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ABSTRACT

ACHMAD, MAHMUD. Predicting the effect of mechanical destratifiers on water

quality in Toowoomba’s reservoirs. (Under supervision and direction of Associate

Professor Mark Porter and Professor Rod Smith)

The study of the effect of mechanical destratifiers on water quality in

Toowoomba’s reservoirs is urgently needed to understand the behaviour of the

reservoirs for management purposes. In this study, a 1-D hydrodynamic model

(DYRESM) coupled with an aquatic ecosystem model (CAEDYM) is adopted for

water quality prediction in the water column for the next 50 years. The AWBM

hydrological model and the ClimGen weather generator model are used to support the

data preparation for water quality prediction. The simulation results are separated into

two periods which are the period November – April represented by the warm period

and the period May – October represented by the cold period. The results are used to

assess the sustainability aspect and risk factors in the vertical profiles of the reservoirs.

A new water quality index is introduced to assess the water quality level in the

storages without and with the use of the mechanical destratifiers.

The main conclusions of this study are summarized below: (1) A strong

thermal stratification occurs in the storages during the warm period. In this period,

Cyanobacteria have a high concentration. (2) The water quality index (WQI) in Cooby

storage will be a good or an excellent level. The WQIs of Cooby tend to decrease

from an excellent level to a good level without the use of the mixers. The continuous

operation of the artificial mixers is able to increase the WQI values by an average of

15 grade points and produces excellent water quality for the next 50 years. (3) The

WQIs of Cressbrook storage will be a good or an excellent level. The WQIs of

Cressbrook reservoir have a tendency to increase from a good to an excellent level.

The WQIs in the surface layer remain the same without and with the use of the
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mechanical mixers. The artificial mixers are able to slightly increase the WQI values

at the pumping elevation and the average of all layers by an average of four grade

points. (4) Without artificial mixers, safe levels of raw water from the Cooby storage

can be attained at 8 – 10 m depth. The best/optimal water quality can be achieved with

multi-level withdrawals. The use of the artificial mixers can extend the withdrawal

range to 9 – 20 m depth. The optimal water quality can be achieved with a fixed

pumping elevation at 15 m depth. (5) Without surface mixers, the safe levels can be

attained at the layer between 14 m and 30 m depth all the time. The nitrate and total

phosphorus levels have a high probability of being unsafe. The use of the mechanical

surface mixers is able to widen the range of the safe level between 16 m and 37 m

depth. This can give more alternative layers for withdrawals.
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GLOSSARY

Albedo The fraction of solar energy (shortwave radiation) reflected
from the water surface back into space.

Alert An event involving an unknown or significant decrease of
water quality levels for the public use. Alert is addressed to
the high concentration of Cyanobacteria in a reservoir.

Algae See Cyanobacteria

Algicides Synthetic or natural chemical compounds used to kill or
control unwanted algae (‘cide’ means killer).

Algal bloom Rapid growth of algae in surface waters due to an increase in
nutrients such as nitrogen and phosphorus.

Aquatic Belonging to water, or living in or near water.

Aquatic ecosystem Community of aquatic plants and animals together with the
physical and chemical environment in which they live.

Assessment The process, and the result, of analysing systematically the
hazards associated with sources and practices, and associated
protection and safety measures, aimed at quantifying
performance measures for comparison with criteria.

Attenuation The reduction in intensity of solar radiation passing through
the surface water due to processes such as absorption and
scattering.

Bathymetry The underwater equivalent to topography. A bathymetric map
gives the depth contours of the soil at the bottom of a water
body such as a reservoir or a lake.

Biomanipulation Reducing algal blooms by altering the fish community to
reduce predation on certain zooplankton that can most
efficiently graze on algae.

Calibration A measurement of, or adjustment to, an instrument,
component or system to ensure that its accuracy or response
is acceptable.

Catchments Area on which precipitation falls and is either absorbed by
soil or channelled into storm drains and into creeks or rivers
(drainage network) to a reservoir’s dam.

Chlorophyll The green pigments in plants.

Circulation The flow, or movement, of water in or through a volume of
reservoir or water body.
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Cold period The period when the average air temperature is lower than
19oC. This period is between April/May and September/
October.

Correlation
coefficient

A statistical measure of the strength of the linear relationship
between two variables. The Correlation Coefficient can vary
between -1 and +1. The square of the correlation is R²
(coefficient of determination). Correlation is commonly used
to quantify the relationship of the variables.

Creek A stream that is smaller than a river and larger than a brook.

Cyanobacteria Prokaryotic organisms without organised chloroplasts but
having chlorophyll a and oxygen-evolving photosynthesis;
capable of fixing nitrogen in heterocysts; commonly called
blue-green algae.

Dam A constructed embankment that blocks an existing
watercourse. This embankment is used to control the release
of flood waters downstream of the Dam. A dam usually
contains a small outlet pipe that limits the amount of water
that can exit the dam.

Dead storage The amount of water in a dam which can not physically be
used or pumped.

Digital Elevation
Model (DEM)

A representation of the topography of the Earth or another
surface in a digital format by coordinates and numerical
descriptions of altitude. DEMs are used often in geographic
information systems. A DEM may or may not be
accompanied by information about the ground cover. In
contrast with topographical maps, the information is stored in
a raster format.

Dissolved Oxygen
(DO)

The amount of oxygen dissolved in water. This term also
refers to a measure of the amount of oxygen available for
biochemical activity in a water body, an indicator of the
quality of water in milligram per litre (mg L-1).

Epilimnion The layer of water above the thermocline in a freshwater
body. The epilimnion is the top layer of a thermally-stratified
water body that is directly affected by seasonal air
temperature and wind.

Euphotic zone Surface water where sunlight penetration is sufficient to
maintain photosynthesis, averagely 5 and 7 m from water
surface for Cooby and Cressbrook reservoir, respectively.

Eutrophication The enrichment of a body of water with nutrients, resulting in
excessive growth of organisms and depletion of oxygen
concentration.
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Hypolimnion The bottom and most dense layer of water in a thermally-
stratified lake. It is the layer that lies below the thermocline.
Typically, it is non-circulatory and remains cold throughout
the year

Metalimnion The middle layer of a thermally stratified lake or reservoir. It
separates the epilimnion (top layer) from the bottom layer
(hypolimnion). This layer is the zone of temperature change
from warm surface waters to cooler bottom waters.

Model A representation of a real system to allow analyses and
calculations. A model can be a physical or a mathematical
model. A model of a system or process is a theoretical
description that can help to understand how the system or
process works under specified (often hypothetical)
conditions.

Model calibration The process whereby model predictions are compared with
field observations and/or experimental measurements from
the system being modeled, and the model adjusted if
necessary to achieve a best fit to the measured/observed data.

Model validation The process of determining whether a model is an adequate
representation of the real system being modeled, by
comparing the predictions of the model with observations of
the real system.

Morphometry Morphometry refers to the physical characteristics of a
reservoir such as size and shape of a reservoir, mean depth,
maximum depth, volume, drainage area, and flushing rate.

Nutrient Compounds required for growth by plants and other
organisms. Major plant nutrients are phosphorus and
nitrogen.

Organism An individual form of life, such as a plant or animal,
bacterium or fungus.

Parameters A set of measurable factors that define a system and
determine its behaviour, and are varied in an investigation.

pH A measure of the degree of acidity or alkalinity; expressed on
a logarithmic scale of 1 to 14 (1 is most acid, 7 neutral and 14
most alkaline).

Phosphorus cycle The biogeochemical cycle that describes the movement of
phosphorus through the lithosphere, hydrosphere, and
biosphere. Unlike many other biogeochemicals, the
atmosphere does not play a significant role in the movements
of phosphorus, because phosphorus and phosphorus-based
compounds are usually solids at the typical ranges of
temperature and pressure found on Earth.
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Prediction A statement or claim that a particular event will occur in the
future.

Probability A measure of how likely it is that some event will occur; a
number expressing the ratio of favourable cases to the whole
number of possible cases.

Probability of
exceedence

The probability that an event selected at random will exceed a
specified magnitude.

Pumping A technique to draw water from a reservoir.

Pumping water level The distance from the land surface (or measuring point) to the
water in the well while it is pumping. For example, “The
pumping water level is 10 m from the bottom of a reservoir”.

Reservoir A human-made body of water formed by damming one end
of a valley; usually to supply water and/or hydroelectric
power to a nearby area or an artificial body of water.

Risk The potential harm that may arise from some present process
or from some future event. It is often mapped to the
probability of some event which is seen as undesirable.
Usually the probability of that event and some assessment of
its expected harm must be combined into a believable
scenario (an outcome) which combines the set of risk, regret
and reward probabilities into an expected value for that
outcome.

Risk analysis A technique to identify and assess factors that may jeopardize
the success of a project or achieving a goal. This technique
also helps define preventive measures to reduce the
probability of these factors from occurring and identify
countermeasures to successfully deal with these constraints
when they develop.

Salinity The saltiness or dissolved salt content of a body of water. It is
usually measured by weight in parts per million (ppm) or
stated as parts salinity unit (psu).

Scenario A postulated or assumed set of conditions and/or events.
Most commonly used in analysis or assessment to represent
possible future conditions and/or events to be modelled, such
as possible future of water quality. A scenario may represent
the conditions at a single point in time or a single event, or a
time history of conditions and/or events.

Sensitivity analysis A quantitative examination of how the behaviour of a system
varies with change, usually in the values of the governing
parameters. Parameter variations investigate the changes of
one or more input parameter values within a reasonable range
around selected reference or mean values.



xxx

Siltation The process by which a river, lake, or other water body
becomes clogged with sediment.

Simulation The formulation of a real system which is implemented as a
computer program models i.e. mathematical models wich
change through time.

Storage The amount of water stored in a reservoir.

Stratified Arranged in layers where lighter water overlies denser water,
stratification generally occurs as surface waters warm in
summer–spring, and is broken down by mixing processes,
such as strong winds and surface cooling, especially during
winter.

Sustainability The capability of a system to sustain or go for a certain period
of time.

Sustainability index A measurement or quantification of sustainability in water
resources (water quality in particular).

Sustainable system The formulation of conditions where: (1) the system does not
cause harm to other systems, both in space and time; (2) the
system maintains living standards at a level that does not
cause physical discomfort or social discontent to the human
component; (3) within the system life-support ecological
components are maintained at levels of current conditions, or
better.

Thermal
stratification

The formation of layers of different temperatures in a
reservoir or other water bodies.

Total suspended
solids (TSS)

The entire amount of organic and inorganic particles
dispersed in water. TSS can be measured by several methods,
most of which entail measuring the dry weight of sediment
from a known volume of a sub-sample of the original.

Trend General and obvious movement or development of events.

Turbidity The scattering of light by fine, suspended particles which
causes water to have a cloudy appearance. Turbidity is an
optical property of water. More specifically, turbidity is the
intensity of light scattered at one or more angles to an
incident beam of light as measured by a turbidity meter or
nephelometer.

Turnover A thorough mixing of stratified layers of the body of a
reservoir, usually in the spring and autumn, when
temperatures become uniform throughout the reservoir.

Validation The process of determining whether a product or service is
adequate to perform its intended function satisfactorily.
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Warm period The period when the average air temperature is above 19oC.
This period is in between October/November and
March/April.

Water body Any area that in a normal year has water flowing or standing
above ground to the extent that evidence of an ordinary high
water mark is established.

Water quality The biological, chemical, and physical conditions of a water
body. It is a measure of a water body's ability to support
beneficial uses.

Water quality index A method for measuring water quality in water bodies. Nine
parameters are measured and weighted to develop the index:
dissolved oxygen, Cyanobacteria, pH, salinity, water
temperature, total phosphorus, nitrates, total iron, and total
manganese.
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SYMBOLS AND ABBREVIATIONS

ANZECC Australian and New Zealand Environment and Conservation Council

AWBM Australian Water Balance Model

BGA Blue-green algae (Cyanobacteria)

BOD biochemical oxygen demand

BOM Bureau of Meteorology

CAEDYM Computational Aquatic Ecosystem DYnamic Model

cfu colony forming unit

chl_a Chlorophyll_a

ClimGen Climatic Generator

CRC Cooperative Research Centre

CSIRO Commonwealth Scientific and Industrial Research Organisation

CWR Centre for Water Research

DNRMW Department of Natural Resources, Mines and Water

DO dissolved oxygen

DYRESM DYnamic REservoir Simulation Model

EPA Environment Protection Authority

ET evapotranspiration

FSH free surface height

G giga (109)

h hour

ha hectare

IQRs inter quartile ranges

k kilo (103)

L litre

M mega (106)

m metre
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μg/L micrograms per litre

μS/cm micro-siemens per centimetre

mins minutes

mg/m3 milligrams per cubic metre

mg/L milligrams per litre

mm millimetre

n number of samples

NO3 nitrate

PLTmax maximum permissible layer thickness

PLTmin minimum permissible layer thickness

S siemens (unit of conductance)

Sal salinity

SMDI-5 Surface Mixer Diameter 5m (a model of artificial mixers)

TFe total iron

TMn total manganese

TP total phosphorus

TSS total suspended solid

TVA Tennessee Valley Authority

Tw water temperature

USQ University of Southern Queensland

UWA University of Western Australia

VPD vapour pressure deficit

WQI water quality index
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Chapter 1

INTRODUCTION

1.1 Background

Toowoomba City Council is managing three dams (Cooby, Cressbrook and

Perseverance dams) to supply domestic water for Toowoomba City and the surrounding

area. In the last decade, these reservoirs have faced blue green algal problems. The

concentration of algae in a dam can be affected by many factors including internal and

external factors.

Blue-green alga, more correctly known as Cyanobacteria, has become a

common topic in newspapers and other popular media as a problem in Australian

waterways. The sudden spurts of cyanobacterial growth (blooms) can adversely affect

water quality and induce potentially hazardous changes in local water chemistry (Codd

et al. 1994; Reynolds 1987; Sanders & Porter 1994; Smayda 1997). Cyanobacterial

blooms are not a new problem in Australia’s water resources with references to their

occurrence over the last century (Ressom et al. 1994).

There are several factors that can cause blooms. Nutrients concentrations, and

levels of temperature, light, and turbidity as well as the stability of the water body are

major contributors to triggering the cyanobacterial blooms (Department of Land and
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Water Conservation NSW 2000; National River Authority (NRA) 1990; Ressom et al.

1994).

Cyanobacteria levels can grow exponentially if adequate levels of nutrients are

available. Blooms often happen in eutrophic water bodies because of the nutrient

enrichment process (eutrophication). Phosphorus and nitrogen levels are the main

limiting factors in this process. However, the Department of Land Water Conservation

in NSW (2000) reported that blooms of cyanobacteria could occur not only in the

presence of high concentrations of nutrients, but also in fairly low concentration

environments.

The weather influences the temperature of a water body. During summer, air

temperatures increase and the water body also becomes warmer, the epilimnion layer in

particular. The result is a suitable environmental condition for algae to develop.

Vymazal (1995) noticed that a threshold temperature for growing algae at 25oC, above

this temperature the growth rate increases exponentially. Photosynthesis in algae occurs

in the visible spectrum. According to Borowitzka (1998), the population of blue green

algae is diminished when they are exposed to long periods of high light intensity but

they have optimal growth when intermittently exposed to high light intensities.

Another factor is turbidity. When the turbidity is low, sunlight can penetrate

through the water column. Both low levels of turbidity and stable water conditions can

stimulate the cyanobacteria to grow optimally. When algae grow, generally their

suspended particles can become a major component of turbidity itself (Bowie et al.

1985). Thermal stratification produces water column stability especially in the summer

and spring seasons. The upper layer of the storage becomes warmer and less dense and

so floats on the denser, cooler, lower layer. The stable warm water in the upper layer

encourages cyanobacterial blooms (Borowitzka 1998).
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Australia’s weather favours cyanobacterial blooms with long periods of sunlight

that set up warm and calm water bodies (Nova Science in the News 2002).

The Department of Land and Water Conservation NSW (2000b) notes that the

occurrence of large numbers of the cyanobacteria can lead to water quality problems.

Management problems include: taste and odour problems; blockages in the water

treatment filters and toxicity problems. Cyanobacterial toxins must be removed from the

water supply before distribution to domestic users and consumers.

Many water quality problems in water bodies are associated with the

development of thermal and chemical stratification (Hutchinson 1957). In temperate

reservoirs, the development of density gradient starts when the surface temperature

increases during the spring. The stratification persists during the summer and breaks

down in the autumn when surface temperature decreases.

Water balance in reservoirs also becomes a major issue. While water

consumption increases through the impact of a growing population in the city, the

inflow to dams decreases because of the effect of global warming and the change of

land use.

This project investigated management aspects of these problems in two of three

Toowoomba’s water supply dams (Cooby and Cressbrook). It was initiated on the

practical need to control and reduce algal blooms in these reservoirs by removing the

stratified warm surface layer using artificial mixers.

Cyanobacteria alter the physical and chemical properties of the water body and

affect the level of water treatment required. Smalls (1980) describes a number of

noxious effects resulting from algae in water supplies: (i) fluctuation in pH; (ii)

increased turbidity and changed colour; (iii) clogging of screens and filters; (iv)
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unpleasant taste and odour; (v) released toxins and (vi) waterworks structures corrosion

problems.

Blue green algal cells bloom in a water reservoir because they can out-compete

with other organisms. They move vertically through a water column to meet their need

for nutrients at depth and energy at the surface to sustain the photosynthesis process.

This movement is unobstructed in a stable water body, such as a stratified reservoir

(Fast 1981). Blooms in the Toowoomba reservoirs have tended to occur during the

Spring – Summer period when the reservoirs are heavily stratified.

The Toowoomba City Council (who manage and operate the dams) installed

mechanical destratifiers in two of the reservoirs in 2001 in an attempt to reduce the level

of stratification. Since the characteristics of each dam are different, understanding the

behaviour of Cooby and Cressbrook dams is very important to manage them

sucsessfully. The research question becomes – have these machines worked? Have they

effectively destratified the entire ponded area or at least have they reduced the

frequency and intensity of bloom in the dams? What will be the future water quality

condition?

1.2 Project Objectives

There is no established procedure for answering the research questions outlined

in the previous section. This project pursues a solution by analysing an existing

database of measured water qualities supplemented by computer simulations and new

data obtained during this project.

There are two main objectives of this project. The primary objective is to predict

the effects of surface mechanical mixers on water quality in Cooby and Cressbrook
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dams. The secondary objective is to establish management procedures with the surface

mechanical mixers for optimum water quality.

The project adopted the following aims to meet these objectives:

(i) Evaluate possible measures for quantifying the degree of stratification in the

reservoirs and adopt the most appropriate one for algal development.

(ii) Adopt a computer model to predict algal levels from other water properties in

Toowoomba’s dams. Calibrate this model with historical data both before and

after installation of the mixers;

(iii) Quantify the frequency of algal alerts in each storage prior to and after the

installation of the mixers;

(iv) Formulate the probability of occurrence of water quality parameters including

cyanobacterial levels in the storages over a 50 year simulation period.

(v) Predict the sustainability of the water quality in the reservoirs without and with

the use of the mechanical mixers.

The impact of top down mixing on a stratified reservoir is only generally known

and appears to be reservoir specific. This attempt to determine the change in water

quality as a result of mixing and the associated change in cyanobacterial concentration

is novel in the literature. The outcomes from the project provide a powerful

management tool for the Toowoomba City Council in its operation of the dams.

1.3 Outline of the Dissertation

This dissertation consists of eight chapters and four appendices. The structure

and a short explanation of each chapter are presented as follows:
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Chapter 1 describes water quality problems in Toowoomba’s reservoirs and their

consequences to the water supply operations. The objectives of the project are stated

and the organization of this dissertation is described.

Chapter 2 reviews the relevant literature. This chapter includes a description of

blue-green algae and water supply operation, nutrient in reservoirs, stratification and

destratification in reservoirs, water balance in reservoirs and hydrologic models, water

quality models, weather data generating programs, and sustainability of water supply

systems.

Chapter 3 describes the reservoirs in Toowoomba. This description contains

basic statistical analysis of historical water quality data including trends in the water

quality.

Chapter 4 considers seasonal behaviour of reservoirs dealing with the

stratification and destratification processes in Toowoomba’s reservoirs. Analysis of the

stratification pattern and the degree of stratification in the reservoirs is described for

comparison of water quality parameters during stratified and overturn periods of the

year. The impacts of artificial mixers on water quality in Cooby Dam are also

investigated in this chapter.

Chapter 5 presents simulation of water quality from observed data with and

without artificial mixers in operation. Calibration and validation of the DYRESM-

CAEDYM model are described in this chapter. In order to simulate the future condition

of the reservoirs, data generation of 50 year sequences including weather and inflow

data are presented. The AWBM simulation results are also presented

Chapter 6 presents the analysis of 50 years reservoirs’ behaviour including

storage level/volume and water quality levels, Cyanobacteria in particular. The

description of average values of all layers is presented in box plots for all categories
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(two periods without and with the use of the mechanical destratifiers). The introduction

of a new water quality index in the reservoirs for sustainability analysis is also

presented in this chapter.

Chapter 7 presents the analysis of the effect of mixers on water quality in the

water column by comparing the series simulated water quality data without and with the

use of the mixers. This chapter presents the probability occurrence of water quality level

of all simulated parameters in different periods (called warm and cold periods) with and

without mixers. By using the probability of the safe level of selected parameters in the

water column, the recommendation of pumping elevation in both warm and cold periods

for the dams is also presented.

Chapter 8 concludes this dissertation with suggestions for management

operation of the storages without and with the use of the mechanical mixers.

Simulation files of Cooby and Cressbrook reservoirs, sensitivity of the quality of

inflow, individual water quality rating, conversion of Cyanobacteria and statistical

analysis are presented in Appendix A, B, C, D, and E, respectively.
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Chapter 2

REVIEW OF LITERATURE

2.1 Blue-green Algae and Water Supply

2.1.1 Blue-green algae and limitation factors

Blue-green algae or Cyanobacteria survive using three ways of reproduction:

vegetative, asexual and sexual production. The Cyanobacteria, as a multicellular

organism, reproduce by various types of fragmentation. The fragments have capacity

to grow and develop into new individuals. This method is called vegetative

reproduction (Vymazal 1995). Other methods are asexual and sexual reproduction.

The asexual reproduction is achieved by the formation of various kinds of spores that

germinate without fusing to form new individuals while the sexual reproduction is

achieved by fusion of gametes to yield a zygote. Generally, sexual reproduction

happens at the end of the growing season, or may be induced by unfavourable or

critical changes in the environmental condition such as nutrition supply, pH of water,

light, temperature or oxygen (Vymazal 1995).

Cyanobacteria pose a risk to human health because they produce toxins. These

toxins can damage the liver and neurological systems of humans and in serious cases

can cause death. The cell walls of all Cyanobacteria contain contact irritants which
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can cause gastrointestinal, skin, eye and respiratory irritations to humans and animals

(Ressom et al. 1994).

A number of methods are available to control cyanobacterial blooms in water

storages. There are some methods of preventing and managing the cyanobacterial

blooms such as artificial destratification, reducing nutrient concentrations in water

storages, biomanipulation, algicides and algistats, and water treatment (Department of

Land and Water Conservation NSW 2000).

Stratification happens commonly in water bodies at the beginning of the

summer season or at the end of spring. The upper layer becomes warmer and

encourages algal blooms. To cope with the problem, destratifiers can be used to mix

water layers and homogenise the body of water (Jungo et al. 2001).

Reducing nutrient concentration in water storages provides another method to

control algal blooms. This method has to be combined with watershed management in

preventing the inflow of nutrients from entering the storages.

Biomanipulation or biological control is a new method of controlling the

growth of algae by changing the ecosystem, but it is not yet a viable control

mechanism for algal blooms. Introducing predatory fish that can eat the planktovirous

fish is one example of this method. It will lead to an increase in the numbers of

zooplankton that will eat Cyanobacteria (Department of Land and Water Conservation

NSW 2000).

2.1.2 Algal blooms in Australia

Cyanobacterial bloom problems in Australia have been reported from early

settlement (Codd et al. 1994; The Government of Western Australia 1998). It has

become one of the major environmental issues confronting Australia. The exposure of
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the state’s waterways was highlighted in 1991-92 and in 1992-93 with widespread

cyanobacterial blooms. A summary of historical cyanobacterial blooms from several

locations in Australia is presented in Table 2.1 (Thomas 2001).

Table 2.1 History of blooming of Cyanobacteria in several areas in Australia.

Location
Recorded Year of

Cyanobacterial Blooms

Lake Alexandrina, SA 1878

Palm Island, QLD 1979

Malpas Dam, NSW 1983

Peel-Harvey, WA <1986

Victorian Towns 1989/90/91/92

Darling/Barwon Rivers 1991

Gippsland
1800s/ 1965/71/74/87/88/91(Post flood)

/92/95/96/97/99(Post flood)
Source: After Thomas (2001) http://www.eidn.com.au/kthomas99-1.html

Cyanobacterial outbreaks are natural phenomena resulting from the

combination of high nutrient load (particularly of phosphorus), relatively high

temperatures, calm conditions, poor mixing of the water column, low rate of flow,

lack of flow and long periods of stable weather patterns (Nova Science in the News

2002). The literature shows that they are growing in frequency across Australia.

Artificial mixing or destratifiers and the use of environmental flows to

increase flushing have been applied across Australia to manage nutrient enrichment in

a body of water. These strategies involve the prevention of micro-environments suited

to algal growth. Other strategies such as phoslock (phosphorus lock) – controlling

phosphorus loading in reservoir, biomanipulation – controlling food-chains and web-

food in reservoirs as an ecosystem, and temporarily increasing water turbidity can also

be used to reduce algal blooms (Ball et al. 2001).
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2.1.3 Algal problems in the Toowoomba water supply

Cooby, Perseverance and Cressbrook Dams are the main sources of water

supply for Toowoomba. They have all experienced water quality problems due to

algal blooms. These problems have been intensively monitored during the last three

years. Measurements have shown that an excess of algal cells is associated with

diminishing oxygen content, changes in taste and odour, and contamination by toxins

in water. It is known that high concentrations of those toxins can affect human and

animal health through ingestion or physical contact. Other consequences of the

occurrence of algal cells in the water supply include aesthetic effects, interruption to

water supply operations, higher water treatment costs and ecological losses

(Department of Primary Industries 1993).

The dam operators are concerned about the increasing level of algal cells in

the three reservoirs. At the end of 2001, the Toowoomba City Council installed

mechanical destratifiers in two of the three dams (Cooby and Perseverance Dams) to

reduce algal levels and to improve the quality of water in those reservoirs (Clark,

pers. comm., 28 August 2002; Kleinschmidt, pers. comm., 29 May 2003).

The Council has not been able to quantify the effectiveness of the mechanical

destratifiers nor their optimum operation in the dams. Several methods are available

to evaluate and assess the ecological effectiveness of destratification devices. These

include assessing the impact of mechanical destratifiers in reservoirs by statistically

comparing water quality parameters before and after installation of the mechanical

destratifiers. Alternatively it is also possible to simulate water quality parameters and

to test potential water quality parameters under several future scenarios. Simulations
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enable practitioners to make a decision before running a project even when the results

of simulation are not exactly accurate (Soetaert & Herman 2001).

Based on weekly data from the period 1998-2002, the total number of algal

alerts in Cooby and Cressbrook reservoirs was 121 and 64, respectively. A detail of

the severity of these alerts is shown in Table 2.2. Alert level-3 represents the most

serious level. In Cressbrook Dam the number of level-3 alerts increased from none in

1999 to four times in 2002.

Table 2.2 Frequency of algal alert in Cooby and Cressbrook reservoirs.

Level
of

Alert

Cooby Dam Cressbrook Dam

1998 1999 2000 2001 2002 Total 1998 1999 2000 2001 2002 Total

Alert 1 1 14 15 5 11 46 10 5 5 7 0 27

Alert 2 2 7 1 18 12 40 12 1 4 7 1 25

Alert 3 35 0 0 0 0 35 7 0 0 1 4 12

Note: the frequency is calculated on a weekly basis in 2003.

A number of parameters have been identified as affecting the concentration of

algae in water bodies (Herzfeld & Hamilton 2000). They are:

(i) nutrient concentrations such as phosphorus and nitrogen;

(ii) net energy input (long and short wave radiation) that drives thermal

stratification;

(iii) wind speed (driving mixing processes);

(iv) turbidity; and

(v) morphometry and topography.

Available nutrient data (phosphorus and nitrogen) from Toowoomba’s

reservoirs have unfortunately been recorded in discrete ranges rather than as precise
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values. This necessitates some re-interpretation before the data can be used in this

project (Kleinschmidt, pers. comm., 29 May 2003).

2.2 Role of Nutrients in Reservoirs

Nutrients in reservoirs control the life of organisms in water. Important

nutrients in water include phosphorus, nitrogen, sulphur, iron and silica. It was

observed that phosphorus and nitrogen levels control the eutrophication process of

reservoirs (Lee 1973). Straskraba and Tundisi (1999) identified nitrogen and

phosphorus as major limitation factors of the primary production of phytoplankton in

reservoirs.

2.2.1 Nitrogen

Nitrogen is essential for sustaining life. Nitrogen can be available in air, water

and soil bodies. Nitrogen in water enables the growth of algae and other aquatic

plants, but excessive levels of these plants can choke up waterways and out-compete

with native species (Summerfelt 1997).

The total nitrogen level in water should be less than 0.5 grams per cubic metre

to prevent excessive growth of nuisance plants. Higher levels of nitrogen in water

may result from runoff and leaching from agricultural land (Palmer et al. 2000).

Runoff can contain sediment, phosphorus, and faecal matter – containing bacteria and

viruses (Wetzel 2001). However, it is not easy to control the nitrogen level because of

the complexity of the interaction between the various forms it takes (Department of

Fisheries and Aquatic Sciences, Institute of Food and Agricultural Sciences,

University of Florida 2000).
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Nitrogen exists in many interacting forms in water. It has the most complex

cycle interactions of all nutrients (Boulton & Brock 1999; Jorgensen & Bendoricchio

2001). Nitrogen occurs in water bodies in a number of forms or chemical structures

including N2, NO3
-, NH4

+, or NO2
-. However, nitrogen in reservoirs is usually in the

form of nitrate (NO3
-) and comes from external sources such as surface inflows and

groundwater (Davis & Cornwell 1998). Nitrogen is present in the water surface and in

the deeper layers of a water body. Transformation of nitrogen in water bodies occurs

through ammonification, fixation, nitrification, denitrification and other nitrate

reduction processes (Wetzel 2001).

Cyanobacteria use nitrogen for growing and transform the nitrogen to amino-

nitrogen (NH2.) as an organic compound. The organic nitrogen is released as ammonia

(NH3) during the decomposition process of cyanobacterial dead cells. Ammonia can

be reformed to nitrate by bacteria through the nitrification process. These

transformations occur under aerobic conditions. In anaerobic conditions, in the

hypolimnion layer and eutrophic reservoirs, for example, where the oxygen supply is

depleted, anaerobic bacteria reform nitrate to nitrogen gas in the process of

denitrification (Davis & Cornwell 1998; Wetzel 2001).

The temperature and pH of water affect the ratio of (NH4
+):(NH3) ions in

water. At lower temperatures and lower pH, the reduction-oxidation reaction shifts

this ratio from left to right, decreasing the percentage of unionized (toxic) NH3 form

of ammonia (Summerfelt 1997). The variation of percentages of unionized (NH3) at

combinations of temperatures and level of pH are shown in Table 2.3.
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Table 2.3 Percent unionized (NH3) ammonia as a function of pH and temperature.

Temperature
°C (°F)

pH

6.0 7.0 8.0 9.0 10.0

10 (50) 0.0186 0.186 1.83 15.7 65.1

15 (59) 0.0274 0.273 2.66 21.5 73.2

20 (68) 0.0397 0.396 3.82 28.4 79.9

25 (77) 0.0568 0.566 5.38 36.3 85.0

30 (86) 0.0805 0.799 7.45 44.6 89.0

Source: Summerfelt 1997 (http://aquanic.org/publicat/state/il-in/ces/summerfl.pdf).

Wetzel (2001) describes the general patterns of distribution of nitrogen species

in stratified oligotrophic and eutrophic lakes as presented in Figure 2.1. There tends to

be some surface depletion of fixed nitrogen in the epilimnion in both cases: the result

of assimilation by algae and their subsequent descent to the hypolimnion. The

principal contrasts between oligotrophic and eutrophic lakes are the total

concentration of fixed nitrogen, and the shift to ammonia in the hypolimnion of a

eutrophic lake as a consequence of low oxygen.

Where NH4
+ and NO3

- are in mgN/L,   θ is water temperature in oC, and O2 is oxygen in
mg/L

Figure 2.1 Generalized vertical distribution of ammonia and nitrate nitrogen in
stratified water bodies of very low and high productivity (from Wetzel
2001, p. 215).
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Based on the level of inorganic and organic N, Vollenweider (1968) classified

lake productivity into five categories as shown in Table 2.4.

Table 2.4 General relationship of lake productivity to average concentrations of
epilimnetic nitrogen

General level of lake
productivity

Change in alkalinity in
epilimnion in summer

(meq litre-1)

Inorganic N
(mg m-3)

Approximate
average organic

N (mg m-3)

Ultra-oligotrophic < 0.2 < 200 < 200

Oligo-mesotropic 0.6 200 – 400 200 – 400

Meso-eutrophic 0.6 – 1.0 300 – 650 400 – 700

Eutrophic 500 – 1500 700 – 1200

Hypereutrophic > 1.0 > 1500 > 1200
Source; Wetzel 2001, p. 213 after Vollenweider 1968.

Mechanisms for removing nitrogen in water bodies include N plant uptake,

nitrification-denitrification, NH3 volatilization, filtration-sedimentation of particulate

N, and N adsorption (Koottatep, Polprasert & Oanh 2000). In constructed wetlands,

removal mechanisms of N also involve several interactions and reactions as shown in

Figure 2.2 (Koottatep, Polprasert & Oanh 2000).

Figure 2.2 Nitrogen removal mechanisms in constructed wetlands (from Koottatep,
Polprasert & Oanh 2000, p. 3 http://www.sandec.ch/files/Design_1.pdf)
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2.2.2 Phosphorus

Phosphorus (P) is an essential substance to all life as a component of nucleic

acid and a universal energy molecule (Boulton & Brock 1999). Phosphorus is

naturally present in the environment. The loading rate of phosphorus in lakes and

other water systems depends mainly on the surrounding drainage basin. Phosphorus is

found in several compounds such as phosphine (PO3), and phosphate (PO4
3-). The

biggest molecular compound of phosphorus is phosphate. Around 90 percent of

phosphorus is in organic forms and cellular constituents (Wetzel 2001).

In many natural waters, the concentration of phosphorus is relatively low.

Most aquatic plants, however, need a large amount of phosphorus for their

photosynthesis processes (Boyd 2000). Phosphorus in aquatic ecosystems occurs as

soluble inorganic phosphorus, soluble organic phosphorus, particulate organic P in

living phytoplankton and in dead detritus, and particulate inorganic phosphorus on

suspended mineral particles. The soluble fraction can be filtered from the particulate

fraction through a membrane filter (Kadlec & Knight 1995). Phosphorus is classified

as either particulate or dissolved in terms of measuring the total phosphorus in

unfiltered-water. Particulate phosphorus consists of phosphorus in organisms, in a

mineral phase and in macro-organic aggregations, while dissolved phosphorus

consists of orthophosphate (PO4
3-), polyphosphates, organic colloids, and low-

molecular-weight phosphate esters (Wetzel 2001).

The concentration of total phosphorus in water influences other components of

water systems in the process of enriching nutrient in lakes or reservoirs. The

enrichment process is mostly known as eutrophication (Wood, Mullins & Hajek

2002).
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There are many factors that influence the vertical profile of phosphorus

concentration in water. After comparing the variability of phosphorus deposition in

four selected reservoirs in Kansas watersheds, it was concluded that the concentration

is affected by topography and precipitation in the watershed and land management

(Mau & Christensen 2000). The reservoirs exhibited different profiles of phosphorus

concentration.

The inflow-outflow processes, transformation processes and the resulting

accumulation of phosphorus in a water system are shown in Figure 2.3 (Boyd 2000).

Land use management systems control the main source of phosphorus through water

flows. Water allocations from a reservoir strongly influence losses of phosphorus

through outflow from reservoirs or dams.

Figure 2.3 Sources and transformation of phosphorus in aquatic ecosystems (from
Boyd 2000, p. 195)

When the phosphate level rises to a critical point, phosphate-uptake kinetics

are known to favour blue-green algae over green algae. The maximal phosphate

uptake occurs between pH 7.5 and 8.5 and it declines sharply below pH 7.

Phosphorus concentration in surface water is generally low compared to that

in deeper layers. Total phosphorus is seldom more than 0.5 mg/L except in eutrophic
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or wastewaters. There is generally much more particulate phosphorus than soluble

reactive phosphorus. Masuda and Boyd in Boyd (2000) found that water in eutrophic

ponds contains 37% dissolved and 63% particulate phosphorus. However, most of the

dissolved phosphorus was non-reactive organic phosphorus, and only 7.7% of the

total phosphorus was soluble reactive and readily available to plants. Most surface

waters contain less than 0.05 mg/L soluble reactive phosphorus, and the most

unpolluted water only contains 0.001 to 0.005 mg/L of this fraction. Sediment in the

bottom layers contains much more phosphorus than the water body. Concentrations

may range from 10-20 mg/kg total phosphorus to 3,000 or 4,000 mg/kg. However,

most of this is tightly bound and not readily soluble in water.

Wetzel (2001) presents the profile of phosphorus concentration in two

conditions of lakes (oligotrophic and eutrophic) as shown in Figure 2.4.

Where PS is soluble phosphorus in mg/L, PT is total phosphorus in mg/L, θ is water 
temperature in oC, and O2 is oxygen in mg/L

Figure 2.4 Stratified phosphorus in both oligotrophic and eutrophic lakes (from
Wetzel 2001, p. 242)

By reducing phosphorus-load in a lake, Sas (1989) found that the production

of phytoplankton such as Cyanobacteria was positively correlated to the concentration
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of total phosphorus in water (Reynolds 1991). Figure 2.5 shows that the reduction of

total phosphorus decrease chlorophyll a concentrations in lakes and streams.

Figure 2.5 Response chlorophyll a concentrations to the total phosphorus reduction
and in lakes and streams (from Reynolds 1991, p. 7).

It is necessary to control phosphorus levels in order to reduce algal population

in aquatic ecosystems. A mass balance equation can be used to assess the amount of

phosphorus concentration in water, because indirect assessment of phosphorus

loading can result in an over-estimation (Schnoor 1996). Generally, controlling the

input of phosphorus is not as difficult as other chemical elements because phosphorus

in water has no atmospheric storage (Jorgensen 1980).

Kedlec and Knight (1995) found four factors that influence the transformation

processes of phosphorus; depth, aeration (vertical mixing), temperature and seasons.

Only aeration and temperature factors can be modified to reduce phosphorus

accumulation in water.
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2.3 Stratification and Destratification in Reservoirs

Water quality problems are often associated with the stratification behaviour

of reservoirs. Stratification is a solar driven process of generating thermal layers in a

reservoir or a lake. When summer starts, the water temperature in the upper layer is

raised while the bottom layer remains colder. This increases the temperature driven

density difference between the upper layer and bottom layer (Weitzel 1997).

A reservoir is defined as a body of water which is formed by an embankment

or a dam to supply water for developing human activities and needs. Characteristics of

reservoirs are similar to lakes. However, reservoirs are mainly controlled by the

inflow-outflow process (Chapman 1996).

Wetzel (2001) states that lakes and reservoirs can gain heat through a number

of ways: direct absorption of solar radiation as a dominant source, transfer of heat

from the air and sediment to the water, condensation of water vapour at the water

surface, and heat transfer from terrestrial sources via precipitation and surface runoff

as well as ground water. As a consequence, lakes become thermally stratified, defined

as a non-uniform temperature profile with depth within a lake system (Chapman

1996). There are three main components of thermal stratification as described in

Figure 2.6 (Fisher et al 1979; Martin & McCutcheon 1998; Wetzel 2001):

1. Epilimnion layer is the surface water which is usually warm. The temperature

of the layer is influenced by wind and wave circulation.

2. Hypolimnion layer is the bottom layer which is usually much colder and

stable.

3. Metalimnion is a thin layer situated below the epilimnion. It is a transition

layer of marked thermal change between epilimnion and hypolimnion,

normally called the thermocline. This layer represents the limiting condition
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that the surface wind-mixed currents can penetrate against the resistance of the

temperature gradient. Maslin (1996a) states that the thermocline forms at a

depth determined by the strength of the wind-induced mixing current,

compared to the opposing strength of the temperature (density) gradient in the

reservoirs.

Figure 2.6 Vertical depth profile of temperature: stratification in summer and winter;
overturn in autumn and spring (from: Martin & McCutcheon 1999, p.
345)

Stratification is dependent on several factors including solar radiation, the

shape and depth of lakes (morphology), wind speed, and position and orientation of

lakes. The water temperature profile in lakes is often paralleled by stratification of

other components of water quality measurements such as pH, dissolved oxygen (DO),

and density (Rowe 2001).

The temperatures of different water layers in reservoirs are also strongly

determined by inflow and outflow processes which influence heat transfer in

reservoirs. There are three types of flows in reservoirs (Chapman 1996):

(i) overflow occurs when inflow moves over the main body of water in the

reservoir;

(ii) interflow occurs when inflow moves through the middle layer of

reservoirs; and
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(iii) underflow occurs when inflow moves into the bottom of reservoirs.

2.3.1 Stratification and water quality

The major significance of stratification is that the thermocline acts as a

physical barrier between the upper and lower layers of the body of water.

