 1 (a) Exchangeable basic cations in normal soil conditions, (b) pictorial representation of scenarios in acidic (pH < 6), (c) saline and

sodic soils (pH ≥ 8.0), metal toxicities, with change in soil characteristics. pH, potential of hydrogen.

3 PHENOTYPIC PLASTICITY IN
RESPONSE TO CLIMATE CHANGE

Plasticity is the ability of a genotype to express different

phenotypes under different environmental conditions. Cli-

mate change poses new agricultural challenges and presents

extreme and unpredictable environmental conditions. Plant

species tackle unfavorable environmental conditions through

physiological response mechanisms. There have been earlier

efforts to comprehend plasticity through ecological and evo-

lutionary theory and transfer the knowledge to crop breeding.

Understanding the molecular basis of plant responses in key

primary and secondary functional traits that influence “fit-

ness” in changing conditions is vital to harness agricultural

adaptive plasticity (Brooker et al., 2022). In cereal production,

agricultural fitness correlates with yield and/or quality-related

characteristics, which is dependent on the enhancement of

plasticity traits (Tables 2 and 3). Selection of lines is depen-

dent on the fitness and commercial longevity of the variety

that reflects on consistency for high yield, given the con-

text of variable conditions (Stockinger, 2021). The genetic

resources that exhibit high fitness could be effectively used

to mitigate challenges faced by climate change (Fischer &

Edmeades, 2010). Adaptive traits and underlying molecular

changes are studied through primary and secondary traits

(Table 2). The quantitative trait locus mapping studies and

chromosomal locations that influence phenotypic plasticity

and agricultural fitness, such as root traits, height, phe-

nology and spike characteristics, photosynthesis efficiency,

biomass and transpiration, sugar, and secondary metabolites

in wheat, are presented in Table 3. These genomic loca-

tions can be well integrated in breeding programs to enhance

plasticity and resilience in wheat productivity on constrained

soils.

3.1 Major mechanisms contributing to
adaptation of plants to variable environments

Crops possess a sequence of adaptive methods for accli-

matizing to varying ecological cues. Wheat exhibits varied

mechanisms against changing conditions and stresses that

were introduced during wild domestication and evolution

(Dubcovsky & Dvorak, 2007). Plasticity is linked to “molec-

ular adaptive machinery,” which is a channel with several

degrees of gene expression, regulation, and temporal and

spatial controls at the cell stage (Shao et al., 2007). These

responses are based on the integration of many transduced

events of cell signal paths. Hormones dominate a principal

place in such transduction systems, which coordinate with

other hormones to control molecular pathways like cell divi-

sion, expansion, and differentiation, which seem to be crucial

for plant development amidst abiotic stress.

Different “physiological and biochemical functions” bring

out adaptive mechanisms that help wheats cope with soil

constraints. The major adaptive mechanisms include ionic

balance and compartmentalization, activation and modulation

of antioxidant enzymes and hormones, and biosynthesis of

osmoprotectants and solutes. For instance, soil salinity and

sodicity disrupt ionic homeostasis causing weaker root sys-

tem, hyperosmotic stress, and oxidative damage, inhibiting

overall crop growth and development. To counterbalance

ionic stresses, plants have developed enhanced gene expres-

sions of a class of kinases. An example is Ca2+–calcineurin

B-like protein (CBL)-CBL interacting protein kinase (CIPK)

module that performs a critical function in controlling the

cellular ion homeostatic balance (Sharma et al., 2022; Zhu,

2016). High Na+, low K+, excess Mg2+, and high pH

cause cytosolic Ca2+ signals activating CIPK family proteins

increasing intracellular favorable Ca2+ ion concentration, and
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6 of 19 BHOITE ET AL.The Plant Genome

T A B L E 2 Wheat primary and secondary functional traits for investigating plasticity amidst changing soil conditions.

Priority Traits Biological significance
Primary adaptive traits Stomatal size and density Stomata control water loss and uptake of CO2

Height at maturity Indication of competitive position in a stand

Flowering time, phenology, size at

reproduction, and pollen viability

Plasticity in these traits determine the ability to respond to

a changing climate

Seed size and number Determines fitness

Leaf mass per unit area Measure of relative growth rate, photosynthesis capacity,

and leaf nitrogen content

Secondary adaptive traits Root-to-shoot ratio The relative allocation of total plant mass to roots and

shoots

Specific root length Root length per unit mass

Water use efficiency Carbon gain as a function of water loss. Can be measured

as an integrated measure using isotopes or by

instantaneous measures

Leaf size, shape, and thickness Leaf is the site of photosynthesis and is crucial for growth

and carbon balance. Therefore, size and morphology are

important

Plant chemical defenses Concentration of secondary metabolites is important in

defense mechanism

Leaf pigmentation Pigmentation (e.g., anthocyanin) contribute to leaf

longevity during senescence caused by abiotic stress

promoting vacuolar sequestration of excess Na+ ions, thus

maintaining ionic homeostasis to confer salt tolerance.