Furthermore, the barrier also changes other water quality parameters. For example,

the relationship between temperature and water density is shown in Figure 2.7. The

variation of water density in the water layer strengthens the thermocline.

Figure 2.7 The relationship between temperatures and water densities (left) and
density differences versus temperature (right) (from: Maslin 1996a,
http://www.csuchico.edu/~pmaslin/limno/strat.html; Wetzel 2001, p. 12)

Straskraba and Gnauck (1985) established the following relationship between

temperature (T) and water density (ρw) in natural water bodies:

32 dTcTbTaw  (2.1)

where a, b, c, and d are constants:

a = 0.99987885
b = 6.0260168 x 10-5

c = -7.9947027 x 10-6

d = 4.369257 x 10-8
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The vertical distribution of dissolved oxygen can be strongly influenced by

temperature stratification. If only physical processes are important, the vertical

distribution of dissolved oxygen can be predicted solely from the temperature. The

resulting oxygen-depth curve is called an orthograde oxygen curve (Maslin 1996b).

The shape of the curve results from the influence of temperature on the solubility of

oxygen in water. Oxygen is less soluble at higher temperatures than at lower

temperatures, and therefore the epilimnion of a stratified lake would contain less

oxygen than the hypolimnion, if temperature was the only influence on oxygen

concentration. The relationship of dissolved oxygen saturation (DOsat in mg O2 per

litre) and temperature (T in oC) is described by the following function (Straskraba and

Gnauck 1985 p.116):

DOsat = 14.6244 – 0.40776 T + 0.00811362 T 2 – 0.000078765 T 3 (2.2)

Weitzal (2002) found that the hypolimnion layer slowly begins to run out of

oxygen as oxygen breathing organisms such as fish, invertebrates, and aerobic

bacteria in the sediment consume the available supply. Fresh oxygen cannot pass

through the density gradient of the thermocline and so the hypolimnion becomes

anoxic. This process has a great effect on fish location during the summer because

they are forced out of the cool water of the hypolimnion.

Deeper layers are only partly isolated. Gravity brings dead algal cells and

animal faeces down from higher layers to deeper layers. Photosynthesis and diffusion

in the deeper layers are limited because of insufficient light. As a result of these

movements, lakes always have two layers (water and sediments); sometimes have

four layers (epilimnion, metalimnion, hypolimnion, and sediments); and in the case of

meromictic lakes, sometimes a fourth layer (Maslin 1996b).



Review of Literature 25

The availability of light decreases exponentially with depth because of light

scatter and absorption. As a consequence, light energy is more available in the

epilimnion than in the lower layer. The upper layer of a lake which receives sufficient

light for net photosynthesis to occur is called the photic zone, or trophogenic zone,

and may coincide with the epilimnion. However, the water transparency may dictate

that the photic zone is less than the depth of the epilimnion, or may extend into the

metalimnion.

At the end of summer and throughout autumn, the water starts to lose heat

because of decreasing air temperature and lower heat input from solar radiation. The

surface water in the epilimnion becomes cooler and denser. Wind-induced and

convection currents create natural mixing between surface water and deeper layer. As

a consequence of this process, the water density in all layers becomes similar. The

relative thermal resistance of the metalimnion is gradually reduced. In the end, a

circulation process in the body of water is started and turnover is initiated. Turnover

continues with progressive cooling, often to the temperatures of maximum density of

4oC or less in cooler climates (Wetzel 2001).

2.3.2 Type of stratification

Based on the thermal and circulation characteristics, Wetzel (2001) classified

lakes into six types:

1. Cold monomictic; temperatures of water are a maximum 4oC with one period

of circulation in the summer at temperature just below or at 4oC.

2. Warm monomictic; circulate freely once a year in the winter at or above 4oC

and are stably stratified for the remainder of the year and not ice-covered.
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3. Dimictic; circulate freely twice a year in the spring and fall, and are directly

stratified in the summer and inversely stratified in the winter.

4. Oligomictic; thermally stratified much of the year but cooling sufficiently for

rare circulation periods at irregular intervals and not ice-covered.

5. Polymictic; frequent or continuous periods of mixing each year and not ice-

covered. This type divides into two sub-types:

a. Cold polymectesa; circulate continually at or slightly above 4oC. It can

be found in sub tropical regions where wind speed is high, humidity is

low, and seasonal change of air temperature is little.

b. Warm polymectesa; generally, it is a tropical lake with water

temperature above 4oC. Here, stratifications are weak, interval of

heating is short, cooling process is rapid, and variation of temperature

is small.

6. Amictic; surface of the lakes is covered by ice. Maslin (1996a) describes that

the temperatures of the layers below the ice are stable and constant.

Based on the recorded data between 1999 and 2003, Toowoomba’s reservoirs

are classified as warm monomictic. Overturn or mixing period occurs once a year in

around the period of June-August with the surface water temperature about 14oC.

2.3.3 Quantitative aspects of stratification

It is necessary to quantify stratification to obtain a measure of lake stability.

The oldest method of defining stability is the stratification index (SI) which depends

on the temperature function of density. The SI method is developed from the standard

deviation of the density matrix (Adams & Charles 2000). A high stratification index
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represents intense thermal stratification and high stability, whereas a low SI indicates

very little stratification and low stability. Darnault and Bell (2001) used SI in

Chesapeake Bay using sigma-t method expressed as follows:

δt = ρw-1000  (2.3)

ave

sbSI


 
 (2.4)

where δt is difference from standard density of water of a layer, ρw is the water density

of a water layer (kg m-3), δb is the density expressed in sigma-t at the bottom

(hypolimnion), δs is the density expressed in sigma-t at the surface (epilimnion), and

δave is the average density. SI values are classified into five levels of stratification.

They are: SI < 3 classified as very low; SI = 3 – 5 classified as low; SI = 5 – 7

classified as medium; SI = 7 – 10 classified as high; and SI > 10 classified as very

high.

Some other non-dimensional parameters for quantifying mixing and

stratification in standing water bodies (lakes or reservoirs) include Lake Number,

Wedderburn Number, Richardson Number, and Surface Mixing Number.

2.3.3.1 Lake Number (LN)

Lake Number is a quantitative index of the dynamic stability of the water

column. Lake Number indicates the depth of mixing in reservoirs, and can be

described as “the ratio of the moments about the water body’s centre of volume, of the

stabilizing force of gravity (resulting from density stratification) to the destabilizing

forces from wind, cooling, inflow, outflow, and artificial destratification” (Hutchinson

1957). If the wind dominates forces for mixing, LN can be calculated by equation 2.5.
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where:

zg = the depth of the centre of volume (m)
zo = the depth of centre of gravity of the water mass with a density

stratification (
zt = the thermocline height above the reservoir bottom (m)
z = the maximum depth of the reservoir (m)
g = the acceleration of gravity (9.80 m s
M = total mass of the reservoir (kg)
A = area of surface water (m
ρ = water density at the surface (kg m
u* = water friction velocity (m/s)

due to wind stress,

u*
2 = (ρa/

where: U
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ρa

Figure 2.8 Sketch of variables used in derivation
2000, Fig 1.2)
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= the depth of the centre of volume (m)
= the depth of centre of gravity of the water mass with a density

stratification (ρz) at height z above the reservoir bottom (m)
= the thermocline height above the reservoir bottom (m)

the maximum depth of the reservoir (m)
= the acceleration of gravity (9.80 m s-2)
= total mass of the reservoir (kg)
= area of surface water (m2)
= water density at the surface (kg m-3)
= water friction velocity (m/s)

due to wind stress, approximated by:

/ρ) x CD x U10
2

U10 = wind velocity 10 m above the water surface (m s
CD = drag coefficient = 1.3 x 10-3 (dimensionless)

a/ρ = ratio of air/water density = 1.2 x 10-3 (dimensionless)

ketch of variables used in derivation of Lake Number (
Fig 1.2)

There are three possibilities for a LN value. Firstly, LN <<

stratification is weak with respect to wind stress. In this condition, the seasonal

thermocline is expected to experience strong seiching and the hypolimnion is

28

(2.5)

= the depth of centre of gravity of the water mass with a density
at height z above the reservoir bottom (m)

= the thermocline height above the reservoir bottom (m)

(2.6)

= wind velocity 10 m above the water surface (m s-1)
(dimensionless)

(dimensionless)

of Lake Number (from Antenucci

<<1, indicates that

stratification is weak with respect to wind stress. In this condition, the seasonal

thermocline is expected to experience strong seiching and the hypolimnion is
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expected to experience turbulent mixing due to internal shear. Secondly, LN = 1,

indicates that the wind is just sufficient to force the seasonal thermocline to be

deflected to the surface at the windward end of the lake. Thirdly, LN >>1, indicates

that stratification is strong and dominates the forces introduced by surface wind

energy. In this case, the isopycnals are predicted to be primarily horizontal. Little

seiching of the seasonal thermocline and little turbulent mixing in the hypolimnion are

expected (Robertson & Imberger 1994).

2.3.3.2 Wedderburn Number (W)

The Wedderburn Number (W) utilizes wind speed, ratio of epilimnion depth to

overall lake depth, density of the epilimnion and hypolimnion, total lake length, and

gravity (Monismith 1986).

L

hg
W e

2

2'


  



 )(
' ehg

g


  

where:

he = height of epilimnion (m)
 = shear velocity of the water surface (m s-1)

L = length of the lake (m)
ρ = average density of the whole layers (kg m-3)
ρe = average density of the epilimnion (kg m-3)
ρh = average density of the hypolimnion (kg m-3)
g = gravity (9.8 m s-2)

This dimensionless parameter is a measure of the effect of wind stress on the

lake surface. There are four major classifications for the Wedderburn number (W):
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1.
eh

L
W

4
 , indicates that the lake has a strong thermal stratification, little

mixing, small internal seiche amplitudes.

2.
eh

L
W

42

1
 , indicates that the wind induced mixing is stronger than thermal

stratification, more surface mixing than instability at the thermocline, large

internal seiche amplitudes.

3.
2

1
W

L

he , indicates that the lake has a higher degree of mixing between the

epilimnion and the hypolimnion, much upwelling at the thermocline (unstable)

surface at the upwind end of the basin.

4.
L

h
W e , indicates that the lake has complete overturn (mixing).

2.3.3.3 Richardson Number (Ri)

The Richardson Number examines the turbulence conditions between two

layers which have different temperatures. The number characterises the shearing force

in the water surface and the stability of density stratification (Mortimer 1974; Wetzel

2001). The ratio of the Richardson Number to the aspect ratio (L/he) can also explain

the Wedderburn Number. The Richardson Number is given as:

2
*

'

u

hg
Ri  (2.9)

where g’is the modified acceleration due to gravity across the uppermost thermocline

(equation 2.8), h is the thickness of the surface layer and u is defined as before in

Equation 2.6. The aspect ratio, A, is the fetch length of the lake (L) and the depth of

the diurnal thermocline defined as h (Imberger 2001).
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When the Richardson number is less than 0.25, internal waves spontaneously

appear, and break. Mixing ensues until gradients are reduced and the system again

stabilizes (Wetzel, 2001). In this condition, a Kelvin-Helmholtz instability results in

the interface between two homogenous fluids. When the velocity difference or shear

between two layers is less than 0.25, buoyant force associated with the density

difference suppress the disturbances (Mortimer 1974).

2.3.3.4 The Surface Mixing Number (I)

Imberger (2001) develops the Surface Mixing Number which is the ratio of the

rate of working of the wind and the rate at which solar energy adds potential energy to

the surface water column. The Surface Mixing Number describes diurnal surface layer

formation and provides an indication of whether the water column has a tendency to

stratify (I > Ic where Ic = 0.2 is the transition value of parameter I). The I number can

be determined by the following equations:







W

PE
I (2.10)

where the potential energy of the upper water column is given by:

   
p

k
oR

kp

o

c

gheH
e

Rc

ghH
PE

d

k










 



1
1

1 (2.11)

where h is the reference depth, usually taken as the depth of the upper most

thermocline, α is the coefficient of thermal expansion of water, cp is specific heat of

water, g is the acceleration due to gravity, Rk = kd h, kd is an extinction coefficient,

and Ho is the net solar short wave radiation. The rate of working by the wind,


W , is

determined by equation 2.12.
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S
DC is the surface drag coefficient, ρa is the density of the air, ρo is the density of

water and U is the wind speed.

The I number can be used to see whether meteorological conditions are such

as to cause the surface layer to stratify or mix at a particular instant in time. This is

particularly useful due to the influences of the near surface temperature structure on

phytoplankton production and species composition.

2.3.4 Destratification and water quality

Destratification is the process of disrupting thermal layers and/or chemical

layers in a body of water, particularly in lakes and reservoirs. Destratification is often

associated with the mixing process because both have the same purpose to

homogenise the water column for improving water quality.

Destratification can be categorised as either natural or artificial.

Destratification can happen naturally when the surface water gains sufficient energy

from the wind to circulate the water in a lake or a reservoir. During winter with cold

weather and strong winds, water circulates completely and there is no stratification of

the water column. On the other hand, in some part of Australia (e.g. Southern

Queensland) during summer with warm weather and little winds, the circulation is

incomplete. This leads to stratification. In this case, artificial destratifiers are needed

to add energy to circulate water completely (Boulton & Brock 1999).

2.3.4.1 Types of destratifiers

Destratifiers are mechanical devices for mixing or circulating water vertically

from the surface to the bottom layers in order to prevent stratification in a lake or a
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reservoir. The two most common techniques to circulate water use air injection

(diffuser) and mechanical mixing equipment (Hudson & Kirschner 1997).

a. Air injection

The air injection or diffuser system consists of an air compressor, feeder line

(pipe) and air diffuser. Air is delivered from the compressor to the diffuser or

perforated pipes near the bottom layer of the lake or reservoir.

The air bubbles produced by the diffuser move up to the surface water. This leads

to water circulating from the upper layer to the bottom layer as a consequence of

exchanging air bubble spaces. During the process, water temperature as well as

dissolved oxygen levels become nearly constant in all layers. The process of

aeration is shown schematically in Figure 2.9a.

b. Mechanical axial flow pumps

A mechanical axial flow pump can be used to circulate water vertically in a top-

down pattern. The pump is placed near the surface so that it pushes water from the

upper layers to the bottom layers (Figure 2.9b). The low oxygen water in the

bottom layers is circulated to the surface layer, breaking the thermal stratification

pattern.

Figure 2.9 Common water circulation systems in lakes or reservoirs.



Review of Literature 34

Mechanical axial flow machines can be classified into two categories. An

open-impeller system was introduced by Garton and Rice (1976) while a system

confining the impeller inside draft tubes was developed by Kirke and Gezawy (1997).

Draft tube systems are commercially produced by the WEARS Company (Elliott &

Morgan 2002). The draft tube reduces the energy requirement of the mixing process

and pushes the warm water deeper than an open impeller or can be done with bubble

plume system (Kirke & Gezawy 1997).

Figure 2.10 Schematic operation of impeller (surface mixers) with draft tube (after
Elliott & Morgan 2002).

Other variants on these two categories of systems are available to circulate

water in a lake or a reservoir:

a. Surface spray

The basic principle of this system is that the water is thrown into the air to create a

fountain-shape spray above the surface. The oxygenation process occurs while the

water is in the air. The water falls down into the body of water and its momentum
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carries it towards the bottom of the lake. The water circulation can be seen in

Figure 2.11a. This device is only effective in shallow lakes.

b. Impeller-Aspirator systems

The basic principle of this method is similar to that of the axial flow pump

systems. However, the impeller or propeller in these systems forms an angle with

the water surface of about 50 per cent. The rapidly turning impeller draws air

down the shaft and propels water and air bubbles into a lake or a reservoir.

Aeration occurs when air bubbles contact the body of water, see Figure 2.11b.

Figure 2.11 Combination of the common destratifiers.

2.3.4.2 Effects of artificial destratification on water quality

Destratification is intended to eliminate thermal or chemical layers in a body

of water and so improve the overall water quality (Fast 1981; Hudson & Kirschner

1997; Jungo et al. 2001; Lewis et al. 2000; Wetzel 2001). Jungo et al. (2001) reported

that the water quality in Lake Nieuwe Meer was improved following the use of an

artificial mixing bubble plume type device. Some evidence was presented to support

their conclusions, with the mass of Microcystis up to 20 times lower than before
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mixing and an absence of scum on the water, the surface water temperature was also

2oC lower as a result of the mixer. This led to a decreased total algae biomass. Lastly,

the whole water-body oxygen content was consistently higher than 5 mg L-1,

increasing the living space for fish in the mixed reservoir.

Several researchers have observed an effect of artificial destratification on

blue-green algae or Cyanobacteria. Fast (1981) comments that the first to measure the

effects of artificial circulation on algal densities was Hooper et al. (1952). They

pumped water from the hypolimnion layer to the surface in West Lost Lake,

Michigan. Other researchers studied the impact of destratification on blue-green algae

including Johnson (1966) who installed an artificial mixer in Erdman Lake,

Washington, and McNall (1969, 1971) in Lake Roberts, New Mexico (Fast 1981).

These studies have shown increases, decreases or no change in the following

phytoplankton parameters: biomass density (cell per mL; mg chl m-3; or mgC mL-1);

total standing crop in the lake (kg); rate of reproduction (mgC m-3); and/or algal type

(cyanophyta, chlorophyta, etc.). Reduction in biomass, standing crop, reproduction

and blue-green algae are considered desirable for most euthrophic lake uses. They

generally result in greater water clarity, less surface scum, reduced treatment costs

(drinking water), and better taste and odour. A clear, blue lake is aesthetically more

pleasing to most people. Although these reductions are generally sought as benefits of

the destratification system, they often do not occur and undesirable increases in some

or all of these parameters can result (Fast 1981).

Hudson and Kirschner (1997) and Fang (1994) state that the most common

result of destratification is an increase in dissolved oxygen levels in the body of water,

particularly the hypolimnion layer.
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Sherman et. al. (2000) reported that artificial destratification in Chaffey Dam

increased hypolimnetic oxygen concentrations and reduced sediment nutrient release.

It also increased temperature of the hypolimnion by 10oC.

2.4 Water Quality Models for Reservoirs

2.4.1 Common water quality models

The complexity of the interaction between algal growth, water temperature,

pH, dissolved oxygen, and stratification make the use of a computer model attractive

for evaluating methods of algal management. McCutcheon (1989) provides a useful

way of classifying models by four levels of complexity:

(i) level one with steady state solution and simple kinetics, for example

LAKE by ILEC (Jorgensen & Vollenweider 1989);

(ii) level two with steady hydrodynamics, specified or handled empirically,

and steady or time variable water quality, for example AQUAMOD

(Straskraba & Gnauck 1985);

(iii) level three with unsteady hydrodynamics but simplified solutions,

simplified reservoir solutions, and dynamic water quality such as HSPF

by USEPA (Bicknell et al 1996) which was developed into Water

Modelling System (WMS) in 2002; and

(iv) level four with unsteady hydrodynamics including reservoir/river-routing

equation, ability to handle backwater and stratified reservoirs, and

dynamic water quality. Example of this level is DYRESM by CWR-

UWA (Antenucci 2000).
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Based on dimensionality of water body, water quality models can also be

categorised as zero-dimensional, one-dimensional, two-dimensional and three-

dimensional models.

Water quality models that are commonly used in reservoirs or lakes include:

2.4.1.1 ATV (Allgemein Verfugbares Gewassergutemodell)

The ATV (commonly called ATV Gewassergutemodell, or in English the

ATV Water Quality Model) was developed in Germany as a water quality model to

bridge the limitations some other models. It is designed as a series of building blocks

that can be implemented as needed. The first building block is the hydrodynamic

model, which solves the St. Venant equations for either the steady or unsteady case.

The remaining building blocks can be added to the hydraulics as needed and include

17 water quality parameters such as water temperature, conservative tracers,

COD/BOD, phosphorus, nitrogen cycle, silicon, algae, zooplankton, sediment/water

exchange, suspended sediment transport, oxygen dynamics, pH dynamics, heavy

metals, and organic chemicals. The solution to the transport equation uses the method

of characteristics and does not have a Courant number constraint. Because of the

model's modular design, simulations can be made as simple or as complicated as

desired; however, the numerical expense of the hydrodynamic routine should not be

underestimated. The ATV can also be coupled with a GIS system to provide geo-

reference (Muller 2000).

2.4.1.2 CE-QUAL-R1

CE-QUAL-R1 is spatially one dimensional and horizontally averaged

mathematical model of water quality that describes the vertical distribution of thermal

energy and biological and chemical materials in a reservoir through time. The model
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was developed in the Environmental Laboratory of the US Army Engineer Research

and Development Center. The model can simulate 27 water quality variables

including physical factors (such as flow and temperature), chemical factors (such as

nutrients), and biological assemblages in both aerobic and anaerobic environments in

water column. The model also simulates 11 additional variables to represent materials

in the sediments. Thermal stratification and water budget analysis can be performed

using an independent model called CE-THERM-R1 (US Army Engineer Waterways

Experiment Station 1986).

The thickness of layer in the water depending on the inflow outflow condition

and the model set the layer dynamically. The distribution of inflowing waters among

the layers is based on density differences. It is possible tosimulate surface flows,

interflows, and underflows. The position of outflow or withdrawal of a water body

can be set in the model to accommodate the multi-level withdrawal position in a

reservoir (US Army Engineer Waterways Experiment Station 1986).

Some limitations of the model are: (i) longitudinal and lateral variations in

water quality constituents cannot be predicted, (ii) all inflow quantities and

constituents are instantaneously dispersed throughout the horizontal layers, and (iii)

model predictions are probably most representative of water quality conditions near

the dam or in the deepest part of the reservoir.

2.4.1.3 CE-QUAL-W2

CE-QUAL-W2 (Corps of Engineers Quality Model for Two Dimensional

Water bodies) is a dynamic two-dimensional, laterally averaged, hydrodynamic water

quality model developed for stratified water bodies (Cole & Wells, 2003). The

application of CE-QUAL-W2 requires knowledge in hydrodynamics, aquatic biology
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and chemistry, numerical methods, computers and FORTRAN coding, statistics, data

assembly and reconstruction.

Hydrodynamic computations are influenced by variable water density caused

by temperature, salinity, and dissolved and suspended solids. Developed for

reservoirs and narrow, stratified estuaries, CE-QUAL-W2 can handle a branched

and/or looped system with flow and/or head boundary conditions. With two

dimensions depicted, point and non-point sources loading can be spatially distributed.

Version 3.2 of this model can predict water surface elevations, velocities and

temperature plus 18 other water quality state variables and as many as 60 derived

variables from input data, describing lake geometry and segmentation, climate, initial

and boundary condition, external loading, benthic flux, spatial and time variable

functions and rate constants (Cole & Wells 2003). CE-QUAL-W2 Version 3.2 has a

capability to calculate ice cover and selective withdrawal heuristics including new

turbulent kinetic energy-turbulent dissipation turbulence closure model. In this

version CE-QUAL-W2 can estimate suspended solids re-suspension as a result of

wind-wave action.

CE-QUAL-W2 has limitations when simulating vertical profiles in a water

body because the model neglects vertical momentum as a consequence of using

Boussinesq and hydrostatic approximations. This model also assumes no zooplankton

and macrophytes and so simplifies the sediment oxygen demand.

2.4.1.4 CORMIX: Cornell Mixing-Zone Model

The Cornell Mixing Zone Expert System (CORMIX) model was developed at

the Oregon Graduate Institute as a near-field model for the analysis, prediction and
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design of aqueous toxic or conventional pollutant discharges into water bodies. A

major emphasis of the model is on the computation of plume geometry and dilution

characteristics within a receiving water's initial mixing zone. It also computes

discharge plume behaviour at larger distances. The model has three modules -

CORMIX1 for submerged single-point discharges, CORMIX2 for submerged multi-

port diffuser discharges, and CORMIX3 for buoyant surface discharges. As implied

by the title, the model predicts mixing (dilution) of the input chemicals, but does not

allow for interaction among multiple chemicals (Jirka, Doneker & Hinton 1996).

The model equations represent on jets and plumes, which traditionally are

modelled using integral equations. Integral equations rely on self-similarity to reduce

the three-dimensional equations to a one-dimensional ODE. The model then solves

for the three-dimensional trajectory of the plume centreline using the one-dimensional

integral equations. Hydrodynamic conditions (though allowed to be unsteady) must be

supplied as input to the model (Jones et al. 1996).

2.4.1.5 DYRESM-CAEDYM (Dynamic Reservoir Simulation Model –
Computational Aquatic Ecosystems Dynamics Model)

The model DYRESM is a one-dimensional hydrodynamics model for

predicting the vertical distribution of temperature, salinity and density in lakes and

reservoirs. It is assumed that a water body complies with the one-dimensional

approximation in that the destabilizing forcing variables (wind, surface cooling, and

plunging inflows) do not act over prolonged periods of time. The latest version

(Version 2.4) of this model is able to accommodate mixing by artificial destratifiers;

either of the bubble plume or mechanical impeller type (Antenucci 2000). DYRESM

has been used for simulation periods extending from weeks to decades. Thus, the
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model provides a means of predicting seasonal and inter-annual variation in lakes and

reservoirs, as well as sensitivity testing to long-term changes in environmental factors

or watershed properties. DYRESM can be run either in isolation, for hydrodynamic

studies, or coupled to CAEDYM for investigations involving biological and chemical

processes. CAEDYM has been set up largely for assessment of eutrophication,

modelling the N-P-Z (Nutrient-Phytoplankton-Zooplankton) interactions. This model

also includes oxygen dynamics and several other state parameters. An advantage of

this model is that it is able to categorize phytoplankton and zooplankton into several

species (Herzfeld and Hamilton, 2000). The computational demands of DYRESM-

CAEDYM are quite modest and multi-year simulations can be performed (Antenucci

2000).

Layers in DYRESM are based on a Lagrangian scheme where the layer

thickness changes as a function of time. The layers are modelled as a series of

horizontal layers of uniform property but variable thickness. The layer position

changes with the effects of inflow, outflow, evaporation and rainfall. This is followed

by layer thickness change as the layers move vertically to accommodate volume

changes. Layers in the thermocline can be thinner than mixed layers in the epilimnion

or the hypolimnion. The thickness of the layers is restricted by upper and lower limits

to ensure that adequate resolution is achieved and that an excessive number of layers

is not used. The lower limit is set small enough to accommodate the numerical

process of diffusion when an excessive number of amalgamation layers occurs

(Antenucci 2000).

DYRESM needs a range of data files to describe morphometry,

meteorological, inflow, withdrawal, initial conditions, parameter, and configuration
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files. Data input are forced and translated into a NetCDF file as a reference file.

DYRESM enables the simulation of a number of water quality parameters when

coupled with CAEDYM.

A coupled DYRESM - CAEDYM model can simulate aquatic organisms

which are important to water quality. The CAEDYM model is able to simulate seven

groups of phytoplankton including freshwater Cyanobacteria, five groups of

zooplankton, five kinds of fish, four groups of macro-algae, three groups of

invertebrates, seagrass (Halophila ovalis) and jellyfish (Phyllorhiza punctata)

(Antenucci 2000).

CAEDYM model is effectively an ecological model in that it accommodates

dynamic processes in aquatic ecosystems including the limitation factors on the

development of organisms, such as light, nutrient, and temperature. The model also

considers respiration, mortality, and excretion processes, vertical migration and

settling, as well as the effect of ambient conditions on micro-organisms such as the

concentration of dissolved oxygen in water, and salinity.

Dissolved oxygen is one of the key parameters of water quality. It is

determined in CAEDYM through the following processes:

1) Exchange to and from the air/water interface,

2) Utilization of oxygen at the sediment/water interface (i.e. the sediment

oxygen demand),

3) Photosynthetic oxygen production and respiratory oxygen consumption by

phytoplankton,

4) Photosynthetic oxygen production and respiratory oxygen consumption by

the two macroalgae groups,
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5) Photosynthetic oxygen production and respiratory oxygen consumption by

seagrasses/macrophytes,

6) Utilization of oxygen due to the action of bacteria on organic matter (i.e.

the water column biochemical oxygen demand),

7) Utilization of oxygen in the process of nitrification,

8) Utilization of dissolved oxygen due to photosynthesis and respiration in

jellyfish, and

9) Utilization of dissolved oxygen due to respiration of higher organisms

(zooplankton, fish).

2.4.1.6 HSPF (Hydrological Simulation Program – FORTRAN)

Developed in the late 1970s by the USGS (United States Geological Survey)

and USEPA (United States Environmental Protection Agency), HSPF is a union

between the Stanford Watershed Model, a continuous-simulation, process-oriented

hydrologic model, and several water quality models developed by the EPA, including

the Agricultural Runoff Model (ARM) and the Non-Point Source Model (NPS). The

model is intended for both conventional and toxic organic pollutants. Contaminant

loads are either user-input point sources or non-point sources modelled by build-up

and wash-off parameterizations. It is a comprehensive model of watershed hydrology

and water quality that allows the integrated simulation of land and soil contaminant

runoff processes with in-stream hydraulic and sediment-chemical interactions

(Bicknell et al. 1996).

An advantage of HSPF is in its software development, which resulted in a

complete data-management tool. A disadvantage of HSPF is its large data

requirements, which include physical data such as watershed data, river network
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discretization, soil types, geologic setting, vegetative cover, towns, and other regional

data, meteorologic data such as hourly data for precipitation, solar radiation, air

temperature, dew-point temperature, and wind speed and daily evapotranspiration. In

addition, the model has a wealth of empirical calibration parameters that must be

determined from handbook values and by calibrating to field measurements (Bicknell

et al. 1996).

The river transport model is a tanks-in-series model that uses stage-discharge

relationships (which must be input by the user from external knowledge) to simulate

flood routing.

The result of this simulation is a time history of the runoff flow rate, sediment

load, and nutrient and pesticide concentrations, along with a time history of water

quantity and quality at any point in a watershed. HSPF simulates three sediment types

(sand, silt, and clay) in association with a single organic chemical and transformation

products of that chemical. The transfer and reaction processes of hydrolysis,

oxidation, photolysis, biodegradation, volatilization, and sorption are included.

Sorption is modelled as a first-order kinetic process in which the user must specify a

desorption rate and an equilibrium partition coefficient for each of the three solids

types. Resuspension and settling of silts and clays (cohesive solids) are defined in

terms of shear stress at the sediment water interface. The capacity of the system to

transport sand at a particular flow is calculated and re-suspension or settling is defined

by the difference between the sand in suspension and the transport capacity.

Calibration of the model requires data for each of the three solids types. Benthic

exchange is modelled as sorption/desorption and deposition/scour with surficial

benthic sediments. Underlying sediment and pore water are not modelled (Bicknell et

al. 1996).
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Limitations of HSPF include the assumption that the Stanford Watershed

Model is appropriate for the area being modelled. This might not be the case. Further,

the in-stream model assumes that the receiving water body is well mixed throughout

the width and depth, and is thus limited to well-mixed rivers and reservoirs.

2.4.1.7 QUAL2E: Enhanced stream water quality model

The QUAL2E series of models has a long history in stream water quality

modelling. It was primarily developed by the US Environmental Protection Agency

(USEPA) in the early 1970s. Since then it has gained a broad user base, including

applications outside the U.S. in Europe, Asia, and South and Central America.

The Enhanced Stream Water Quality Model (QUAL2E) is applicable to well

mixed, dendritic streams. It simulates the major reactions of nutrient cycles, algal

production, benthic and carbonaceous demand, atmospheric reaeration and their

effects on the dissolved oxygen balance. It can predict up to 15 water quality

constituent concentrations. It is intended as a water-quality planning tool for

developing total maximum daily loads (TMDLs) and can also be used in conjunction

with field sampling for identifying the magnitude and quality characteristics of non-

point sources. By operating the model dynamically, the user can study diurnal

dissolved oxygen variations and algal growth. However, the effects of dynamic

forcing functions, such as headwater flows or point source loads, cannot be modelled

with QUAL2E. QUAL2E-U is an enhancement allowing users to perform three types

of uncertainty analyses: sensitivity analysis, first-order error analysis, and Monte

Carlo simulation (Brown & Bornwell 1987).

The model only simulates steady-state stream flow and contaminant loading

conditions; the reference to dynamic modelling above refers only to water quality
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forcing functions of climatologic variables (air temperature, solar radiation, among

others). The transport scheme in the model is the implicit backward-difference finite

difference method.

2.4.1.8 WASP (Water Quality Analysis Simulation Program)

WASP Version 6 is a comprehensive surface water quality modelling package

that generalizes a framework for modelling contaminant fate and transport in surface

water bodies. This model helps users interpret and predict water quality responses to

natural phenomena and man-made pollution for various pollution management

decisions The model is flexible and compartmental to be applied in one-, two-, or

three-dimensional water quality models. It has capability solving BOD, DO, nutrient

and eutrophication, bacterial contamination, and toxic chemicals (organics and

metals) problems. In addition, WASP has also been developed with a number of

WASP sub-models for specific applications or for application to a particular type of

pollutant.

Some sub-models developed for WASP are FLWASP for eutrophication

model, MERC4 for simulating impact of fate and transport sediment and water,

META4 for metals transport, speciation, and kinetics model, OMNIWASP for for

simulating the impact of macrophytes on dissolved oxygen concentrations in

estuaries, STEADY for toxicant model for screening chemicals for recontamination

potential, and SALT5 for simulating water temperatures (include ice cover), coliform

bacteria, and conservative tracers (Wool et al. 2002).

WASP is capable of linking with other EPA models. Predicted flows and

volumes can be read by linking to the hydrodynamic model DYNHYD. Loading files
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from HSPF can be reformatted. Toxicant concentrations predicted by TOXI can be

read and used by both the WASP Food Chain Model and the fish bioaccumulation

model FGETS.

A body of water is represented in WASP as a series of computational elements

or segments. Environmental properties and chemical concentrations are modelled as

spatially constant within segments. Segment volumes and type (surface water,

subsurface water, surface benthic, subsurface benthic) must be specified, along with

hydraulic coefficients for riverine networks.

Seven types of input data are required to run WASP 6.0. Simulation and

output control; model segmentation; advective and dispersive transport; boundary

concentrations; point and diffuse source waste loads; kinetic parameters, constants

and time functions; and initial concentrations are processed with mass balance

equations and specific chemical kinetics equations to simulate extensive water quality

parameters.

All the above models were compared to select the appropriate water quality

model package for this project. Selection was based on four major criteria which are

(i) accommodating surface mechanical mixers (destratifiers); (ii) capability to

simulate at least cyanobacterial concentration, water temperature, and dissolved

oxygen; (iii) suitability for Australian reservoirs; and (iv) the cost. The DYRESM-

CAEDYM software package fulfils the criteria and it was chosen to predict water

quality in two of the three Toowoomba’s reservoirs.

2.4.2 Hydrologic model: Australian Water Balance Model (AWBM)

Inflow to a reservoir is a very important part of a reservoir water balance and

is required by dynamic reservoir models to simulate the water body. However,
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Toowoomba’s three reservoirs have no recorded inflow data. Rainfall-runoff

modelling can be used to predict daily inflow to a reservoir when no recorded inflow

data exists (Boughton 2002).

Australian Water Balance Model (AWBM) is a rainfall-runoff model that is

commonly applied to Australian catchments. The structure of the AWBM is simple

and flexible as shown in Fig. 2.12. It has three input parameters (daily/monthly

rainfall, monthly evaporation and daily inflow) with eight simulated parameters

compared to the Sacramento and Stanford Watershed Models (each with more than 20

parameters) and the SIMHYD (7 parameters) so it is easy to use and calibrate

(Boughton 2002, 2005). The latest version of the model (Version 4.0) consists of

AWBM2002 for calibrating AWBM with base-flow in runoff, AWBM97 for

calculating runoff from long rainfall record, SURF for calibrating AWBM with

surface runoff only, BASE97 for analysing sensitivity of parameters, NEWBFLOW

for analysing base-flow, CHECKAL for checking data errors and LOADDATA for

loading filenames and parameter values (Boughton 2002).

Daily rainfall data and evaporation data are needed by all sub-models. Daily

flow data are needed by AWBM2002, BASE97 and NEWBFLOW while monthly

flow data are required by AWBM97, SURF, and BASE97.
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Figure 2.12 Structure, parameters and state variables of the AWBM (from Boughton
2002, http://www.catchment.crc.org.au/products/models/the_models/awbm/

AWBMmanual.pdf).

The AWBM model was adopted to produce inflow data because this model

was independently verified in Toowoomba’s three reservoir catchments in 1994 and

1999 (Loxton 1999).

2.5 Weather Generator

Most water quality models need a time series of historical weather data as a

main input (Antenucci & Imerito 2001; Beck & Straten 1983; Cole & Wells 2002;

Straskraba & Gnauck 1985). The weather interacts with other natural resources and

influences water quality parameters in open sources of water bodies.

Weather data is frequently required as input to computer programs for

ecological and environmental modelling of natural systems such as reservoirs.
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Weather generators are computer programs that have been developed to produce

complete weather input data sets where only some of the parameters are recorded.

Using the existing weather records, these computer programs are able to generate a

long series of synthetic daily climatic data. Some computer program packages

commonly used in this way are WGEN (Richardson & Wright 1984), CLIGEN

(Nicks & Gander 1993), ClimGen (Stockle, Campbell & Nelson 1999), and LARS-

WG (Semenov & Barrow 1997; Semenov et al. 1998).

Most weather models use stochastic simulation to generate data (Matalas

1967; Richardson 1981). WGEN uses as input daily series of measured precipitation,

maximum and minimum temperature, and solar radiation to generate other series data.

ClimGen generates data in a similar way to WGEN but with some improvements.

LARS-WG is based on the series weather generator described by Racsko et al. (1991).

It utilizes a semi-empirical distribution for the length of wet and dry day series, daily

precipitation and daily solar radiation.

Nicks and Gander (ARS-USDA) (1993) have developed CLIGEN to produce

a time series of daily weather parameters including maximum and minimum

temperature, solar radiation, precipitation, wind direction, wind speed, temperature

and dew point from monthly observed statistics at the site, like monthly mean,

standard deviation, and skewness (Meyer et al. 2001). The ClimGen model was

selected for use in this project. The following section describes parameters used in

ClimGen (McKague, Rudra, & Ogilvie 2003).

2.5.1 Rainfall

Precipitation is generated using the likelihood of the occurrence and the

amount of precipitation on a particular day. Rainfall intensity and duration within the
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rain event are involved in the model. With this feature, ClimGen is able to generate

data for several different purposes.

2.5.1.1 Daily rain day occurrence

Daily rain days is modelled by using a two-state Markov chain. The

probability of occurrence of a wet or a dry day following either a dry or a wet day is

defined using a Markov chain for the combination of conditional probabilities as

described by Nicks et al. (1990).

P(w|d) =  (2.13)

P(d|d) = 1 -  (2.14)

P(d|w) =  (2.15)

P(w|w) = 1 -  (2.16)

where P(w|d) is the probability of a wet day given a previous dry day,

P(d|d) is the probability of a dry day given a previous dry day,

P(d|w) is the probability of a dry day given a previous wet day, and

P(w|w) is the probability of a wet day given a previous wet day.

Monthly probabilities are analysed using historic long-term precipitation data.

2.5.1.2 Amount of daily precipitation

ClimGen adopt the Weibull distribution function to generate a precipitation

amount. The distribution performed best in describing the cumulative probability of

precipitation at 33 United States Climate Stations (Selker & Haith 1990). The

distribution is described as follows:

( ) 1 exp
P

F P





  
       

(2.17)

where F(P) is the cumulative probability of a precipitation amount,
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P, and  and  are parameters of the distribution function that are calculated

on a monthly basis.

Each precipitation event is sampled using the inverse method as follows:

 
1/

ln( )P r


  (2.18)

where r is a uniform random number between 0 and 1.

The variation of the Markov chain transition probabilities and the precipitation

distribution parameters with seasons in most areas were addressed by Richardson

(1981). He suggests the use of a Fourier series or some other cyclical model to

describe the periodic variation of these parameters.

2.5.2 Air temperature and solar radiation

Statistical modelling of air temperature and solar radiation is not as difficult as

precipitation. However, weather generation has to account for the dependency

between precipitation and temperature and solar radiation. Air temperature levels

during wet days tend to be naturally lower than during dry days (Richardson 1981).

Similarly, solar radiation levels are observed to be lower on a wet day due to

increased cloud cover (Richardson 1982).

Richardson (1981) developed a continuous multivariate stochastic approach to

incorporate the appropriate air temperature and solar radiation levels on wet and dry

days. His technique is used in WGEN, CLIGEN, CLI90, ClimGen and LARS-WG.

One result of applying this method is that daily means and standard deviations for the

cumulative temperature and solar radiation distributions are influenced by the

occurrence of wet and dry days (Richardson 1981). To adjust for variations in season

means and standard deviations, ClimGen uses a spline-fitting procedure which obtains
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the residual elements of the function by removing the periodic mean and standard

deviation using the following equations (Richardson 1981):

,

,

( ) ( )
( )

( )

o
p i i

p i o
i

X j X j
j

j





 for Yp,i = 0 (2.19)

or

1
,

, 1

( ) ( )
( )

( )

p i i

p i

i

X j X j
j

j





 for Yp,i > 0 (2.20)

where ( )o
iX j and ( )o

i j are the mean and standard deviation for a dry day (Yp,i = 0),

1( )iX j and 1( )i j are the mean and standard deviation for a wet day (Yp,i > 0),

, ( )p i j is the residual component for the variable j (i.e. maximum temperature

(j=1), minimum temperature (j=2), or solar radiation (j=3)).

2.5.3 Wind speed

ClimGen generates wind speed without any correlation with other variables.