There are also a few critical “morphogenic responses”

like increased lateral root development (Arif et al., 2019;

Kaashyap et al., 2018). Besides this, there lies a powerful

systematic action and interaction among antioxidant level,

auxin metabolism, and lateral root formation. Metal toxicity

in acid and alkaline soils in 60% of the world’s arable land

modifies root system architecture and cell division as an adap-

tive strategy in crops (Liang et al., 2023; Sun et al., 2020).

Root exudation of organic acids, phenolics, amino acids, and

extracellular enzymes helps in alleviating stress caused due

to soil metal toxicities (Arif et al., 2019; Kaashyap et al.,

2018). A deeper understanding of molecular processes, phys-

iological and biochemical roles, and crucial “morphogenic

responses” and interlink of the physiological understanding

of tolerance processes from molecular methods is significant

for enhancing the wheat yield potential in arid and semiarid

regions.

3.2 Epigenetic regulation for stress
adaptation on constrained soils

Epigenetics is the investigation on hereditary variations in

chromatin function without changing the DNA structure or

genetic code. Epigenetic codes include DNA methylation,

modifications of histones including their variants, and cer-

tain long noncoding RNAs, which impact the construction

and accessibility of chromatin and chromatin’s genetic or bio-

logical role (Duan et al., 2018). Besides DNA and histone

methylation, it has been observed that the control of stress

responses for adaptation to challenging environmental con-

ditions involves other histone marks, such as “methylation,

acetylation, phosphorylation, ubiquitination, glycosylation,

and ADP-ribosylation” (Chang et al., 2020; Kim et al., 2015).

There are inevitably associations between the reaction to envi-

ronmental change, particularly adaptations to soil salinity and

other abiotic stress, and stimulation of epigenetic regulatory

systems (Konate et al., 2018).

Epigenetic pathways are engaged in the development of

stress memory, which is later passed down to the progeny

of pressured parent plants (Friedrich et al., 2019). Conse-

quently, decoding the epigenetics of these stress responses

generated by the plants may be put to greater use for breeding

stress-tolerant crops (Chang et al., 2020). There have been

several attempts to investigate the epigenetic mechanisms

underlying abiotic stress reactions. The levels of epigenetic

marks and cross-talks between epigenetic mechanisms are

stimulated or suppressed following abiotic stress management

(Figure 2). DNA methylation is essential for controlling how

genes are expressed in response to environmental cues. As an

epigenetic mark, DNA methylation adds to epiallelic diversi-

fication and modifications in the regulation of gene expression

(Kimatu, 2015).

To select fitness and stable features while breeding robust

wheats in crop improvement programs, it is necessary to

conduct extensive investigations on the variations in DNA
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BHOITE ET AL. 7 of 19The Plant Genome

T A B L E 3 Quantitative trait locus (QTL) mapping studies conducted for plasticity traits—root, height, phenology, spike characteristics,

photosynthesis efficiency, biomass, transpiration rate, sugar, and metabolite production in wheat.

Plasticity traits QTL chromosomal location References
Root traits
Root development 7AS Merchuk-Ovnat et al.

(2017)

Root length 1BL, 2DS, 5AL, 6AL, 7BL, 3AL Ayalew et al. (2017)

Seedling root traits 4B, 7A, 7B Ma et al. (2017)

Root traits 2B, 5B, 7B, 6D Ahmad et al. (2017)

Root and shoot traits 4B Iannucci et al. (2017)

Root morphology and yield 1A, 1B, 4B, 6B Lucas et al. (2017)

Root length 1BL, 2DS, 5AL, 6AL, 7BL, 3AL Ayalew et al. (2017)

Root elongation rate 5D, 7D Hamada et al. (2012)

Maximum root length 2A, 4D, 5A, 6A, 7B, 3B, 5B; 2B, 7B Ren et al. (2012) and

Kabir et al. (2015)

Primary root length 2B, 7B; 2A, 4D Ren et al. (2012) and

Kabir et al. (2015)

Lateral root length 1A, 2B, 4B, 6A, 6B Ren et al. (2012)

Total root length 2B, 4B, 6A, 6B, 6D, 2A, 2B, 3A, 5A, 3B, 4A, 4D, 6D Kabir et al. (2015)

Seminal root angle 6A Alahmad et al. (2019)

Root angle, length, number 2A, 1A, 1B, 2B, 3B, 4B, 6A Soriano and Alvaro

(2019)

Root: shoot ratio 2A Soriano and Alvaro

(2019)

Shallow root weight 3A, 2A, 2D, 4A Ehdaie et al. (2016)

Deep root weight 4B, 2D, 3A, 4A Ehdaie et al. (2016)

Root biomass 3A Ehdaie et al. (2016)

Height, phenology, and spike characteristics
Plant height, days to heading, spike length, seeds

per spike, number of spikes per plant

5A, 5B, 6B, 2D, 2B, 6B, 7A, 1B, 4B Mwadzingeni et al.

(2017)

Plant height 1B, 2D, 4D, 6B, 6A, 3A, 2D Wu et al. (2012) and

Würschum et al.

(2017)

Spike fertility 4B Wurschum et al. (2018)

Plant height, days to heading, spike length, TKW,

grain yield

1B, 2B, 3B, 4B, 5B, 6B, 7B Soriano et al. (2017)

Days to anthesis, grain filling period, TKW 5A, 7A Gahlaut et al. (2017)

Days to flowering and maturity 1B, 5B, 4A Kamran et al. (2013)

Seeds per spike, number of spikes per plant,

TKW, grain yield

3A, 1A, 7A Xu et al. (2017)

Photosynthesis efficiency, biomass and transpiration
Stay-green 3A, 7B, 1B, 2A, 3B, 4A, 4B, 4D, 5B Christopher et al.

(2018)

Chlorophyll content 7A, 5A, 1A, 5A Yang et al. (2007)

Photosynthetic capacity 3B, 6A, 7D, 1B Yang et al. (2007)

Normal vegetation index 3A, 1B, 5B, 4B, 4D, 5A, 3A, 2D, 5A, 4B, 5B, 6B, 4D Gao et al. (2015)

Harvest index and biomass 2B, 2D, 7D, 2D, 3A, 6B, 2A, 7D, 4A, 6B, 1B Ehdaie et al. (2016)

Photosynthesis, TKW, grain yield 5D, 6D, 7D Saeed et al. (2017)

Leaf water content, leaf dry weight, chlorophyll

fluorescence

1,2,3 Jiang et al. (2017)

(Continues)
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8 of 19 BHOITE ET AL.The Plant Genome

T A B L E 3 (Continued)

Plasticity traits QTL chromosomal location References
Canopy temperature 4A, 7D Lopes et al. (2013)

Sugar and metabolites
Stem water soluble carbohydrates 4A, 2D Nadia et al. (2017)

Water-soluble carbohydrates 1A, 4B, 1D, 4A, 1A, 2D, 7B, 7D, 6B, 4A Gao et al. (2015)

Water-soluble carbohydrates 1A, 1B,1D, 4A Ovenden et al. (2017)

Cell wall bound phenolics 4B, 6R Hura et al. (2017)

Abbreviation: TKW, 1000 kernel weight.

F I G U R E 2 Cross-talks between epigenetic mechanisms and soil

constraints.

methylation within and between genotypes. High-affinity

potassium transporters (HKTs) are important for maintain-

ing the balance of Na+ and K+ in wheat when it is exposed

to high concentrations of salt (Munns et al., 2012). Under

salt stress, methylation in wheat and its consequences on

the expression of HKT genes have been addressed. NaCl

stress caused a genotype- and tissue-specific spike in cyto-

sine methylation, which in turn decreased the expression of

TaHKT2;1 and TaHKT2;3 in the root and shoot sections of

tolerant wheat, enhancing its ability toward salinity tolerance

(Kumar et al., 2017). Abscisic acid (ABA) is necessary to

regulate plant response to stress. High salinity is one among

the many environmental conditions that cause the biogene-

sis of ABA, which controls crucial primary and secondary

characteristics like seed germination rate, stomatal conduc-

tance, and root development (Table 2). The primary ABA

signaling regulatory mechanism for stressful adaption has

now been uncovered. Whilst under pressure, ABA interacts

with a regulatory pyrabactin resistance1 (PYR1)/PYR1-like

(PYL) elements of ABA receptors, inhibiting clade A protein

phosphatase type 2Cs (PP2Cs) and releasing SNF1-Related

Protein Kinase 2s (SnRK2s) (Zhu, 2016). To control several

biological activities, including transcription, RNA transla-

tion, epigenetic regulation, and flowering time adjustment,

the stimulated SnRK2s phosphorylate downstream effectors

(Wang et al., 2013).