Average daily wind speed (U) is assumed following a Weibull distribution in a similar

way to precipitation:

( ) 1 expm

U
F U





  
       

(2.21)

where Fm(U) is the cumulative probability distribution of average daily wind speed in

a month,

β is a scale parameter determined from the observed wind data,

α is a shape parameter determined from the observed wind data.

This distribution is sampled for each day of weather generation using the

inverse method:

 
1/

ln( )U r


  (2.22)

where r is a random number ranging between 0 and 1.
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2.5.4 Air humidity

The daytime and nighttime dew point temperatures (Tdd and Tdn) are calculated

using a relationship between measured minimum and maximum relative humidity

(RHmin and RHmax) and measured maximum and minimum air temperature data (Tmax

and Tmin) as follows:

min
max( ) ( )

100
o o

dd

RH
e T e T (2.23)

max
min( ) ( )

100
o o

dn

RH
e T e T (2.24)

where ( )oe T is the saturation vapour pressure (kPa) determined at a specified

temperature (T, in oC).

Dew-point temperatures are obtained by inverting the following equation.

17.27
( ) 0.6108exp

237.3
o T

e T
T

 
   

(2.25)

A linear regression between daytime and nighttime dew point temperatures is

calculated during the parameter optimization phase of ClimGen.

ClimGen calculates the maximum vapour pressure deficit (VPDmax) from the

historical daily data. This maximum difference between the saturation vapour

pressure and the actual vapour pressure is typically obtained at the time of minimum

relative humidity and maximum temperature (Nelson 2002):

0 min
max ( ) 1

100
x

RH
VPD e T

 
  

 
(2.26)

If the aridity factor (a) is available, the daily maximum vapour pressure deficit

can also be estimated from temperature:

0 0
max min

max 0 0
max min

( ) ( )

1 ( ) ( )

e T e T
VPD

a e T e T




   
(2.27)



Review of Literature 56

ClimGen optimizes the aridity factor by combining the above equations. Air

humidity data can be generated using the optimal aridity factor.

ClimGen is the most suitable weather generator for use in water quality

modelling, however, the number of simulated weather variables is not comprehensive.

Cloud cover is one parameter not generated by ClimGen.

2.5.5 Cloud cover

Most weather generator packages are unable to produce synthetic cloud cover

data. However, cloud cover values can be produced by a simple stochastic cloud

generator (Raisanen et al. 2001; Raisanen 1999). Generation of cloud fraction is a

defined variable ]1,0[x (cumulative frequency) such that:

1 clear for this subcolumn

1 cloudy for this subcolumn
j j

j j

x C layer j

x C layer j

  


  

The algorithm for generating x depends on cloud overlap assumptions. For example,









 overlapmaximum

overlaprandom

1jj

j

xx

RNDx

2.6 Risk Analysis and Sustainability

It is an important system requirement for water resources managers to be able

to operate reservoirs satisfactorily under a wide range of possible future demands and

hydrologic conditions and to provide water of an acceptable quality. The goal is to

attain a sustainable water resources system. A method of quantifying the level of

sustainability is required in order to attain this goal.
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The American Society of Civil Engineers (ASCE) and United Nations

International Hydrologic Program (UNIHP) define sustainable management of water

resources as follows:

…sustainable water resources systems are those designed and managed to fully
contribute to the objectives of society, now and in the future, while maintaining their
ecological, environmental and hydrological integrity. (ASCE & UNIHP 1998).

This definition of a sustainable system incorporates the following elements:

1. the system does not cause harm to other systems, either in space and time;

2. the system maintains living standards at a level that does not cause physical

discomfort or social discontent to humans; and

3. life-supporting ecological components are maintained at levels of current

conditions, or better within the system.

2.6.1. Hydrological risk

Loucks (1997) proposed criteria for the sustainability of water resources

systems based on risk criteria related to reliability, resilience and vulnerability (R-R-

V). He postulated a water resources system comprising I users and a set of possible

future scenarios. The notion user is not limited to consumers but should be understood

as any economic, social or environmental activity dependent on the water supply from

the system under consideration. The performance of an individual user i can be

determined from water resources system variables (such as flow, velocity, storage,

depth etc.) and is denoted Xt. A time series of a given performance variable Xt can be

derived by simulation using an appropriate hydrological modelling system. For each

user a threshold level X0 needs to be specified to separate satisfactory from non-

satisfactory values of the variable under consideration.

Given Xt, for t = 1, …, N, a failure has occurred when Xt < X0. Let n be the

total number of failures or time steps where Xt < X0. The duration and deficit volume
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of the jth (a failure period) are denoted by dj and sj respectively, j = 1, …, M, where M

is the number of failure events. The term’s duration and deficit volume are defined in

Fig. 2.13. The system reliability is then estimated as:

 
N

n
XXP t  1Rel 0 (2.28)

Figure 2.13 Definition of duration (dj) and deficit volume (sj) of a failure period.

Resilience and vulnerability are estimated as:
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Finally, a sustainability index S is calculated for each user as:

 )(rVul1)(Res)(Rel)( iiiiS  (2.31)

where

 
scenariosallfrom)Vul(ofsum

)Vul(
Vul

i

i
ir  (2.32)
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A final sustainability score, rS, for each scenario x is estimated as:





I

i
i iSwxrS

1

)()( (2.33)

The index rS(x) lies between 0 and 1, with large values pointing to the most

sustainable scenarios. Loucks (1997) suggested that the system under consideration

should be simulated 50 years into the future and for each 10 years rS(x) should be

estimated to show temporal trends in relative sustainability. However, no

recommendations on how to incorporate the temporal variation of rS(x) in decision-

making were made.

The system performance indices R-R-V used in Loucks’ sustainability

criteria (Loucks, 1997) could be used to accommodate the problem of temporal

variation in the sustainability criteria in decision-making.
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where rS is the relative sustainability of the xth scenario,

T is the total number of intervals in which R-R-V are estimated,

wi indicate the importance of the ith impact and sum to one.

2.6.2. Water quality indices

In assessing the acceptability of water quality in water bodies, the manager

uses and selects indicators based on the local condition to produce a single index. The

purpose of using an index is to provide a better understanding of the overall condition

of water quality through integrated complex parameters and to evaluate water quality
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trends. The index can be produced from different key parameters depending on the

local values of water storages as shown in Figure 2.14.

Cude (2001) expressed the water quality condition of Oregon’s Stream by

integrating eight water quality parameters called the Oregon Water Quality Index

(OWQI). Figure 2.14 shows the valuation of sub indices of selected water quality

indicators for OWQI.

Figure 2.14 Sub index values of selected water quality indicators for OWQI (from
Cude 2001, pp. 127-30).
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Dojlido et al. (1994) improved the OWQI value by combining the weighted

arithmetic mean formula (original formula) and the weighted geometric mean formula

(McClelland 1974). The modification formula is given in Equation 2.36.





n

i iSI

n
WQI

1
2

1
(2.36)

where n is the number of subindices, SIi is Subindex i value.

2.7 Water Quality Management in a Stratified Reservoir

The spatial and temporal variation of water quality in a stratified reservoir is

an issue in the management of reservoirs. Water treatment plants need a fairly

constant raw material to ensure treatment to required levels before distribution to

consumers. There are three general ways to improve the quality of outflow from

reservoirs; (i) water quality inflow management through reservoir watershed

management, (ii) the selection of a withdrawal position for the best possible quality,

and (iii) the use of additional equipments to improve outflow water such as

mechanical mixers and aerators (Straskraba & Tundisi 1999).

2.7.1 Watershed management

Watershed management can reduce nutrient input to a reservoir and slow

down the eutrophication process. This method is an effective way to improve water

quality in reservoirs which have low retention times. The quality of inflow is

commonly affected by human activity associated with land use management in the

reservoir’s catchments.
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Straskraba et al. (1993) introduced some basic principles of watershed

management in a reservoir’s catchment: (i) spatial heterogeneity protection and

improvement by maintaining the existence of riparian forests and natural vegetation,

(ii) biological diversity enhancement and denitrification encouragement through

protection of the recovery areas of natural wetland, (iii) source treatment of nutrient

pollution, for example: pre-impoundment in the rivers or creeks, and changing

agricultural practices with minimum fertilizer, (iv) sediment input reduction.

The Toowoomba City Council manages the reservoir’s catchments by

maintaining the forest and the natural vegetation in the catchment areas and pre-

impoundment in the creeks to reduce sediment input.

2.7.2 Management within the reservoir

The selection of a withdrawal level for the best possible quality of raw water is

a method to get good quality outflow without an upgrade of water quality condition in

reservoirs. This method is suitable for multilevel output reservoirs. Additional means

such as a mechanical mixer and an aerator can also improve water quality in reservoir,

particularly in an outflow layer (Straskraba & Tundisi 1999; Straskraba, Tundisi &

Duncan 1993).

A summary of management options within the reservoir water body is

presented in Table 2.5.
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Table 2.5 Management options within the reservoir.

Measure Means References

Hydraulic regulation Selective withdrawal Straskraba 1996

Fish management
(biomanipulation)

Zooplankton control- Phytoplankton
reduction

Gulam et al 1990

Artificial mixing 1. Destratification

2. Hypolimnetic aeration

3. Epilimnetic mixing

Symons et al 1967

Benhardt 1967

Straskraba 1986

Phosphorus inactivation 1. Alum precipitation

2. Sediment covering

Cooke & Kennedy 1988

Petersen 1980

Sediment aeration Sediment injection

Sediment removal

Ripl 1976, 1985

Hanson & Stefan 1985

Light reduction Shading, covering, suspension, colours Jorgensen 1980

Source: Straskraba, Tundisi & Duncan 1993, p. 269 Table XIV
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Chapter 3

STUDY SITE AND METHODOLOGY

3.1 Study Site

Field work was completed between January 2003 and November 2005, based

on two of Toowoomba’s reservoirs - Cooby and Cressbrook reservoirs. The dams are

situated to the north of Toowoomba City in Southern Queensland as shown in Figure

3.1.

Geographically, Cooby and Cressbrook dams are located by latitude and

longitude at 27o24’ S and 151o55’ E, and 27o15’ S and 151o12’ E, respectively. The

dams are classified as sub-tropical reservoirs.

3.1.1 Cooby reservoir

Cooby Dam has supplied domestic water to Toowoomba City since it was built

in 1941 (Toowoomba City Council 2001). The storage is situated 40 km to the north of

the city at an elevation of 478 m above sea level. It consists of an earth and rock fill

wall with a 69.25 m wide concrete spillway. At full supply-level the ponded area

covers an area of 301 ha and the reservoir holds a total storage volume of 23,092 ML.
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Figure 3.1 Toowoomba water supply sources and reservoirs (after Water and Waste
Operation Toowoomba City Council 2001).

The total catchment area for the storage is 171 km2. Of this area, 68.9 per cent

is used for grazing, 16.9 per cent for residential, 6.9 per cent forests, 3.7 per cent

reserves, 2.1 per cent horticulture, and 1.5 per cent for intensive livestock

(Toowoomba City Council, 2001). Cooby and Geham Creeks provide two direct

inflows to the reservoir. Cooby Creek combines the flows from Coobybilla and
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Merritts Creeks. The detail of drainage network and creeks of the Cooby catchment

can be seen in Figure 3.2.

Figure 3.2 Cooby reservoir and its catchment area (the blue line represents the
drainage network for Cooby reservoir (white area) and light blue indicates
the Cooby catchment area).

3.1.2 Cressbrook reservoir

Cressbrook Dam was built in 1983 to meet an increasing domestic water

demand from Toowoomba City. The storage is located 60 km to the north of the city at

an elevation of 290 m. It incorporates an earth and rock wall with a 200 m wide

concrete spillway. At full supply-level the ponded area covers an area of 517 ha and

the reservoir holds a total storage volume of 81,842 ML (Toowoomba City Council,

2001).
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The total catchment area for the storage is 326.3 km2. This area includes the

catchment for Perseverance Dam (109.54 km2) which lies upstream on Cressbrook

Creek. The additional catchment for Cressbrook alone is about 207.89 km2. Of this

area, 60.1 per cent is used for grazing, 22.4 per cent reserves, 12.2 per cent for

residential, 3.5 per cent horticulture, 1.7 per cent State forests, and 0.1 per cent for

intensive livestock (Toowoomba City Council, 2001). There are two creeks supplying

direct inflow to the reservoir as shown on Figure 3.3. Cressbrook Creek is in the

western part of the reservoir and Little Oaky Creek is in the southern part of the

reservoir. Cressbrook Creek contributes about 84 per cent surface flow to the

reservoir. The creek accumulates inflows from Back, Old Woman’s Hut, Bald Hills,

and Crow’s Nest Creeks including the overflow from Perseverance Dam.

Figure 3.3 Cressbrook reservoir and its catchment area. The red line represents the
drainage networks, the white area represents Cressbrook reservoir, and the
pink area represent the catchment area of the reservoir.
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3.2 Research Methodology

This thesis quantifies the effects of surface mechanical mixers in Cooby and

Cressbrook dams, and then presents management options to optimise that quality. The

results are based on extensive simulation of the reservoirs performance. The

simulations are in turn based on historic and simulated data and quantify statistical

analyses of the reservoirs’ behaviour; stratification and destratification analysis; and

the inflow and reservoir water quality. The adopted methodology was developed in

complementary stages to meet the project objectives. Stepwise regressions were first

used to establish correlations between parameters through the year for reservoir

conditions before and after mixer installation. Regression analyses were also used to

determine the accuracy of model results when compared to field data. Stratification

analyses quantified the stability of stratification in the reservoir and consequently the

energy needed to mix the whole water body. The mixing and destratification

calculations enabled the process of destratification and the effect of mechanical

destratifiers on water quality to be examined.

The DYRESM-CAEDYM software package was used to simulate water

quality parameters with mixing and stratification processes occurring. Synthetic

weather data for a 50 year period were generated using a stochastic climate generator

program (CLIMGEN Version 4.1.3) and a random number generator (RNG Excell

2000). AWBM simulated inflows to the reservoirs from these synthetic weather data.

The weather and inflow data were used in DYRESM-CAEDYM to indicate the future

condition of the reservoirs with and without artificial mixers. The probability of the

occurrence of algal-alert levels was then determined as part of these analyses as an aid

for managing water quality in the reservoirs.

Each of these steps in the methodolgy is detailed below.



Study Site and Methodology 69

3.2.1 Statistical analysis

Statistical analyses were undertaken using the SPSS software package Version

11.5. The package was used to determine the statistical distribution of climatological,

inflow and water quality parameters. The package also used to test the differences

between two time series of water quality values.

3.2.2 Stratification and mixing/destratification analyses

The level of stratification in the water body was quantified by a simple

indicators used in the literature – the Stratification Index.

The Stratification Index (SI) is based on the vertical standard deviation of the

density of water (Equation 2.3 and 2.4). The density of water is first calculated using

the Straskraba and Gnauck equation (1985) which relates water density (ρw) to

temperature (T).

The SI has a similar approach to the thermal deviation developed by Schladow

and Fisher (1995). The thermal response of the artificial mixers was analysed using the

average deviation of the vertical temperature profile. This average deviation (s) is then

used as an indicator of the degree of thermal stratification.
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where s is thermal deviation of weighted vertical profile, T(z) is the temperature and

A(z) is the reservoir area at height z from the deepest point of the reservoir of total

depth h (Schladow & Fisher 1995).

This work fulfils an aim to meet the primary objective in this project in that it

establishes the impact of the artificial mixers on stability.

3.2.3 Weather data generation and inflow simulation

Weather data including rainfall, solar radiation, air temperature, relative

humidity, cloud cover, and wind speed were available as measured historical data to

calibrate the models. However the measured records did not allow for the reservoir

behaviour with and without mixing to be compared. In order to make this comparison,

fifty years of synthetic data were generated from the available records. The weather

data were generated using the ClimGen model, except cloud cover values which were

stochastically generated with the same characteristics as the historical record, and as a

separate exercise. The data were generated without climate scenarios (no global

warming).

Concurrent values of storage inflows were obtained for the synthetic weather

data using the AWBM rainfall-runoff model. The weather and runoff values were then

provided as input to the DYRESM-CAEDYM hydrodynamic and water quality model

to simulate the reservoir performance.

The 50-year synthetic runoff values were generated assuming constant land

use. The Australian Water Balance Model (AWBM) which was used for this purpose

was developed by Boughton (1993). It uses eight parameters to describe soil water

storage capacity (C1, C2, C3), runoff generation areas (A1, A2, A3), base-flow (BFI)

and a daily recession constant (K). These parameters were assessed twice for Cooby

reservoir by consultants GHD (Gutteridge Haskins & Davey Pty Ltd). GHD staff
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validated the model in Toowoomba’s reservoirs in 1994 and then recalibrated in 1999

using 1976-1998 data (Loxton 1999). Table 3.1 describes the AWBM parameters for

each study.

Table 3.1 AWBM parameters for Cooby and Cressbrook reservoirs.

Model parameter
Cooby reservoir Cressbrook reservoir
GHD,
1994*

GHD,
1999*

Macintosh,
1992**

GHD,
1994*

GHD,
1999*

Soil storage capacity
(mm)

C1
C2
C3

10
160
700

3
175
250

11
72

417

10
80

320

6
80

370

Partial area fraction
A1
A2
A3

0.0761
0.2605
0.6634

0.050
0.120
0.800

0.146
0.236
0.618

0.1505
0.2394
0.6101

0.108
0.200
0.692

Baseflow index 0 0.75 0 0 0.30
Daily recession constant 1 0.95 1 1 0.95

* Loxton 1999 (study parameters in 1994 and calibrated in 1999)
** Boughton 2002

Loxton (1999) reduced the total area fraction from 100 per cent to 97 per cent

in the AWBM model as a result of variability of rainfall across the Cooby catchment.

These fractions produced the best inflow to be fitted in the water elevation of the

reservoir (Loxton 1999) and were adopted for this project.

Calibrated values for the AWBM model were held constant for this exercise.

The simulations assumed constant land use patterns over the 50 year period.

Water quality parameters were provided by DNRMW as a function of land use

in the catchment. They were based on plot experiments in and around the catchment

(Merz 2001 and Titmarsh 1997).

The 1999 calibrated AWBM parameters were used in this study to produce a

50-year sequence of inflow values into the reservoirs. The associated daily rainfall

data were obtained from the ClimGen v.4.1.3 weather generator while monthly

average evaporation data were calculated using the Penman-Monteith equation. All

these values were provided as input to the reservoir model.
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3.2.4 Simulation method

The coupled Dynamic Reservoir Simulation Model and Computational Aquatic

Ecosystems Dynamics Model (DYRESM-CAEDYM)1 was selected to simulate the

vertical distribution of temperature, salinity and density as well as some water quality

parameters in Cooby and Cressbrook Dams. A 50-year period was simulated using the

synthetic input data describe in the previous section.

Value for process constants needed by DYRESM-CAEDYM were obtained

from the literature (Antenucci 2000; Bowie et al. 1985; Borowitzka 1998; Cole &

Wells 2002; Fischer et al. 1979; Imberger 1982; Lewis et al. 2000; Peterson et al.

1994; Soetaert & Herman 2001; Straskraba & Gnauck, 1985; Wetzel 2001) and

confirmed where possible with field data. Some parameters in the model had to be

established by trial and error. The response in water quality to a selected inflow event

was analysed to establish the required values.

Independent verification of the model results was done using data from March

2003 to March 2004. The verification results show that the validity of the model’s

predictions for water quality condition over 50 years in Cooby and Cressbrook

reservoirs was valid for predictive purposes.

3.2.5 Sensitivity analysis

After validating the DYRESM-CAEDYM model, further simulations were

used to establish the probability of algal blooms over 50 years on the basis of

simulated water quality parameters. Sensitivity analyses were undertaking by varying

selected climatological and inflow parameters from -10 to 10 per cent of the selected

value (-10, -5, 5, and 10 per cent of the synthetic data or forecasting values) and

1 The package of software programs is available from the Centre for Water Research, University of
Western Australia (CWR-UWA). Version 2.4 was adopted in this project
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observing the change in model output. The selected parameters included solar

radiation, rainfall, total phosphorous, nitrate, and total suspended solid concentrations.

Nine output parameters (water temperature, dissolved oxygen concentration,

salinity, pH, total phosphorous, nitrate, total manganese, total iron, and blue green

algae concentrations) were examined in this analysis. All output parameters of each set

simulation are analysed using probability occurrence of the parameters on a weekly

basis through 50 years prediction.

In order to evaluate the effectivity of the mixers, the simulation results with

and without mixers were compared for both reservoirs. An analysis of water quality

improvement, from the use of mixers, indicates the potential benefits of installing

mixers in Cooby and Cressbrook reservoirs.

3.3 Hydrology and Management Data

A large amount of hydrological, meteorological and other reservoir data had to

be sourced for the modelling work in this project.

3.3.1 Physical data and reservoir morphometry

Physical information about the reservoir including geographical data (latitude

and elevation of reservoirs), streambed half angle and slope and outlet elevation as

well as catchment areas were obtained from a digital elevation model (1999 DEM

data) provided by the Department of Natural Resources, Mines and Water (DNRMW)

Queensland (Department of Natural Resources, Mines and Water 1999).

Topographic Maps No. 9243 and 9343 (scale 1:100000) supported by

Topographic Maps No. 9243-21, 9243-22, 9343-31, 9343-32, 9343-33, 9343-34,

9343-42 and 9343-43 (scale 1:25000) were used to check and correct the DEM data.
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These topographic maps were available from SunMap - Queensland Government as

released in 1979 and revised in 1998. Surface areas at each elevation in the reservoirs

(morphometric data) were measured by Planimeter (AMSLER Type 800/14115).

Reservoir morphometric data were obtained from a 1983 Cooby reservoir

Contour Plan (revised edition) and a 1980 Cressbrook reservoir Map Plan provided by

Toowoomba City Council and 1999 Digital Elevation Model (DEM) data (Department

of Natural Resources, Mines and Water 1999; Toowoomba City Council 1980).

Morphometry maps were reproduced using ArcView-GIS Version 3.2. The plans were

prepared from surveys prior to construction of the dams.

3.3.1.1 Cooby reservoir

Figure 3.4 shows a contour map of Cooby reservoir from the bottom reservoir

to just above the full supply level of the reservoir. Interpolation of elevations was used

to produce an eleven line contour map from the original of nine lines.

Figure 3.4 Morphometry of Cooby reservoir.
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The detailed relationship between water level, surface area of contours and the

volume of the storage is developed from bathymetry data presented in Figure 3.5. The

volume of the storage (V) is calculated using the cylindrical assumption method

(Florida LAKEWATCH 2001) as follows:

 
3

bottomtopbottomtop AAAAh
V


 (3.3)

where: Atop = the area of the top of the layer,

Abottom = the area of the bottom of the layer, and

h = the distance between contour lines

Based on the adopted original contour lines of Cooby reservoir Map Plan, the

volume can be divided into nine segments from bottom to a height of 22.6 metres

water (Toowoomba City Council 1983).

Figure 3.5 Bathymetry of Cooby reservoir. Cross indicates the area in a horizontal
cross-section, solid diamond indicates cumulative volume and dash and
solid lines represent the trend of area and volume, respectively.
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3.3.1.2 Cressbrook reservoir

Figure 3.6 shows a contour map of Cressbrook reservoir from the lowest point

to just above the maximum water level of the reservoir. The map was adopted from the

Cressbrook reservoir Map Plan. It was reproduced using ArcView-GIS version 3.2

based on the original contour lines.

The detailed relationship between water level, surface area of contours and the

volume of the storage is presented in Figure 3.7. The volume of the storage was

calculated using the cylindrical assumption method (Florida LAKEWATCH 2001)

with 10 segments.

Figure 3.6 Morphometry of Cressbrook reservoir (solid lines represent contour lines).
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Figure 3.7 Bathymetry of Cressbrook reservoir. Triangle indicates the area in a
horizontal cross-section and solid diamond indicates cumulative volume.
Lines represent the trend of area and volume.

Geometric information was processed from the 1999 Queensland DEM data as

a companion Storage File.

3.3.2 Meteorological data

The DYRESM-CAEDYM water quality model requires a set of meteorological

data. The data consist of rainfall, air temperature, short wave radiation, cloud cover,

wind speed, and vapour pressure. Evaporation data and rainfall are also required by the

AWBM hydrological model to produce the daily inflow values. Suitable

meteorological data for modelling purposes were sourced as follows:

3.3.2.1 Rainfall

Daily rainfall data (in mm, ± 0.05 mm) for the dams were recorded by

Toowoomba City Council from 1943 to 2003 in Cooby and Cressbrook rainfall

stations and by the DNRMW from 1998 to 2003.

Based on measured rainfall from 1978 to 2003 (25 year period), the average

rainfall of Cooby and Cressbrook catchments are about 826 and 787 mm per year,
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respectively (Toowoomba City Council 2002). Mean rainfall values for each month

for both reservoirs are presented in Figure 3.8 and Figure 3.9.

Figure 3.8 Mean daily precipitation for each month (filled bars) and maximum
deviation from mean daily precipitation (line) of Cooby reservoir.

Figure 3.9 Mean daily precipitation for each month (filled bars) and maximum
deviation from mean daily precipitation (line) of Cressbrook reservoir.

3.3.2.2 Air temperature

Daily average air temperature data (in C, ±0.25 C) for the dams were available

from the DNRMW from 1998 to 2003. The average air temperatures of Cooby and

Cressbrook reservoirs together with maximum and minimum values and standard

deviations are presented in Figures 3.10 and 3.11.
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Figure 3.10 Mean daily air temperature for each month (filled bars) with standard
deviation interval (line) and mean maximum (cross) and minimum
(diamond) daily air temperature of Cooby reservoir.

Figure 3.11 Mean daily air temperature for each month (filled bars) with standard
deviation interval (line) and mean maximum (cross) and minimum
(diamond) daily air temperature of Cressbrook reservoir.

3.3.2.3 Short wave radiation

Incident short wave radiation is that fraction of solar radiation which reaches

the ground. Daily short wave radiation data (in MJ m-2, ± 0.05 MJ m-2) for the dams

were available from the DNRMW from 1998 to 2003.
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Figure 3.12 Mean daily short wave radiation for each month (filled bars) with
standard deviation interval (line) and mean maximum (cross) and
minimum (diamond) daily shortwave radiation of Cooby reservoir.

Figure 3.13 Mean daily short wave radiation for each month (filled bars) with
standard deviation interval (line) and mean maximum (cross) and
minimum (diamond) daily shortwave radiation of Cressbrook reservoir.

3.3.2.4 Cloud cover

Mean total cloud cover data (in Oktas, ± 0.5 Okta) for the Toowoomba region

(for both Cooby and Cressbrook region) were obtained from the Australian Bureau of

Meteorology (BOM), for the years 1998 to 2003. Because the DYRESM model needs

cloud cover represented in fractional form, the unit of cloud cover was converted to a

decimal fraction using the WMO Code 2700 (NERC & ENCAS 2002) as presented in

Table 3.2..
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Table 3.2 Conversion cloud cover from okta to tenth based on World Meteorology
Organization WMO Code 2700.

Code
Figure

Meaning

Oktas Fraction

0 Clear sky 0

1 1 okta or less, but not zero 1/10 or less but not zero

2 2 oktas 2/10 - 3/10

3 3 oktas 4/10

4 4 oktas 5/10

5 5 oktas 6/10

6 6 oktas 7/10 - 8/10

7 7 oktas or more, but not 8 oktas 9/10 or more, but not 10/10

8 8 oktas 10/10

9 Sky obscured by fog and/or other meteorological phenomena

/ Cloud cover is indiscernible for reasons other than fog or other meteorological
phenomena, or observation is not made

Source: NERC & ENCAS 2002

Mean daily cloud cover fraction for each month and its standard deviation for

Toowoomba region is presented in Figure 3.14.

Figure 3.14 Mean daily cloud cover fraction for each month (filled bars) with
standard deviation interval (line) of Toowoomba region.

3.3.2.5 Wind Speed

Mean daily wind speed data (in km h-1, ± 0.05 km h-1) for the Toowoomba

region were provided by the Bureau of Meteorology (BOM) for the period 1998 to

2003. After converted into SI units of metre per second, mean daily wind speed for

each month is presented in Figure 3.15. Mean daily average wind speed for each
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month has a small variability. However, the average maximum value of wind speed

fluctuated from 9 to 14 m s-1.

Figure 3.15 Mean daily wind speed for each month (filled bars) with standard
deviation interval (line) and mean maximum (cross) and minimum
(diamond) daily wind speed of Toowoomba region.

3.3.2.6 Vapour Pressure

Average vapour pressure data (in hPa or mbar, ± 0.5 mbar) for the dams were

available from the DNRMW for the period 1998 to 2003. The mean daily vapour

pressure with associated standard deviation for Cooby and Cressbrook dams is

presented in Figure 3.16 and Figure 3.17, respectively.

Figure 3.16 Mean daily vapour pressure for each month (filled bars) with standard
deviation interval (line) and mean maximum (cross) and minimum
(diamond) daily vapour pressure of Cooby reservoir.
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Figure 3.17 Mean daily vapour pressure for each month (filled bars) with standard
deviation interval (line) and mean maximum (cross) and minimum
(diamond) daily vapour pressure of Cressbrook reservoir.

3.3.2.7 Evaporation

Daily evaporation data (in mm, ± 0.05 mm) for the dams were recorded by

Toowoomba City Council from 1978 to 2003 and made available to this project. Mean

monthly evaporation values for each reservoir are presented in Figure 3.18 and Figure

3.19.

Figure 3.18 Mean daily evaporation for each month (filled bars) with standard
deviation interval (line) and mean maximum (cross) and minimum
(diamond) daily evaporation of Cooby reservoir.
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Figure 3.19 Mean daily evaporation for each month (filled bars) with standard
deviation interval (line) and mean maximum (cross) and minimum
(diamond) daily evaporation of Cressbrook reservoir.

3.3.3 Inflow data

Inflow data were available from two sources - The Queensland Department of

Natural Resources, Mines and Water (DNRMW), and from consultant John Macintosh

(Boughton, 2002). The DNRMW provides inflow data from October 1935 to January

1940 for Cooby and for 1965-1980 for Cressbrook. The data are presented as mean

stream discharge in m3 s-1 with an apparent precision of ± 0.005 m3 s-1. John Macintosh

in Boughton (2002) obtained data for Cressbrook in depth units of millimetres for the

period 1988 to 1992. These data were used to calibrate the AWBM Version 4 model

of Boughton (2002). Using the result of Macintosh’s calibration, inflow data were

produced for the simulations and supplied to the DYRESM-CAEDYM model.

There is no recorded inflow data for Cooby and Cressbrook reservoirs after the

Macintosh study. Then inflows produced by AWBM for the years 1998 – 2002 and

2004 – 2053 were used in the place of recorded values. A set daily temperature inflow

was acquired from a moving four-day average of the mean air temperature (Antenucci

2000). Salinity inflow is set to a constant value 0.25 psu and 0.4 psu for Cooby and
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Cressbrook, respectively (Kleinschmidt 2003; Merz 2001). The preparation of inflow

data is detailed in Chapter 5.

3.3.4 Withdrawal data

The Toowoomba City Council provided daily withdrawal data (± 0.5 m3 day-1)

for all the reservoirs over the years 1998 to 2003. These data were obtained from the

pumping system output (m3 h-1) and the daily pumping duration. Figure 3.20 and

Figure 3.21 represent the actual daily withdrawal and the surface water elevation of

Cooby and Cressbrook Dam, respectively. No withdrawal was made from Cooby

reservoir during the period of 1998 because of the occurrence of cyanobacterial

blooms.

Figure 3.20 Withdrawal (top) and surface water level (down) at Cooby Dam from
1998 to 2003.
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Figure 3.21 Withdrawal (top) and surface water level (down) at Cressbrook Dam from
1998 to 2003.

3.3.5 Artificial mixing data

Operational data for the artificial mixers were provided by the Toowoomba

City Council and by the supplier - WEARS P/L. Two WEARS surface mixers type

SMDI-5 have operated continuously in Cooby reservoir since 2001. The diameter is

5m and the draft tube length of these mixers is 15m. The average flow rate is 7m3 s-1.

There is no artificial mixer installed in Cressbrook reservoir, although the Council is

considering a future purchase.

3.3.6 Water quality data

Water quality data from 1998 to 2004 were provided by the Water and Waste

Operation (WWO) section of the Toowoomba City Council. The physical

characteristics (water temperature, salinity, dissolved oxygen, turbidity, and pH) were

measured at 1 m layers in the reservoirs using a Yeo-Kal Profiler Model 611.

Biological and chemical characteristics (the cyanobacterial cell count, chlorophyll a,
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total phosphorus, nitrate, iron, and manganese concentrations) were sampled at least

for the surface, middle, and bottom layers with the samples analysed in the Water and

Waste Operation Laboratory at the Mt. Kynoch Water Treatment Centre.

The operational specification for the Yeo-Kal Profiler Model 611 is

summarized in Table 3.3.

Table 3.3 General specification of Yeo-Kal Profiler Model 611.

Parameters Range Precision Resolution

Temperature -5 – 50 oC  0.05 oC 0.01 oC

Conductivity
H 0 – 80 ms/cm

L 0 – 800 s/cm

 0.02 ms/cm

 3.0 s/cm

0.02 ms/cm

2.0 s/cm

Salinity 0 – 60 ppt  0.05 ppt 0.02 ppt

Turbidity 0 – 600 NTU
 0.2 NTU (0-200 NTU)

 4 NTU (200-600 NTU)
0.3 NTU

pH 0 – 14 pH  0.03 pH 0.01 pH

ORP  900 mV  2 mV 1 mV

DO
0 – 200 % sat

0 – 20 mg/L
 0.5%

0.1% sat

0.1 mg/L

Depth 0 – 100 m  0.5% 0.1 m

Detail of the water quality profiles for both Cooby and Cressbrook reservoirs

are presented as seasonal behaviour of reservoirs in Chapter 4.

All these hydrological and management data were used in simulations of the

reservoirs. The flow of data and the sequence of models is depicted in Figure 3.22.
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Figure 3.22 Structure and flow of data processing/analysis
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Chapter 4

SEASONAL BEHAVIOUR OF RESERVOIRS

Some parts of this chapter have been presented and/or published in:

- Achmad, M & Porter, M 2003, ‘Evaluating the Effect of Mechanical
Destratifiers on Water Quality in Toowoomba’s Dams’, 14th Queensland
Hydrology Symposium 2003, Nathan, Brisbane, Australia, 22 – 23 July 2003

- Achmad, M & Porter, M 2004, ‘Stratification, Artificial Mixing and Water
Quality in Cooby Reservoir Toowoomba Australia’, International Conference
of Hydro-Science and Engineering VI in Brisbane, Australia, May 31 – June 3,
2004. ISBN 0-937099-12-0 (Book and CD-ROM) or 0-937099-13-9 (CD-
ROM only)

4.1 Introduction

This chapter investigates and summarises the historical water quality in Cooby

and Cressbrook reservoirs. Recorded data from 1998 to 2003 were used to produce

line and contour graphs for a better understanding of the seasonal behaviour of

selected water quality parameters. Water temperature, dissolved oxygen concentration

and cyanobacterial cell count were selected as particularly important seasonal factors.

The variation in concentration of a water quality parameter in a temperate

reservoir through the year is strongly affected by the seasonal variation in climatic

parameters such as the intensity and duration of sunshine.
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As a consequence of this dependence, thermal stratification occurs during

warm periods when reservoirs gain energy from long time penetration of solar

radiation. In most cases, the reservoir develops a warm top water layer (epilimnion)

overlying cold water at the bottom (hypolimnion). The epilimnion releases its energy

to the air as the daily average air temperature drops. The reservoirs then become

unstratified. Destratification can also occur if sufficient energy from the wind mixes

the whole reservoir. Wind energy circulates the epilimnion layer and extends the

depth of this layer below the surface.

Seasonal behaviour of reservoirs in this chapter is described by considering the

profiles of water temperature, dissolved oxygen and cyanobacterial concentrations

over a five-year observation period. The reasons for this are that thermal stratification

can be seen through vertical temperature profiles. Dissolved oxygen shows the effect

of thermal stratification on the mixing process and the deoxygenation process. As the

main and only biological indicator in this project, Cyanobacterial concentration

represents the biological aspect of water quality.

4.2 Temperature Variation and Stratification Pattern

Water temperature is one of the key bio-physical characteristic parameters in

reservoir management. Temperature influences the rate of all nutrient transformation

processes. The rate coefficient of most chemical formulations is adjusted as a function

of temperature of the environment (Bowie et al 1985).

Spatial and temporal variation of temperature in a water body affects the

equilibrium of chemical substances. In a stratified reservoir, for example, chemical

transformation models are more complex because water temperatures vary from the
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surface to the bottom of the reservoir. This profile creates different rate

transformations of chemical substances through the vertical layers.

The variation of vertical temperature profiles in Cooby reservoir for each

month before the installation of artificial mixers can be seen in Figure 4.1. The

reservoir gains heat energy from the sun in late September (spring). The stratification

starts in late September (spring) and continues to develop during summer. During

October, the metalimnion is clearly seen at a depth of 8-10 metres. The process of

natural mixing is supported by the form of the reservoir. With a 22.6-metre depth, the

metalimnion is fully developed during the warm period (spring and summer). The

combination of wind and radiation forces the metalimnion to dynamically adjust its

position.

Figure 4.1 Vertical temperature profiles for each month in Cooby reservoir.

Only natural mixing occurred before November 2001, and the vertical thermal

stratification in the reservoir recurred reliably each year. Total mixing was achieved in

June-July (overturn period) while the maximum stratification occurred during
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summer. The installation of a couple of surface mixers (mechanical destratifiers) in

November 2001 changed this pattern by introducing additional energy and forcing the

mixing through the depth of reservoir (Achmad & Porter 2003).

Figure 4.2 shows the contour plot of the water temperature of the reservoir

from the period 1998 to 2003. The figure illustrates the effect of artificial mixers on

Cooby Dam by comparing the period before (Apr 1998 – Nov 2001) and after (Dec

2001 – Feb 2003) the mixer installation. The artificial mixers change the vertical

profile of the reservoir particularly during summer. Warmer water can be found in

deeper layers as the effect of destratifiers start to work. The metalimnion layer moves

down to a lower level. This leads to the creation of a thicker epilimnion.

Figure 4.2 Temperature contour plots of observed data of Cooby reservoir before
(Apr 1998 – Nov 2001) and after the mixer installation (Dec 2001 – Feb
2003). No available data on January – June 1999 and October 1999 –
January 2000.

The degree of stratification was calculated using the Stratification Index (SI) as

described in Chapter 2 and Chapter 3. The SI indicates that strong stratification (SI >

7) occurs in the reservoir during the period from September/October to April/May

prior to the mixer installation for about seven months. The remaining time after

installation shows medium to very weak stratification (7 > SI > 0) or unstratified
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conditions (SI = 0). Details of the stratification level of Cooby reservoir for the period

of March 1998 to February 2003 is presented in Figure 4.3.

Figure 4.3 Degree of stratification using the Stratification Index (SI) for Cooby
reservoir before and after the mixer installation period. Interpolated data
were used for the period of January – June 1999 and October 1999 –
January 2000.

Cressbrook reservoir, which has no artificial mixers on it, has a

comprehensible cycle of its thermal profile. The cycle is seasonal. The reservoir gains

heat from solar radiation in September. Stratification occurs from October and reaches

a peak in December. The stratification persists during summer with a fully developed

metalimnion lying at a depth of 7 – 13 m. As a consequence of releasing energy

during autumn, the level of stratification decreases until full mixing occurs in June-

July (winter). The monthly vertical temperature profiles of Cressbrook reservoir,

which indicate the natural processes of gaining and releasing heat (stratification and

destratification) in the reservoir, are shown in Figure 4.4.



Seasonal Behaviour of Reservoirs 94

0

5

10

15

20

25

10 15 20 25 30

Temperature (C)

D
e
p
h
t

(m
)

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Figure 4.4 Vertical temperature profiles for each month at Cressbrook reservoir.

The temperature contour plots of observed data for Cressbrook reservoir show

a clear annual pattern. Figure 4.5 shows the water body in stratified and unstratified

conditions. Thermally stratified periods persist longer than unstratified (overturn)

periods. Stratification periods can be divided into stages of developing (strengthen),

persisting (peak), and releasing (weaken) stratification.

Figure 4.5 Temperature contour plots of observed data of Cressbrook reservoir (Apr
1998 – Feb 2003) from water surface to the depth of 28 m. No available
data on January – June 1999 and October 1999 – January 2000. Time step
is 90 days
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The calculation of stratification index for Cressbrook reservoir is based on

temperature difference. The measured temperature was available only from surface to

maximum about 35 m depth. Therefore temperatures below the lowest measurement

point to the bottom of the reservoir were assumed to be constant. The degree of

stratification in Cressbrook reservoir is higher than in Cooby reservoir because of a

greater depth and size. The stratification index values of the water body indicate that

strong stratification occurs during October – May every year.

Figure 4.6 Degree of stratification using the Stratification Index (SI) for Cressbrook
reservoir (Mar 1998 – Feb 2003). Interpolated data were used for the
period of January – June 1999 and October 1999 – January 2000.

4.3 Dissolved Oxygen Variation

Oxygen diffusion in standing water is very slow compared to that in turbulent

flowing water. The vertical distribution of dissolved oxygen in a reservoir works

effectively when the energy available for vertical circulation reaches a minimum

threshold (Imberger 1982; Imboden & Wüst 1995; Wetzel 2001). The seasonal

variation in dissolved oxygen concentrations at the surface is small because the

epilimnion is in direct contact with the atmosphere (diffusion process).