Besides transcription factors, RNA-directed DNA methy-

lation (RdDM) is a critical regulator of gene activation in

plants under abiotic stress. In a regular state, the RdDM mech-

anism significantly methylates the MYB74 promoter. The low

level of transcription of MYB74 is an indication against tol-

erance for salinity in wheat (Xu et al., 2015). Besides DNA

methylation, histone methylation, and histone variants, the

upregulation of bHLH- and MYB-related transcription fac-

tors activate ABA-inducible gene expression, which promotes

progression, advancements of plant, and ionic homeostasis

(Abe et al., 2003; Fan et al., 2014). The appropriate nutrient

intake is completely essential for the overall progression and

growth of the crop.

Crops have sophisticated systems for adapting to changes

in pH and the accessibility of nutrients within the soil, which

they have developed throughout the course of evolution. In

addition, the process by which epigenetic modifications could

be passed down to offspring as a form of stress memory is

not completely understood. The swift development of high-

throughput genotyping and a variety of tools for chromatin

profiling will significantly contribute to a greater comprehen-

sion of the epigenetic changes underlying stress responses in

wheat.

4 GENOMIC SELECTION TO
ENHANCE PLASTICITY AMIDST
CHANGING CLIMATIC CONDITIONS

Genomic selection (GS) predicts quantitative traits and

has the capability to accommodate numerous quantitative

characteristics in a breeding pipeline by combining pedigree

information and high-density genotypic data (Crossa et al.,

2017). Advances in sequencing technology have enabled the

identification of genome-wide single-nucleotide polymor-

phisms (SNPs) that could be successfully imputed in the GS

models. Recently exome-capture for wheat was enabled using

a genotype by sequencing platform that captures population-

wide variation in gene-rich regions (He et al., 2019), and these

variants represent functional variations that are protein mod-

ifier impact types that significantly alter gene expressions for
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BHOITE ET AL. 9 of 19The Plant Genome

quantitative traits. Quantitative traits like soil constraint

tolerance are governed by many minor effect genes (Bhat

et al., 2016). These complex traits normally have low heri-

tability and are environmentally sensitive. Many direct and

indirect selection indices (Table 2) are created for effectively

choosing the genotypes for target traits. Prediction accuracy

for complex traits could be further improved by incorporating

gene-rich alleles and comprehensive primary and secondary

functional traits (Table 2) (Hickey et al., 2019; Li et al.,

2021). Implementing primary and secondary traits in the

multivariate pedigree and high-density SNP information

has closed the large genotype–phenotype and improved the

prediction accuracy of GS for complex traits, such as yield,

drought, and heat (Mason & Singh, 2014; Sun et al., 2017).

In recent times, with the advent of cost-effective advanced

sequencing technologies, the incorporation of quantitative

environmental measurements measuring G × E and research

into phenotypic plasticity have gained revived attention to

enable GS for complex traits (Fan et al., 2016; Gage et al.,

2017; Kusmec et al., 2017).

4.1 Capturing G × E interactions to
enhance plasticity

There are a variety of interlinked controlling mechanisms

contributing to wheat plasticity in changing environments

(Dornbusch et al., 2011). Understanding how populations

adapt to changing environment is critical for predicting

resilience to climate change. Reaction norms offer data that

may be compared across genotypes, populations, or species

on the direction and amount of phenotypic change to max-

imize fitness in response to environmental variation. They

also address plasticity with respect to changing environments

by incorporating population-level response (average response

across all individuals in a population) and the variation among

individuals in a population.

The structure of plant canopies is an important part of using

arithmetic models to describe how crops interact with their

surroundings. Reaction norms could be established by defin-

ing the structure of wheat typically defined by roots, stems,

and leaves, and intrinsic variables. For example, leaf size con-

trolled by water, nitrogen and carbon availability, physical

factors (e.g., temperature and water vapor pressure deficit),

plant hormone, and more metabolic compounds facilitates

reactions to developmental (e.g., floral transition) and eco-

logical signals (e.g., red: far-red light). Normally, primary

traits presented in Table 2 are influenced by secondary traits

and reaction norms can be established to define the plastic-

ity of traits on constrained soils. There are few quantitative

studies on plasticity in wheat on dimensions of phytomers

(leaf blades, sheaths, and internodes) on tillers (Evers et al.,

2005; Fournier et al., 2003; Tivet, 2001) and first juvenile

leaves or main stem alone (Equiza & Tognetti, 2002). Size-

mediated effects are often influenced by growth responses to

environmental conditions. The length of a cereal leaf influ-

ences the length of the consecutive one, which is termed

size-mediated effect by Louarn et al. (2010), and a direct rela-

tionship between the size of the shoot apical meristem and leaf

blade width was proposed by Kirby (1977).