The oxygenation process in the hypolimnion layer can only occur effectively if

the vertical circulation is able to reach a deeper level in the body of water. In most
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cases, seasonal variation in dissolved oxygen concentrations at the hypolimnion layer

is very sharp and associated with mixing events, particularly in deep reservoirs.

The contour plots of dissolved oxygen concentrations for Cooby reservoir

show that a high concentration does exist during the overturn period (Figure 4.7).

Once the stratification process starts, the oxygen concentrations decrease in the

hypolimnion. The metalimnion layer acts as a barrier between the surface and bottom

layers and prevents oxygen transport from the surface. The oxygen concentration in

the hypolimnion layer becomes low. In Cooby reservoir, the concentration of oxygen

in the hypolimnion layer can be lower than 4 mg L-1.

Figure 4.7 Dissolved oxygen contour plots (observed data) of Cooby reservoir (Jun
1999 – Feb 2003). No available data from Oct 1999 to Jan 2000.

Comparing the oxygen concentration in the epilimnion and the hypolimnion

layers, it is clear that the vertical profiles of dissolved oxygen concentration in the

storage are seasonally different. A better water quality with higher oxygen

concentrations is found in the epilimnion than hypolimnion layer through the whole

season. The measured difference in dissolved oxygen concentration between

epilimnion and hypolimnion was up to 8 mg L-1 in November/December 2000, before

the mixer installation. In the period June – August 2000, there is no significant
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difference between dissolved oxygen concentrations in the layers (see Figure 4.8). The

initiation of mixers’ operation at the end of November 2001 changed the dissolved

oxygen characteristics of both layers. The dissolved oxygen concentration in the

hypolimnion layer increases during the summer season.

Figure 4.8 Averaged dissolved oxygen concentrations in the epilimnion and the
hypolimnion (observed data) of Cooby reservoir (Jun 1999 – February
2003). No available data from Oct 1999 to Jan 2000.

A clear seasonal pattern of dissolved oxygen contour plots for Cressbrook

reservoir is shown in Figure 4.9. It indicates that the availability of oxygen in the

bottom of the reservoir is limited (the concentration was less than 4 mg L-1) during the

period of October – June. However, dissolved oxygen concentration is higher (more

than 4 mg L-1) during the overturn period.

The natural mixing during the stratified period is only able to circulate oxygen

to the layer of 7 m below the surface water. The presence of the metalimnion in the

layer between 7 and 11 metres below the water surface prevents a deeper circulation

in the reservoir. When the thermocline lessens, the wind energy is able to force the

water circulation into a deeper layer. The energy circulation changes the position of

the thermocline down. If the circulation is strong, it can remove the thermocline and

create a single layer of dissolved oxygen concentration in the body of water. A single



Seasonal Behaviour of Reservoirs 98

dissolved oxygen layer in the reservoir can be found for a short term if a complete

mixing occurs during the overturn period (mostly in June or July).

Figure 4.9 Dissolved oxygen contour plots (observed data) of Cressbrook reservoir
(Jun 1999 – Feb 2003). No available data from Oct 1999 to Jan 2000.

Because Cressbrook’s morphometry is deep and meandering, the period of

complete mixing for the whole reservoir’s body through the year is limited. Average

dissolved oxygen concentration of the epilimnion and hypolimnion layers in the last

five years from 1999 to 2003 is about 7 and 2 mg L-1, respectively. A comparison

value of dissolved oxygen concentrations in the epilimnion and hypolimnion layers

can be clearly seen in Figure 4.10. The variation of dissolved oxygen concentrations

in the epilimnion layer is in between 2.5 and 13 mg L-1. In the hypolimnion layer, the

concentration of dissolved oxygen varies from 0 to 7.4 mg L-1. The difference of

dissolved oxygen concentration of the two layers is up to 9 mg L-1. The biggest

differentiation occurs during the warm period (summer and spring seasons).
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Figure 4.10 The averaged dissolved oxygen concentrations (observed data) of
Cressbrook reservoir (Jun 1999 – Feb 2003). No available data from Oct
1999 to Jan 2000.

Anoxic condition in the hypolimnion layer of the reservoir for a long period

will affect the living environment of some creatures which normally live in a deeper

body of water with sufficient dissolved oxygen. The deficiency of dissolved oxygen in

the hypolimnion also affects the transformation of other chemical substances in the

layer.

4.4 Cyanobacterial Concentration

There are four major cyanobacterial species growing in Toowoomba’s

reservoirs which are: Anabaena; Mycrocystis; Aphanizomenon; and

Cylindrospermopsin. All these species are classified as summer bloom species

(Steinberg & Gruhl 1992). The total cyanobacterial concentrations of the reservoirs

mostly reach a peak during the summer period as the stratification occurs in the

reservoirs. The cyanobacterial is recorded as a number of cells per millilitre. The

historical record of total cyanobacterial cells is presented for a period of 1998 – 2003

in selected layers based on the decision made by the Water Section of Toowoomba

City Council.
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In Cooby Dam, it was recorded that the high density of cyanobacteria occurred

in the period of January to October 1998. The concentrations reached up to 86400

cells per millilitre and created a 35 record of the alert level 3 (cells count is more than

15000) based on a weekly calculation (the detail alert calculation is presented in Table

2.2 Chapter 2). These blooms stop the dam operation for a long period from activity as

a water supplier and for the recreation function.

The period after 1998 shows that a normal pattern of cyanobacterial

concentration occurs only during summer season. An exception occurred during the

period of 1999 – 2000 where Anabaena found a suitable condition for growth during

the winter season. As a result, the total cyanobacterial concentrations reached up to

2000 cells per millilitre. The highest cyanobacterial cells are mostly found in the

upper layer of the reservoir (surface and 9.14 m layers).

The concentration increased from less than 2000 cells count per millilitre in

1999 to over 10000 cells in summer 2001. Then it decreased again in the period of

summer 2002 – 2003. This trend was identified as the effect of the mechanical mixers’

work (Clark, pers. comm., 28 August 2002). The detail of total cyanobacterial cells of

selected layers in Cooby reservoir during the period of 1998 – 2003 can be seen in

Figure 4.11.

Figure 4.11Cyanobacterial cell counts in the selected layers (from surface to the
bottom) of Cooby reservoir in the period of 1998 – 2003. Rescale on
January 1999 to detail the cell counts.
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Seasonal pattern of cyanobacterial concentration in the Cressbrook water body

is clearly seen in Figure 4.12. The figure shows that the algal cells count dramatically

increases during the summer season. In 1998, the cyanobacterial cells reach up to

16000 cells per millilitre, recording seven of algal alert level 3. The concentration

decreased in summer one year after (less than 2000 cells per millilitre). The following

years shows that the cyanobacterial concentration increased exponentially to over

100000 cells per millilitre in summer 2002 before decreasing again in summer 2003.

There was recorded four the algal alert level 3 in the reservoir during summer 2002.

On the other hand, the cell counts were very low (classed as safe) for the period of

winter.
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bottom) of Cressbrook reservoir in the period of 1998 – 2003.
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Chapter 5

WATER QUALITY SIMULATIONS

5.1 Model Description

Three main software packages were used in this study including DYRESM-

CAEDYM, AWBM and ClimGen models. The DYRESM-CAEDYM is for water

quality simulation, the AWBM is for inflow preparation, and the ClimGen is to

generate 50-year synthetic weather data. The preparation of files and their description

is presented in this chapter. The preparation of the files was based on the available

measured data, works or research related to this study site and other references related

to water quality modelling. Structure and flow of data processing/analysis can be seen

in Chapter 3 (Figure 3.22).

5.1.1 DYRESM-CAEDYM model

The DYRESM and CAEDYM models require amount information, which is

basic information about the storage (*.stg), initial condition (*.int), DYRESM

configuration (*.cfg), CAEDYM configuration (*.con), simulation parameters (*.par),
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general constants (*.dat), inflow (*.inf), meteorology (*.met), withdraw or outflow

(*.wdr), and mixer setting (*.mix) if required. Additionally, the field data (*.fd) can be

configured for comparison purposes. To force some parameter values in the

simulation, a forcing file (*.for) is needed.

5.1.1.1 General information

General information about the reservoir is presented in storage files. The files

are created based on the contour and other physical information of the reservoirs as

described in Chapter 3 (part 3.2.1). The configuration of storage files is presented in

the *.stg files. The structure of the files consists of generic data about the reservoirs

and their inflows. The files also describe the bathymetry of the water bodies.

Table 5.1 presents a general description of the reservoirs including position and

elevation of the dams and their outlets, and bathymetry of the reservoirs as described

in Chapter 3.

Table 5.1 Basic data for Cooby and Cressbrook reservoirs.

Subjects Cooby Cressbrook

Latitude (o) -27.40* -27.25*

Height above sea level (m) 450 230

Crest elevation (m) 22.6 50

Number of outflows 1 1

Outlet elevation (m) 10.4 22

Contour Plot Fig 3.4 and Fig 3.5 Fig 3.6 and Fig 3.7

* Negative sign means the area is situated in the southern hemisphere.

The lake latitude was used to calculate the declination of the sun. The

DYRESM adopts a TVA equation for this calculation.


















 )172(

365

2
cos

180
45.23 D


(5.1)

where D is the day of the year (TVA 1972, eq 2.4).



Water Quality Simulations 104

The physical characteristics of the inflows into the reservoir including the

names of the inflows and the position of entering the reservoir, the slope of the

streambed, half angle of the channel cross section entering the reservoir, and drag

coefficient are presented in Table 5.2. The streambed drag coefficient value was

assumed to be 0.015 (Antenucci 2000; Antenucci & Imerito 2001) which is slightly

lower than 0.016, the value suggested by Fisher et al. (1979). The slope of the

streambed was determined using the distance of two contour lines which are (i)

maximum water elevation of the reservoir body and (ii) closest contour lines from the

reservoir. The different elevation of the two contour lines is five metres.

Table 5.2 Physical characteristics of inflow of Cooby and Cressbrook reservoir.

Reservoir Inflow Position Half angle Slope
Drag

Coefficient*

Cooby
- Geham Creek
- Cooby Creek

Surface
Surface

87
89

0.350
0.160

0.015
0.015

Cressbrook
- Cressbrook Creek
- Little Oaky Creek

Surface
Surface

77
78

0.496
0.573

0.015
0.015

* the values are adopted from Antenucci, 2000.

5.1.1.2 Initial condition

There are two simulation settings in this study. The calibration and validation

period is from March 1998 to February 2003, and the prediction period is from

January 2004 to December 2053. Each simulation setting used different initial

conditions taken from the measured data of the beginning simulation time.

5.1.1.3 DYRESM- CAEDYM configuration

All DYRESM simulations coupled with CAEDYM ecological models were set

to the time step of 360 minutes with a weekly output basis. The length of simulation is

1343 days for calibration and validation, and 18263 days for future prediction.
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Minimum and maximum permissible layer thicknesses (PLTmax and PLTmin) were set

to 0.5 and 3.0 m, respectively (Antenucci & Imerito 2001). This combination complies

with the rule PLTmax > 2 PLTmin. It also gives the best results for other users. The

destratification system was set to FALSE if the simulation was running for a natural

setting (no artificial mixers). Otherwise it was set to TRUE if the mixers were set on

the operation.

The atmospheric stability was set to a neutral condition to accommodate the

use of interpolated wind speed data from different elevations of stations around the

reservoirs. The simulations were assumed as a closed system where there is no open

boundary. Sediment nutrient flux is calculated with a consideration of vertical

diffusion using an oxygen and pH regression for the flux (Herzfeld & Hamilton 2000).

5.1.1.4 Hydrodynamic parameters

General parameters for DYRESM-CAEDYM consist of 13 coefficients for

hydrodynamic computation in the storages. Fischer et al. (1979) suggested an

appropriate value for a bulk aerodynamic transfer coefficient for neutral atmospheric

stability condition to be 1.3 10-3. This coefficient is required to determine the wind

stress exerted on the water surface from air density and wind speed. The mean albedo

of water surface was set to be 0.08 as the representation of the reflection coefficient of

the incident short wave radiation (Antenucci & Imerito 2001). Imberger & Patterson

(1981 p. 316) give the value of emissivity of the water surface as 0.96.

Wind speed can stir a significant horizontal mixing in the water surface if the

speed is equal to or bigger than the critical wind speed. Therefore the critical wind

speed is needed to determine the initiation of mixing process in the reservoirs.

Antenucci and Imerito (2001) used the value of 3.0 m s-1 as the critical speed. This

value was adopted in this research.
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The entrainment coefficient and bubbler entrainment coefficient were 0.002

and 0.012, respectively. Antenucci and Imerito (2001) experimentally found that 0.083

was the optimal value of a buoyant plume entrainment coefficient.

The other value of parameters are adopted from DYRESM default values

including shear production efficiency (= 0.080), potential energy mixing efficiency

(= 0.20), wind stirring efficiency (= 0.06), effective surface area coefficient

(= 1.0 x107), and vertical mixing coefficient (= 200) (Antenucci 2000; Imberger 1982;

Imberger & Patterson 1981).

The time for output was set to ten hours (= 36000 seconds) from midnight as

the time of observations in the dams. The summary of generic parameters in

DYRESM can be seen in Table 5.3.

Table 5.3 General hydrodynamic parameters in water surface.

Parameters/Coefficients Unit Value

Bulk aerodynamic transport coefficient ND 1.3 10-3

Mean albedo of water surface ND 0.080

Emissivity of water surface ND 0.960

Critical wind speed m s-1 3.000

Time of day for output (in seconds from midnight) s 36000

Entrainment coefficient constant ND 0.002

Bubbler entrainment coefficient ND 0.012

Buoyant plume entrainment coefficient ND 0.083

Shear production efficiency ND 0.080

Potential energy mixing efficiency ND 0.200

Wind stirring efficiency ND 0.060

Effective surface area coefficient ND 1.0 107

Vertical mixing coefficient ND 200
Note: ND = non dimensional

5.1.1.5 General water quality constants

Most values of general constants in the water quality model are validated from

others water bodies in Australia (Antenucci 2000). Hamilton and Zohary (1999)
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modified some values of water quality parameters based on the dominant species in

the storage. These values were adopted for DYRESM-CAEDYM simulation in Cooby

and Cressbrook reservoirs with some modifications. For instance, cyanobacterial

growth rate for freshwater in DYRESM is set to 0.9 day-1 as the default value.

Hamilton and Zohary (1999) suggested 0.46 day-1 for a reservoir and 0.37 day-1 for a

river dominated by Anabaena (http://www.cwr.uwa.edu.au/~yeates/). Some maximum

growth rates of cyanobacterial species which are existing in Toowoomba’s storages

from various observation are presented in Table 5.4 (Robarts & Zohary 1987).

Table 5.4 Maximum growth rates of some Cyanobacterial species.

Species
Maximum

growth rate,
µmax (day-1)

References

Anabaena 0.40 Konopka & Brock 1978

Anabaena oscillarioides 0.80 Vincent & Silvester 1979

Anabaena spiroides 0.90 Seki et al. 1981

Anabaena variabilis 1.10 Collins & Boylen 1982

Aphanizomenon 0.18 Konopka & Brock 1978

Aphanizomenon flos-aquae 1.20 Uehlinger 1981

Microcystis 0.50 Konopka & Brock 1978

Microcystis aeruginosa 0.80 Nicklish & Kohl 1983

Microcystis aeruginosa 0.59 Watanabe & Oishi 1985

Microcystis aeruginosa 0.81 Van der Westhuizen & Eloff 1985

Microcystis sp. 0.25 – 0.30 Krüger & Eloff 1978
Source: Modified from Robarts & Zohary 1987, p 395.

In the period 1998 – 2003, Anabaena, Microcystis and Cylindropermopsin

were the dominant species in Cooby storage. Unlike in Cooby, Cylindropermopsin

was not found in Cressbrook. Anabaena and Microcystis aeruginosa were dominant

species for the period 1998 – 2001. Since 2002, a new species (Aphanizomenon flos

aqua) has been found in high counts and has replaced the domination of Anabaena

species. The growth rate values were determined based on the trend of cyanobacterial
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growth in both reservoirs. The growth rates were set to 0.46 day-1 and 0.50 day-1 for

Cooby and Cressbrook storages, respectively. These values have given a better result

for total Cyanobacteria in both reservoirs. Based on the trial and error simulation for

some selected data in both reservoirs.

The light extinction coefficient is strongly affected by the suspended

particulates and dissolved organic matter in the water column including chlorophyll-a

particulates. The light extinction coefficient () was calculated using modification of

the Lambert-Beer’s equation (Bowie et al. 1985 Eq. 6-33; Eurolakes 2003 Eq. 3.4).

chlchlo ck   (5.2)

where o is the light extinction coefficient for freshwater with all particulates and

dissolved organic matter without chlorophyll-a component (= 0.27 m-1), kchl is a

coefficient relating the chlorophyll-a concentration, cchl to the corresponding light

extinction coefficient for chlorophyll-a (= 0.015 m2 mg chl-a-1), and cchl is

chlorophyll-a concentration (mg chl-a m-3).

The variation of light extinction coefficients in Cooby and Cressbrook storages

can be seen in Figure 5.1 and 5.2. The coefficient is fluctuated from 0.2775 m-1 to

1.185 m-1 for Cooby reservoir and from 0.2775 m-1 to 1.443 m-1 for Cressbrook

reservoir. The average value of the coefficient for Cooby and Cressbrook storages are

0.39 m-1 and 0.35 m-1, respectively.
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Figure 5.1 Variation of the light extinction coefficient in Cooby storage from the
surface to the bottom of the reservoir (selected layers). The average value
is added and marked as a bold line.
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Figure 5.2 Variation of the light extinction coefficient in Cressbrook storage from the
surface to the bottom of the reservoir. The average value is added and
marked as a bold line.

5.1.1.6 Meteorology data

Meteorology data for the period of 1998 – 2004 were provided by the

Queensland Bureau of Meteorology while data for a 50 year future prediction period

(2004 _ 2053) were generated using the ClimGen climate generator. The detail of

synthetic data is presented in section 5.1.3.
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5.1.1.7 Withdrawal data

Outflow of the reservoirs were provided by the Toowoomba City Council

during the period 1998 – 2004. For future prediction, withdrawal data were assumed

constant, based on the average outflow during normal operation of the dam from 1993

to 2001/2002. This assumption is based on the consideration of maximum support of

the reservoirs. Increasing water demand in the City will not increase pumping water

from the dams (Clark 2003). The deficit water supply is supplemented from ground

water sources.
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Figure 5.3 Monthly withdrawal of Cooby reservoir in the period of 1993 – 2001.

Figure 5.4 Monthly withdrawal of Cressbrook reservoir in the period of 1993 – 2002.

The monthly averaged pumped water from Cooby and Cressbrook dams in the

period 1993 – 2002 are 60.9 ML (equivalent to 2000 m3 day-1) and 560 ML
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(equivalent to 18805 m3 day-1), respectively. Sequential daily withdrawal/pumped data

are presented in Section 3.2.4.

5.1.1.8 Mixers setting

The configuration of mixers for Cooby reservoir was set to continuous

operation with dual mixers based on the real mixers installed on November 2001.

Specification of the mixers is impeller type SMDI-5 with a draft tube which is

manufactured by WEARS Company.

Mixing process in a water body can effectively work if the capacity of the

mixer is able to circulate water at least five per cent of the average volume per day

(Burns & Powling 1981; Elliott & Morgan 2002). Mixer configuration for Cressbrook

reservoir was set based on this requirement. Therefore, the reservoir needs a mixer

capacity of 3100 ML day-1 or equivalent to 35.9 m3 s-1. It was assumed that the SMDI-

5s are used for Cressbrook, so the reservoir needs six mixers.

5.1.2 AWBM hydrological model

Since there is no recorded daily inflow for both reservoirs (1998 – 2003), the

inflow files therefore (*.inf) were prepared using the AWBM hydrological model.

Preparation of the inflow file is presented in this section.

The AWBM hydrological model was used to produce the quantity of inflow.

Simulation parameters for the reservoirs’ catchments were adopted from Loxton’s

works (see also Section 3.3). The preparation of inflow for Cooby and Cressbrook is in

Section 5.2.

The comparison of measured and simulated inflow using the AWBM

hydrologic model of Cressbrook reservoir, for example, was given by Loxton (1999)

and Macintosh (2002). Figure 5.5 represents time series of measured and simulated

inflow (1988 – 1992) in the reservoir’s catchment and Figure 5.6 shows the correlation
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plot of measured and simulated data. The graphs show the accuracy of the AWBM

hydrologic model for Cressbrook Dam.
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Figure 5.5 Time series of simulated and measured inflow of Cressbrook reservoir in
the period of 1988 – 1992 (data adopted from Loxton 1999).

The AWBM model gave a 0.92 correlation coefficient between measured and

simulated data (detail verification and validation AWBM model for Cooby and

Cressbrook catchments can be seen in Loxton (1999)). This result can produce valid

inflow data for hydrodynamic simulation in the reservoir.

y = 1.0169x

R2 = 0.9216

0

20

40

60

80

0 20 40 60 80

Actual Runoff (mm)

P
re

d
R

u
n

o
ff

(m
m

)

Figure 5.6 Correlation plot of simulated and measured inflow of Cressbrook reservoir
in the period of 1988 –1992 (data adopted from Loxton 1999 & Macintosh
2002).
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The AWBM simulation has given a similar result for Cooby reservoir with a

reduction of the total area fraction. Therefore, the model parameters for the reservoir’s

catchments were adopted to simulate inflow for the period of 1998 – 2003 and of 2004

– 2053 for both reservoirs. The value of eight basic parameters for both reservoirs’

catchments is presented in Section 3.3.3.

The AWBM model acquires two types of input which are monthly evaporation

and daily rainfall and the adopted parameters to produce inflow data. For period of

1998 – 2003, the input data were provided by the Toowoomba City Council while for

the future prediction (2004 – 2053), data were generated using the ClimGen weather

generator.

5.1.3 ClimGen

5.1.3.1 Configuration of the ClimGen

Data generation is developed based on the Weibull distribution function as

previously described on Section 2.5. This distribution is sampled for each day of

weather generation using the inverse method. All values of general parameters were

calculated automatically in the ClimGen using historical data. Clear sky transmission

coefficient and B value for solar radiation are the parameters for generating short wave

radiation from temperatures when using the Simple ET Model. The parameters are the

function of latitude. The Priestley-Taylor constant (usual range = 1.2 – 1.3) is needed

to compensate for the elimination of the aerodynamic component of the Penman-

Monteith model. The simple ET model is useful to produce evapotranspiration data to

generate inflow with the AWBM model (see also Section 5.1.2). A summary of basic

parameters for weather generation for Cooby and Cressbrook catchments is presented

in Table 5.5.
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Table 5.5 General parameters of the weather generator for Cooby and Cressbrook
dams.

Parameters Cooby Cressbrook

Clear sky transmission coefficient 0.75645 0.75478

Fitted B solar radiation 0.39797 0.39839

Priestley-Taylor Constant 1.26000 1.26000

Aridity factor for VPD (kPa-1) 0.03000 0.03000

Aridity factor: - Non summer
- Summer

-13.48640
-5.97222

-0.03967
-0.00697

VPD Slope: - Non summer
- Summer

1.00000
0.99132

0.98685
0.99768

VPD Intercept: - Non summer
- Summer

0.00000
0.00000

0.00000
0.00000

Dew Point Slope: - Non summer
- Summer

0.28194
-0.21327

1.04249
0.91723

Dew Point Intercept: - Non summer
- Summer

-7.66587
11.69529

-2.51988
0.67822

Based on these parameters, the position of both reservoirs was classified as dry

land area (Nelson 2002). This class was determined using automatic calculations in the

ClimGen model. The vapour pressure deficit was very small which is indicated by the

slope values around one and nil interception value.

Rainfall occurrences were predicted based on the probability of a wet day

followed by a wet or dry day on a monthly basis. In general, the probability

occurrence of precipitation in a dry day was less than 20 per cent while in a wet day

was about 50 per cent. The probability of occurrences of a rainfall event for Cooby

dam is slightly higher than Cressbrook dam in both wet and dry day situations. The

detailed probability occurrence of precipitation in wet and dry days is shown in Table

5.6.

In relation to the Weibull distribution of precipitation, two parameters (α and

β) of the monthly distribution were determined for generation purposes. The values of

α and β for Cooby and Cressbrook reservoir which were used to generate weather data

in the ClimGen version 4.1.05 are presented in Table 5.7.
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Table 5.6 Precipitation probability for the next day in wet and dry conditions of Cooby
and Cressbrook reservoirs.

Month

Cooby
precipitation probability

Cressbrook
precipitation probability

P(w/w)* P(w/d)** P(w/w)* P(w/d)**

January 0.61333 0.15818 0.55000 0.15652

February 0.59274 0.22052 0.57778 0.19792

March 0.51235 0.12887 0.51852 0.10156

April 0.55189 0.17658 0.50000 0.13559

May 0.47236 0.18229 0.50000 0.16239

June 0.50549 0.15845 0.46667 0.13333

July 0.50758 0.10109 0.36000 0.12308

August 0.53889 0.13950 0.57692 0.08527

September 0.53333 0.13162 0.40741 0.13008

October 0.33520 0.19966 0.42857 0.12598

November 0.59295 0.28995 0.48889 0.21905

December 0.59216 0.20000 0.56098 0.15789

* P(w|w) is the probability of a wet day given a previous wet day.
** P(w|d) is the probability of a wet day given a previous dry day.

Table 5.7 The values of α and β for Weibull distribution of precipitation in Cooby
and Cressbrook reservoirs.

Month
Cooby precipitation (mm) Cressbrook precipitation (mm)

α (Alfa) β (Beta) α (Alfa) β (Beta)

January 0.81580 5.84897 0.84088 7.22903

February 0.66251 7.73065 0.68743 12.14603

March 0.75020 6.06559 0.88247 9.81893

April 0.83075 2.71203 1.06453 6.95065

May 0.77766 3.69461 0.80458 6.54786

June 0.71389 3.25441 0.95470 5.00798

July 0.85950 5.14338 0.87659 5.83349

August 0.79762 3.80178 0.99450 5.97592

September 0.80113 4.45057 0.78805 6.87175

October 0.77980 6.83038 0.97016 7.49426

November 0.77648 5.16341 0.88704 7.52487

December 0.78584 8.11119 0.98105 14.21472
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With the same procedure for determination of precipitation parameters, the

values of α and β for wind speed distributions were also determined for Cooby and

Cressbrook reservoirs as presented in Table 5.8.

Table 5.8 The values of α and β for Weibull distribution of wind speed in Cooby and
Cressbrook reservoirs.

Month
Cooby wind speed (m/day) Cressbrook wind speed

(m/day)

α (Alfa) β (Beta) α (Alfa) β (Beta)

January 4.75237 608669.18750 4.75232 608668.62500

February 3.87310 610219.06250 3.67015 606294.62500

March 3.99521 571014.43750 4.01258 570765.93750

April 3.86748 552092.18750 3.86464 552134.43750

May 2.96362 492336.87500 2.97053 492853.37500

June 2.85857 498540.68750 2.85598 497563.75000

July 3.22959 454246.34375 3.23310 453874.25000

August 3.00611 528313.18750 3.00715 527950.18750

September 3.57080 520608.00000 3.56732 521127.40625

October 3.54159 546585.37500 3.54562 546559.00000

November 4.05293 566228.87500 4.03960 565405.50000

December 4.27646 580039.25000 4.28278 581915.56250

5.1.3.2 Accuracy of data generation

A 50-year daily weather data set was generated using 25-year measured data of

precipitation and 5-year measured data of solar radiation, wind speed, average

temperature, relative humidity and vapour pressure. The accuracy of the prediction

was analysed using the probability of exceedence of generated parameters. A

comparison of measured and generated data for each parameter in Cooby catchment is

presented in Figure 5.7.
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Figure 5.7 Probability of exceedence of measured and generated weather parameters
of Cooby reservoir. Measured data are from 1978 to 2002 for precipitation
and from 1998 to 2002 for solar radiation, wind speed, average
temperature, relative humidity and vapour pressure. Generated data are
from 2004 to 2053.
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The probability of exceedence of the 50-year sequences synthetic data in

Cooby areas has a similar pattern to the probability of exceedence of the historical

data. Some differences for historic and generic data are found in the lowest values for

wind speed, relative humidity and solar radiation and in the highest values of

precipitation. The extreme values of these parameters are below 5 m s-1, 15 MJ m-2 and

70 per cent, for wind speed, solar radiation and relative humidity, respectively. The

extreme value of rainfall is the event over 70 mm per day.

Probability of exceedence of weather parameters in the Cressbrook region is

also presented by comparing the measured and generated data. The comparison of

probability of exceedence measured and generated data of Cressbrook reservoir is

presented in Figure 5.8. The figure shows that the sequences of generated data for all

parameters of Cressbrook catchment have a probability of exceedence with a similar

pattern to the observed data. However, generated values of rainfall over 70 mm per

day, solar radiation over 28 MJ m-2, wind speed below 5 m s-1 and relative humidity

below 70 per cent give a slightly different result to the probability of exceedence of the

measured data. These differences mostly occur in the extreme data range as can be

clearly seen at the values of probability of exceedence below 0.1 and above 0.9. Water

volume in the dam is directly affected by rainfall extreme data. However, rainfall data

generation show not much different at the values of probability of exceedence below

0.1 and above 0.9
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Figure 5.8 Probability of exceedence of measured and generated weather parameters
of Cressbrook reservoir. Measured data are from 1978 to 2002 for
precipitation and from 1998 to 2002 for solar radiation, wind speed,
average temperature, relative humidity and vapour pressure. Generated
data are from 2004 to 2053.
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5.2 Preparation of Inflow

5.2.1 Inflow for period 1998 – 2003

The quantity of inflow for all creeks in Cooby and Cressbrook were simulated

using the AWBM model. The accuracy of the simulations was tested by comparison

against water surface elevation data for the dams. The simulation accuracy was above

90 per cent with regression coefficients of 0.92 and 0.97 respectively as shown in

Figure 5.10 and 5.12. The inflow simulations were assumed to be valid and were used

in the DYRESM-CAEDYM water quality modelling work.

A sequential data of simulated inflow into Cooby reservoir is presented in

Figure 5.9.
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Figure 5.9 Time series simulated inflow for Cooby reservoir (in mm depth) in the
period from 1998 to 2003.

The depth of inflows was multiplied by the sub-catchment areas to produce

volume inflow data for each creek.
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Figure 5.10Correlation between measured and simulated water surface elevation data
in Cooby reservoir in the period between Mar 1998 and Feb 2003 (1434
days).

Inflow into Cressbrook dam is intermittent as shown in Figure 5.11. This creek

is ephemeral, and only flows during the wet season. It dries up when there is no

significant rainfall event.
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Figure 5.11Time series simulated inflow of Cressbrook reservoir in the period from
Jan 1998 to Feb 2003.
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Figure 5.12Correlation between measured and simulated water surface elevation data
in Cressbrook reservoir for the period of Mar 1998 – Feb 2003.

5.2.2 Inflow for the period 2004 – 2053

The quantity of inflow for a 50 year period was simulated using the AWBM

hydrologic model and labelled as 2004 – 2053 data for convenience. The parameters

for both catchments were held unchanged for this simulation, effectively freezing the

catchment condition for the study including land use and soil conservation practices.

A series of daily rainfall values was taken directly from the ClimGen

simulation (synthetic/generated data) while monthly evaporation data were calculated

from the synthetic weather data using the modified Penman-Monteith approach before

being exported to the AWBM model. The 50-year inflow series was successfully

simulated from these two data sets. The 50-year period of synthetic inflows of Cooby

and Cressbrook catchments are shown in Figure 5.13 and 5.14. The average inflow for

the catchments is 0.046mm for Cooby and 0.115 mm for Cressbrook. The inflow

values for both reservoirs show a negative trend with time. A similar trend was
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observed in water surface elevation in the dams. Surface inflows are the main water

source for the reservoirs.

0

0.2

0.4

0.6

0.8

1

1.2

1.4
J
a
n

0
4

J
a
n

0
8

J
a
n

1
2

J
a
n

1
6

J
a
n

2
0

J
a
n

2
4

J
a
n

2
8

J
a
n

3
2

J
a
n

3
6

J
a
n

4
0

J
a
n

4
4

J
a
n

4
8

J
a
n

5
2

Time (date)

In
fl
o
w

(m
m

)
.

Figure 5.13 Time series of synthetic inflow of Cooby’s creeks for the period of 2004
– 2053 (Inflow in mm depth).
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Figure 5.14 Time series of synthetic inflow of Cressbrook’s creeks for the period of
2004 – 2053 (Inflow in mm depth).

The 50 year period of synthetic inflows to the dams provides a basis for

predictions of future dam behaviour. Sensitivity analyses of inflow to variations in

rainfall and solar radiation are provided in Chapter 6.

Information on inflow water quality was a limitation in this project since there

were no recording stations on the creeks for either flow rates or quality. Quality data
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for inflows was adapted from other related studies (Merz 2001; Sanders & Porter

1994; Titmarsh et al. 1997). The data was taken as lumped values dependent on land

use, with no temporal variation. Therefore, the quality of inflows was assumed

constant during the simulation period.

Cyanobacterial concentrations in all creeks (Cooby, Geham, Little Oaky, and

Cressbrook creeks) were assumed to be insignificant. This assumption was based on

the variable nature of the inflows, which are associated with rainfall events.

Temperatures of inflow were determined as a function of the 4-day moving average of

air temperature (Antenucci 2000). Salinity concentrations of the inflows were very

small (0.05 psu for Cooby and 0.10 psu for Cressbrook). The dissolved oxygen

concentrations of inflow was set to 5.68 mg L-1 in accordance with Queensland

Department of Natural Resources and Mines (2002).

5.3 Model Validation

Model validation focused on selected parameters of importance: water

temperature, dissolved oxygen, nitrogen and phosphorus, and cyanobacterial

concentrations. These parameters have a major impact on water quality dynamics in

the reservoirs. Three of the parameters also have shown variability in the reservoirs

during the year (see chapter 4). The simulated values of these parameters were

validated by comparisons with available measured data. A full discussion on water

quality validation follows:

5.3.1 Validation of water temperature

The results of water temperature simulation in Cooby reservoir were validated

by comparing simulated values at selected layers with the measured data. The
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correlation coefficient of these paired data is used to quantify the level of acceptability

of the simulations.
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Figure 5.15Time series of measured and simulated water temperature at selected
depths (water surface, 5 m, 10 m and 15 m depths) of Cooby reservoir for
the period 1998 – 2001 (no artificial mixer).

Figure 5.15 shows the time series of water temperatures in selected layers

before the mixer installation was computed. A good correlation coefficient was

obtained between measured and simulated water temperatures in these layers. The

correlation coefficient for all selected layer data in Cooby Dam before mixers

installation can be seen in Figure 5.16.
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Figure 5.16Correlation between measured and simulated water temperature for
selected depths in Cooby Dam from 1998 to 2001 (no artificial mixer).

Figure 5.16 indicates the accuracy of the water temperature simulations

without mixers in the storage. The correlation coefficient is 0.93 and the gradient for

the regression line is 1.056 (n = 336). These values indicate that predictions of water

temperature without mixers in Cooby Dam can be accepted as providing a close match

to actual values.

Water temperature simulation with artificial mixers was also validated using

data from the period 2001 –2003. The results give a close correlation between the

measured and simulated values as shown in Figure 5.17. The associated regression

coefficient was 0.92 with regression line slope of 0.96. This value indicates similar

accuracy of simulation to that found without mixers (see Figure 5.18). The regression

line gradient for the period 1998 – 2001 shows that the water temperature simulation

without mixers is slightly higher than the observed values. Conversely, the simulations

for the period 2001 – 2003 with mixers indicated lower values than measured.
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Figure 5.17Time series of measured and simulated water temperature at selected
depths (water surface, 5 m, 10 m and 15 m depths) of Cooby reservoir for
the period 2001 – 2003 (with a couple of artificial mixers).
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Figure 5.18Correlation between measured and simulated water temperature for
selected depths in Cooby Dam from 2001 to 2003 (with a couple of
artificial mixers).

Validation of water temperature simulations in Cressbrook reservoir can only

be done without artificial mixers (there has been no mixer installation in this dam).
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Nevertheless, comparison of simulated and measured water temperatures in

Cressbrook storage indicated that the simulations were accurate. The comparison are

presented in Figure 5.19 and 5.20 for this storage.

Simulated water temperatures show vertical stratification occurring during the

warm periods between the unstratified cold periods. Some extreme conditions of water

temperatures level at the surface layer and the layer below the thermocline (15 metres

below the water surface) create a small variation between measured and simulated data

but the correlation coefficient between measured and simulated data is still 0.98 for all

selected layers. The lowest value of the correlation coefficient for selected layers is

0.79 at 15 metres below the water surface.
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Figure 5.19Time series of measured and simulated water temperature at selected
depths (water surface, 5 m, 10 m and 15 m depths) of Cressbrook reservoir
for the period 1998 – 2003.
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Figure 5.20Correlation between measured and simulated water temperature for
selected depths in Cressbrook Dam from 1998 to 2003.

5.3.2 Validation of dissolved oxygen

Validation of dissolved oxygen concentrations encountered difficulties from

suspect measured data. The comparison of measured and simulated values in Figure

5.21 shows considerable variation between the series, with measured values frequently

approaching zero. In the period June – December 1998, the measured data from the

surface to the 10 m layer below the surface showed over or super saturated values. Yet

the dissolved oxygen concentrations were very low to a minimal value (zero) in the

surface layer during stratified periods.

Investigations confirmed that the instrument (sensor) was not calibrated before

use in the three different storages in Toowoomba and the differences in site conditions

have rendered the data suspect.
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Figure 5.21Time series of measured and simulated dissolved oxygen at selected
depths (water surface, 5 m, 10 m and 15 m depths) of Cooby reservoir for
the period 1998 – 2001 (without artificial mixers).

The simulation result shows the expected seasonal pattern in the storage as

shown in Figure 5.21. The concentration in the surface layer is close to saturation

while concentrations the layers below the surface decrease gradually with depth and

distance from the atmosphere.
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Figure 5.22Correlation between measured and simulated dissolved oxygen for
selected depths in Cooby Dam from 1998 to 2001 (without artificial
mixers). Measured data which are higher than 12 mg L-1 are not presented.

Figure 5.22 compares the measured and simulated values. It shows the large

number of recorded dissolved oxygen concentrations with zero value. The difference

between measured and simulated dissolved oxygen in this value can be up to 7.8 mg L-

1. The simulated values range between 0.5 and 10.5 mg L-1 while the measured values

are in between 0 and 14 mg L-1. The patterns of simulated dissolved oxygen at all

selected layers are more rational than those found in the measured data. It is concluded

that the dissolved oxygen simulations are probably working well, but it is not possible

to prove this.

The measured dissolved oxygen concentrations after mixer installation also

give some low (zero) records of dissolved oxygen at 10 metres and 15 metres below

the water surface (see Figure 5.23) with no observable pattern in their occurrence. In

general, the simulated values are higher than the measured data. The simulation result

shows that the oxygen concentrations moderately change (increase or decrease) with

time while the measured data drop and increase irregularly over the same time period.
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Figure 5.23Time series of measured and simulated dissolved oxygen at selected
depths (water surface, 5 m, 10 m and 15 m depths) of Cooby reservoir for
the period 2001 – 2003 (with two artificial mixers).

Comparisons between measured and simulated dissolved oxygen

concentrations in Cooby dam after the installation of mixers gives a similar result to

the validation without artificial mixers (see Figure 5.24).
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Figure 5.24Correlation between measured and simulated dissolved oxygen for
selected depths in Cooby Dam from 2001 to 2003 (with a couple of
artificial mixers).
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It was observed that some early values of dissolved oxygen lower than zero

were recorded during the warm period in particular. These were modified to zero as

negative values of dissolved oxygen are impossible. Most measured dissolved oxygen

values below 10 m depth during the warm period were recorded as zero while the

simulations gave values above 6 mg L-1. This further reinforced the doubtfulness of

the recorded values.

Model verification of the DO concentration in Cressbrook Dam had similar

problems as Cooby Dam. A comparison of measured and simulated data in

Cressbrook is presented in Figure 5.25 and 5.26.

0

2

4

6

8

10

12

J
u

n
9

9

S
e

p
9

9

D
e

c
9

9

M
a

r
0

0

J
u

n
0

0

S
e

p
0

0

D
e

c
0

0

M
a

r
0

1

J
u

n
0

1

S
e

p
0

1

D
e

c
0

1

M
a

r
0

2

J
u

n
0

2

S
e

p
0

2

D
e

c
0

2

Time (date)

D
O

C
o
n
c
e
n
tr

a
ti
o
n

(m
g
/L

)

Surf-Obs

L-5m-Obs

L-10m-Obs

L-15m

L-20m-Obs

L-25m-Obs

Surf-Sim

L-5m-Sim

L-10m-Sim

L-15m-Sim

L-20m-Sim

L-25m-Sim

Figure 5.25Time series of measured and simulated dissolved oxygen at selected
depths (water surface, 5 m, 10 m, 15 m, 20 m and 25 m depths) of
Cressbrook reservoir for the period 1999 – 2003 (with two unit artificial
mixers).
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Figure 5.26Correlation between measured and simulated dissolved oxygen for
selected depths in Cooby Dam from 2001 to 2003 (without a couple of
artificial mixers).