Phenotypic stability would be the result of low stomatal

conductance, high photosynthetic activity, drought tolerance,

improved plant architecture, and many more trait improve-

ment listed in Table 2, which renders stability in changing

environment. The complex plasticity traits have been previ-

ously mapped for drought tolerance, root morphology (Kadam

et al., 2017; Lucas et al., 2017), and yield plasticity (Man-

gin et al., 2017). Phenotypic plasticity for several traits was

analyzed using nested association mapping under multiple

environment (Kusmec et al., 2017). WUE is an important

adaptive trait in changing environmental conditions. WUE

is the quantity of dry matter produced per unit of water

transpired by the crop. WUE is positively associated with

yield because the seed yield is dependent on total crop mass

(Chamarthi et al., 2023; Chen et al., 2011; Sinclair, 2012). In

conclusion, it is also important to understand the regulatory

mechanisms of the observed patterns in the changing envi-

ronment to enhance plasticity. This integrated strategy will

make it easier to describe plasticity as an interaction between

the environment and the genotype (G × E) and interpret

prediction accuracy for complex trait in commercial breeding.

5 FUNCTIONAL ALLELES TO
ENHANCE QUANTITATIVE TOLERANCE

5.1 Variant characterization

Modern plant breeding methods are focused on identifying

the genetic causes of phenotypic differences to create and

comprehend adaptive mechanisms. Genome-wide association

studies detect variants for trait enhancements by assessing

genotypic and phenotypic associations (SNPs and InDels)

(Bhoite et al., 2019; Prasad et al., 2012; Sharma et al., 2022).

Even though these kinds of studies are quite widespread, the

biological interpretation of the results is still difficult, par-

ticularly when it comes to quantitative traits expressed at

different growth stages with many minor genes contribut-

ing to trait expression. The low heritability and genetic

gain of minor genes throughout the genome make practical

breeding challenging. In this case, tracking functional alle-

les and high linkage disequilibrium haplotypes closely linked

to the genes offers better resolution in breeding programs.

Genotype by sequencing platforms enables tagging new and

functional alleles, which could be successfully harnessed to

improve genetic gain in breeding programs. Additionally,
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10 of 19 BHOITE ET AL.The Plant Genome

F I G U R E 3 Proposed pre-breeding pipeline for enhancing quantitative tolerance on constrained soils—association mapping for functional

traits, variant characterization, validation of genes and transcription factor, and allele-specific marker development for single-nucleotide

polymorphisms (SNPs) and haplotypes. Source: Chromosome mapping illustration sourced from Sharma et al. (2022).

genome-wide variant annotation tools like snpEff (Cingolani

et al., 2012) are useful resources to identify the role of

alleles/variants in gene expression and protein coding. Anal-

ysis of the effect of SNPs for impacts on protein coding

(high, moderate, low, and modifier), location of SNPs in open

reading frames and intergenic regions determine the gene

regulation. Functional SNPs were observed in mechanisms

like amino acid, nucleotide biosynthesis, and cellulose and

lignin metabolism, which control how carbon and energy are

used (Cingolani et al., 2012; Sarkar & Maranas, 2020) and

are major breeding targets to tackle abiotic stress. There-

fore, gene-derived functional “SNP” markers (Bagge et al.,

2007; Sharma et al., 2022) and functional alleles are valu-

able resources in the molecular breeding of complex traits

(Figure 3).

5.2 Functional quantitative genes validation

Quantitative trait expression is regulated by numerous

major/minor/modifier genes at various developmental stages.

Gene effects in quantitative trait expression do not produce

clear distinct phenotypes and phenotyping minor gene effects

is arduous and very challenging. The functional analysis tools,

such as differential gene expression profiles (Bhoite et al.,

2021), group-segregant allelic analysis (Bhoite et al., 2019),

in silico gene expressions at various developmental stages,

virus-induced gene silencing (VIGS), and ionomics to rec-

ognize tissue-specific elemental composition (Figure 3), are

effective to validate major/minor/modifier candidate gene

effects for quantitative tolerance expression. This integrated

approach helps in understanding the roles of genes and mech-

anisms involved in the acclimation process of abiotic stress

tolerance.