5.3.3 Validation of total phosphorus

Validation of simulated total phosphorus concentrations also proved difficult

because the available measured data were recorded in ranges. Most simulated values

were less than 0.1 mg L-1 with only a few values above this point. Comparison of the

recorded and simulated values in selected layers can be seen in Figures 5.27 to 5.30.
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Figure 5.27 Time series of measured and simulated total phosphorus at the water
surface of Cooby reservoir for the period 1998 – 2001 (without artificial
mixers).
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Figure 5.28 Time series of measured and simulated total phosphorus at the 9.14 m
depth of Cooby reservoir for the period 1998 – 2001 (without artificial
mixers).
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Figure 5.29 Time series of measured and simulated total phosphorus at the 16.46 m
depth of Cooby reservoir for the period 1998 – 2001 (without artificial
mixers).
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Figure 5.30 Time series of measured and simulated total phosphorus at the bottom of
Cooby reservoir for the period 1998 – 2001 (without artificial mixers).

Figures 5.27 to 5.30 give comparisons but do not allow the degree of

correlation to be calculated. It is clear that the simulation results from the surface to

16.46 m depth are mostly in the measured range which is indicated by the bars on the

figures. Seventy six per cent simulated values are within the bars representing the

range of measured values (139 from 184 measured data). In the absence of more

detailed data, it is assumed that the simulation result is valid and suitable for

predicting future water quality.

A double unit artificial surface mixer was operating in the dam for the period

December 2001 to Feb 2003. The simulated total phosphorus concentrations become

uniform from the water surface to the bottom of reservoir for this period with an

average concentration about 0.1 mg L-1. The simulated depth average values lie mostly

in the range of measured data, confirming the model results during mixing.

Validation of total phosphorus in Cressbrook reservoir provides the same

difficulties as was found with Cooby Dam. Most values of total phosphorus available
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to check the simulation are in a range form. A time series of measured and simulated

data for selected individual layers (the water surface and depths of 12.25m, 19.25m

and 29.75m, as well as the bottom of the reservoir) in Cressbrook storage are

presented in Figure 5.31 – 5.35.

The simulated total phosphorus values for the period March 1998 to February

2003 are relatively higher than the observated values in all layers. In most cases, the

concentration of observed total phosphorus increases when the surface inflow fills up

the reservoir and is then constant. This can be seen during overflow in 1998/1999,

where the concentration range increases from 0.05 to 0.1 mg L-1 in Figures 5.31 to

5.32.

In the lower levels the simulated total phosphorus values appear to follow an

annual cycle from July to June
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Figure 5.31 Time series of measured and simulated total phosphorus at the water
surface of Cressbrook reservoir for the period 1998 – 2003 (without
artificial mixers).
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Figure 5.32 Time series of measured and simulated total phosphorus at the 12.25 m
depth of Cressbrook reservoir for the period 1998 – 2003 (without
artificial mixers).
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Figure 5.33 Time series of measured and simulated total phosphorus at the 19.25 m
depth of Cressbrook reservoir for the period 1998 – 2003 (without
artificial mixers).
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Figure 5.34 Time series of measured and simulated total phosphorus at the 29.75 m
depth of Cressbrook reservoir for the period 1998 – 2003 (without
artificial mixers).
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Figure 5.35 Time series of measured and simulated total phosphorus at the bottom of
Cressbrook reservoir for the period 1998 – 2003 (without artificial
mixers).

Other nutrient components of water quality including nitrate, total iron, and

total manganese in both reservoirs also face a similar problem to total phosphorus for

model validation because of the recording of data in a range of values.
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5.3.4 Validation of Cyanobacteria

Cyanobacterial concentrations are notoriously, difficult to measure, requiring

specialist sampling and laboratory techniques which were not available to this project.

Simulated cyanobacterial concentrations were therefore compared to derived

chlorophyll_a concentration data. Recorded cell counts were converted to

chlorophyll_a concentration (mg chl_a m-3) using an empirical relationship. The

derived values are not as accurate as actual observations but sufficient for the purposes

of this thesis. The conversion process does not accommodate the varying sizes of cell,

gyres or filaments of Cyanobacteria, nor the variability of chlorophyll_a

concentrations with species, location and time (pers. comm., Sutherland, 23 September

2003).

The validation of cyanobacterial concentrations in Cooby Dam was done by

comparing derived data with simulation results at the water surface and depths of

9.14m and 16.46m as well as the bottom of the reservoir.

A time series of the derived and simulated data before the mixers installation

(Mar 1998 – Nov 2001) are presented in Figures 5.36 to 5.39. The simulated results

follow similar trend and pattern to the derived actual values although the degree of

correlation is lower than 50 per cent for all layers. Cyanobacterial blooms

(cyanobacterial concentrations in excess of 3.5 mg m-3) in early 1998 closed the

storage for water supply and recreation purposes because of the high risks for the

community.

The simulations indicated that the maximum primary productivity layers for

Cyanobacteria were located at 1.5 m to 6.5 m depth while the reservoir was stratified

and slightly lower between 2.5 and 6 m depth when unstratified. However, recorded

data are not available at these depths to validate this simulated result.
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Figure 5.36 Time series of measured and simulated Cyanobacteria at the water surface
of Cooby reservoir for the period 1998 – 2001 (without artificial mixers).
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Figure 5.37 Time series of measured and simulated Cyanobacteria at the 9.14 m depth
of Cooby reservoir for the period 1998 – 2001 (without artificial mixers).
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Figure 5.38 Time series of measured and simulated Cyanobacteria at the 16.46 m
depth of Cooby reservoir for the period 1998 – 2001 (without artificial
mixers).
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Figure 5.39 Time series of measured and simulated Cyanobacteria at the bottom of
Cooby reservoir for the period 1998 – 2001 (without artificial mixers).

The DYRESM-CAEDYM model is able to simulate the operation of surface

mixers in a dam. The mixers were moduled in Cooby Dam for the period 2001 – 2003.

A comparison of derived values and simulated results for this period is shown in

Figure 5.40 to 5.43.
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Figure 5.40 Time series of measured and simulated Cyanobacteria at the water surface
of Cooby reservoir for the period 2001 – 2003 (with artificial mixers).
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Figure 5.41 Time series of measured and simulated Cyanobacteria at the 9.14 m depth
of Cooby reservoir for the period 2001 – 2003 (with artificial mixers).
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Figure 5.42 Time series of measured and simulated Cyanobacteria at the 16.46 m
depth of Cooby reservoir for the period 2001 – 2003 (with artificial
mixers).
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Figure 5.43 Time series of measured and simulated Cyanobacteria at the bottom of
Cooby reservoir for the period 2001 – 2003 (with artificial mixers).

Validation of simulated Cyanobacterial concentrations in Cressbrook storage

was attempted in a similar way by comparing the derived values and the simulation

results in selected layers. The time series of measured and simulated data is presented

in Figures 5.44 to 5.47. The comparisons show that the model is capable of providing

acceptable simulation of Cyanobacteria in the storage.
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Figure 5.44 Time series of measured and simulated Cyanobacteria at the surface of
Cressbrook reservoir for the period 1998 – 2003 (without artificial
mixers).
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Figure 5.45 Time series of measured and simulated Cyanobacteria at the 12.25m
depth of Cressbrook reservoir for the period 1998 – 2003 (without
artificial mixers).
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Figure 5.46 Time series of measured and simulated Cyanobacteria at the 19.25m
depth of Cressbrook reservoir for the period 1998 – 2003 (without
artificial mixers).
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Figure 5.47 Time series of measured and simulated Cyanobacteria at the 29.75m
depth of Cressbrook reservoir for the period 1998 – 2003 (without
artificial mixers).

It is concluded from this analysis that the model can be used for water quality

prediction in both storages to assess the risks of blooms in the reservoirs.
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Chapter 6

ANALYSIS OF BEHAVIOUR OVER

A 50 YEAR PERIOD

Some of the materials in this chapter was presented and/or published in:
- Porter, M., Brodie, I., Achmad, M. & Aravinthan, V. 2005 “Researching

sustainable future urban water supplies” Southern Engineering Conference
2005 – Managing Resources for a Sustainable Future in Toowoomba,
Australia, September 31, 2005.

The acceptability of water quality can be defined in terms of the suitability of

water bodies for various uses such as a water supply source, recreation or the

protection of aquatic life (Loucks & Gladwell 1999). The level of water quality is

definitely affected by water abstractions, by pollution loads from human activities and

by climate and weather (Kaczmarek et al. 1996; McMahon & Mein 1978; Votruba &

Broza 1989). An increase in intensity of human activities in a catchment commonly

degrades water quality inflow to a reservoir. At the same time, the impact of climate

change is to decrease the total volume of rainfall and increase the level of evaporation

from a catchment (Toowoomba City Council 2001). These factors work to reduce the

sustainability of reservoirs.
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Time series of water quantity and quality data are presented in this chapter.

Quantity is presented as the water surface level and volume of the dams while the

water quality data are presented in the form of water quality index (WQI). The indices

are presented for two layers (the surface and pumping layers), and as an average value

of all layers for simulated water quality parameters. The surface layer was chosen for

its association with recreation purposes in the dams, swimming in particular. The

pumping elevation layer was analysed as for water supply purposes raw water for the

Mt. Kynoch water treatment plant is drawn from this part of the reservoir. The average

of all layers was assumed to reflect the ecological aspect of the reservoirs.

A 50-year period of simulation represents the minimal time requirement for

sustainability analysis in water resources system (Loucks 1997; Loucks & Gladwell

1999). Sustainability of the reservoirs is assessed in the three sequences water quality

data on a weekly basis. Weighting of the parameters was based on the local

management of the reservoirs. The analyses were made to compare the condition of

water quality in the reservoirs with and without artificial mixers over the 50 year

period.

6.1 Surface Water Level and Storage Volume of the Dams

6.1.1 Cooby reservoir

The water elevation is used to assess the physical sustainability of the

reservoirs. The reduction of inflow to water supply dams is a major issue for inland

storages (Votruba & Broza 1989), with global warming implying future water

scarcity. The simulated surface water elevation of the two dams is compared for

various conditions of rainfall and solar radiation.
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The simulation results indicate that under current conditions the surface level

of Cooby dam will decrease over a 50 year period. Assuming no land use change, and

no climate change, the storage volume will decrease by 4548 ML over a 50-year

period as shown in Figure 6.1. The water surface elevation decreases by about 91 ML

per year on average, equivalent to about 0.028 m per year. If water elevation alone is

used as a criterion for physical sustainability, then Cooby reservoir is barely

sustainable under current withdrawal rates. It will eventually fail as the storage level

trends downward, but it will last a long time before failure occurs.

0

5

10

15

20

25

Jan-04 Jan-09 Jan-14 Jan-19 Jan-24 Jan-29 Jan-34 Jan-39 Jan-44 Jan-49

Time (date)

S
to

ra
g

e
V

o
lu

m
e

(m
il

li
o

n
c
u

m
e
c
)

Dead storage

Volume

Max storage

Trend Volume

Figure 6.1 Prediction of the volume changes in Cooby storage over 50 years.

Simulations with varied rainfall scenarios indicated that the storage could be

sustainable if rainfall inputs were five per cent greater than that adopted for the model

(see Figure 6.2 and 6.4). However if actual rainfall amounts are 10 per cent lower than

modelled conditions, the storage will fail as the water level drops below dead storage

in the next 23 years (year of 2027). The simulated performance of the dam had no

water available for pumping in 2027.
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Figure 6.2 A 50-year period of the free surface height of Cooby Dam showing the
impact of varying rainfall conditions. Simulation starting date is January
1st, 2004.

The water surface elevation was found to be sensitive to radiation intensity. A

one per cent increase in solar radiation resulted in 0.7-cm drop of water elevation per

year because of the extra evaporation. However, the reduction in evaporation will

make Cooby reservoir sustainable if the actual solar radiation decreses at least 5.7 per

cent less than the estimated current conditions.
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Figure 6.3 A 50-year period of the free surface height of Cooby Dam showing the
impact of varying solar radiation conditions. Simulation starting date is
January 1st, 2004.
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Figure 6.4 summarises the modelled sensitivity of the water surface to rainfall

and radiation.
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Figure 6.4 Sensitivity of rainfall amounts and solar radiation values indicated by the
gradient of the trend of free surface water height in Cooby reservoir.

6.1.2 Cressbrook reservoir

Based on available rainfall records, the volume of storage in Cressbrook Dam

will decrease by 858 ML per year, or about 43,000 ML over a 50 year period. By the

synthetic year 2030, the volume of Cressbrook dam will be less than 20 per cent of the

maximum storage volume and trigger Level 5 water restrictions. This restriction is

predicted to occur three times (2030s, 2040s, and 2050s) within the 50 years period.

There will be no water available for releasing downstream (environment) to sustain

the ecological system.

The volume of the storage shows a dramatic drop from about 57,000 ML in

2004 to about 14,000 ML in 2053. A trend line can be fitted to the result in Figure 6.5

as shown in Equation 6.1.

0.0152 52
( ) 57.895y y

wk
Volume t t

wk year

 
   

 
(6.1)
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At the time (tDS) when the dam reaches the dead storage level, Equation 6.1 becomes:

7904.0

)(895.57 DS
DS

tVolume
t


 (6.2)

tDS = 66.4 years

where Volume(ty) and Volume(tDS) are the volume of storage at ty and at tDS; ty is time

in year from the year of 2004 and tDS is time where the dam reaches the dead storage

volume.

Equation 6.2 is the simulation trend equation (from Equation 6.1) to

extrapolate the result further. It indicates that the storage volume will drop to the dead

storage value of 5400 ML before the year of 2070 (66.4 years from the start of the

simulation).
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Figure 6.5 Prediction of the volume of Cressbrook storage in the years 2004 - 2053.

These simulated results are again sensitive to the input parameters used by the

model. If the volume of rainfall events decreases by 5 per cent, then the reservoir will

reach the dead storage level about 28 years into the simulation period. On the other

hand, the reservoir would be sustainable if the quantity of rainfall increases by at least

6.7 per cent. This result is based on the trend slope of surface height for various
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rainfall levels. The storage volume is most sensitive to rainfall. Its effect on the

changes in water level in the dam can be seen in Figure 6.6. The water surface of the

dam decreases by about 3.7 centimetres per year for each 1 per cent decrease in

rainfall amount.
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Figure 6.6 A 50-year period of the free surface height of Cressbrook Dam in various
rainfall conditions.

The level of solar radiation also creates variations in the storage volume. This

is because solar radiation is a major factor in evaporation. A high evaporation level

reduces total inflow to the reservoir. It also increases evaporation level from the

surface of the reservoir. The sensitivity level of water level in the reservoir to solar

radiation is lower than to rainfall. If the intensity of solar radiation increases by 1 per

cent from that modelled, then the surface water height will decrease by 2.08

centimetres per year. The effect of different solar radiation scenarios on water surface

are shown in Figure 6.7.
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Figure 6.7 A 50-year period of the free surface height of Cressbrook Dam showing the
impact of varying solar radiation conditions.
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Figure 6.8 Sensitivity of rainfall amounts and solar radiation values indicated by the
gradient of the trend of free surface water height in Cressbrook reservoir.

6.2 Water Quality and the Effect of Artificial Mixers

Fifty years of averaged water quality condition for the full depth of the

reservoirs and the condition of two selected layers (surface and pumping layers) were

used to quantify the effects of artificial mixers in the reservoirs, in both cold and warm

periods. The data were into four categories, cold and warm periods, with and without

mixers for each water quality parameter.
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The depth averaged values of each parameter are presented in box plots in the

following sections. The box on the plots depicts median of the average values with the

lower (25th) and upper (75th) quartiles, minimum and maximum values, and outliers.

Values under three IQRs (Inter Quartile Ranges) from the 25th to 75th percentiles (or

the first to the third quartiles) are called mild outliers and values above the three IQRs

are called severe outliers.

6.2.1 Cyanobacteria

A major objective of this dissertation is to establish the impacts of mechanical

mixing on algal blooms in the reservoirs. Cyanobacterial concentration can be used as

a biological indicator of water quality in most multi purpose reservoirs including

Cooby and Cressbrook Dams. The average cyanobacterial concentration through the

water column was used to compare the four data sets corresponding to the warm

period with and without artificial mixers, and the cold period with and without

artificial mixers.

In Cooby Dam during the warm period, cyanobacterial data range from 0.25 to

3.30 μg L-1 with a mean, first and third quartile values of about 1.60, 1.20 and 2.00 μg

L-1, respectively. The use of mechanical mixers widens the range to 0.20 – 4.10 μgL-1.

As a result, the median increases to approximately 1.8 μg L-1 and the third quartile

data increases to 2.5 μg L-1 as shown in Figure 6.9 (see variables Warm and Warm

Mixers). However, the mixers’ operation decreases the median value of average

cyanobacterial concentrations by about 0.2 μg L-1 (from 0.9 μg L-1 to 0.7 μg L-1) in the

cold period as shown in Figure 6.9 (see variables Cold and Cold Mixers). The data

range suggests that this change is not significant.
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Figure 6.9 Box plots of the average cyanobacterial concentrations of Cooby
reservoir.

Figure 6.9 indicates that the surface mixers in the reservoir have no significant

effect on cyanobacterial concentration (slightly decrease) during the cold period.

However, the surface mixers increase the median, first and third quartile of

cyanobacterial concentrations in Cooby storage during the warm period.

The percentile patterns of Cyanobacteria in Cressbrook storage are similar to

that in Cooby. However, the concentrations of Cyanobacteria in the Cressbrook

storage are relatively higher than the concentrations in Cooby. The detailed box plots

of average value of Cyanobacteria in Cressbrook storage for each category are

presented in Figure 6.10.
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Figure 6.10 Box plots of the average cyanobacterial concentrations of Cressbrook
reservoir.

The box plots indicate that the use of artificial mixers during the warm period

of the year will raise the median, first and third quartiles of Cyanobacterial

concentration by 0.67, 0.35, and 0.64 μg L-1, respectively. Conversely, the value of

these parameters decreases during the cold period from 1.12 to 0.90 μg L-1, 0.75 to

0.56 μg L-1, and 1.56 to 1.35 μg L-1, respectively.

The artificial mixing impact in Cressbrook Dam is similar to that in Cooby

storage. Cyanobacteria in the water column respond differently to the mixing action

depending on the weather. The mixers widen the habitat zone of Cyanobacteria in the

warm period. However, the reservoir still experiences a possible reduction of

cyanobacterial concentration during the cold period.

6.2.2 Dissolved oxygen

Dissolved oxygen concentrations in the water column are determined by

aeration processes at the surface. A good aeration system results in high oxygen

concentrations deeper in the water column. Dissolved oxygen concentration is a
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parameter which is greatly affected by artificial mixers. Some reservoir managers

installed artificial mixers in their reservoir simply to improve the dissolved oxygen

concentration in the hypolimnion layer.

Average dissolved oxygen concentrations in the water column of Cooby dam

during the warm period is improved by the use of artificial mixers. The average DO

concentration can be improved from 6.5 mg L-1 (range 3.2 – 10 mg L-1) to 8.4 mg L-1

(range 6.4 – 9.3 mg L-1). However, no significant difference in DO concentrations

occurs during the cold period with and without the use of artificial mixers in the

storage. If the mixers are operated continuously during this period, the outliers can be

removed and the lower data range of average DO concentrations is improved to 8 mg

L-1. Detailed box plots of average DO concentrations in Cooby Dam are presented in

Figure 6.11.

Generally, mechanical surface mixers improve average DO concentrations

during the warm period because the mixers transport the rich oxygen surface water to

the anoxic hypolimnion layer. This result represents an improvement in quality.

However, the growth rate of Cyanobacteria consequently increases as dissolved

oxygen becomes accessible throughout the water column. This is why cyanobacterial

concentrations in the water column are increased during the warm period when the

mixers are continuously operated.
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Figure 6.11 Box plots of the average dissolved oxygen concentrations of Cooby
reservoir.

The average DO concentration in Cressbrook storage during the warm period

has a median of about 5.1 mg L-1 with a range from 2.0 to 8.8 mg L-1. The use of

artificial mixers in the storage during this period increases the median, the first and the

third quartiles of average DO concentrations in all layers by 0.9, 1.2 and 0.7 mg L-1,

respectively.

Generally, the average DO concentration during the cold period is relatively

higher than the values occurring during the warm period. The use of the artificial

mixers significantly increases the first quartile from 6.6 to 9.2 mg L-1. The mixers

improve the range of DO concentrations from 2.0 – 11.6 mg L-1 to 7.6 – 11.6 mg L-1.

There are some severe outliers of DO data (from 2.0 to 6.0 mg L-1) during the cold

period with the operation of the artificial mixers. A detailed box plot of average DO

concentrations in Cressbrook storage can be seen in Figure 6.12.
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Figure 6.12 Box plots of the average dissolved oxygen concentrations of Cressbrook
reservoir.

In both storages, an improvement of the average DO concentrations in the

water column can be achieved by forcing vertical circulation through the use of

mechanical destratifiers.

6.2.3 Water temperature

The simulated water temperatures also show stratification in the water column

during the warm period. This is consistent with historical behaviour as described in

the calibration part of Chapter 5. The average temperatures for the water column are

used to describe the distribution of the 50-year synthetic data set in Cooby and

Cressbrook reservoirs during the warm and the cold periods in this chapter. The

vertical differences caused by thermal stratification during the warm period are further

discussed in Chapter 7 (Section 7.2.3) with the probability of occurrences of water

temperature levels through the water column.
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The average water temperature in Cooby storage during the warm period

ranges from 13.0oC to 21oC with a median of 17.5oC. The surface mixers introduce

warmer water to deeper in the column and so increase the water temperature range to

16 – 25.5oC with a median of 22oC.

During the cold period, average water temperature has a distribution from 7oC

to 19oC with a median of 13oC. The operation of mechanical mixers changes the upper

data range and the third quartile by only about 1oC. Statistically, there is no significant

difference of water temperature in the storage with and without the use of artificial

mixers during the cold period. The average water temperature distribution in Cooby

Dam is summarised as box plots in Figure 6.13.

Figure 6.13 Box plots of the average water temperatures of Cooby reservoir.

The average water temperatures of Cressbrook storage during the warm period

range from 13 to 17.5oC with a median value of 15oC. This range is smaller than that

at Cooby and the median is also lower. A deep, colder hypolimnion layer in

Cressbrook results in a lower average water temperature during the warm period. The
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use of the mixer in the storage can increase the epilimnion size in the top layer of

reservoir. As a result, the average water temperature increases significantly, with a

range from 14 to 24oC and a median of 18oC.

The range of average water temperatures during the cold period is about 2oC

lower than during the warm period. Artificial mixing of the vertical profile during the

cold period results in a larger range of average water temperatures in the storage (from

10 – 16.5oC to 10 – 20.5oC). A comparison of average water temperature behaviour

for both periods with and without the artificial mixers in Cressbrook Dam is presented

in Figure 6.14.

Figure 6.14 Box plots of the average water temperatures of Cressbrook reservoir.

In summary, appropriate vertical circulation in both storages can introduce

warmer water through the water column and change water quality. A change in water

temperature will affect the reduction-oxidation processes controlling most chemical

substances in the storages.
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6.2.4 Nitrate (NO3)

Nitrate is one form taken by Nitrogen in water. In aerobic conditions, nitrate

can be transformed into organic nitrogen, and to ammonia. Nitrogen is a food

component for aquatic creatures including Cyanobacteria. The presence of nitrogen in

water therefore is acknowledged as an essential substance for Cyanobacteria to grow.

However, a high nitrate concentration in water can be a toxic inorganic substance for

drinking water (Davis & Cornwell 1998).

The simulated range of nitrate concentrations in Cooby storage during the

warm period is from 0.35 to 1.50 mg L-1 with a median of 0.90 mg L-1. This range is

mostly acceptable for a freshwater reservoir (EPA Queensland 2005). Artificial

mixers reduce the median nitrate concentrations to 0.65 mg L-1 with a range 0.10 –

1.30 mg L-1. The average nitrate concentrations are lower during the cold period than

the warm period. The mixers slightly reduce the concentrations in the storage as

shown in Figure 6.15.

Figure 6.15 Box plots of the average nitrate concentrations of Cooby reservoir.
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The average concentrations of nitrate in Cressbrook reservoir are relatively

higher than those in Cooby. Figure 6.16 shows that the normal concentrations range

from 1.0 to 2.6 mg L-1 and from 0.8 to 2.3 mg L-1 during the warm and the cold

period, respectively. When six SMDI-5 mixers are simulated, the median of the

average concentrations decreases by 0.15 mg L-1 during the warm period and 0.05 mg

L-1 during the cold period.

Figure 6.16 Box plots of the average nitrate concentrations of Cressbrook reservoir.

6.2.5 Total phosphorus

Phosphorus is another nutrient which can be controlled to limit the growth of

Cyanobacteria in a reservoir (Donelly et al. 1998). Total phosphorus in a reservoir

mostly comes from clay sediment in inflows. The phosphorus concentration in the

water can be reduced by controlling the input, by flushing from the reservoir, or by

allowing a sedimentation process in the reservoir. The use of artificial mixers with a

draft tube, however, may obstruct the natural sedimentation in the water column by
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intensifying the vertical circulation in the storage. Vertical profiles of total phosphorus

in Cooby and Cressbrook storages are discussed in Chapter 7, while this section

discusses the overall loading and impact of mixers.

In Cooby, the operation of the surface mixers during the warm period

increases the median value of the average phosphorus concentrations from 0.06 to

0.07 mg L-1. Conversely, the mixers decrease the average total phosphorus

concentrations by 0.01 mg L-1 during the cold period. Detailed box plots of average

total phosphorus concentration in Cooby storage are presented in Figure 6.17.

Figure 6.17 Box plots of the average total phosphorus concentrations of Cooby
reservoir.

Cressbrook Dam has higher average total phosphorus concentrations than does

Cooby. The average concentration during the warm period ranges from 0.06 to 0.26

mg L-1 with a median 0.14 mg L-1. The mixers are able to decrease the median by 0.02

mg L-1 and widen the range to 0.05 – 0.27 mg L-1.

The average total phosphorus concentration during the cold period is relatively

higher than that during the warm period. Figure 6.18 shows that the range of the

average concentration values is wider (0.04 – 0.37 mg L-1) and the median higher by



Analysis of behaviour over a 50-year period 166

about 0.02 mg L-1 when compared to the period October – April. The use of the

destratifiers in the storage decreases the median, the first and the third quartiles of the

average concentration by 0.02, 0.01 and 0.03 mg L-1, respectively.

Figure 6.18 Box plots of the average total phosphorus concentrations of Cressbrook
reservoir.

6.2.6 pH

The pH level in a reservoir can be a limiting factor for the survival of aquatic

species. Some fish species grow optimally within a pH range of 6.5 to 9.0. For water

supply purposes, the recommended pH values are 6.5 to 8.0 (EPA Queensland 2005).

For these reasons, it is important to monitor pH levels in multi purpose reservoirs such

as Cooby and Cressbrook. The distribution of this parameter was established from the

50 year sequence of simulated values.

The average pH levels in Cooby reservoir range from 6.7 to 10.0 (excluding

outliers) with a median value of 8.2 during the warm and cold periods. The mixers’

operation results in insignificant changes to the average pH levels in the storage. The

lower data range slightly decreases by 0.1 and the upper data range decreases by 0.2,

as shown in Figure 6.19.
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Figure 6.19 Box plots of the average pH levels in Cooby reservoir.

The average pH values in Cressbrook reservoir range from about 7.8 to 10.6,

higher than levels in Cooby. The median of these average pH levels is about 9.4.

There is no significant difference in the percentile data during the warm and the cold

period, nor is there any effect from the artificial mixers in the storage.

There are two implications of these facts. Firstly, the variation of the pH value

between seasons is very small and any fluctuation of the pH values is related to the

inflows to the reservoirs (indicated by a negative correlation between the water

surface levels and the pH levels). Secondly, the variation in the pH of the water

column is very small during the stratified period. Therefore, the operation of the

mechanical mixers is irrelevant to pH values in the storage. Detailed box plots of the

average pH values for all categories in the storage are presented in Figure 6.20.
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Figure 6.20 Box plots of the average pH levels in Cressbrook reservoir.

6.2.7 Salinity

A salinity concentration below 5 psu (electro-conductivity in µS/mm)

represents an acceptable level for optimal growth of most freshwater species (EPA

Queensland 2005). The historic and simulated future salinity concentrations in Cooby

and Cressbrook reservoir show an even lower salinity level (less than 1 psu). The data

range indicates that no quality problem exists in relation to the salinity concentration

in the storages.

The salinity concentration in Cooby Dam varies from 0.48 to 0.72 psu with a

median of 0.58 psu during the warm period. Figure 6.21 indicates that salinity remains

constant throughout the stratification and mixing processes. The average salinity

concentration range is also independent of weather changes. Statistically, there is no

significant difference between the average salinity concentrations with and without

mechanical mixers in operation in the storage.
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Figure 6.21 Box plots of the average salinity concentrations of Cooby reservoir.

In Cressbrook Dam, the average salinity concentration lies between 0.46 psu

and 0.78 psu with a median value of 0.66 psu during the warm period. Figure 6.22

indicates that there is slightly less variation in salinity the warm period. The mixer is

able to reduce the lower and upper bounds of average salinity concentration by 0.02

psu (from 0.46 to 0.44 psu) and 0.01 psu (from 0.78 to 0.77 psu), respectively during

the warm period. The median, first and third percentiles of the parameter remain same.

The average salinity concentration in the storage during the cold period lies

between 0.44 psu and 0.78 psu with a median of 0.66 psu. A vertical circulation in the

water column has no effect on the average salinity concentration descriptors during

the unstratified period.
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Figure 6.22 Box plots of the average salinity concentrations of Cressbrook reservoir.

The outliers in the box plots are mainly a result of selected initial model

conditions. It requires 10 years of simulation for the concentration to reach operating

conditions when the initial salinity is set at an arbitrary value of 0.2 psu.

6.2.8 Total iron

Aquatic life can be very sensitive to total iron, and a high level of this

parameter can be a dangerous pollutant. Few species can adapt to a water environment

which contains more than 0.1 mg L-1 total iron (EPA Queensland 2005; Popov &

Bezzaponnaya 2004). Popov & Bezzaponnaya (2004) found a high correlation

between the iron concentration and suspended sediment and dissolved oxygen

concentrations in the water column.

The average total iron concentration in Cooby storage during the warm period

is 0 – 0.16 mg L-1 with a median value of 0.04 mg L-1. Mechanical mixers act to

reduce the median value of average total iron concentrations to below 0.02 mg L-1.

The mixers also increase the spread in percentile data of total iron to 0 – 0.4 mg L-1.
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The average concentration of total iron during the cold period is considerably

lower than it is in the warm period. The use of the destratifiers also reduces the

average concentration of total iron. Detailed box plots for both periods with and

without the use of the mechanical destratifiers in the reservoir are presented in Figure

6.23.

Figure 6.23 Box plots of the average total iron concentrations of Cooby reservoir.

In Cressbrook reservoir, the average concentration of iron is lower (less than

0.01 mg L-1) than the EPA Queensland (2005) recommendation for aquatic

environment and for raw water for the water supply. A number of severe outliers (less

than 1 per cent of total data) for all categories (warm and cold periods and with and

without surface mixers) are present between 0.02 mg L-1 and 0.15 mg L-1. Detailed

box plots of the average total iron concentrations in Cressbrook storage are presented

in Figure 6.24.
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Figure 6.24 Box plots of the average total iron concentrations of Cressbrook reservoir.

6.2.9 Total manganese

Total manganese in a water body is understood to indicate siltation in the

reservoir and an increase in the concentration of other chemical substances (Kosov et

al. 2004). The occurrence of manganese in excessive amounts creates odours in the

water column. The Toowoomba water authority monitors this parameter as well as

total iron concentration (Toowoomba City Council 2003).

The average concentration of total manganese in Cooby storage during the

warm period is lower than 0.15 mg L-1 with median, first and third quartile values of

0.04, 0.02 and 0.07 mg L-1, respectively. The mixers dramatically reduce total

manganese from 0 – 0.15 mg L-1 to a range of 0 – 0.08 mg L-1 with a median value

less than 0.01 mg L-1. Detailed box plots of average total manganese concentrations

are presented in Figure 6.25.

As can be seen from Figure 6.25, the average concentration of manganese

during the cold period is less than 0.01 mg L-1 but mild and severe outliers occur from
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0.01 to 0.04 mg L-1. These values are much lower than the recommended acceptable

value for freshwater.

Figure 6.25 Box plots of the average total manganese concentrations of Cooby
reservoir.

Figure 6.26 Box plots of the average total manganese concentrations of Cressbrook
reservoir.
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The average total manganese concentration in Cressbrook Dam is low as

shown in Figure 6.26. This figure present box plots of average total manganese

concentration values during the warm and cold periods with and without the use of six

mechanical mixers in Cressbrook storage. The data lies in the range from 0 to 0.005

mg L-1, with only outliers occurring between 0.005 and 0.15 mg L-1.

6.3 Sustainability of Reservoirs

The sustainability of reservoirs can be determined based on the availability of

water (quantity) and the quality of water in the storages. The quantity and quality of

water in a reservoir can be used to calculate a single sustainability index (Beck &

Straten 1983; Cude 2001; Kundzewicz 1995).

However, the sustainability of reservoirs in this study was assessed only from

quality considerations. Five levels of water restriction policy (Level 1, 2, 3, 4, and 5)

based on the water surface level underpin the management of in Toowoomba’s dams.

Level 1 is applied when the total volume in the storages lies in between 75 and 85 per

cent; Level 2 is applied if the volume of the storage falls to between 65 and 75 per

cent; Levels 3, 4 and 5 are applied when the volume of the storages is in between 55

and 65 per cent, 45 and 55 per cent and 35 and 45 per cent, respectively (Toowoomba

City Council 2001). An assessment of the water restriction policy was not included in

this study.

6.3.1 Water quality rating

Nine selected indicators were used to determine quality aspect of sustainability

in the reservoirs. The indicators were rated using some references including the

Queensland water quality guidelines (Cude 2001; EPA Queensland 2005).
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A function was developed to transform the nine water quality parameters into a

rating value based on the acceptability of each indicator. Acceptable values were rated

to be equal or higher than 60, while unacceptable values were lower than this value.

The rating values were interpreted at five qualitative levels, as described in Table 6.1

Table 6.1 Description of the range of rating values.

Rating Descriptions

80 ≤ R < 100 Excellent: eminently usable for all purposes
60 ≤ R < 80 Good: suitable for all uses
40 ≤ R < 60 Intermediate: main uses and/or some uses are risk
20 ≤ R < 40 Bad: unsuitable for main and/or several uses
0 ≤ R < 20 Very bad: totally unsuitable for main and/or many uses

Source: Hambright, Parparov & Berman 2000.

Water quality rankings for Cyanobacteria were based on a combination of

ratings from Lake Kinneret and the Queensland water quality guidelines (EPA

Queensland 2005; Hambright, Parparov & Berman 2000). Cyanobacterial

concentrations less than 1.0 mg m-3 were given a quality rating of 90 – 100; while

concentrations between 1.0 and 3.5 mg m-3 were rated as 60 – 90; concentrations

between 3.5 and 10.0 mg m-3 were rated as 20 – 60; and concentrations above 10 mg

m-3 were rated as 0– 20.

Dissolved oxygen concentrations were ascribed ratings with 4 mg L-1 as a

critical threshold. DO values higher than 8 mg L-1 were rated as 90 to 100, while

concentrations below 2 mg L-1 were rated as less than 20. These critical values were

adopted from EPA Queensland (2005).

Acceptability ratings for pH were based on the Queensland Water Quality

Guidelines. Values between 6.5 and 8.0 were accepted as the optimum range with

rating of 100. Critical values for pH are 5.0 and 9.5 and these vales were assigned a

rating of 60. pH values which are lower or higher than these critical values were rated

below 60 (EPA Queensland 2005).
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Salinity concentrations were converted to an acceptability rating with a critical

point at 5 psu. The concentrations below 5 psu were rated higher than 60 (EPA

Queensland 2005).

Water temperatures between 21oC and 32oC assigned an aceeptability rating of

100. The rating for temperatures above 32 oC decreased sharply to a minimum value

of 20 while values of 0 oC and 8 oC were rated as 20 and 50, respectively (EPA

Queensland 2005).

Nitrate and total phosphorus concentrations have a similar acceptability rating

pattern (at different scales). The concentration of nitrate below 0.25 mg L-1 was

valued between 100 and 40. Values between 0.25 mg L-1 and 1.50 mg L-1 were given

acceptability rating from 60 to 100 with the optimum occurring at 0.25 mg L-1. Total

phosphorus concentrations below 0.010 mg L-1 represents oligotrophic water, and

were ascribed ratings from 100 to 40. A concentration between 0.010 mg L-1 and

0.100 mg L-1 represents an acceptable level of concentration, and so was rated from 60

to 100 with a peak value at 0.025 mg L-1. A concentration above 0.100 mg L-1

indicates a eutrophic aquatic condition and is rated below 60 (Pavoni & Perrich 1977).

Total iron and total manganese concentrations were ascribed the same rating

value. These chemical substances pose a high risk to human health although some fish

species such as Barramundi and Redclaw can survive in freshwater with iron and

manganese concentrations up to 0.1 mg L-1 (EPA Queensland 2005). The critical point

for these substances is 0.05 mg L-1. The ratings were assigned as an exponential

function from 100 to 10 points to reflect the potential health risk of the iron and

manganese concentration.

All these water quality acceptability ratings are presented in Figure 6.27.
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Figure 6.27 Water-quality rating of selected parameter indicators based on local
considerations in Toowoomba.

6.3.2 Water quality index

With nine different rating values, a quick assessment of overall quality is not

as easy as it would be with a single index. A water quality index is required to

describe the overall situation in the reservoirs (Straškraba & Tundisi 1999). To create

a useable single water quality index, all the analysed parameters need to be combined



Analysis of behaviour over a 50-year period 178

with relevant weightings to reflect individual significance. This is the first time an

index has been sought for Toowoomba’s reservoirs; so the weightings of parameters

were adopted from other sources. Major considerations in setting weightings in this

particular case were:

(a) Chlorophyll-a concentration of Cyanobacteria is a major biological indicator

for Toowoomba’s reservoirs (Clark, pers. comm., 28 August 2002;

Kleinscmidt, pers. comm., 29 May 2003),

(b) Salinity is not an issue in Toowoomba’s dams as the values are mostly lower

than 1 psu (Kleinscmidt, pers. comm., 29 May 2003), and

(c) Manganese and iron concentrations represent a significant problem which is

related to the siltation processes (Clark, pers. comm., 28 August 2002).

A single water quality index was made by modifying the Mitchell and Stapp

Index which was developed for Sinking Creek, the Missouri River and other river

systems in the USA (McClelland 1974). Modifications to the weighted parameter

indicators were made by replacing faecal coliform with Cyanobacteria and suspended

solids with salinity. The adopted weighted indicators are presented in Table 6.2.

Table 6.2 The weighted values of parameter indicators for Toowoomba’s reservoirs.

Parameter Indicators Unit Weighting

Cyanobacteria mg chl-a m-3 0.17

Dissolved oxygen mg L-1 0.16

pH Non dimensional 0.11

Temperature oC 0.10

Total Phosphorus mg L-1 0.10

Nitrate mg L-1 0.10

Salinity psu 0.07

Total Manganese mg L-1 0.10

Total Iron mg L-1 0.10
Source: Modified from McClelland 1974.
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Using the rating and weighting system described above, a water quality index

was determined using the following equation.

1

n

i i
i

WQI w R


 (6.3)

where WQI is a water quality index; wi is weighting factor for parameter i; Ri is

individual rating for parameter i; and i is the index of parameter ( i = 1 to n) and n is

the number of calculated parameters (in this study n = 9).

6.3.3 Water quality index of Cooby Dam

Two individual layers (the surface and pumping layers) and the average of all

layers were selected to represent the water quality conditions in the reservoir over

time with and without using artificial mixers. This index was produced for warm and

cold periods on a weekly time step.

Generally, the indices show large fluctuations in a year. They also show

sinusoidal cycloids periods during the simulated 50-year period. Two cycles were

simulated over approximately 17 years from 2004 and about 18 years from 2021 to

2039.

6.3.3.1 Surface layer quality and sustainability

The water quality in Cooby reservoir during the warm period is good to

excellent. Figure 6.28 presents the water quality index (WQI) for the surface layer of

Cooby Dam with and without the use of artificial mixers during the warm period for

the simulated period 2004 – 2053. Without artificial mixers, the WQI of the layer

trends downwards from about 85 to about 77 over the 50-year period. The use of two

SMDI-5s (mechanical mixers) in the reservoir improves the average water quality

condition by about 10 per cent throughout the 50-year period, but does not alter the

trend line.
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Figure 6.28 Time series of WQI at the surface layer in Cooby storage during the
warm period of the years 2004 - 2053.

For the cold periods, the seasonal variation in the WQI is less in the surface

water. The individual acceptability indices are relatively higher than the warm period

and this is reflected in the overall value. The quality of water also drops more

gradually over the simulated period from 87 to 82. The use of mechanical surface

mixers increases the WQI of Cooby by about 5 per cent, with a similar trend in WQI

to that occurring without the mixers. The WQI is predicted to decline from grade 95 to

88 over the 50-year period.

A basic frequency analysis quantified the probability of getting an excellent

quality (WQI > 80) at about 60 per cent in the surface layer during the warm period. A

good level of quality (WQI > 60) has an occurrence probability of 100 per cent during

this period without the artificial mixers. The mixers are predicted to improve water

quality with the probability of excellent quality water rising to almost 100 per cent.
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Figure 6.29 Time series of WQI at the surface layer of Cooby storage during the cold
period.

6.3.3.2 Pumping layer quality and sustainability

The WQI of the pumping layer was selected to represent the quality of raw

water to the Toowoomba Water Treatment Plant. Without artificial mixers, the WQI

of the pumping layer in Cooby during the warm period declines from 80 to 73 over the

simulation period. The trend is not severe thought and good quality water (WQI > 60)

is maintained during the stratified period for the entire simulation. The probability of

getting excellent water quality at this depth is assessed at only about 30 per cent.

The artificial mixers in the storage increase the probability of occurrence of

excellent water quality to nearly 100 per cent. The WQI during the warm period is

then predicted to decrease from grade 98 to 90 over the-50 year period as presented in

Figure 6.30.
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Figure 6.30 Time series of WQI at the pumping layer of Cooby storage during the
warm period.

During the cold period and without the operation of the mixers, the probability

of having excellent and good water quality levels at the pumping elevation is about 55

per cent and almost 100 per cent, respectively. The WQI slightly decreases by only

two grade points (from grade 85 to 83).

Figure 6.31 shows the impact of the mixers in the storage on the water quality

in the dam during the cold period. It indicates an increase in probability of occurrence

of excellent quality water (WQI > 80) to almost 100 per cent. The WQI trend

decreases from grade 98 to 93 over 50 years. This means that the use of the

mechanical mixers would assure a high probability of excellent water quality at the

pumping elevation for the next 50 year even though the quality decreases over this

period.
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Figure 6.31 Time series of WQI at the pumping layer of Cooby storage during the
cold period.

6.3.3.3 The water column quality and sustainability

The water quality of the entire water column is estimated by using the average

value of all layers to represent the whole water body in the storage.

In the warm period and without mixing, the probability of occurrence

excellent quality in the entire water column is about 42 per cent. The probability of

having good water (WQI > 60) is however almost 100 per cent. The WQI has a

decreasing trend with a drop of nine grade points from 82 to about grade 73 over the

simulation period.

Figure 6.32 shows that artificial mixers in the storage during this period would

create even better water quality level in the storage. The average of WQIs is increased

by 15 grade points, creating excellent water quality throughout the simulation period.

The predicted trend is then decrease from grade 95 to 86.
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Figure 6.32 Time series of WQI in the water column (average layers) of Cooby
storage during the warm period.

The WQI values for the storage during the cold period vary from 66 to 97 due

to seasonal fluctuations. Excellent and good water qualities in the water column have

occurrence probabilities of about 55 per cent and nearly 100 per cent, respectively.

The trend in WQI values is to decrease from 88 to 80 (eight grade points) over the 50-

year period. A detailed representation of estimated whole column WQI values during

the cold period is presented in Figure 6.33.
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Figure 6.33 Time series of WQI in the water column (average layers) of Cooby
storage during the cold period.
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Figure 6.33 also shows that the use of surface mixers in the storage during the

cold period would upgrade the water quality level in the dam. This is indicated by an

increase in the probability of occurrence of the excellent rating (WQI > 80) to about

45 per cent. The trend in WQI is to decrease from 97 to 86.

The trends of WQI during the warm and the cold periods may provide a useful

basis for further analysis into the cause of water quality degradation in the storage.

There appears to be a rough correlation between the surface water level and the WQI

in the dam.

6.3.4 Water quality index of Cressbrook Dam

The water quality in Cressbrook is summarised in a similar way to that in

Cooby. Two separated layers (the surface and pumping layers) were selected with the

averaged water column values to generate a time series of Water Quality Index (WQI)

data in Cressbrook reservoir with and without artificial mixers. The weekly water

quality index data were examined in two parts associated with the warm and cold

periods.

6.3.4.1 Surface layer quality and sustainability

Water in the surface layer of the storage has a WQI quality grade from 62 to

98 during the warm period. The WQI oscillated during the 50 year simulation period

in cycles of about 10 years. Figure 6.34 shows two distinct periods; from 2034 to 2043

(the WQI drops from 95 to 78) and from 2044 to 2053 (the WQI drops from 95 to 76).

However, there is a slight improvement in water quality over the simulated period,

with the trend line showing an increase in WQI from 78 to 85. The probability of

occurrence of an excellent water quality level in the surface layer is about 60 per cent.
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The operation of the six SMDI-5s (surface mixers) would decrease this probability to

56 per cent.
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Figure 6.34 Time series of WQI at the surface layer of Cressbrook storage during the
warm period.

The WQI values obtained for the surface layer in Cressbrook reservoir during

the cold period ranged between 66 and 96. The WQI values follow a rising trend line

from 80 in 2004 to 87 in 2053. The probability of occurrence of excellent and good

quality water is about 64 per cent and 100 per cent, respectively.

The operation of six SMDI-5s (surface mixers) in the storage slightly improves

the quality level of the storage. The probability of having excellent quality water

(WQI > 80) increases from 64 to 72 per cent, but the improvement is statistically

insignificant. The WQI values in Cressbrook storage for the cold period, with and

without the use of mechanical mixers is presented in Figure 6.35 for a 50 year period.
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Figure 6.35 Time series of WQI at the surface layer of Cressbrook storage during the
cold period.

6.3.4.2 Pumping layer quality and sustainability

The pumping elevation in the storage is the key layer for water supply

purposes. Water from this layer provides the raw material for the Mt. Kynoch water

treatment plant.

The simulated WQI values during the warm period range between 60 and 96,

with a big variation occurring within each yearly period. The probability of

occurrence of excellent quality water is about 32 per cent based on these simulations.

The predicted WQI increases from 70 in 2004 to 85 in 2053, as shown in Figure 6.36.

Figure 6.36 also shows the positive impact of mechanical mixers in this

storage. The action of the mechanical mixers increases the average WQI to about 83

with fluctuations occurring between 70 and 97 and a probability of excellent water

quality at about 82 per cent. The WQI values increase by 5 grade points over the 50-

year period.
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Figure 6.36 Time series of WQI at the pumping layer of Cressbrook storage during
the warm period.

During the cold period, the WQIs in the storage lie between 70 and 95 with big

variations occurring. The probability of having excellent water quality at the pumping

elevation is about 75 per cent. The WQI is predicted to increase from 79 in 2004 to 86

at the end of the simulation period, as shown in Figure 6.37.
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Figure 6.37 Time series of WQI at the pumping layer of Cressbrook storage during
the cold period.
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The time series data shows a small positive impact from the mechanical mixers

at the pumping layer with mechanical mixers in use, the WQI values fluctuate

between 67 and 96 with a probability of having excellent quality water at about 75 per

cent. The WQI increases from 81 to 84 over the simulated period.

6.3.4.3 The water column quality and sustainability

WQI values for the entire water column are calculated from the averaged

values of the selected parameters. This analysis may assist in assessing the ecological

impact of the mixers in the storage.

During the warm period, without the artificial mixers, the probability of

having excellent water quality for the whole column is only about 20 per cent.

However, the probability of having good water quality is 100 per cent. The WQI rises

by nine grade points (from 72 in 2004 to about 81 in 2053) during the simulation

period.

20

40

60

80

100

Jan 04 Jan 09 Jan 14 Jan 19 Jan 24 Jan 29 Jan 34 Jan 39 Jan 44 Jan 49

Time (date)

C
re

s
s
b

ro
o

k
W

Q
I

No_Mix

Mix

Trend No Mix

Trend Mixers

Figure 6.38 Time series of WQI in the water column (average layers) of Cressbrook
storage during the warm period.

Figure 6.38 indicates that the artificial mixers in the storage are able to create a

small improvement in water quality levels in the storage. The average WQI can be
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increased by 3 grade points. The mixers increase the probability of having excellent

water quality to 40 per cent. The trend line on the WQI values increases from 79 to

88.

The column WQI values during the cold period fluctuate between 64 and 95.

The probability of occurrence of excellent and good quality water in the water column

is about 46 per cent and 100 per cent, respectively. The WQI increases from 77 to 83

(six grade points) over a half century of simulation. The time series of column WQI

data during the cold period is presented in Figure 6.39.
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Figure 6.39 Time series of WQI in the water column (average layers) of Cressbrook
storage during the cold period.

Figure 6.39 shows that surface mixers in the storage during the cold period

would slightly upgrade the water quality level (WQI) in the dam. This is indicated by

an increase in the probability of occurrence of excellent quality (WQI > 80) to 64 per

cent. The WQI trends from 79 to 86 over the simulation period.
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Chapter 7

RISK ASSESSMENT OF THE RESERVOIRS

7.1 Introduction

The probability of occurrence of different water quality levels in the reservoirs

at different seasons can be used to establish a risk management approach to the use of

mixers. The information provided in this project could enable managers to make

decisions appropriate to the level of risk of problems in the storages. Appropriate

management can reduce or eliminate the occurrence of undesirable water quality

conditions. This chapter further analyses the probability of occurrence of water quality

levels in the two reservoirs (Cooby and Cressbrook reservoirs). Nine selected water

quality indicators on a weekly basis form the basis of this appraisal.

The environmental risk in the dams is evaluated from as the probability of

occurrence of nine water quality indicators: one biological and eight physicochemical.
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7.2 Water Quality Indicators

Water quality assessment of freshwater lakes and reservoirs in Australia

routinely employs biological and physicochemical indicators (EPA Queensland 2005;

USEPA 1998). Water quality indicators were adopted for Cooby and Cressbrook

reservoirs from parameters monitored by the Toowoomba managers. The assessment

uses cyanobacterial concentration as the key biological indicator with dissolved

oxygen concentration, water temperature level, nitrate, total phosphorous, total iron,

total manganese concentration, salinity, and pH levels adopted as physicochemical

indicators which determine the environment for algal growth. Many other biological

and ecological aspects of the reservoirs (such as zooplankton and fish) were not

adopted in this project because of a limitation in measured field data and/or a low

connection to Cyanobacteria.

The assessment of an ecosystem is best done with biological rather than

physicochemical indicators because of their integrating effect (USEPA 1998).

However, ecosystem modifiers are important as causes of change to the biological

indicators (EPA Queensland 2005; Ganf 1980). Physicochemical indicators

complement the analysis to establish the causes of cyanobacterial blooms.

All indicators are represented here by the probability of occurrence of different

levels of water quality. The probability is calculated for a vertical column in the water

body and was established from simulated weekly data. The data were again subdivided

into a warm period from October to March and a cold period from April to September.

Simulations of water quality were completed to establish the effects of artificial

mixers. The results are divided into four categories in this chapter: which are (a) warm

period without mixers, (b) warm period with mixers, (c) cold period without mixers,

and (d) cold period with mixers. Profiles of the average values for selected water
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quality parameters are also presented to support the conclusions made as to mixer

operation.

7.2.1 Cyanobacteria

The cyanobacterial level in the dam is classified into four quality states. These

states are based on guidelines for blue-green algae levels for primary contact recreation

in Queensland (EPA Queensland 2005). They combine the quality limits from two

states. A cyanobacterial concentration less than 1 μg L-1 is classified as safe, while

concentrations between 1 and 5 μg L-1 are classified as low quality risk, 5 – 10 μg L-1

is classified as moderate, and concentration above 10 μg L-1 is classified as a state of

high risk to users.

The probability of occurrence of different cyanobacterial states in Cooby

reservoir are presented in Figure 7.1 for both periods (warm and cold) with and

without mixers. Generally, cyanobacterial concentration during the warm period is

significantly higher than that in the cold period from the surface down to 9.5 m depth.

The concentration of Cyanobacteria below 9.5 m is however considerably higher in the

cold period.

Figures 7.1(a) and (c) show the probability of occurrence of cyanobacterial

states in the water column during the warm and cold period without mixers. The

probability of occurrence of a high cyanobacterial state during the warm period can

reach about 35 % at 3.5 m below the water surface. It is only about 1 % during the cold

period. The maximum probability of occurrence for moderate state of cyanobacterial

concentration in the warm period is found at 4.5 m depth, and is about 54 %. This is

three times probability occurring during the cold period at 4.5 m depth. The

cyanobacterial concentration during the cold period is likely to be lower than 5 μg L-1

throughout the water column, except for one area around 4.5 m depth.
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Surface mechanical mixers increase the potential growth of Cyanobacteria

deeper in the storage because the mixers push the thermocline lower in the profile. An

increase of dissolved oxygen in the water column (see Figure 7.5) also contributes to

an increased algal growth rate as extra oxygen becomes available for the

photosynthetic processes.

Critical depth for cyanobacterial concentration is about 3.5 m depth with the

high risk level about 36 % during the warm period. The critical depth for algae is about

one metre lower than in the case without mixers with the high risk level approximately

20 %.

The changing probability of occurrence of cyanobacterial concentration

through the water column as a result of the mixers in Cooby reservoir is shown by

Figures 7.1(b) and (d). The mixers result in a reduction of algal risk in the epilimnion

during the whole simulation period. The hypolimnion layer on the other hand suffers

increasing cyanobacterial risk levels.

Figure 7.2(a) shows that the artificial mixers improve overall water quality by

reducing average cyanobacterial concentrations by 3.3 μg L-1 in the epilimnion layer

(surface to 4.7 metres depth) during the warm period. However, the quality of water is

getting worse below 4.7 m depth. The average cyanobacterial concentration is

increased by up to 1.8 μg L-1 in these layers.
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Figure 7.2 Profiles of average value of Cyanobacteria through water column with and
without mixers in Cooby reservoir during warm and cold periods.

During the cold period, the surface mixers achieve a better result with

controlling cyanobacterial concentrations. The mixers reduce the average cyano-

bacterial concentration from about one metre below the surface to a depth of 6.0 m.

The mixers are able to reduce the algal concentrations by a maximum of 1.3 μg L-1 in

the epilimnion (Figure 7.2b).

Cressbrook reservoir displays a similar pattern in the probability of occurrence

profile of cyanobacterial levels in Cooby reservoir. The highest concentration of algae

can be found at the epilimnion area. High and moderate levels of algae in the

epilimnion layer are much more common during the warm period than during the cold

period while the concentration in the hypolimnion is considerably lower than the

concentration in the epilimnion layer.
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Figure 7.3 displays the simulated cyanobacterial profiles through the water

column. Four profiles are given to represent warm and cold periods with and without

mixers in Cressbrook Reservoir. Cyanobacterial levels are again classified into four

categories; safe, low, moderate and high levels.

During the warm period, a high algal level (equivalent to alert level 3) can be

found in the epilimnion layer to about 10 m below the water surface. The maximum

probability of occurrence of this algal state is about 58 per cent at 6 m depth as shown

in Figure 7.3(a).

Moderate and low cyanobacterial states can occur at greater depths. The

occurrence of the high cyanobacterial state in the epilimnion layer is a consequence of

a suitable growth environment and particularly the availability of solar radiation. Solar

radiation can penetrate to a depth of 10 m. Reduced radiation levels at 10 – 15 m

below the water surface decreases the cyanobacterial concentration at these depths.

The cyanobacterial cells during the cold period are also concentrated in the

surface 5 metres of water although there is reduced frequencies of moderate and high

algal states. A low level of Cyanobacteria is found throughout the water column as

presented in Figure 7.3(c). The surface mixers appear not to reduce the high

cyanobacterial states in the epilimnion layer and they may even create more

opportunity for Cyanobacteria to grow in the deeper layers. Figure 7.3(b) shows the

presence of low levels of Cyanobacteria to a depth of 39 m below the surface, which

does not occur in the absence of mixers.
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The artificial mixers do upgrade overall water quality in the epilimnion layer

by reducing the average cyanobacterial concentrations by up to 1.5 μg L-1 (from

surface to 7 m depth) during the warm period. However, the quality of water declines

in the layer below 7 m depth. This is indicated by an increase in the average

cyanobacterial concentration of up to 2.3 μg L-1 as shown in Figure 7.4(a).

During the cold period, the surface mixer reduces the average Cyanobacteria

concentration to a depth of 13.5 metres by up to 2 μg L-1.

Figure 7.4 Profile of average value of Cyanobacteria through water column with and
without mixers in Cressbrook reservoir during warm and cold periods.



Risk assessment of the reservoirs 200

7.2.2 Dissolved oxygen

Desirable dissolved oxygen (DO) levels are based on the requirements of

aquatic life. Most aquatic organisms will survive with a level of oxygen concentration

from 4 to 8 mg L-1. This range is categorized as “fair”. An oxygen concentration

below 4 mg L-1 represents a “poor” condition, which can include water that has

become anoxic through oxygen depletion. Dissolved oxygen concentrations between 8

and 9.5 mg L-1 and over 9.5 mg L-1 are classified as “good” and “very good” states,

respectively.

Comparison of Figure 7.5(a) and (c) indicates that the dissolved oxygen

concentration in Cooby storage is lower during the warmer period of the year. The

quality is very good for the majority of time during the cold period. In the warmer

period it tends to be good near the surface but fair or poor at depth At 17 m depth,

there is 40 per cent probability of poor quality water during the warm period but less

than during the cold period. The epilimnion layer always has good or fair quality water

(with respect to DO) when the reservoir is stratified. The thermocline at a depth of 4.7

m prevents oxygen circulation into the hypolimnion layer (Achmad & Porter 2004).

This causes oxygen depletion in the lower layer as shown in Figure 7.5(a). The water

circulation during turnover improves the DO state throughout, and particularly in the

hypolimnion. Figure 7.5(c) shows that good and very good states of DO are always

achieved from the surface to a depth of 9.5 m, and present for about 90 per cent of the

time in the layer below the depth of 9.5 m.
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Figure 7.5 shows that a couple of artificial mixers improved the dissolved

oxygen states at all times of the year. During the warm period there is a less than 5 per

cent chance of experiencing poor quality water. There is more than an 80 per cent

chance of getting good quality DO in all layers of the reservoir. The results shows that

the mixers circulate oxygen through the thermocline down to the bottom of the

reservoir. In the absence of the thermocline during the cold period, the mixers

successfully raise DO levels to at least a good state and remove the possibility of poor

levels of DO through profile. Probability of occurrence of a very good DO state is on

average 60 per cent with the remaining time experiencing a good DO state.

Profiles of average DO values in Cooby dam during warm and cold periods are

presented in Figure 7.6 to supplement the probability information in Figure 7.5.

Figure 7.6 Profiles of average value of dissolved oxygen through the water column
with and without mixers in Cooby reservoir during warm and cold periods.
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Figure 7.6(a) illustrates the improvement in average DO concentrations through

the water column as a result of mixing during the warm period. It proves the capability

of the mechanical destratifiers to create a better DO environment when the reservoir is

stratified (the warm period). The mixers improve the oxygen status from about 4 m

depth to the bottom of the reservoir. A large improvement of up to 4 mg L-1 can be

found in the hypolimnion layer. As a result, the average DO concentrations rise above

8 mg L-1.

As the reservoir cools (the cold period), the process of mixing in the reservoir

occurs due to the natural energy of wind. The result is better aeration throughout the

water column. Figure 7.6(b) shows that the artificial mixers improve DO

concentrations by less than 1 mg L-1 under these conditions. The mixers do not then

make a significant improvement to the DO in the reservoir.

Cressbrook dam behaves differently to Cooby, because it is much deeper.

Bowie et al. (1985) compare reaeration coefficients at various depths in water bodies.

They found that the coefficient has a negative correlation with the depth. For deep-

storage reservoirs, the natural process of aeration is unable to circulate oxygen from

the surface to the bottom of the water body (Weitzel 1997; Wetzel 2001). In most

cases, DO levels at the bottom of deep reservoirs are very low where the aeration and

circulation is poor (Wetzel 2001). Cressbrook reservoir exhibits this problem with DO

levels in the hypolimnion layer dropping below 4 mg L-1.

The presence of a thermocline at 11 m below the surface in Cressbrook storage

prevents oxygen circulation in the storage during the warm period. Good levels of DO

are only likely to occur in the epilimnion layer at that time. The probability of

occurrence of good DO states decreases dramatically in the metalimnion and the

hypolimnion layer.
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At a depth of 40 m, for example, there is an 83 per cent probability that the DO

will be below 4 mg L-1 at any one time. Artificial mixers would change the DO profile

in the water column by pushing the thermocline down to about 17 m. This promotes a

greater transport of atmospheric oxygen into the storage. A comparison of DO

probability profiles with and without artificial mixers during the warm period is given

in Figures 7.7(a) and (b).

During the naturally mixed period, the probability of occurrence of poor DO

states is less than 40 per cent except at the bottom of the reservoir. This probability

gradually increases from 14 m depth to the bottom of the reservoir. Artificial mixers

would again improve the level of DO in the storage. With their assistance there is less

than 30 per cent probability of poor DO levels at depths of 30 – 48 m.

The average DO concentrations in the storage (see Figure 7.8) quantify the

improvement that artificial mixers make to water quality in the water column, from a

depth of about 5 m during the warm period. During this period, the mixers transport

oxygen enriched water to depths below 5 m. This increases the concentration in the

water column by up to 1.8 mg L-1. Similarly, an improvement in oxygen status starts at

10.5 m below the water surface during the cold period. The oxygen concentrations

increase by up to 2.7 mg L-1 during this period.
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Figure 7.8 Profiles of average value of dissolved oxygen through the water column
with and without mixers in Cressbrook reservoir during warm and cold
periods.

7.2.3 Water temperature

Temperature is monitored in most water supplies because it affects many

internal processes in an aquatic environment. The chemical reaction rates used in water

quality modelling depend on the temperature of the environment (Bowie et al. 1985;

Romero et al. 2003). Water temperature profiles can also be used as a visual indicator

of the occurrence of stratification in lakes and reservoirs (Martin & McCutcheon

1998).

Figure 7.9 shows probability of occurrence profiles for four thermal ranges in

Cooby reservoir. The figure clearly shows thermal stratification during the warm

period. Figure 7.9(a) shows that a water temperature higher than 19oC will occur in the

top layer of the reservoir 90 per cent of the time. The hypolimnion layer has a

contrasting high probability (about 85 per cent) for water temperature below 14oC.



Risk assessment of the reservoirs 207

F
ig

u
re

7
.9

P
ro

b
ab

il
it

y
o
cc

u
rr

en
ce

s
o
f

w
at

er
te

m
p

er
at

u
re

le
v
el

s
in

C
o
o
b
y

re
se

rv
o
ir

(a
)

w
ar

m
p
er

io
d

w
it

h
o
u
t

m
ix

er
s,

(b
)

w
ar

m
p
er

io
d

w
it

h
m

ix
er

s,
(c

)
co

ld
p
er

io
d

w
it

h
o
u
t

m
ix

er
s,

an
d

(d
)

co
ld

p
er

io
d

w
it

h
m

ix
er

s.



Risk assessment of the reservoirs 208

Artificial destratifiers break the thermocline down and transport warmer water

into the hypolimnion during the warm period (Achmad and Porter 2004). The mixers

change the temperature profile of the storage to create a high probability (more than 90

per cent) of water temperature above 19oC. However, there is no significant difference

in the temperature profile during the cold period in the reservoir. This is because the

reservoir is in the natural turnover period where the stratification is weak. The

probability of occurrence of a water temperature below 14oC is more than 50 per cent

for the entire water column while a water temperature between 10 to 24oC has a

probability less than 5 per cent of occurring during the cold period.

Average values of water temperature in the water column for the 50-year

simulation period show the effect of mixers in both warm and cold periods (Figure

7.10). The temperature of the water from 3 m below the water surface to the bottom of

the reservoir can be increased by 8oC during the warm period as shown in Figure

7.10(a). Figure 7.10(b) shows no significant difference in average water column

temperatures during the cold period with and without the use of artificial mixers. The

mixers are able to increase the average water temperature through the water column by

only about 1oC.

Cressbrook reservoir is always stratified during the warm period. Warm water

is dominant in the epilimnion layer while the hypolimnion (15 m below water surface)

is dominated by water temperatures below 14oC as shown in Figure 7.11(a). The

thermocline (metalimnion) layer lies between 7 m and 17 m below the water surface.

The mixers reduce the probability of stratification to just about 85 per cent (see Figure

7.11(b)). The thermocline still exists but tends to be further below the surface (18 – 32

m) than it is without mixers.
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Figure 7.10 Profiles of average value of water temperature through the water column
with and without mixers in Cooby reservoir during warm and cold
periods.

Figure 7.11(c) shows that the probability of occurrence of water temperatures

below 14oC during the cold period is about 40 per cent in the epilimnion and 100 per

cent in hypolimnion layers. The artificial mixers are able to reduce the probability of

occurrence of low temperatures in the hypolimnion layer. The mixers have no effect on

the probabilities in the epilimnion layer (from surface to the layer 7 m depth).
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The effect of artificial mixers during the warm and cold periods has also been

assessed by comparing the average water temperature in the water column with and

without artificial mixers as shown in Figure 7.12. The mixers introduce warm water to

the middle layer of the water column. During the warm period, the mixers introduce

warm water between 5 m and 43 m depth. The temperature at 20 m depth shows the

highest impact of the mixers, with a temperature increment of 10oC.

Figure 7.12 Profiles of average value of water temperature through the water column
with and without mixers in Cressbrook reservoir during warm and cold
periods.

During the cold period, the average water temperature profile in Cressbrook

storage ranges from about 11oC to 16oC. The destratifiers increase the average water

temperature by 2.5oC, from 5 m depth to the bottom of the reservoir.
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7.2.4 Nitrate (NO3)

Nitrate in a reservoir influences the growth of most aquatic creatures. This

nutrient affects the competitive capability of Cyanobacteria. Vollenweider (1968)

determined that the ratio between nitrogen concentration and other chemical

substances such as phosphorus and carbon plays a significant role in cyanobacterial

growth in water bodies.

Four states of nitrate concentration were established in this study as follows:

 NO3 ≤ 0.5 mg L-1,

 0.5 mg L-1 < NO3 ≤ 1.0 mg L-1,

 1.0 mg L-1 < NO3 ≤ 2.0 mg L-1, and

 NO3 > 2.0 mg L-1.

These states were developed from the significance of nitrate concentrations in

multi-purpose reservoirs. The EPA Queensland (2005) recommended a nitrate

concentration below 100 mg L-1 for optimal growth of particular species (aquaculture)

in freshwater. The recommended concentration is much higher compared to

recommendation for drinking water.

The greatest probability of occurrence of the highest range of nitrate (> 2 mgL-1)

in Cooby reservoir (Fig 7.13) in the warm period occurs in the hypolimnion with a

value less than 2 per cent. Nitrate concentrations from 1 mg L-1 to 2 mg L-1 have a high

probability of occurring (about 75 per cent). In the epilimnion layers, nitrate

concentrations between 0.5 mg L-1 and 1 mg L-1 occur about 50 per cent of the time.

Mixers operating in the warm period will reduce the probability of occurrence of high

nitrate concentrations throughout the water column as shown in Figure 7.13(b). The

low nitrate state of 0.5 mg L-1 < NO3 ≤ 1.0 mg L-1 is most common with 70 per cent

probability throughout the column.
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Figure 7.13 also summarises the nitrate states during the cold period. The high

state of 1 mg L-1 to 2 mg L-1 occurs about 70 per cent of the time. The mixers cause

insignificant changes to the probability of nitrate levels occurring in the cold season

shown in Figure 7.13(c) and (d).

Figure 7.14 Profiles of average value of Nitrate (NO3) through the water column with
and without mixers in Cooby reservoir during warm and cold periods.

The average concentration profiles in the water column are plotted in Figure

7.14 to demonstrate the significance of artificial mixers during the warm and cold

period. Figure 7.14 shows that the mixers can reduce nitrate concentrations in the

hypolimnion layer by 0.7 mg L-1 during the warm season. The average value of nitrate
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concentration during the cold period is about 0.7 mg L-1, and there is no significant

effect of mixers at this time with the reduction shown at less than 0.05 mg L-1.

In Cressbrook Dam, the probability of very high nitrate concentrations (> 2 mg

L-1) is higher to that in Cooby Dam. During the warm period, the probability is 5 per

cent and 65 per cent in the epilimnion and the hypolimnion layers, respectively.

Continuous operation of artificial destratifiers during this period will reduce this

probability at 9 – 23 m below the water surface to about 8 per cent. A detailed

comparison of the probability occurrence of nitrate levels in Cressbrook Dam with and

without artificial mixers during the warm period is presented in Figure 7.15(a) and (b).

During the cold period, the probability of high nitrate level occurring is much

lower than it is during the warm period. A high nitrate state of 1 – 2 mg L-1 has about

70 per cent chance of occurring. Concentrations above 2 mg L-1 are possible with

probabilities of 40 per cent and 15 per cent respectively with and without artificial

mixers. Generally, artificial mixers reduce the probability of high levels of nitrate

concentration in the reservoir.

The effect of mixers on average nitrate concentrations is shown in Figure 7.16.

During the warm period the mixers slightly increase the concentration in the

epilimnion layer and at the bottom of the reservoir. The average concentration

decreases by 0.5 mg L-1 in the upper part of the hypolimnion layer (9 m – 32 m depth).

The distribution of average nitrate concentrations in the water column during the cold

period is also changed by the mixers’ operation as shown in Figure 7.16.



Risk assessment of the reservoirs 216

F
ig

u
re

7
.1

5
P

ro
b
ab

il
it

y
o
cc

u
rr

en
ce

s
o
f

n
it

ra
te

(N
O

3
)

le
v
el

s
in

C
re

ss
b
ro

o
k

re
se

rv
o
ir

.
(a

)
w

ar
m

p
er

io
d

w
it

h
o
u
t

m
ix

er
s,

(b
)

w
ar

m
p
er

io
d

w
it

h
m

ix
er

s,
(c

)
co

ld
p

er
io

d
w

it
h
o
u
t

m
ix

er
s,

an
d

(d
)

co
ld

p
er

io
d

w
it

h
m

ix
er

s.



Risk assessment of the reservoirs 217

Figure 7.16 Profiles of average value of Nitrate (NO3) through the water column with
and without mixers in Cressbrook reservoir during warm and cold periods.

7.2.5 Total phosphorus

Phosphorus is another important nutrient in a water body. It has been managed

to control the cyanobacterial growth (phos-lock method) in some reservoirs (Florida

LAKEWATCH 2000; Sas 1989). Reducing the sediment phosphorus load to water

column can starve the cyanobacterial of nutrient (Department of Land and Water

Conservation NSW 2002).

Total phosphorus concentrations were classified into four states which are: very

low (TP ≤ 0.05 mg L-1), low (0.05 mg L-1 < TP ≤ 0.10 mg L-1), high (0.10 mg L-1 < TP
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≤ 0.15 mg L-1), very high (TP > 0.15 mg L-1). These states were used to simplify the

presentation of probability of occurrence results for phosphorus in the water column.

A very high total phosphorus condition can only occur in the hypolimnion layer

(below 9 m depth) with a probability of less than 40 per cent. In the epilimnion, low or

very low total phosphorus states are always present shown in Figure 7.17(a).

The operation of mixers during this period will reduce the probability of a high

level of total phosphorus in the hypolimnion. However, it increases the likelihood of

very high phosphorus concentrations in the epilimnion layer. The mixers distribute the

total phosphorus uniformly through the water column as clearly seen in Figure 7.17(b).

During the cold period, a low total phosphorus state is dominant through the

water column (about 70 per cent of time). The highest state (TP > 0.15 mg L-1) only

occurs in the deeper layer of the reservoir with a probability of less than 20 per cent.

The mixers in the storage act to distribute the total phosphorus throughout the whole

water column, reducing total phosphorus concentrations in the hypolimnion. On the

other hand, high state concentrations between 0.1 mg L-1 and 0.15 mg L-1 appear in all

layers shown in Figure 7.17(d).
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The effect of the mechanical destratifiers is also shown by the average value of

total phosphorus concentration through the water column, shown in Figure 7.18. The

mixers homogenise the concentrations from the surface to their working depth. They

effectively transport phosphorus from the hypolimnion to the epilimnion. As a result,

the total phosphorus concentration increases in the epilimnion layer and decreases in

the hypolimnion layer. The difference can be a 0.02 mg L-1 increase in the epilimnion

layer or a drop of 0.08 mg L-1 in the hypolimnion during the warm period (see Figure

7.18(a)).

Figure 7.18 Profiles of average value of total phosphorus through the water column
with and without mixers in Cooby reservoir during warm and cold
periods.

The vertical profile of time averaged total phosphorus concentrations in the

storage during the cold period shows little effect from the mixers’ operation. Figure
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7.18(b) shows that the average concentration in the water column is less than 0.07 mg

L-1 with and without mixers operating. The mixers increase the average total

phosphorus concentration by 0.01 mg L-1 in the epilimnion and reduce it by 0.02 in the

bottom layers.

The probability profiles for total phosphorus levels in Cressbrook reservoir are

shown in Figure 7.19. They are quite different to that previously discussed for Cooby

reservoir. The probability of very high level of total phosphorus concentration during

the warm period increases dramatically from less than 1 per cent at 7 m depth to 97 per

cent at 42 m depth under natural conditions. The mixers raise this probability in the

epilimnion layer, as shown in Figure 7.19(a) and (b). The probability of very high level

of phosphorus (TP > 1.5 mg L-1) tends to increase in the layers from the surface to the

25 m depth with the addition of mixing energy.

During the cold period, very high concentrations (> 0.15 mg L-1) occur in the

hypolimnion layer 45% of the time, but lower states are found to a depth of 11 m for

95% of the time. The mixers increase the probability of occurrence of very high total

phosphorus concentrations in the epilimnion layer to approximately 50 per cent, as

shown in Figures 7.1.9(c) and (d).

Figure 7.20 summarises the effect of mixers on the time averaged total

phosphorus concentration in the water column. It compares the profiles with and

without mixers for both periods. The mixers increase the average total phosphorus

concentration in the whole water column by up to 0.08 mg L-1 during the warm period

of the year. During the cold period, however, the mixers reduce the concentration

below 28 m depth by up to 0.05 mg L-1. However, artificial mixing increases the

averaged total phosphorus concentration from the water surface to 28 m by 0.06 mgL-1.
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Figure 7.20 Profiles of average value of total phosphorous through water column with
and without mixers in Cressbrook reservoir during warm and cold periods.

7.2.6 pH

The pH of water has a significant effect on chemical transformations in water

bodies (Bowie et al. 1985). In the DYRESM-CAEDYM water quality model, pH

levels are used when simulating transformation processes including sediment nutrient

fluxes (the change in phosphorus and ammonium concentrations in the bottom layer of

the water column) and the equilibrium balance for reduced and oxidised phases of iron,

manganese and aluminium (Herzfeld & Hamilton 2000).

The pH levels were classified into four levels: acidic (pH < 6.5), slightly acidic

(6.5 ≤ pH ≤ 8.0), slightly alkaline (8.0 < pH ≤ 10.0), and alkaline (pH ≥ 10.0). An
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acceptable range for pH of water is slightly acidic (6.5 and 8.0) (EPA Queensland

2005).

The probability of occurrences for these pH levels are presented in Figure 7.21

for Cooby Dam. The desired slightly acidic pH level occurs for only about 30 per cent

of the time between the water surface and 19 m depth at any time of the year, but is

always present in the deepest layers of the water column. The probability of alkaline

state is about 70 per cent. This pH profile is not significantly affected by artificial

mixing process.

The time averaged value pH profiles are shown in Figure 7.22, confirming the

lack of effect from artificial mixers on pH in the water column.
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Figure 7.22 Profiles of average value of pH through the water column with and
without mixers in Cooby reservoir during warm and cold periods.

The occurrence of desirable, slightly acidic water in Cressbrook Dam is less

likely than in Cooby Dam. The probability of occurrence is less than 10 per cent

compared to the 30 per cent in Cooby storage. Figure 7.23 indicates that slightly

alkaline or alkaline water occurs most of the time with probabilities of occurrence of

70% and 20% respectively.

The operation of mixers in Cressbrook reservoir has a small effect at the

epilimnion and hypolimnion layers during the warm period from November – April

(see Figure 7.23(a) and (b)). The probability of an alkaline level of pH in the

epilimnion layer decreases from 22 per cent to about 18 per cent with the use of

artificial mixers.
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In contrast, the mixers slightly increase the likelihood of alkaline water in the

metalimnion layer (by 1 per cent). During the cold period, there is an 80% chance of

slightly alkaline water occurring throughout the water body. The artificial mixers cause

only a very small change in the pH levels (see Figure 7.23(c) and (d)).

Figure 7.24 Profiles of average value of pH through the water column with and
without mixers in Cressbrook reservoir during warm and cold periods.

The time averaged values of pH in Cressbrook reservoir are summarised in

Figure 7.24 to show an insignificant effect of artificial mixers on pH. The pH is 9.5

from the water surface to 40 m depth. The time averaged values of pH then increase

by 0.5 at layers below 40 m.
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7.2.7 Salinity

The salinity level of inland freshwater in Australia is not usually a major

problem. For aquaculture purposes, the EPA Queensland (2005) recommends a salinity

level below 5 psu. Most freshwater fish species can growth optimally in water below

this value.

Historically, salinity levels in Toowoomba’s storages have been lower than 1

psu. Therefore, salinity was classified into four small ranges to describe the

environment in Toowoomba’s reservoirs. The levels are: excellent (salinity below 0.5

psu), very good (0.5 to 0.6 psu), good (0.6 to 0.7 psu), and poor (>0.7 psu). All these

levels are associated with acceptable water in multi purpose reservoirs.

In Cooby Dam, very good and good levels of salinity occur most of the time

except in the bottom layers. They have probability of occurrence values of about 40

per cent and 55 per cent, respectively.

Figure 7.25(a) and (b) presents the probability profiles for salinity in Cooby storage

with and without mixers during the warm period. Mixers serve to distribute the salinity

from the water surface to 18 m depth, changing the probability of the two dominant

levels. The probability of good levels of salinity increases in the epilimnion layer.

Conversely, the probability of good salinity levels decrease in the hypolimnion layer.
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In the cold period, artificial mixing does not change the likelihood of different

salinity levels in the water column as shown by Figure 7.25(c) and (d).

Figure 7.26 shows that the mixers do not affect the time averaged values of

salinity in the reservoir. The time averaged values of salinity varies from about 0.58

psu at the water surface to about 0.47 psu at the bottom of the reservoir.

Figure 7.26 Profiles of average value of Salinity through the water column with and
without mixers in Cooby reservoir during warm and cold periods.

The poor salinity levels (above 0.7 psu) are more likely to occur in Cressbrook

than in Cooby storage. During the warm period, a poor salinity level occurs up to 40

per cent of the time in the epilimnion layer and about 35 per cent in the hypolimnion

layer of Cressbrook Dam. The good levels occur from the water surface to a depth of

34 m for almost 40 per cent of the time.
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The artificial mixers decrease the probability of occurrence of poor salinity

levels to about 30 per cent from the water surface to 34 m depth during the warm

period. During the cold period, good and poor salinity levels occur for almost 80 per

cent of the time. The salinity probability profile is slightly different with the use of the

mixers. Poor salinity levels, for example, are 4 per cent less likely to occur when using

the mechanical mixers as shown in Figure 7.27(d).

Figure 7.28 presents the time averaged salinity concentration profiles. It shows

that the averaged salinity concentration in the epilimnion layer is 0.65 psu. The

averaged salinity concentration below 8 m depth during the warm period is 0.015

lower than the averaged concentration in the epilimnion layer of Cressbrook reservoir.

Any artificial mixing in the storage only affects a part of the epilimnion layer (water

surface to the depth of 8 m) as shown in Figure 7.28(a).
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Figure 7.28 Profiles of average value of salinity through the water column with and
without mixers in Cressbrook reservoir during warm and cold periods.

7.2.8 Total iron

A high concentration of total iron in water bodies can create nuisance odours in

a domestic water supply. The EPA Queensland (2005) recommends that the

concentration of total iron be below 0.1 mg L-1 for optimal growth of freshwater

species.

Four levels of total iron concentration defined to represent the levels occurring

in Cooby reservoir. These are: very low (TFe ≤ 0.01 mg L-1), low (0.01 < TFe ≤ 0.1

mg L-1), high (0.1 < TFe ≤ 0.5 mg L-1), and very high (TFe > 0.5 mg L-1).
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During the warm period from November to April, a high level total iron occurs

in the epilimnion layer of Cooby storage up to 70 per cent of the time as presented in

Figure 7.29(a). However a very low occurrence of total iron concentration is found in

the hypolimnion layer for up to 90 per cent of the time. Figure 7.29(b) shows the

probability of occurrence profile for total iron levels in the water column during the

warm period with artificial mixers in use. The mixers’ operation transports the iron

deeper into the reservoir.

In the cold period from May to October, there is at least a 65% chance of very

low total iron status throughout the water column. The use of artificial mixers at this

time reduces the probability levels of all total iron above 0.01 mg L-1. A detail

presentation of the probability of occurrence of total iron levels with and without

artificial mixers during the cold period is presented in Figure 7.29(c) and (d).

The time averaged profiles of total iron for the 50-year prediction period with

and without artificial mixers in the water column are shown in Figure 7.30. Figure

7.30(a) shows that the mixers reduce the average total iron concentration by 0.17 mg

L-1 from the surface to a depth of 11 m during the warm period. In the cold period

from May to October, the mixers improve water quality by reducing the time averaged

concentration of total iron throughout the storage. The reduction in concentration is

just below 0.1 mg L-1.
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Figure 7.30 Profiles of average value of total iron through the water column with and
without mixers in Cooby reservoir during warm and cold periods.

Total iron concentrations in Cressbrook storage are lower than those in Cooby

Dam, it was necessary to adopt smaller concentration ranges for Cressbrook reservoir.

The levels were set at very small (TFe ≤ 0.001 mg L-1), small (0.001 < TFe ≤ 0.005 mg

L-1), large (0.005 < TFe ≤ 0.010 mg L-1), and very large (TFe > 0.010 mg L-1).

The probabilities of having small, large or very large total iron in the

epilimnion layer during the warm period are 27, 15 and 24 per cent of the time,

respectively. The water layer below 14 m depth is most likely to have a very small

concentration of total iron as shown in Figure 7.31(a).
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The artificial mixers affect the vertical profile of total iron levels. High risks of

large iron content in the epilimnion layer decrease because of vertical circulation in the

storage. Conversely, the risk in the hypolimnion layer increases. There is about 5 per

cent probability of very large total iron in the water column as shown in Figure

7.31(b).