Evidence regarding the role of abiotic stress-responsive

genes in a variety of crops has been uncovered using com-

putational (in silico) methods and comparative genomic

methodologies (Gorantla et al., 2007; Soares-Cavalcanti et al.,

2012; Tran & Mochida, 2010; Vij & Tyagi, 2007). The

causal effect of candidate genes identified for herbicide tol-

erance in wheat was effectively validated by transcriptome

sequencing by estimating differential expression profiles for

candidate genes in tolerant and susceptible cultivars (Bhoite

et al., 2021). Investigating phenotypes and in silico gene

expression analysis for candidate genes at various develop-

mental stages reveals a repertoire of genes involved in the

abiotic stress response. The in silico gene expression profiles

of candidate genes identified for sodic-dispersive soil toler-

ance were determined to validate the stage at which genes

highly expressed matched the developmental stage of trait
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BHOITE ET AL. 11 of 19The Plant Genome

measurement (Sharma et al., 2022). VIGS is a high-

throughput functional genomic technique that has been shown

to effectively validate transcription factors and a large num-

ber of genes contributing to abiotic stress tolerance and

mechanisms (Manmathan et al., 2013; Senthil-Kumar &

Udayakumar, 2006; Senthil-Kumar et al., 2008). VIGS is a

posttranscriptional gene silencing–based technique that has

been used for gene functional studies. VIGS has also been

used as an effective tool to characterize genes associated with

salt (Guo et al., 2010), nutrient deficiency (Ramegowda et al.,

2014), and oxidative stress tolerance (Apel & Hirt, 2004;

Pastori & Foyer, 2002).

High-throughput analysis of elemental compositions

(ionome) is a potent approach for functional analysis and

validation of its genes and gene networks. Analysis within the

tissue-specific elemental composition is important to study

the effects of salt, mechanisms of adaptation, and tolerance to

osmotic effects caused by elemental toxicities in soil (Jiang

et al., 2010; Xue et al., 2011). There are 13 required minerals

for all plant life, some of which are macronutrients like

nitrogen and phosphorus and others like sodium, potassium,

manganese, boron, iron, and calcium (Shelden & Roessner,

2013). Several mineral deficiencies cause severe growth

retardation and even possible death, but excessive levels of

some minerals can also be poisonous in large doses. In the

case of acidic soils, aluminum, manganese, and boron could

be at toxic levels and in sodic environment sodium ions are

at toxic levels. Both scenarios have a significant impact on

metabolic processes; crops can develop mechanisms to cope

with either deficiency or toxicity. Laser ablation inductively

coupled plasma mass spectrometry, also known as LA-ICP-

MS, is a technique that generates three-dimensional pictures

of spatial element distributions. This technique is effective

for achieving spatial element distributions in thin segments

of biological material (Becker & Becker, 2010; Hare et al.,

2012). The differential elemental composition in specific

tissue through ionomics will serve as a validation tool for

ion transporter candidate genes and the function of those

transporters.

6 PRECISE GENE EDITING IN WHEAT
FOR TRAIT IMPROVEMENT

In wheat, “clustered regularly interspaced short palindromic

repeats” (CRISPR)/CRISPR-associated endonuclease (Cas)

and “transcription activator-like effector nuclease” based gene

editing have been implemented to generate novel functional

gene mutations. The created alleles have displayed great

potential for targeted trait improvement and successful appli-

cations have been accomplished in a variety of agronomic

traits in wheat, such as powdery mildew resistance (Li et al.,

2022; Wang et al., 2014), preharvest sprouting (Abe et al.,

2019), and grain weight (Zhang et al., 2018). The current

editing strategy in wheat is mainly through the knockout of

a single-candidate gene. However, more considerations and

efforts are required to address quantitative traits, including tol-

erance to soil constraints and the signaling/inducible genes for

plant plasticity.

6.1 Multiplex gene editing

Using site-directed nucleases to simultaneously and precisely

induce two or more DNA breaks within a single genome in

one mutagenesis incident is called multiplex genome edit-

ing (Cong et al., 2013). CRISPR/Cas9 is versatile and can be

reprogrammed to target different genes across chromosomes,

multiple copies of the same gene, and multiple gene vari-

ants of gene families in a genome. It can be facilitated by the

expression of multiple single-guide RNAs (sgRNA) driven by

small RNA polymerase III, polycistronic Cys4 system, poly-

cistronic HH-gRNA-HDV, polycistronic tRNA-gRNA, and

the CRISPR/Cas12a (Cpf1) system with a smaller size for

construction and multiplexing (Abdelrahman et al., 2021).

Previous studies have used Agrobacterium strains transformed

with a pooled vector library carrying sgRNA cassettes to

develop a population-scale mutant library in rice (Meng et al.,

2017), tomato (Jacobs et al., 2017), and barley (Nejat, 2022).

Such genome- or gene family–wide targeted mutations greatly

improved the efficiency in functional gene screening and

development of advanced crop lines for breeding programs.

For more specific trait improvement through multiplex edit-

ing, herbicide resistance, yield potential, disease resistance,

and grain/fruit quality are the major focuses in rice and tomato

(Abdelrahman et al., 2021), and such outperforming materials

have great commercialization value.