Figure 7.31(c) and (d) show the incidence of total iron levels in the storage

with and without artificial mixers during the cold period. The probability of occurrence

of the very small total iron (below 0.001 mg L-1) is about 65 per cent in the water

surface and up to 95 per cent in the hypolimnion layer.

Profiles of time averaged values of total iron concentration are presented for

the separate periods (warm and cold periods) with and without mixers in Figure 7.32.

During the warm period, the mixers reduce the average concentration of total iron by

up to 0.005 mg L-1 in the epilimnion layer. In contrast, the average concentrations

increase by 0.003 mg L-1 in the hypolimnion layer.

During the cold period, the mixers reduce the time averaged concentration of

total iron by 0.002 mg L-1 at the water surface to the 39 m depth. Below 39 m depth,

the use of mechanical mixers tends to increase the averaged concentrations of total

iron.

7.2.9 Total manganese

Manganese concentrations in the DYREMS-CAEDYM model follow an

identical mathematical formulation to iron, but with different parameter

representations (Herzfeld & Hamilton 2000). Aeration allows manganese ions in

reservoirs to be oxidised manganese dioxide. An aeration system is commonly used in

a water treatment plant as a pre-treatment process to reduce manganese levels

(Raveendran, Ashworth & Chatelier 2001).
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Figure 7.32 Profiles of average value of total iron through the water column with and
without mixers in Cressbrook reservoir during warm and cold periods.

The ranges of total manganese concentrations are similar to those for iron in

Cooby and Cressbrook reservoirs. Figure 7.33 details probability of occurrence of total

manganese in Cooby’s water column during the warm and the cold period with and

without mechanical destratifiers. Total manganese concentrations above 0.1 mg L-1 are

about 70 and 10 per cent likely to occur in the epilimnion and hypolimnion layers,

respectively during the warm period in Cooby.

During the cold period, total manganese levels above 0.1 mg L-1 are about 35

per cent likely to occur above the hypolimnion layer.

Surface mixers are able to remove the high levels of total manganese

concentrations during the warm period by acting as oxygenation tools. Concentrations
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between 0.01 mg L-1 and 0.05 mg L-1 can occur with a probability below 20 per cent

while concentrations below 0.01 mg L-1 are shown in Figure 7.33(b). High total

manganese concentrations are simply not found during the cold period if mixers are

operated in Cooby storage (see Figure 7.33(d)).

Time averaged total manganese concentrations in the water column also show

the effect of mixers in Cooby storage. Figure 7.34 shows that the mixers reduce the

average total manganese concentration by 0.17 mg L-1 and 0.09 mg L-1 in the water

column during the warm and the cold periods, respectively.

Figure 7.34 Profiles of average value of total manganese through the water column
with and without mixers in Cooby reservoir during warm and cold
periods.
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The small range of total manganese concentrations in Cressbrook storage is

similar to that for total iron in the storage. The probability of occurrences of raised

total manganese levels in the epilimnion layer during the warm period from November

to April is higher than in the hypolimnion layer as shown in Figure 7.35(a). Artificial

mixers distribute manganese down through the hypolimnion layer and change the

probability of occurrence of different levels. The likelihood of total manganese

concentrations above 0.001 mg L-1 drops by 20 per cent in the top layers but increases

by 20 per cent below 17.5 m depth.

During the cold period, the total manganese concentration is relatively lower.

The possibility of total manganese occurring above 0.001 mg L-1 is about 33 per cent

in the epilimnion layer and only about 15 per cent below 17.5 m depth. The mixers

reduce the probability of levels above 0.001 mg L-1 occurring to about 15 per cent in

the epilimnion layer. A complete probability profile for a range of total manganese

levels can be seen in Figure 7.35(c) and (d).

Detailed profiles of time averaged total manganese concentration in the

reservoir can be seen in Figure 7.36. The time averaged value of total manganese

concentrations can be influenced by mixers in the reservoir. During the warm period,

the time averaged concentration is just below 0.01 mg L-1 in the surface water. The

mixers reduce the concentration by 0.006 mg L-1. However, the concentration then

increases in the layers below 9 m depth as the manganese is distributed in the column

of water. In the cold period, the time averaged concentrations decrease as a result of

the of mixers’ action. The concentrations increase only in the layer close to the bottom

of the reservoir.
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Figure 7.36 Profiles of average value of total manganese through the water column
with and without mixers in Cressbrook reservoir during warm and cold
periods.

7.3 Summary of the Effect of Artificial Mixers on Water Quality

This section presents a summary of the changes of water quality levels to

evaluate the overall effect of the mixers in the water column. There are some benefits

from using mechanical mixers in the storages. Unfortunately, the water quality

parameters do become worse in some layers.

7.3.1 Cooby Dam

The benefits from using artificial mixers in Cooby Dam during the warm

period from November to April are: improved dissolved oxygen levels, warmer

temperatures deeper in the water column, reduced nutrient concentrations in the

hypolimnion layer, and reduced cyanobacterial concentrations in the epilimnion layer.
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There are also some negative impacts of the mixers. The cyanobacterial concentrations

in the hypolimnion layer are increased as are the nutrient concentrations in the

epilimnion layer. A detailed summary of the impact of the mixers in Cooby Dam

during the warm period is presented in Table 7.1.

Table 7.1 A summary of the changes in average water quality parameters with and
without mixers during the period November to April in Cooby Dam.

Depth
Parameters

BGA
μg L-1

DO
mg L-1

Tw
oC

NO3

mg L-1
TP

mg L-1
pH*

-
Sal*
psu

TFe
mg L-1

TMn
mg L-1

0-2 0 0 0 +0.05 +0.016 +0.010 -0.004 -0.160 -0.160

3-4 -2.5 +0.1 +0.2 +0.05 +0.015 +0.020 -0.003 -0.150 -0.150

5-6 +1.5 +0.4 +1.0 -0.05 +0.007 +0.045 -0.001 -0.100 -0.100

7-8 +1.0 +0.7 +2.5 -0.10 -0.006 +0.078 +0.001 -0.049 -0.049

9-10 +0.8 +1.0 +3.5 -0.20 -0.019 +0.097 +0.002 -0.022 -0.022

11-12 +0.6 +1.5 +5.0 -0.30 -0.030 +0.110 +0.003 -0.010 -0.010

13-14 +0.4 +1.8 +6.5 -0.45 -0.041 +0.119 +0.003 -0.008 -0.008

15-16 +0.2 +2.1 +7.0 -0.50 -0.054 +0.124 +0.004 -0.008 -0.008

17-18 +0.2 +3.5 +7.0 -0.60 -0.065 +0126 +0.004 -0.010 -0.010

19-20 +0.2 +3.9 +7.0 -0.50 -0.064 +.0120 +0.004 -0.010 -0.010

21-22 +0.2 +3.7 +5.5 -0.35 -0.063 -0.080 -0.004 -0.007 -0.007

Note: BGA is Cyanobacteria, DO is Dissolved Oxygen, Tw is Water Temperature, NO3 is Nitrate, TP is Total
Phosphorus, pH is the degree of alkalinity, Sal is Salinity, TFe is Total Iron, and TMn is Total Manganese.
Grey colour indicates that the layers gain a positive impact from the mixers;
*) insignificant parameter (the different is less than 1 per cent).

The impact of artificial mixers on water quality during the cold period is not so

great, as summarised in Table 7.2. The mixers cause no significant difference in the

pH and salinity concentrations through the water column, nor in dissolved oxygen and

water temperatures in the epilimnion layer. Water quality improvement does result

from a small reduction of nitrate, total iron and total manganese concentrations in all

layers, a small increase in dissolved oxygen concentrations in the hypolimnion layer,

temperature changes below 5 m depth, and a reduction of cyanobacterial

concentrations in the layers 3 – 6 m depth and 9 – 16 m depth. Negative impacts from

the mixers during the cold period are shown by the increase in total phosphorus in the
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epilimnion layer and the Cyanobacteria at the water surface, 7 – 8 m depth, and 17 –

22 m depth.

Table 7.2 A summary of the changes in average water quality parameters with and
without mixers during the period May to October in Cooby Dam.

Depth
Parameters

BGA
μg L-1

DO
mg L-1

Tw
oC

NO3

mg L-1
TP

mg L-1
pH*

-
Sal*
psu

TFe
mg L-1

TMn
mg L-1

0-2 +0.05 0 0 -0.05 +0.004 0 0 -0.09 -0.09

3-4 -1.50 0 0 -0.05 +0.004 0 0 -0.09 -0.09

5-6 -0.80 0 +0.2 -0.05 +0.004 0 0 -0.09 -0.09

7-8 +0.11 0 +0.4 -0.05 +0.004 0 0 -0.09 -0.09

9-10 0 0 +0.4 -0.05 +0.004 0 0 -0.09 -0.09

11-12 0 0 +0.4 -0.05 +0.003 0 0 -0.08 -0.08

13-14 -0.01 +0.2 +0.4 -0.07 +0.001 0 0 -0.08 -0.08

15-16 0 +0.4 +0.3 -0.08 -0.003 0 0 -0.07 -0.07

17-18 +0.05 +0.6 +0.4 -0.09 -0.007 0 0 -0.07 -0.07

19-20 +0.04 +0.5 +0.4 -0.09 -0.015 0 0 -0.07 -0.07

21-22 +0.02 +1.1 +0.8 -0.10 -0.020 0 0 -0.03 -0.03

Note: BGA is Cyanobacteria, DO is Dissolved Oxygen, Tw is Water Temperature, NO3 is Nitrate, TP is Total
Phosphorus, pH is the degree of alkalinity, Sal is Salinity, TFe is Total Iron, and TMn is Total Manganese.
Grey colour indicates that the layers gain a positive impact from the mixers;
*) insignificant parameter (the different is less than 1 per cent).

Table 7.2 also shows that the layers between 13 m and 16 m depth have the

maximum benefit from the use of the mechanical surface mixers. The mixers reduce

the cyanobacterial concentration in the 13 – 14 m layer but there is a small increase in

total phosphorus concentration. In the 15 – 16 m layer, there is no change of

cyanobacterial concentration but an improvement in other water quality parameters.

7.3.2 Cressbrook Dam

Cressbrook water storage quality gains from the use of mechanical mixers

during the warm period by increased dissolved oxygen concentrations and improved

water temperature levels below 5 m depth. The mixers also decrease the concentrations

of total iron and total manganese in the epilimnion layer and cyanobacterial

concentrations in the surface layer. Conversely, some parameters are made worse by

continuous operation of mixers. The cyanobacterial concentrations in the middle layers
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are increased as are total iron and total manganese concentrations in the hypolimnion

layer. Nitrate concentrations in the surface and the bottom layers of the reservoir and

total phosphorus throughout the water column are also increased when mixers are

used.

Table 7.3 A summary of the changes in average water quality parameters with and
without mixers during the period November to April in Cressbrook Dam.

Depth
Parameters

BGA
μg L-1

DO
mg L-1

Tw
oC

NO3

mg L-1
TP

mg L-1
pH*

-
Sal*
psu

TFe
mg L-1

TMn
mg L-1

0-5 -0.41 -0.02 -0.01 +0.12 +0.08 -0.09 -0.02 -0.005 -0.006

6-10 +0.28 +0.54 +1.19 +0.07 +0.06 +0.02 -0.01 -0.001 -0.002

11-15 +1.70 +1.44 +4.99 -0.19 +0.03 +0.10 0 -0.001 +0.001

16-20 +1.20 +1.27 +8.66 -0.46 +0.01 +0.03 0 +0.001 +0.002

21-25 +0.61 +0.91 +8.57 -0.51 +0.02 -0.01 0 +0.001 +0.001

26-30 +0.21 +1.16 +4.70 -0.36 +0.02 -0.01 -0.01 +0.001 +0.001

31-35 +0.09 +1.28 +2.13 -0.02 +0.02 -0.01 -0.01 +0.001 +0.002

36-40 +0.03 +1.00 +0.79 +0.11 +0.03 -0.01 -0.01 +0.001 +0.002

41-45 0 +0.50 +0.25 +0.06 +0.04 0 0 +0.001 +0.001

46-50 0 +0.06 +0.12 +0.01 +0.01 +0.02 0 +0.001 +0.001

Note: BGA is Cyanobacteria, DO is Dissolved Oxygen, Tw is Water Temperature, NO3 is Nitrate, TP is Total
Phosphorus, pH is the degree of alkalinity, Sal is Salinity, TFe is Total Iron, and TMn is Total Manganese.
Grey colour indicates that the layers gain a positive impact from the mixers;
*) insignificant parameter (the different is less than 1 per cent).

During the cold period, the artificial mixers improve most water quality

parameters, except Cyanobacteria and nitrate in the hypolimnion layer and total

phosphorus in the epilimnion layer. The mixers do not affect the time averaged pH or

salinity concentrations in the water column. The reservoir gains maximum benefit

from the mixers in the layer between 11 m and 15 m depth as shown in Table 7.4.
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Table 7.4 A summary of the changes in average water quality parameters with and
without mixers during the period May to October in Cressbrook Dam.

Depth
Parameters

BGA
μg L-1

DO
mg L-1

Tw
oC

NO3

mg L-1
TP

mg L-1
pH*

-
Sal*
Psu

TFe
mg L-1

TMn
mg L-1

0-5 -1.12 +0.03 +0.01 -0.02 +0.06 0 -0.01 -0.002 -0.002

6-10 -1.35 -0.01 +0.36 -0.02 +0.06 +0.01 -0.01 -0.001 -0.001

11-15 -0.17 +0.12 +1.26 -0.04 +0.05 +0.03 -0.01 -0.001 -0.001

16-20 +0.29 +0.64 +1.98 -0.14 +0.04 +0.04 0 0 -0.001

21-25 +0.38 +1.23 +2.11 -0.27 +0.03 +0.03 0 0 0

26-30 +0.28 +1.88 +1.88 -0.29 +0.01 +0.01 0 0 -0.001

31-35 +0.21 +2.44 +1.64 -0.12 -0.01 0 0 +0.001 -0.001

36-40 +0.15 +2.50 +1.25 +0.10 -0.02 -0.01 0 0 0

41-45 +0.05 +2.09 +0.79 +0.21 -0.02 0 0 0 0

46-50 +0.02 +1.36 +0.45 +0.15 -0.02 0 0 +0.001 -0.001

Note: BGA is Cyanobacteria, DO is Dissolved Oxygen, Tw is Water Temperature, NO3 is Nitrate, TP is Total
Phosphorus, pH is the degree of alkalinity, Sal is Salinity, TFe is Total Iron, and TMn is Total Manganese.
Grey colour indicates that the layers gain a positive impact from the mixers;
*) insignificant parameter (the different is less than 1 per cent).

7.4 Risk Management of Water Quality in the Reservoirs

Risk management requires decision makers to analyse the future likelihood of

hazards and to make management decisions with regard to these risks (Beck & Straten

1983). Quantitative analysis of uncertainty and variability is used extensively in risk

assessment (Wilson & Shlyakhter 1997). Risk represents the probability of an

undesired event for which the probability distribution is known. Accordingly, risk

analysis must determine the outcomes of decisions together with their probability

levels.

Risks to water quality in a reservoir can be managed through an understanding

of water quality behaviour in the water column. For a domestic water supply, risk

management addresses the level of acceptable water quality for treatment plants. A

intake level is often varied as a way of managing for optimum water quality. The raw

water quality determines the cost of treatment to acceptable drinking levels. Thus,
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decision making focuses on alternatives available within the limitations of natural and

capital resources.

The vertical variations in some water quality parameters in Cooby and

Cressbrook reservoirs would allow such a selective pumping level layer system to be

adopted. However, it is not obvious where the optimal pumping elevation would be as

some parameters improve and some worsen with the use of mixers. Probability level

for satisfactory or “safe” levels for different water quality parameters were investigated

to assist in such decision management. The layer which is most likely (highest

probability) to have safe levels is considered to offer an appropriate pumping elevation

in the reservoirs.

Three water quality parameters were eliminated in this risk assessment based

on the results in sections 7.2 and 7.3. Salinity, water temperature, and pH were

determined not to affect the treatment requirements. Salinity levels in the reservoirs

remained at safe levels (less than 5 psu) throughout the historic and simulated data.

The variation in pH level in the reservoirs showed no significant variations as

explained in Section 7.2.6. And the raw water temperature does not affect water

treatment processes. Water treatment is based on the atmosphere temperature for most

physical treatment processes and a controlled temperature level (pre-heating/cooling)

for most chemical treatment processes.

7.4.1 Risks in Cooby Dam

7.4.1.1 Risks without artificial mixers

Suitable or safe levels of water quality Cooby Dam is based on six parameters.

They are the concentrations of Cyanobacteria, dissolved oxygen, nitrate, total

phosphorus, total iron, and total manganese.
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With no artificial mixing during the warm period, three parameters (dissolved

oxygen, nitrate and total phosphorus) are always within their safe levels in the

epilimnion layer (surface to 5.5 m depth). This is not always the case in the

hypolimnion layer. The probability of occurrence of safe levels of total phosphorus

drops to about 25 per cent at 16 – 18 m depth. The opposite solution applies with total

iron and total manganese. They have low probability of safe levels occurring in the

epilimnion layer (about 12 per cent) but are relatively higher values in the hypolimnion

layer (more than 90 per cent). A safe level of cyanobacterial concentration occurs least

often (has the lowest probability) in the layer between 2 m and 5 m below the water

surface. The highest probability can be found in the layer below 8 m depth. A detail of

the probability of safe levels of selected parameters is shown in Figure 7.37.

Figure 7.37 shows that the six indicators have safe levels above 60 per cent of

the time in the layer between 8 m and 10 m depth. From the surface to 8 m depth, at

least two indicators have safe levels for less than 60 per cent of the time with no

artificial mixer in operation. The water is best drawn for 8 to 10 m below the surface
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Figure 7.37 Probability of safe levels of analysed parameters occurring through the
water column without artificial mixers during the warm period in Cooby
Dam. BGA is Cyanobacteria, DO is Dissolved Oxygen, NO3 is Nitrate, TP
is Total Phosphorus, TFe is Total Iron, and TMn is Total Manganese.
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Figure 7.38 Probability of safe levels of analysed parameters occurring through the
water column without artificial mixers during the cold period in Cooby
Dam. BGA is Cyanobacteria, DO is Dissolved Oxygen, NO3 is Nitrate, TP
is Total Phosphorus, TFe is Total Iron, and TMn is Total Manganese.
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During the cold period from May to October, the probability of suitable levels

of the six parameters changes to that presented in Figure 7.38. Three of the parameters

(dissolved oxygen, nitrate and total phosphorus) occur at safe levels for more than 90

per cent of the time from surface to 20 m depth. Total iron and total manganese have

safe levels occurring for 55 per cent of the time at the water surface increasing to about

62 per cent at 20 m depth. A safe level of Cyanobacteria can be found in the top of the

reservoir or in the layer below 8 m depth.

The six indicators together suggest that acceptable water quality occurs for

more than 60 per cent of the time below 8 m depth. However, the layer close to the

bottom of the storage can have a high concentration of suspended solid which is not

shown on these graphs. Therefore, the pumping layer during the cold period is

recommended between 8 m and 20 m depth. An optimum layer is suggested by Figure

7.38 at 13.5 m below the surface.

7.4.1.2 Risks with the use of artificial mixers

When surface mixers are used during the warm period, four indicators

(dissolved oxygen, nitrate, total iron and total manganese) always exist at safe levels

(100 per cent of time). A safe level of total phosphorus occurs for about 83 per cent of

the time at all depths.

The likelihood of safe levels of Cyanobacteria varies with depth through the

water column, as shown in Figure 7.39. Safe levels occur for at least 60 per cent of the

time below 9 m depth. The layer just above the bottom of the storage may have high

concentrations of suspended solid which were not simulated in this study. Therefore,

the recommended pumping level during the period from November to April would lie

at the surface or between 9 m and 20 m depth. An optimum layer is indicated at 15 m
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depth where the cyanobacterial concentration has above 95 per cent probability of

being at a safe level.
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Figure 7.39 Probability of safe levels of analysed parameters occurring through the
water column with artificial mixers during the warm period in Cooby
Dam. BGA is Cyanobacteria, DO is Dissolved Oxygen, NO3 is Nitrate, TP
is Total Phosphorus, TFe is Total Iron, and TMn is Total Manganese.
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Figure 7.40 Probability of safe levels of analysed parameters occurring through the
water column with artificial mixers during the cold period in Cooby Dam.
BGA is Cyanobacteria, DO is Dissolved Oxygen, NO3 is Nitrate, TP is
Total Phosphorus, TFe is Total Iron, and TMn is Total Manganese.
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Figure 7.40 shows that most indicators have a high probability of safe levels

during the May to October period, except for Cyanobacteria at 2 m to 8 m depth. The

cyanobacterial safe levels only occur for 11 to 60 per cent of the time at this depth.

Four indicators (dissolved oxygen, nitrate, total iron and total manganese) show a

remarkably high probability of safe levels. Safe levels of total phosphorus occur for

about 84 per cent of the time from the water surface to the 18 m depth.

The pumping elevation is suggested to be at the surface layer or between 8 m

and 20 m depth during this cold period. The layer between 13.5 m and 16.5 m would

give optimum water quality.

A general summary recommended pumping elevations in the storage can be

made as shown in Figure 7.41. The figure presents matrices of recommended and

optimal layers of pumping elevation. With no artificial mixing, the chance of attaining

safe levels of water quality is best at 8 to 10 m depth over the whole year. The

best/optimal layers differ between the warm and cold periods of the year but the 8 to

10 m level provides a sound management solution. Artificial mixers can extend the

range of the recommended pumping levels and so give the authority more flexibility in

managing withdrawals. An optimal water quality can be achieved throughout the year

with a fixed pumping elevation at 15 m depth.
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Figure 7.41 Matrix of recommended and optimal layers for the pumping elevation in
Cooby reservoir.

7.4.2 Risks in Cressbrook Dam

The same six parameters were used to assess the optimum water quality

management strategy for Cressbrook Dam. Water depths with the highest probability

of safe levels of quality were considered as potential pumping levels. To date, there

has been no artificial mixer installed in the reservoir but the simulations show the

impact of mixing. The risk analysis which follows describes the probability of future

conditions in the vertical profile as a result of artificial mixing.

7.4.2.1 Risks without artificial mixer

The probability profiles for the occurrence of safe levels of the six parameters

are presented in Figure 7.42. Total iron and total manganese are always at acceptable,

or “safe”, levels in all parts of the profile. Safe levels of nitrate and total phosphorus

occur frequently only from the surface to about 8 m depth. They only occur for about

19 per cent of the time at 15 – 30 m depth and then between 0 and 12 per cent or
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between 13 and 43 per cent of the time respectively for total phosphorus and nitrate. A

high probability of safe levels of dissolved oxygen exists from the surface to about 32

m depth. In contrast, cyanobacterial levels are not likely to be at safe in the epilimnion

layer. However the cyanobacterial concentration will be safe below a depth of 15 m.
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Figure 7.42 Probability of safe levels of analysed parameters occurring through the
water column without artificial mixers during the warm period in
Cressbrook Dam. BGA is Cyanobacteria, DO is Dissolved Oxygen, NO3

is Nitrate, TP is Total Phosphorus, TFe is Total Iron, and TMn is Total
Manganese.

Figure 7.42 shows that no single layer simultaneously achieves an acceptable

probability of safe levels for all indicators. The epilimnion has a high risk of excessive

Cyanobacteria while the layer between 13 m and 30 m has a high risk of unacceptable

nitrate and total phosphorus concentrations. The treatment of nitrate and phosphorus is

easier to do than cyanobacterial treatment and the removal of algal toxins. The

consumption of water with a high cyanobacterial concentration also represents a high

risk to human health. Based on this consideration, the layer between 12 m and 30 m is

suggested for the pumping intake level during the warm period without artificial

mixers.
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During the cold period from May to October, total iron and total manganese

remain at safe levels throughout the water column as shown in Figure 7.43. Similarly,

the dissolved oxygen concentration is always acceptable in the epilimnion layer. The

probability of safe levels of total phosphorus occurring in the epilimnion layer (0 – 10

m depth) is just above 60 per cent but decreases in lower levels. Safe levels of nitrate

are not as reliable, ranging between 27 per cent and 65 per cent in the hypolimnion

layer and staying constant at about 45 per cent in the epilimnion. The cyanobacterial

level tends to be unsafe in the epilimnion layer but the probability of safe levels rises

to greater than 60 per cent of the time in the hypolimnion (below 14 m depth).
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Figure 7.43 Probability of safe levels of analysed parameters occurring through the
water column without artificial mixers during the cold period in
Cressbrook Dam. BGA is Cyanobacteria, DO is Dissolved Oxygen, NO3

is Nitrate, TP is Total Phosphorus, TFe is Total Iron, and TMn is Total
Manganese.

Figure 7.43 shows that no single layer has the probability of safe levels above

60 per cent for all six parameters at once. In selecting a recommended pumping depth,

the cyanobacterial level should be given the highest priority. The layer between 14 m
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and 36 m was adopted as the appropriate position for withdrawals from the storage

during the cold period.

7.4.2.2 Risks with the use of the artificial mixers

The limnology of Cressbrook Dam is different to that of Cooby because of its

greater depth.

During the warm period, the existence of safe levels of the six indicators is

more variable through the water column. In the top layer (0 – 15 m depth), the

dissolved oxygen, total iron and total manganese indicators always exist at a safe level.

The other three indicators have acceptable levels for less than 60 per cent of the time.

From 15 to 37 m below water surface, the cyanobacterial concentration is increasingly

safe with depth. The probability ranges from 60 per cent to just below 100 per cent.

There are four indicators at a safe level (Cyanobacteria, dissolved oxygen, total iron

and total manganese) with a high probability of occurrence in this layer.

Below 37 m depth, the probabilities of safe levels of dissolved oxygen, nitrate

and total phosphorus decrease to about 5 per cent, 0 per cent, and 12 per cent,

respectively. These results are summarised in Figure 7.44.
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Figure 7.44 Probability of safe levels of analysed parameters occurring through the
water column with artificial mixers during the warm period in Cressbrook
Dam. BGA is Cyanobacteria, DO is Dissolved Oxygen, NO3 is Nitrate, TP
is Total Phosphorus, TFe is Total Iron, and TMn is Total Manganese.

Figure 7.44 shows that each layer of the reservoir has a high probability of at

least one of the indicators being at an unsafe level. As before, the management of

cyanobacterial blooms is a major objective of this project, and because of the

significant health risks it poses this parameter becomes a main priority (the biggest

weighting factor value). As a result, the layer between 16 m and 37 m is concluded to

be the appropriate pumping elevation in the storage during the period November to

April.

During the cold period, the probability profile for safe levels of the indicators

changes as shown in Figure 7.45. Cyanobacteria, dissolved oxygen, nitrate and total

phosphorus show significant changes while total iron and total manganese remain the

same as during the warm period. The safe level for dissolved oxygen possibly occurs

for at least 60 per cent of the time at all depths. The cyanobacterial level is likely to be

unsafe in the epilimnion layer but safe in the hypolimnion layer.
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Figure 7.45 Probability of safe levels of analysed parameters occurring through water
column with artificial mixers during the cold period in Cressbrook Dam.
BGA is Cyanobacteria, DO is dissolved oxygen, NO3 is nitrate, TP is total
phosphorus, TFe is total iron, and TMn is total manganese.

The layer between 16 m and 38 m gives the most reliable quality for

withdrawal and the cyanobacterial level is expected to be safe from occurrences for

most of the time.

A summary of recommended pumping layers in the storage is presented in

Table 7.46. The matrix recommends pumping layers for during the cold and the warm

period, and the two groupings overlap intersection as shown in Figure 7.46. Without an

artificial mixer, safe levels can be reliably attained at between 14 m and 30 m depth

throughout the year.

The pumping position is located at 22 m from the bottom of the reservoir. With

an average depth of 44 m, this means that the pump is located at 22 m below the water

surface (in the range of suggested pumping layers 14 – 30 m). The use of the artificial

mixers increases the range of recommended pumping elevations which then lies

between 16 m and 37 m depth.
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Figure 7.46 Matrix of recommended pumping layers in Cressbrook reservoir.
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Chapter 8

CONCLUSIONS

I would start with a statement that the project objective has been met, and

repeat the wording of that objective from Chapter One. Then move to specific

conclusions.

Historically, the behaviour of Cooby and Cressbrook reservoirs differs during

the warm and the cold periods. Thermal stratification can be strong in the reservoir

during the summer season (the warm period) as is indicated by a high value of the

stratification index (SI). The concentration of Cyanobacteria is also relatively higher

at this time. The frequency of level 3 algal alerts was also calculated from 1998 to

2002 in the reservoirs.

The volume in storage is trending down under current management

procedures. Cooby reservoir would need to reduce the evaporation loss by 5.7 per cent

or increase rainfall by 5 per cent to sustain the reservoir. To sustain Cressbrook

storage, the surface evaporation would need to be reduced by at least 12 per cent. The

distributions of time averaged water quality parameters in both storages show

significant difference of the reservoirs’ behaviour between the warm and the cold

periods over a 50 years simulation period.
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The DYRESM-CAEDYM model was adopted and calibrated for simulating

the quantity and quality of water in the reservoirs. The model was used for predicting

water quality over a 50-year period in the reservoirs.

The mechanical destratifiers can improve the average quality of water in the

reservoirs. There is however no effect from the mixers on pH or salinity

concentrations.

A WQI was developed to integrate the following parameters: cyanobacterial

concentration, dissolved oxygen, pH, water temperature, total phosphorus, nitrate,

salinity, total manganese, and total iron.

The WQI values for Cooby Dam decrease from excellent to good, during the

warm period in particular. The mixers increase the WQI values by up to 15 grade

points at the surface layer, the pumping layer, and on average through the whole

profile.

The WQI values for Cressbrook Dam follow a decadal pattern. Every decade,

the WQIs follow a decreasing trend and then step up again in a sawtooth pattern. In

general, the WQI tends to increase from good to excellent within a 50-year period.

The surface mixers increase the WQI by only 4 grade points on average.

Safe water quality levels are most likely to be found at 8 – 10 m depth for the

whole year in Cooby Dam in the absence of artificial mixers. The best water quality

can not be attained from a single pumping elevation as the depth changes. Therefore,

managed multi-level withdrawals would provide a best/optimal water quality from the

storage. Artificial mixers are able to extend the acceptable range of pumping

elevations to 9 – 20 m depth. The optimal water quality can be achieved with a single

fixed pumping elevation at 15 m depth when the mixers are used.
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In Cressbrook reservoir, safe levels of water quality are reliably found at the

layer between 14 m and 30 m depth in the absence of artificial surface mixers. An

appropriate water quality can be achieved throughout the year with a multi-level

withdrawal. This is because nitrate and total phosphorus ratings have a low probability

of occurring at the safe level. The current pumping position is located 22 m from the

bottom of the reservoir. With an average depth of 44 m, the location of the pump is 22

m below the water surface (in the range of suggested pumping layers 14 – 30 m). The

use of the artificial mixers will lower the recommended pumping elevation range to 16

– 37 m depth.

To sum up, mechanical mixers can be a benefit for both reservoirs. In Cooby,

dissolved oxygen, water temperature and nitrate are the parameters which gain most

improvement from the mixers. In Cressbrook, most parameters are improved except

for cyanobacterial concentrations below 15 m depth.

The vertical circulation from mixers in both reservoirs decreases the

cyanobacterial concentrations at its optimal growth layer. However, it increases the

concentration of Cyanobacteria in deeper layers because of the increased availability

of oxygen and the introduction of warmer water.

A multi-level withdrawal is recommended to attain optimal quality of the raw

water for the Mt. Kynoch Water Treatment Plant.

The results presented in this thesis represent the maximum amount of

information that can be extracted from existing data. Extra measured data on the

quantity and quality of inflow to the reservoirs would be needed to improve the

accuracy of the water quality simulations. With actual inflow data, the assumption of

constant quality inflow can be tested. It is also suggested to have a fixed water quality

measurement point for each reservoir to minimise inaccuracy in the recorded data.
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Appendix A.1 Files of water quality simulations of Cooby reservoir

Batch file|

createDYref CoobyPWQ.stg CoobyPWQ.met CoobyPWQ.inf CoobyPWQ.wdr DYref.nc
createDYsim CoobyPWQ.pro CoobyPWQ.par CoobyPWQ.con DYsim.nc
extractDYinfo DYref.nc DYsim.nc CoobyPWQ.cfg
dycd>log.txt

Configuration file

<#4>
! DYRESM-CAEDYM configuration file for Cooby
2004001 # Simulation start day
18263 # Simulation length (unit=days)
.TRUE. # Run CAEDYM (.TRUE. or .FALSE.)
7 # Output Interval (in days, or -9999 for every time step)
0.4 # Light extinction coefficient (m-1)
0.00 # Benthic Boundary Thickness (m)
0.5 # Min layer thickness (m)
3.0 # Max layer thickness (m)
7200 # Time Step (s)
10 # Number of Output Selections
SALINITY TEMPTURE DENSITY DO NO3 TP TFE TMN CYANO PH # List of Output Selections
.FALSE. # Activate destrat system (.TRUE. or .FALSE.)
.TRUE. # Activate non-neutral atmospheric stability
(.TRUE. or .FALSE.)

Note: If the mixers are operated, the destratification system is set to .TRUE.

Morphometry file

<#3>
! WQCooby morphometry
-27.40 # latitude
465 # height above MSL
2 # number of inflowing streams
20 87 0.16 0.015 Geham # 1/2-angle, slope, drag coeff, name
20 89 0.16 0.015 Cooby # 1/2-angle, slope, drag coeff, name
0 # zero height elevation (m)
22.60 # crest elevation (m)
1 # no. of outlets.
10.06 # outlet elevation (m)
9 # number of stg survey points
Elev(m) Area(m2)
1.26 16270
4.31 81976
7.36 336977
10.41 591977
13.46 1143280
16.50 1679564
19.55 2273419
22.60 3010575
25.50 4200000
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Initial physical file

WQCooby day 2003365
21 # number of layers
DEPTH TEMP SAL
0.6 24.90 0.50
1.5 24.90 0.50
3.5 24.90 0.50
4.5 24.90 0.50
5.5 24.90 0.50
6.5 24.90 0.50
7.5 24.90 0.50
8.5 24.60 0.50
9.5 23.00 0.50
10.5 21.50 0.50
11.5 20.30 0.50
12.5 18.00 0.50
13.5 17.80 0.50
14.5 17.60 0.50
15.5 17.50 0.50
16.5 17.10 0.50
17.5 17.00 0.50
18.5 17.00 0.50
19.5 17.00 0.50
20.5 17.00 0.50
21.15 17.00 0.50

Initial water quality file

3D DATA
CYANO
IN_I
4
0.6 9.14 16.46 20
10.0 10.0 5.5 2.0
0.05

IC_CYA
CO_I
0.01
0

DN_CYA
CO_I
996
996

CHLOR
CO_I
-50
0

IC_CHL
CO_I
-50
0

FDIAT
CO_I
9
0

IC_FDI
CO_I
-50
0

SIZE1
CO_I
0.03
0

SIZE2
CO_I
0.003
0

DO
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IN_I
12
1 2 3 4 5 6 7 8 9 10 11 12
5.2 5.3 5.4 5.5 5.5 5.5 5.3 4.6 0.2 0.1 0.1 0
0.05

PO4
CO_I
0.0075
0

IP_CYA
CO_I
0.002
0.08

TP
IN_I
4
0.6 9.14 16.46 20
0.01 0.01 0.01 0.01
0

NO3
IN_I
4
0.6 9.14 16.46 20
0.05 0.2 0.19 0.05
0

NH4
CO_I
0.05
0

IN_CYA
CO_I
0.001
0.5

TN
IN_I
4
0.6 9.1 16.46 20
0.75 0.1 0.1 0.1
0.8

PH
IN_I
12
1 2 3 4 5 6 7 8 9 10 11 12
7 7 7 7 7 7 7 7 7 7 7 7
0

SSOL1
CO_I
1.3
4

SSOL2
CO_I
8
0

FBOD
CO_I
3
-10

SBOD
CO_I
2
-10

SiO2
CO_I
0.5
0

FE2
IN_I
3
0.6 16.46 20
0.02 0.02 0.03
0

TFE
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IN_I
3
0.6 16.46 20
0.07 0.04 0.1
0

MN2
IN_I
3
0.6 16.46 20
0.005 0.05 0.51
0

TMN
IN_I
3
0.6 16.46 20
0.03 0.02 0.58
0

COL
CO_I
5
0

2D DATA
EOF

Basic hydrodynamic file

<#5>
Cooby Parameters File.
1.3E-3 # bulk aerodynamic mmt. transport coeff.
0.08 # mean albedo of water
0.96 # emissivity of a water surface (Imberger & Patterson
[1981,p316])
3.00 # critical wind speed [m s^-1]
36000 # time of day for output (in seconds from midnight)
0.002 # entrainment coefficient constant
0.012 # bubbler entrainment coefficient (Alexander 2000)
0.083 # buoyant plume entrainment coefficient (Fischer et al. 1979)
0.080 # shear production efficiency
0.20 # potential energy mixing efficiency
0.06 # wind stirring efficiency (0.06)
1.0E+7 # effective surf. area coeff.
200 # vertical mix coeff.

Water quality configuration file

11 ! Transport scheme invoked (0 = external advection)
0 ! Open boundary condition type (0 = no open boundaries)
1 ! Method of sediment nutrient flux calculation
T ! Simulate colour / tracer
T ! Simulate iron
T ! Simulate manganese
F ! Simulate aluminum
T ! Simulate pH
F ! Simulate turbulence quantities
F ! Print progress messages
T ! Print debug information
CoobyPWQ.int ! Initialisation file
CoobyPWQ.dat ! Constants file
NULL ! Inflow forcing file
NULL ! 3D forcing file
1.0 ! Print time step (days)
360.0 ! Time series time step (minutes)
1.0 ! Benthic time step (days)

1 ! Number of phytoplankton groups to simulate
2 ! Phytoplankton groups to simulate
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2 ! Number of zooplankton groups to simulate
1 2 ! Zooplankton groups to simulate
0 ! Number of jellyfish groups to simulate
0 ! Number of fish groups to simulate
0 ! Number of seagrass groups to simulate
0 ! Number of macroalgae groups to simulate
0 ! Number of invertebrate groups to simulate
1 1 -0.25 ! Time series location

0 ! Phytoplankton time series group
0 ! Zooplankton time series group
0 ! Jellyfish time series group
0 ! Fish time series group
0 ! Seagrass time series group
0 ! Macroalgae time series group
0 ! Invertebrate time series group
0 ! Number of salinity divisions for time series output
-1. 10. 25. 99. ! Salinity bounds for time series output

! DYRESM-CAEDYM Cooby configuration.

Constant water quality parameter file

^@
!------------------------------------------------------------------------------!
! GENERAL constants !
!------------------------------------------------------------------------------!
! Base extinction coefficient !

0.39000
!------------------------------------------------------------------------------!
! PHYTOPLANKTON constants !
!------------------------------------------------------------------------------!
! Pmax (/day) : Maximum potential growth rate of phytoplankton !

0.28000 : dinoflagellatte growth rate
0.46000 : cyanobacteria growth rate
0.90000 : nodularia growth rate
1.20000 : chlorophyte growth rate
0.70000 : cyrptophyte growth rate
1.90000 : marine diatom growth rate
1.80000 : freshwater diatom growth rate

! Ycc (mg C/mg chla) : Average ratio of C to chlorophyll a !
85.00000
40.00000
40.00000
25.00000
47.00000
42.00000
60.00000

!------------------------------------------------------------------------------!
! Light limitation (2=no photoinhibition, 3=photoinhibition) !
! algt (no units) : Type of light limitation algorithm !

2
2
2
3
2
2
3

! IK (microE/m^2/s) : Parameter for initial slope of P_I curve !
60.00000
95.00000
95.00000
80.00000
60.00000
90.00000
100.0000

! ISt (uEm^-2s^-1) : Light saturation for maximum production !
150.00000
200.00000
200.00000
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200.00000
200.00000
400.00000
140.00000

! Kep (ug chlaL^-1m^-1) : Specific attenuation coefficient !
0.02000
0.04000
0.02000
0.02000
0.02000
0.02000
0.02000

!------------------------------------------------------------------------------!
! Nutrient limitation !
! KP (mg/L) : Half saturation constant for phosphorus !

0.00500
0.00600
0.01000
0.01000
0.00500
0.00500
0.01000

! Po (mg/L) : Low concentrations of PO4 at which uptake ceases !
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

! KN (mg/L) : Half saturation constant for nitrogen !
0.02000
0.00300
0.00300
0.07000
0.02300
0.01500
0.03500

! No (mg/L) : Low concentrations of N at which uptake ceases !
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

! Sicon : Constant internal Silica concentration !
0.00000 dinoflagellates
0.00000 f'water cyanobacteria
0.00000 nodularia
0.00000 chlorophytes
0.00000 cryptophytes
0.00000 marine diatoms
0.00000 f'water diatoms

! KSi (mg/L) : Half saturation constant for silica !
0.00000
0.00000
0.00000
0.00000
0.00000
0.14000
0.14000

! No (mg/L) : Low concentrations of Si at which uptake ceases !
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

! KCa (mg/L) : Half saturation constant for carbon !
2.00000
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2.00000
2.00000
2.00000
2.00000
2.00000
2.00000

! INmin (mg N/mg Chla) : Minimum internal N concentration !
2.80000
2.50000
2.50000
3.50000
2.50000
2.50000
3.50000

! INmax (mg N/mg Chla) : Maximum internal N concentration !
6.50000
5.00000
6.00000
6.00000
6.00000
6.00000
6.00000

! IPmin (mg P/mg Chla) : Minimum internal P concentration !
1.00000
0.10000
1.00000
1.00000
1.00000
1.00000
1.00000

! IPmax (mg P/mg Chla) : Maximum internal P concentration !
0.68000
1.20000
1.20000
1.24000
1.20000
1.20000
1.20000

! ICmin (mg C/mg Chla) : Minimum internal C concentration !
48.00000
15.00000
15.00000
25.00000
15.00000
15.00000
15.00000

! ICmax (mg C/mg Chla) : Maximum internal C concentration !
80.00000
80.00000
80.00000
80.00000
80.00000
80.00000
80.00000

! UCmax (mg C/mg Chla/day) : Maximum rate of carbon uptake !
50.00000
1.50000
1.50000
1.50000
1.50000
1.50000
1.50000

!------------------------------------------------------------------------------!
! Temperature representation !
! vT (no units) : Temperature multiplier !