Notably, mutation alleles resulting from multiple tar-

gets can be across wheat genomes and chromosomes and

are segregated independently; therefore, a larger segrega-

tion population is required for the selection of homozygous

mutants, and high-throughput genotyping approaches should

be employed to identify the gene variants. In another impor-

tant cereal crop maize, a gene discovery pipeline BREEDIT

that combines multiplex genome editing of whole gene fam-

ilies with crossing schemes to improve complex traits such

as yield and drought tolerance has been proposed recently

(Lorenzo et al., 2022). In wheat, Sánchez-León et al. (2018)

edited a conserved region adjacent to the coding sequence of

45 α-gliadin genes in both bread and durum wheat. Gene edit-

ing frequencies in the complex genomic background varied

in mutant lines, but edited wheat plants exhibited a sig-

nificant reduction in immunoreactivity induced by gluten.

The reported technical platforms provide a reference for

multiple gRNA designs and construction and serve as invalu-

able resources for wheat editing practices. Along with the
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12 of 19 BHOITE ET AL.The Plant Genome

identification of key genes and regulators responsible for

wheat adaptation to soil constraints, multiplex gene editing

is capable to alter multiple gene targets simultaneously to cre-

ate new plant lines with plasticity and combined tolerance.

For instance, an overexpression of TaALMT1 (aluminum-
activated malate transporter 1 (Pereira et al., 2010) and

TaHKT1;5-D (Byrt et al., 2014) contributes to aluminum and

salinity tolerance in bread wheat, respectively. Editing both

genes to upregulate expression levels can enhance wheat acid

soil and salinity tolerance simultaneously.

Apart from the direct editing of genes controlling wheat

response to stress, using wild relatives as a genetic source

for cultivated wheat improvement is another pathway. Crop

wild relatives are widely recognized as a valuable resource

of genetic divergence for the development of domesticated

crops (Bohra et al., 2022; Brozynska et al., 2016), tolerant

to all kinds of stresses. For wheat, progenitor species hold

untapped diversity for potential climate-responsive traits for

breeding and advancement, including wide flowering time

variation, drought tolerance, and root system architecture

(Leigh et al., 2022). However, wild relatives often have unfa-

vorable behaviors for gene introgression, such as shattering,

seed dormancy, small grains, and short life cycles. A recent

de novo domestication of wild species through the targeted

improvement of various traits with genome editing has been

proposed in crops (Yu et al., 2021). In wild allotetraploid

rice (Oryza alta), for example, multiplex editing improved

several important traits, including seed shattering, grain

size, plant height, and flowering time (Yu et al., 2021). The

domesticated crop can not only be developed into a new

cereal but also used as a gene donor for the cultivated crop

with improved traits for efficient and effective crossing and

gene exchange (Table 2). Therefore, a multiplex gene editing

system is robust and essential for rapid de novo domestication

to capitalize on desirable traits of wild plants.

6.2 Novel alleles for smart control of gene
expression

Plant plasticity is an adaptive strategy driven by epige-

netic regulation, signaling, and gene networking. Numerous

research studies have illustrated a key tolerance mechanism

that enhances the uptake of essential minerals and/or the

unloading of toxic ions for plant survival through the activa-

tion or repression of functional genes (Han et al., 2014, 2018;

Huang et al., 2020). However, a simple gene switch on or off is

not a smart strategy for plants dealing with seasonal and vari-

able stresses, such as drought, waterlogging, or frost. Indeed,

the transcriptional regulation of responsible genes for adap-

tive/inducible expression is a more energy-smart and effective

solution (Munns et al., 2020). Although wheat pan-genomes

(Walkowiak et al., 2020) reveal the structural variations in

the genes of interest (promoters in particular) identified from

mapping populations (Figure 3) and can partially link with the

expression profiles in pan-transcriptomes, the diverse genetic

backgrounds reduce the confidence of causal polymorphisms

for gene expression. The natural variations in the pan-genome

accessions are also relatively limited for the screening of trait

expression.

Targeted editing in the promoters of protein-coding or

noncoding genes (microRNA) has been conducted in Ara-

bidopsis and rice (Gong et al., 2020; Lowder et al., 2015)

to control gene expression. Simultaneous gene activation has

been achieved by targeting different regions in the promoter

upstream of these genes. CRISPR/Cas9 introduced random

mutations that can alter cis-regulatory elements, such as pro-

moter enhancers and silencer sequences that regulate gene

transcription, which could result in a range of quantitative

transcriptional and phenotypic changes (Abdelrahman et al.,

2021). In tomato, novel cis-regulatory alleles have been cre-

ated by CRISPR/Cas9-mediated mutagenesis in the SICLV3
promoter (Rodríguez-Leal et al., 2017). Notably, the pheno-

typic effect on yield components was not predictable from

allele type or transcriptional change and was determined only

after a comprehensive screening of a continuum of variation.

Such streamlined trait improvement can directly develop and

select the most desirable regulatory variant in the context of

targeting loci and epistatic environments in specific genetic

backgrounds, which is a prime example for wheat improve-

ment. The combination of gene editing and speed breeding

systems (Ghosh et al., 2018) could greatly save breeding time.

We hypothesize that editing TaALMT1 has great poten-

tial to enhance wheat acid and alkaline soil tolerance, as the

extruded malate anions can not only bind to Al3+ under low

soil pH but also can acidify the rhizosphere under alkaline

conditions (Kamran et al., 2020). Although the upstream regu-

lator(s) of TaALMT1 is yet identified, it has been demonstrated

that increasing TaALMT1 expression can promote malate

secretion and thus enhance plant Al3+ resistance (Pereira

et al., 2010). Therefore, designing multiple CRISPR targets

in the gene promoter region could induce novel cis-regulatory

elements that have not been detected in natural germplasms

(Rodríguez-Leal et al., 2017), which may upregulate gene

transcription and contribute to superior plant tolerance to both

acid and alkaline soil after the functional screening.

Nevertheless, the hexaploid complex genome and genotype

dependency on in vitro tissue culture and plant regeneration

are some of the hurdles facing current gene editing practices

in elite wheat varieties. Some reports demonstrated that a

complete knockout of all three homoeologous copies (AA,

BB, and DD) is essential for the trait expression, such as

the mlo gene mutation for powdery mildew resistance (Wang

et al., 2014) and the qsd1 for seed dormancy (Sato et al.,

2016). Chopping out a single copy or two homoeologous

copies could not lead to a desired phenotype. In this scenario,
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identifying conserved regions between three homoeologs is

required to design a sgRNA to facilitate full coverage. How-

ever, it would limit the selection of target locations within

the genes and conflict with primer design for the subsequent

mutation genotyping that needs specific amplification to dif-

ferentiate the three homoeologs. On the other hand, there are

a handful of wheat transformation reference varieties, includ-

ing two spring types of Bobwhite and Fielder, and another

winter type Kenong 199 (Wang et al., 2022; Zhang et al.,

2018). Recalcitrance against tissue culture and transformation

is universal in grain crops, including wheat and barley (Han

et al., 2021); therefore, new protocols are being developed to

counteract the bottleneck. For example, an in planta particle

bombardment of shoot apical meristem has been optimized to

bypass culture steps and to create stably genome-edited wheat

plants (Liu et al., 2021). Han et al. (2021) modified another

culture process for highly efficient gene editing in commercial

barley varieties and may shed some light on wheat research. A

recent breakthrough is that co-expressing the TaWOX5 gene

promotes wheat transformation and regeneration efficiency

and is also evident in Triticum monococcum, triticale, rye, bar-

ley, and maize (Wang et al., 2022). Gene editing technology is

opening the window to more elite and commercial wheat vari-

eties, to generate certain gain-of-function, loss-of-function,

or smart transcriptional regulation alleles for plant climate

resilience.

7 CONCLUSIONS

Understanding soil constraint responsive network, identifi-

cation of key genes, and their inclusion to improve wheat

performance is exceedingly complicated and challenging

especially because the inheritance of abiotic stress reac-

tion is polygenic. In addition, reaction against any abiotic

stress is genotype-dependent due to background genetic dif-

ferences. Systematic and concerted efforts of employing

efficient genetic and genomic tools to determine the genetics

underpinning plasticity for such complex traits are prereq-

uisites for wheat improvement on constrained soils. Elite

germplasm screening, large-scale and high-throughput phe-

notyping, high-quality genotype data, and state-of-the-art

biotechnologies can boost the mining of invaluable genetic

resources for wheat improvement and should be effectively

connected as a system framework. The role of proteomics,

metabolomics, and crop management strategies are promis-

ing supplementary research areas in understanding trait, soil

constraints, and gene expression. Identification of significant

alleles, candidate genes, and epigenetic regulation pathways

for plasticity remains a challenge in wheat due to the com-

plex genome but would maximize the genetic gain for plant

performance. Although the gene editing process and mutant

genotyping need refinement for both simplicity and effi-

ciency, the cutting-edge technology provides opportunities to

create novel and targeted alleles to counteract soil constraints.

The modern genetic tools further provide opportunities for

stacking multiple gene-related alleles and favorable alleles of

network genes regulating and connecting multiple pathways

for a much shorter breeding time.
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