1.08000
1.09000
1.08000
1.05000
1.08000
1.08000
1.04000
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! Tsta (Deg C) : Standard temperature !
20.00000
26.00000
20.00000
22.00000
20.00000
19.00000
19.00000

! Topt (Deg C) : Optimum temperature !
33.00000
33.00000
33.00000
28.00000
33.00000
27.00000
22.00000

! Tmax (Deg C) : Maximum temperature !
39.00000
40.00000
39.00000
36.00000
39.00000
32.00000
34.00000

!------------------------------------------------------------------------------!
! Respiration, mortality, and excretion.
!
! kr (/day) : Respiration rate coefficient !

0.03000
0.15000
0.10000
0.20000
0.15000
0.12000
0.14000

! vR (no units) : Temperature multiplier (no units) !
1.08000
1.09000
1.08000
1.10000
1.08000
1.08000
1.05000

!------------------------------------------------------------------------------!
! Salinity limitation !
! maxSP (psu) : Maximum potential salinity !

36.00000 dinoflagellates
36.00000 f'water cyanobacteria
36.00000 nodularia
36.00000 chlorophytes
36.00000 cryptophytes
36.00000 marine diatoms
36.00000 f'water diatoms

! phsal (no units) : Type of water environment (Angeline 23/08/2000)
!

0
0
2
0
1
1
0

! Sop (psu) : Minimum bound of salinity tolerance !
18.00000
3.00000
28.00000
14.00000
20.00000
30.00000
1.00000

! Bep (no units) : Salinity limitation value at S=0 and S=maxSP !
2.00000
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3.00000
2.00000
2.50000
2.00000
5.00000
5.00000

! Aep (no units) : Salinity limitation value at S=Sop !
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

!------------------------------------------------------------------------------!
! Vertical migration and settling (0-stokes, 1-constant, 2-motile w/o
photoinhibition 3-motile w/ photoinhibition !
! phvel (no units) : Type of vertical migration algorithm !

3
3
0
1
1
1
1

! c1 (kgm^-3min^-1) : Rate coefficient for density decrease !
0.90000 dinoflagellates
0.90000 f'water cyanobacteria
0.90000 nodularia
0.20000 chlorophytes
0.90000 cryptophytes
0.90000 marine diatoms
0.90000 f'water diatoms

! c3 (kgm^-3min^-1) : Minimum rate of density decrease with time !
0.04150 dinoflagellates
0.04150 f'water cyanobacteria
0.04150 nodularia
0.040 chlorophytes
0.04150 cryptophytes
0.04150 marine diatoms
0.04150 f'water diatoms

! c4 (mhr^-1) : Rate for light dependent migration velocity !
2.50000 dinoflagellates
0.85000 f'water cyanobacteria
0.85000 nodularia
0.800 chlorophytes
0.85000 cryptophytes
0.85000 marine diatoms
0.85000 f'water diatoms

! c5 (mhr^-1) : Rate for nutrient dependent migration velocity !
0.20000 dinoflagellates
0.65000 f'water cyanobacteria
0.65000 nodularia
0.15000 chlorophytes
0.65000 cryptophytes
0.65000 marine diatoms
0.65000 f'water diatoms

! IKm (uEm^-2s^-1) : Half saturation constant for density increase !
26.00000 dinoflagellates
25.00000 f'water cyanobacteria
25.00000 nodularia
25.00000 chlorophytes
25.00000 cryptophytes
25.00000 marine diatoms
25.00000 f'water diatoms

! min_pd (kg/m^3) : Minimum phytoplankton density
980.00000 dinoflagellates
980.00000 f'water cyanobacteria
980.00000 nodularia
980.00000 chlorophytes
980.00000 cryptophytes
980.00000 marine diatoms
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980.00000 f'water diatoms
! max_pd (kg/m^3) : Maximum phytoplankton density

1050.00000 dinoflagellates
1050.00000 f'water cyanobacteria
1050.00000 nodularia
1030.00000 chlorophytes
1050.00000 cryptophytes
1050.00000 marine diatoms
1050.00000 f'water diatoms

! pw20 (kgm^-3) : Density of water at 20 deg C !
1000.00000

! dia (m) : Diameter of phytoplankton !
0.10000E-04
0.40000E-04 (range 0.25-0.60E-04m)
0.50000E-04
0.10000E-04
0.10000E-04
0.10000E-04
0.20000E-04

! ws (ms^-1) : Constant settling velocity !
0.10000E-04
0.69440E-04
0.50000E-04
-2.00000E-06
0.10000E-04
0.10000E-04
-3.5000E-06

! oth (mg/l) dissolved oxgyen threshold for migration of motile phytoplankton !
0.0
0.0
0.0
0.0
0.0
0.0
0.0

!------------------------------------------------------------------------------!
! Resuspension !
! tcpy (N/m^2) : Critical shear stress

0.02000 dinoflagellates
0.03000 f'water cyanobacteria
0.05000 nodularia
0.05000 chlorophytes
0.05000 cryptophytes
0.05000 marine diatoms
0.05000 f'water diatoms

! alpPy (mg Chla/m^2/s) : Resuspension rate constant !
0.23000E-03

! KTPy (mg Chla/m^2) : Controls rate of resuspension !
1.00000 dinoflagellates
2.00000 f'water cyanobacteria
2.00000 nodularia
2.00000 chlorophytes
2.00000 cryptophytes
2.00000 marine diatoms
2.00000 f'water diatoms

! DTphy (days) : Phytoplankton sediment survival time !
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

!------------------------------------------------------------------------------!
! JELLYFISH constants !
!------------------------------------------------------------------------------!
! Jmax (/day) : Maximum potential growth rate of jellyfish !

0.40000
! Ycj (mg C/mg medusae) : Carbon meduase ratio !

0.00400
!------------------------------------------------------------------------------!
! Temperature representation !
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! vT (no units) : Temperature multiplier !
1.08000

! Tsta (Deg C) : Standard temperature !
20.00000

! Topt (Deg C) : Optimum temperature !
33.00000

! Tmax (Deg C) : Maximum temperature !
39.00000

!------------------------------------------------------------------------------!
! Salinity limitation !
! Sop (psu) : Minimum bound of salinity tolerance !

25.00000
! Bep (no units) : Salinity limitation value at S=0 and S=maxSP !

27.00000
! Aep (no units) : Salinity limitation value at S=Sop !

1.00000
!------------------------------------------------------------------------------!
! Light limitation. !
! algt (no units) : Type of light limitation algorithm !

2
! IK (microE/m^2/s) : Parameter for initial slope of P-I curve !

90.00000
! ISt (uEm^-2s^-1) : Light saturation for maximum production !

90.00000
!------------------------------------------------------------------------------!
! Nutrient limitation !
! KP (mg/L) : Half saturation constant for phosphorus !

0.01000
! Po (mg/L) : Low concentrations of PO4 at which uptake ceases !

0.00000
! KN (mg/L) : Half saturation constant for nitrogen !

0.02500
! No (mg/L) : Low concentrations of N at which uptake ceases !

0.00000
!------------------------------------------------------------------------------!
! Respiration mortality and excretion. !
! krj (/day) : Respiration rate coefficient !

0.10000
! ke (/day) : Excretion rate coefficient !

0.10000
! KBODj (mg BOD/L) : Half saturation constant for organic nutrition !

2.00000
! vuk (m/s) : Upward swimming velocity constant !

0.01000
! vdk (m/s) : Downward sinking velocity constant !

0.00000
!------------------------------------------------------------------------------!
! ZOOPLANKTON constants !
!------------------------------------------------------------------------------!
! az (no units) : assimilation rate !

0.30000 : rotifers/small cladocerans
0.30000 : large cladocerans/copepods
0.30000
0.30000
0.30000

!------------------------------------------------------------------------------!
! Respiration mortality and excretion. !
! fzz (no units) : Fraction of loss contributing to excretion only !

0.20000
! kz (/day) : Respiration rate coefficient !

0.10000
0.05000
0.05000
0.05000
0.05000

!------------------------------------------------------------------------------!
! Salinity limitation !
! Smxz (psu) : Maximum salinity, or optimum salinity for SIZE5 !

50.00000
50.00000
28.00000
28.00000
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27.00000
! Smnz (psu) : Minimum salinity !

0.00000
0.00000
6.00000
6.00000
0.00000

! Bez (no units) : Salinity intercept (for S=0) !
0.00000
0.00000
2.00000
2.00000
2.00000

!------------------------------------------------------------------------------!
! Dissolved oxygen limitation !
! DOmz (mg/L) : Minimum DO tolerance !

0.00000
0.00000
0.00000
1.00000
1.00000

!------------------------------------------------------------------------------!
! Temperature representation !
! vT (no units) : Temperature multiplier for growth NOTE SET TO 1.08 in
params.dat regardless of value HERE though this is the value used !

1.06000
1.10000
1.10000
1.10000
1.10000

! Tsta (Deg C) : Standard temperature !
20.00000
20.00000
20.00000
20.00000
20.00000

! Topt (Deg C) : Optimum temperature !
33.00000
33.00000
33.00000
33.00000
33.00000

! Tmax (Deg C) : Maximum temperature !
39.00000
39.00000
39.00000
39.00000
39.00000

!------------------------------------------------------------------------------!
! Grazing !
! ki (g phyto C/m^3)/(g zoo C/m^3)/day) : Grazing rate !

1.00000 : SIZE1 grazing rate
0.40000 : SIZE2 grazing rate
0.72000
0.20000
0.20000

! vZ (no units) : Grazing/Respiration temperature dependence !
1.12000
1.06000
1.07000
1.07000
1.07000

! Pij (no units) : Preference of zooplankton for phytoplankton !
0.11000 : SIZE1 on DINOF
0.25000 : SIZE2 on DINOF
0.28000 : SIZE3 on DINOF
0.00000 : SIZE4 on DINOF
0.00000 : SIZE5 on DINOF
0.00000 : SIZE1 on CYANO
0.00000 : SIZE2 on CYANO
0.00000 : SIZE3 on CYANO
0.20000 : SIZE4 on CYANO
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0.20000 : SIZE5 on CYANO
0.00000 : SIZE1 on NODUL
0.00000 : SIZE2 on NODUL
0.00000 : SIZE3 on NODUL
0.00000 : SIZE4 on NODUL
0.00000 : SIZE5 on NODUL
1.00000 : SIZE1 on CHLOR
0.00000 : SIZE2 on CHLOR
0.00000 : SIZE3 on CHLOR
0.00000 : SIZE4 on CHLOR
0.00000 : SIZE5 on CHLOR
0.00000 : SIZE1 on CRYPT
0.00000 : SIZE2 on CRYPT
0.00000 : SIZE3 on CRYPT
0.00000 : SIZE4 on CRYPT
0.00000 : SIZE5 on CRYPT
0.00000 : SIZE1 on MDIAT
0.00000 : SIZE2 on MDIAT
0.00000 : SIZE3 on MDIAT
0.00000 : SIZE4 on MDIAT
0.00000 : SIZE5 on MDIAT
0.00000 : SIZE1 on FDIAT
0.00000 : SIZE2 on FDIAT
0.00000 : SIZE3 on FDIAT
0.00000 : SIZE4 on FDIAT
0.00000 : SIZE5 on FDIAT

! Pzij (no units) : Preference of zooplankton for zooplankton !
0.00000 : SIZE1 prey of SIZE1
0.00000 : SIZE1 prey of SIZE2
0.23000 : SIZE1 prey of SIZE3
0.00000 : SIZE1 prey of SIZE4
0.00000 : SIZE1 prey of SIZE5
0.00000 : SIZE2 prey of SIZE1
0.00000 : SIZE2 prey of SIZE2
0.00000 : SIZE2 prey of SIZE3
0.00000 : SIZE2 prey of SIZE4
0.00000 : SIZE2 prey of SIZE5
0.00000 : SIZE3 prey of SIZE1
0.00000 : SIZE3 prey of SIZE2
0.00000 : SIZE3 prey of SIZE3
0.00000 : SIZE3 prey of SIZE4
0.00000 : SIZE3 prey of SIZE5
0.00000 : SIZE4 prey of SIZE1
0.00000 : SIZE4 prey of SIZE2
0.00000 : SIZE4 prey of SIZE3
0.00000 : SIZE4 prey of SIZE4
0.00000 : SIZE4 prey of SIZE5
0.00000 : SIZE5 prey of SIZE1
0.00000 : SIZE5 prey of SIZE2
0.00000 : SIZE5 prey of SIZE3
0.00000 : SIZE5 prey of SIZE4
0.00000 : SIZE5 prey of SIZE5

! Pbij (no units) : Preference of zooplankton for detritus !
0.00000 : FBOD by SIZE1
0.00000 : FBOD by SIZE2
0.00000 : FBOD by SIZE3
0.00000 : FBOD by SIZE4
0.00000 : FBOD by SIZE5
0.00000 : SBOD by SIZE1
0.00000 : SBOD by SIZE2
0.00000 : SBOD by SIZE3
0.00000 : SBOD by SIZE4
0.00000 : SBOD by SIZE5

! Kj (g C/m^3) : Half saturation constant for grazing !
1.32000
0.24000
0.62000
1.00000
1.00000

!------------------------------------------------------------------------------!
! Predation !
! kk (/day) : Grazing rate of fish on zooplankton !
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0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000

! PFi (no units) : Preference of fish for zooplankton !
0.20000
0.20000
0.20000
0.20000
0.20000

! KFk (g/m^3) : Half saturation constant for grazing !
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000

!------------------------------------------------------------------------------!
! FISH constants !
!------------------------------------------------------------------------------!
! swin (m/s) : Swimming speed !

0.02000
0.00200
0.00200
0.00200
0.00200
0.00200
0.00200
0.00200
0.00200

! mfl (/day) : Threshold of fish mortality !
0.30000
0.30000
0.30000
0.30000
0.30000
0.30000
0.30000
0.30000
0.30000

! mtol (%) : Mortality migration tolerance !
2.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

!------------------------------------------------------------------------------!
! Temperature representation !
! vT (no units) : Temperature multiplier !

1.08000
1.08000
1.08000
1.08000
1.08000
1.08000
1.08000
1.08000
1.08000

! Tsta (Deg C) : Standard temperature !
20.00000
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20.00000
20.00000
20.00000
20.00000
20.00000
20.00000
20.00000
20.00000

! Topt (Deg C) : Optimum temperature !
33.00000
33.00000
33.00000
33.00000
33.00000
33.00000
33.00000
33.00000
33.00000

! Tmax (Deg C) : Maximum temperature !
39.00000
39.00000
39.00000
39.00000
39.00000
39.00000
39.00000
39.00000
39.00000

!------------------------------------------------------------------------------!
! Salinity limitation !
! maxS (psu) : Maximum potential salinity !

45.00000
! SL (psu) : Optimal salinity growth for fish !

10.00000
10.00000
10.00000
10.00000
10.00000
10.00000
10.00000
10.00000
10.00000

! SU (psu) : Salinity response for S>Slim (not including MULLT) !
30.00000
30.00000
30.00000
30.00000
30.00000
30.00000
30.00000
30.00000
30.00000

! cfs (no units) : Max. fractional salinity respiration increment !
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000

!------------------------------------------------------------------------------!
! Dissolved oxygen limitation. !
! DOmin (mg/L) : Lower dissolved oxygen tolerance !

0.00000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
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0.50000
0.50000

! KDO (mg/L) : Dissolved oxygen response for DO>=DOmin (mg/L) !
0.40000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

! ofl (no units) : Max. fractional oxygen respiration increment !
10.00000
10.00000
10.00000
10.00000
10.00000
10.00000
10.00000
10.00000
10.00000

!------------------------------------------------------------------------------!
! Predation response to light. !
! dfs (no units) : Max. fractional light respiration increment !

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

! Ikf (uE/m^2/s) : Half saturation constant for light !
400.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

!------------------------------------------------------------------------------!
! Grazing constants !
! FZ (/day) : Grazing rate !

0.14000
0.11000
0.11000
0.11000
0.11000
0.11000
0.11000
0.11000
0.11000

! KFb (g C/m^2) : Half saturation constant for grazing on benthos !
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

! PFij (no units) : Preference of fish grazing on invertabrates !
0.00000
0.00000
0.00000
0.00000
0.00000
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0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

! PFij (no units) : Preference of fish grazing on detritus !
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

!------------------------------------------------------------------------------!
! Respiration, mortality and excretion !
! kf (/day) : Respiration rate coefficient !

0.07000
0.08000
0.08000
0.08000
0.08000
0.08000
0.08000
0.08000
0.08000

! vF (no units) : Temperature multiplier for respiration !
1.08000
1.08000
1.08000
1.08000
1.08000
1.08000
1.08000
1.08000
1.08000

!------------------------------------------------------------------------------!
! Biomass size distribution !
! Ft1 (mg C change/mg fish C/day) : Threshold biomass for adults !

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

! Ft2 (mg C change/mg fish C/day) : Threshold biomass for juveniles !
1.00000
1.00000
1.00000
1.00000
1.00000
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1.00000
1.00000
1.00000
1.00000

!------------------------------------------------------------------------------!
! SEAGRASS constants !
!------------------------------------------------------------------------------!
! Yes (no units) : Ration of epiphyte C to seagrass C !

1.00000
! Vmax (/day) : Maximum growth rate !

0.12500
!------------------------------------------------------------------------------!
! Light limitation !
! IK (microE/m^2/s) : Parameter for initial slope of P-I curve !

120.00000
! ISt (uEm^-2s^-1) : Light saturation for maximum production !

90.00000
!------------------------------------------------------------------------------!
! Respiration !
! kb (/day) : Respiration rate coefficient !

0.01250
! vB (no units) : Temperature multiplier !

1.08000
!------------------------------------------------------------------------------!
! Salinity limitation !
! Sop (psu) : Minimum bound of salinity tolerance !

26.00000
! Bep (no units) : Salinity limitation value at S=0 and S=2 x Sop !

5.11600
! Aep (no units) : Salinity limitation value at S=Sop !

0.58200
!------------------------------------------------------------------------------!
! Temperature representation !
! vT (no units) : Temperature multiplier !

1.08000
! Tsta (Deg C) : Standard temperature !

20.00000
! Topt (Deg C) : Optimum temperature !

25.00000
! Tmax (Deg C) : Maximum temperature !

30.00000
!------------------------------------------------------------------------------!
! MACROALGAE constants !
!------------------------------------------------------------------------------!
! Vmax (/day) : Maximum growth rates !

0.35000
0.30000
0.30000
0.30000

! Ycc (mg C/mg chla) : Average ratio of C to chlorophyll a !
50.00000
50.00000
50.00000
50.00000

!------------------------------------------------------------------------------!
! Light limitation. !
! algt (no units) : Type of light limitation algorithm !

2
2
2
2

! IK (microE/m^2/s) : Parameter for initial slope of P-I curve !
90.00000
90.00000
90.00000
90.00000

! ISt (uEm^-2s^-1) : Light saturation for maximum production !
90.00000
90.00000
90.00000
90.00000

! Hmac (m/(gm^2)) : Conversion macroalgae biomass to height !
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0.01000
0.01000
0.01000
0.01000

! Kmac (g C/m^2/m) : Specific light attenuation coefficients !
1.00000
3.00000
3.00000
3.00000

!------------------------------------------------------------------------------!
! Nutrient limitation !
! KP (mg/L) : Half saturation constant for phosphorus !

0.01000
0.01000
0.01000
0.01000

! Po (mg/L) : Low concentrations of PO4 at which uptake ceases !
0.00000
0.00000
0.00000
0.00000

! KN (mg/L) : Half saturation constant for nitrogen !
0.05000
0.05000
0.05000
0.05000

! No (mg/L) : Low concentrations of N at which uptake ceases !
0.00000
0.00000
0.00000
0.00000

! INmin (mg N/mg Chla) : Minimum internal N concentration !
0.00500
0.00500
0.00500
0.00500

! INmax (mg N/mg Chla) : Maximum internal N concentration !
0.02000
0.02000
0.02000
0.02000

! IPmin (mg P/mg Chla) : Minimum internal P concentration !
0.00100
0.00100
0.00100
0.00100

! IPmax (mg P/mg Chla) : Maximum internal P concentration !
0.00000
0.00000
0.00000
0.00000

!------------------------------------------------------------------------------!
! Temperature representation !
! vT (no units) : Temperature multiplier !

1.08000
1.08000
1.08000
1.08000

! Tsta (Deg C) : Standard temperature !
20.00000
20.00000
20.00000
20.00000

! Topt (Deg C) : Optimum temperature !
33.00000
33.00000
33.00000
33.00000

! Tmax (Deg C) : Maximum temperature !
39.00000
39.00000
39.00000
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39.00000
!------------------------------------------------------------------------------!
! Salinity limitation !
! Sop (psu) : Minimum bound of salinity tolerance !

25.00000
25.00000
25.00000
25.00000

! Bep (no units) : Salinity limitation value at S=0 and S=2 x Sop !
2.00000
2.00000
2.00000
2.00000

! Aep (no units) : Salinity limitation value at S=Sop !
1.00000
1.00000
1.00000
1.00000

!------------------------------------------------------------------------------!
! Respiration !
! kb (/day) Respiration rate coefficient !

0.07000
0.07000
0.07000
0.07000

! vB (no units) : Temperature multiplier for respiration !
1.08000
1.08000
1.08000
1.08000

!------------------------------------------------------------------------------!
! Grazing !
! PCm (no units) : Preference of crustaceans grazing on macroalgae !

0.20000
0.20000
0.20000
0.20000

!------------------------------------------------------------------------------!
! INVERTABRATE constants !
!------------------------------------------------------------------------------!
! IZ (g C consumed/(g invert. C)/day) : Maximum consumption rate !

0.00000
0.00000
0.00000

! KIZ (g C/m^3) : Half saturation constant for grazing !
0.00000
0.00000
0.00000

! KDOI (mg/L) : Half saturation for dissolved oxygen limitation !
0.00000
0.00000
0.00000

! BDOi (no units) : Basal respiration increase from DO limitation !
0.00000
0.00000
0.00000

!------------------------------------------------------------------------------!
! Salinity limitation !
! Minimum salinity tolerance for bivalves !

8.00000
! Maximum salinity tolerance for bivalves !

35.00000
! Sop (psu) : Minimum bound of salinity tolerance !

8.00000
8.00000
25.00000

! Bep (no units) : Salinity limitation value at S=0 and S=2 x Sop !
2.00000
2.00000
2.00000

! Aep (no units) : Salinity limitation value at S=Sop !
1.00000
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1.00000
1.00000

!------------------------------------------------------------------------------!
! Respiration !
! kb (/day) : Respiration rate coefficient !

0.10000
0.10000
0.08000

! vB (no units) : Temperature multiplier !
1.08000
1.08000
1.08000

!------------------------------------------------------------------------------!
! SUSPENDED SOLID constants !
!------------------------------------------------------------------------------!
! denSS (g/m^3) : Mean density of suspended solid in the sediment !
0.25000E+07 : SSOL1 sediment density
0.25000E+07 : SSOL2 sediment density

! des (kg/m^3) : Density of suspended solid particles !
0.11500E+04 : SSOL1 particle density
0.12500E+04 : SSOL2 particle density

! diaSS (m) : Diameter of suspended solids groups !
0.10000E-04 : SSOL1 particle diameter
0.10000E-04 : SSOL2 particle diameter

! KeSS (mg^L-1m^-1) : Specific attenuation coefficient !
0.05000E+00 : SSOL1 particle specific attenuation
0.05000E+00 : SSOL2 particle specific attenuation

!------------------------------------------------------------------------------!
! Resuspension constants !
! tcs (N/m^2) : Critical shear stress !
0.50000E-01
0.50000E-01

! alpS (g/m^2/s) : Resuspension rate constants !
0.30000E-03
0.30000E-03

! KTS (g/m^2) : Controls rate of resuspension !
0.40000E+00
0.40000E+00

!------------------------------------------------------------------------------!
! pH constants !
!------------------------------------------------------------------------------!

0.00000 kpho (m^3/g O) : Photosynthetic / respiration pH constant
0.00000 kphp (m^3/g O) : BOD pH constant
1.00000 KDOS (g/m^3) : Controls release of sediment nutrients via O
7.00000 KpHS (no units) : Controls release of sediment nutrient via pH

!------------------------------------------------------------------------------!
! Colour / tracer constants !
!------------------------------------------------------------------------------!

0.00000 decr (/day) : Decay rate for colour/tracer
!------------------------------------------------------------------------------!
! DISSOLVED OXYGEN constants !
!------------------------------------------------------------------------------!

1.08000 vOP (no units) : Temperature multiplier for phytoplankton
1.08000 vON (no units) : Temperature multiplier for nitrification
1.60000 KSO (mg_O/L) : Half saturation cons. for sediment BOD uptake
50.00000 PCmax (g/m^2) : Maximum limit of polychaete biomass
2.66667 YOC (mg C/mg O) : Respiration stoichiometric ratio of C to

oxygen
1.00000 YOZ (mg zooC/mg O) Stoichiometric factor, zooplankton C : DO
0.10000 fox (no units) : Fraction of net DO allocated to seagrass roots
2.66667 YSG (mg seagC/mg O) : Stoichiometric factor, seagrass C : DO
2.66667 YOJ (mg jelC/mg O) : Stoichiometric factor, jellyfish C : DO
0.05000 koNH (/day) : Nitrification rate coefficient
3.42857 YNH (mg N/mg O) : Ratio for O2 to N during nitrification
1.50000 KOn (mg O/L) : Half saturation constant for nitrification
1.60000 DOs (cm^2/day) : Molecular diffusion of the sediments
24.80000 DOb (cm^2/day) : Diffusivity due to bioturbation
0.00500 doxmin (m) : Minimum depth of the oxic layer
0.30000 doxmax (m) : Sediment depth=max depth of the oxic layer
0.03000 oxmin (mg/L) : Minimum DO in the bottom layer (mg/L)
0.10000 rSOs (g/m^2/day) : Static sediment exchange rate
2.00000 KSOs (mg O/L) : 1/2 sat constant for static DO sediment flux
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0.14000 prc (no units) : Photo-respiration phytoplankton DO loss
! Fraction of P respiration relative to total loss rate !
0.70000E+00
0.70000E+00
0.70000E+00
0.80000E+00
0.70000E+00
0.70000E+00
0.70000E+00
0.80000E+00
0.80000E+00
0.80000E+00
0.80000E+00
0.80000E+00

!------------------------------------------------------------------------------!
! BOD Cconstants !
!------------------------------------------------------------------------------!

0.12000E+07 denB (g/m^3) : Mean density of BOD in the sediment
1.08000 vOB (no units) : Temperature multiplier for BOD

! dib (m) : Diameter of BOD particles !
0.1000E-04 : SBOD diameter
0.1000E-04 : FBOD diameter

! deb (kg/m^3) : Density of BOD particles !
0.11000E+04 : SBOD density
0.10500E+04 : FBOD density

! tc (N/m^2) : Critical shear stress !
0.05000 : SBOD shear streass
0.05000 : FBOD shear stress

! Kmass (g/m^2) : Controls rate of resuspension !
0.10000 : SBOD control on rate of resuspension
0.10000 : FBOD control on rate of resuspension

! alp (g/m^2/s) : Resuspension rate !
0.12500E-03 : SBOD resuspension rate
0.12500E-03 : FBOD resuspension rate

! tref (N/m^2) : Reference shear stress !
1.00000

! koB (/day) : Water column mineralisation rate !
0.01000 : SBOD mineralization rate
0.10000 : FBOD mineralization rate

! KBOD (mg BOD/L) : Half saturation constant for mineralisation !
5.0000

! kan (no units) : Anerobic relative to aerobic decomposition !
0.30000

! kdB (/day) : Sediment decay rate !
0.00010 : SBOD sediment decay rate
0.08000 : FBOD sediment decay rate

! KeBOD (m^2/g) : Specific attenuation coefficient !
0.01000 : SBOD specific attenuation
0.01000 : FBOD specific attenuation

!------------------------------------------------------------------------------!
2.66667 YCBOD (mg C/mg BOD) : BOD to C ratio
2.66667 YBODZ (mg BOD/mg zooC) : Zooplankton C to BOD ratio
2.66667 YBODJ (mg BOD/mg jelC) : Jellyfish C to BOD ratio
2.66667 YBODPC (mg BOD/mg polC) : Polychaete C to BOD ratio
2.66667 YBODBV (mg BOD/mg bivC) : Bivalve C to BOD ratio
2.66667 YBODMB (mg BOD/mg macC) : Macroalgae C to BOD ratio
0.90000 mabw (no units) : Macroalgae beach wrack constant

!------------------------------------------------------------------------------!
! NITROGEN constants !
!------------------------------------------------------------------------------!
! UNmax (mg N/mg Chla/day) : Maximum rate of nitrogen uptake !
0.15000E+01 : uptake rate for dinoflagellates
0.25000E+01 : uptake rate for cyanobacteria
0.15000E+01 : uptake rate for nodularia
0.20000E+01 : uptake rate for chlorophytes
0.15000E+01 : uptake rate for crptophytes
0.15000E+01 : uptake rate for marine diatoms
0.20000E+01 : uptake rate for freshwater diatoms

! UNmax (mg N/mg C/day) : Maximum rate of nitrogen uptake !
0.20000E-02
0.20000E-02
0.20000E-02
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0.20000E-02
! INcon (mg N/mg Chla) : Phytoplankton constant internal nitrogen !

3.00000
! INZcon (mg N/mg C) : Zooplankton constant internal nitrogen !

7.00000 INZconF : Freshwater systems
7.00000 INZconM : Marine systems
7.00000 INZconE : Estuarine systems

-99.00000 INZcon : If INZcon/=-99, then use the specified value
!------------------------------------------------------------------------------!

1.08000 vN2 (no units) : Temperature multiplier for denitrification
0.18500 koN2 (/day) : Denitrification rate coefficient
0.20000 KN2 (mg/L) : Half saturation const for denitrification
0.0100 KMAN (/day) : Anaerobic organic mineralisation rate
0.0200 KMN (/day) : Aerobic organic mineralisation rate
1.08000 vM (no units) : Temp. multiplier for mineralisation
1.50000 kONm (mg O/L) : Half saturation for mineralisation
-0.10E-5 Nset (m/s) : Settling velocity for particulate N
2.50000 tcn (N/m^2) : Critical shear stress
0.00005 alpN (g/m^2/s) : Resuspension rate constants
0.50000 KTNr (g/m^2) : Controls rate of resuspension
0.10000 Smpn (g/m^2/day) : Maximum potential sediment fluxes

!------------------------------------------------------------------------------!
! PHOSPHORUS constants !
!------------------------------------------------------------------------------!
! UPmax (mg P/mg Chla/day) : Maximum rate of phosphorus uptake !
0.20000E+00
0.25000E+00
0.20000E+00
0.07500E+00
0.20000E+00
0.20000E+00
0.15000E+00

! UPmax (mg P/mg C/day) : Maximum rate of phosphorus uptake !
0.13000E-03
0.10000E-03
0.10000E-03
0.10000E-03

! IPcon (mg P/mg Chla) : Phytoplankton constant internal phosphorus !
1.00000

! IPZcon (mg P/mg C) : Zooplankton constant internal phosphorus !
1.00000 IPZconF : Freshwater systems
1.00000 IPZconM : Marine systems
1.00000 IPZconE : Estuarine systems

-99.00000 IPZcon : If INZcon/=-99, then use the specified value
!------------------------------------------------------------------------------!

0.02000 KOAP (/day) : Anaerobic organic mineralisation rate
0.01500 KOP (/day) : Aerobic organic mineralisation rate
1.50000 kOPm (g/m^3) : Half saturation for mineralisation
-0.10E-5 Pset (m/s) : Settling velocity for particulate P
2.50000 tcp (N/m^2) : Critical shear stress
0.00001 alpP (g/m^2/s) : Resuspension rate constants
0.05000 KTP (g/m^2) : Controls rate of resuspension
0.00500 Smpp (g/m^2/day) : Maximum potential sediment fluxes

!------------------------------------------------------------------------------!
! IRON constants !
!------------------------------------------------------------------------------!

1.08000 vFeR (no units) : Temperature multiplier for reduction
0.10000 kFeR (/day) : Maximum reduction rate
2.00000 K_FeR (mg/L) : Half saturation for reduction
1.08000 vFeO (no units) : Temperature multiplier for oxidation
0.10000 kFeO (/day) : Maximum oxidation rate
2.00000 K_FeO (mg/L) : Half saturation for oxidation
0.01000 SFe (g/m^2/day) : Sediment release rate
4.00000 KDOFe (mg/L) : Oxygen sediment half saturation
7.00000 KpHFe (no units) : pH sediment half saturation
0.00001 alpFe (g/m^2/s) : Resuspension rate
0.05000 tcFe (N/m^2) : Critical shear stress
0.00000 Feset (m/s) : Settling velocity of particulate iron

!------------------------------------------------------------------------------!
! MANGANESE constants !
!------------------------------------------------------------------------------!

1.08000 vMnR (no units) : Temperature multiplier for reduction
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0.10000 kMnR (/day) : Maximum reduction rate
2.00000 K_MnR (mg/L) : Half saturation for reduction
1.08000 vMnO (no units) : Temperature multiplier for oxidation
0.10000 kMnO (/day) : Maximum oxidation rate
2.00000 K_MnO (mg/L) : Half saturation for oxidation
0.01000 Smn (g/m^2/day) : Sediment release rate
4.00000 KDOMn (mg/L) : Oxygen sediment half saturation
7.00000 KpHMn (no units) : pH sediment half saturation
0.00001 alpMn (g/m^2/s) : Resuspension rate
0.05000 tcMn (N/m^2) : Critical shear stress
0.00000 Mnset (m/s) : Settling velocity of particulate Mn

!------------------------------------------------------------------------------!
! ALUMINIUM constants !
!------------------------------------------------------------------------------!

1.08000 vAlR (no units) : Temperature multiplier for reduction
0.10000 kAlR (/day) : Maximum reduction rate
2.00000 K_AlR (mg/L) : Half saturation for reduction
1.08000 vAlO (no units) : Temperature multiplier for oxidation
0.10000 kAlO (/day) : Maximum oxidation rate
2.00000 K_AlO (mg/L) : Half saturation for oxidation
0.01000 S_AL (g/m^2/day) : Sediment release rate
4.00000 KDOAl (mg/L) : Oxygen sediment half saturation
7.00000 KpHAl (no units) : pH sediment half saturation
0.00001 alpAl (g/m^2/s) : Resuspension rate
0.05000 tcAl (N/m^2) : Critical shear stress
0.00000 Alset (m/s) : Settling velocity of particulate Al

Meteorological, inflow and withdrawal files are not included in this appendix because

the number of lines for each files is 18263 lines (equivalent 240 pages).
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Appendix A.2 Files of water quality simulations of Cressbrook
reservoir

Batch file|

createDYref CressPWQ.stg CressPWQ.met CressPWQ.inf CressPWQ.wdr DYref.nc
createDYsim CressPWQ.pro CressPWQ.par CressPWQ.con DYsim.nc
extractDYinfo DYref.nc DYsim.nc CressPWQ.cfg
dycd>log.txt

Configuration file

<#4>
! DYRESM-CAEDYM configuration file of Cressbrook
2004001 # Simulation start day
18263 # Simulation length (unit=days)
.TRUE. # Run CAEDYM (.TRUE. or .FALSE.)
7 # Output Interval (in days, or -9999 for every time step)
0.35 # Light extinction coefficient (m-1)
0.00 # Benthic Boundary Thickness (m)
0.5 # Min layer thickness (m)
5.0 # Max layer thickness (m)
7200 # Time Step (s)
10 # Number of Output Selections
SALINITY TEMPTURE DENSITY DO NO3 TP TFE TMN CYANO PH # List of Output Selections
.FALSE. # Activate destrat system (.TRUE. or .FALSE.)
.TRUE. # Activate non-neutral atmospheric stability (.TRUE. or
.FALSE.)

Note: if the destratification system is activated in a simulation, the value is set to be
.TRUE.

Initial physical file

! Cooby Reservoir day 2003363
44 # number of layers
DEPTH TEMP SAL
1 27.55 0.18
2 27.48 0.18
3 27.31 0.18
4 27 0.18
5.1 24.79 0.19
6 21.78 0.18
7 21.09 0.19
8 19.43 0.19
9 18.45 0.2
10 17.11 0.18
11 16.41 0.18
12 16.17 0.18
13 16.01 0.18
14 15.74 0.18
15 15.52 0.19
16 15.47 0.19
17 15.38 0.19
17.6 15.43 0.20
19 15.2 0.2
20 15.0 0.2
21 14.9 0.2
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22 14.8 0.2
23 14.8 0.2
24 14.7 0.2
25 14.7 0.2
26 14.7 0.2
27 14.7 0.2
28 14.7 0.2
29 14.7 0.2
30 14.7 0.2
31 14.7 0.2
32 14.7 0.2
33 14.7 0.2
34 14.7 0.2
35 14.7 0.2
36 14.7 0.2
37 14.7 0.2
38 14.7 0.2
39 14.7 0.2
40 14.7 0.2
41 14.7 0.2
42 14.7 0.2
43 14.7 0.2
44.43 14.7 0.2

Initial water quality file

3D DATA
CYANO

IN_I
8
0.500 12.25 15.75 19.25 22.75 29.75 31.10 40.00
1.16 1.27 1.78 0.60 0.12 0.09 0.02 0.995
0.05

IC_CYA
CO_I
0.01
0.0

DN_CYA
CO_I
996.0
996.0

CHLOR
CO_I
-50.0
0.0

IC_CHL
CO_I
-50
0.0

FDIAT
CO_I
9.0
0.0

IC_FDI
CO_I
-50
0.0

SIZE1
CO_I
0.03
0.000

SIZE2
CO_I
0.003
0.000

DO
IN_I
25
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1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
13.0 14.0 17.6 18.7 19.2 20.1 21.1 22.1 23.0 24.0 25.0
26.0 26.8

5.1 5.1 5.1 5.2 3.6 0.5 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1

0.01
PO4

CO_I
0.01
0.0

IP_CYA
CO_I
0.002
0.002

TP
IN_I
8
0.500 12.25 15.75 19.25 22.75 29.75 31.10 40.00
0.05 0.05 0.05 0.10 0.10 0.10 0.10 0.10
0.01

NO3
IN_I
8
0.500 12.25 15.75 19.25 22.75 29.75 31.10 40.00
1.00 1.10 0.50 0.05 0.30 0.05 0.05 0.05
0.01

NH4
CO_I
0.05
0.0

IN_CYA
CO_I
0.001
0.5

TN
IN_I
8
0.500 12.25 15.75 19.25 22.75 29.75 31.10 40.00
1.50 1.60 0.75 0.1 0.40 0.10 0.10 0.10
0.05

PH
IN_I
28
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

13.0 14.0 15.0 16.0 17.0 17.6 18.7 19.2 20.1 21.1 22.1
23.0 24.0 25.0 26.0 26.8

10.76 10.83 10.84 10.81 10.55 10.19 9.88 9.79 9.71 9.69 9.64 9.59
9.56 9.54 9.52 9.5 9.49 9.32 9.00 9.00 9.00 9.00 9.00
8.50 8.50 8.00 8.00 8.00

0.01
SSOL1

CO_I
1.3
4.0

SSOL2
CO_I
8.0
0.0

FBOD
CO_I
2.0
-10.0

SBOD
CO_I
0.0
-10.0

SiO2
CO_I
0.5
0.0

FE2



Appendices 316

CO_I
0.001
0.0

TFE
IN_I
8
0.500 12.25 15.75 19.25 22.75 29.75 31.10 40.00
0.010 0.010 0.010 0.110 0.210 0.970 1.100 0.270
0.05

MN2
CO_I
0.001
0.0

TMN
IN_I
8
0.500 12.25 15.75 19.25 22.75 29.75 31.10 40.00
0.020 0.040 0.020 0.460 0.780 0.890 0.950 0.170
0.05

COL
CO_I
10.0
0.0

2D DATA
EOF

Basic hydrodynamic file

<#5>
Cressbrook Parameters File.
1.3E-3 # bulk aerodynamic mmt. transport coeff.
0.08 # mean albedo of water
0.96 # emissivity of a water surface (Imberger & Patterson
[1981,p316])
3.00 # critical wind speed [m s^-1]
36000 # time of day for output (in seconds from midnight)
0.002 # entrainment coefficient constant
0.012 # bubbler entrainment coefficient (Alexander 2000)
0.083 # buoyant plume entrainment coefficient (Fischer et al. 1979)
0.080 # shear production efficiency
0.20 # potential energy mixing efficiency
0.06 # wind stirring efficiency (0.06)
1.0E+7 # effective surf. area coeff.
200 # vertical mix coeff.
=================================================================================

Water quality configuration file

^@
!------------------------------------------------------------------------------!
! GENERAL constants !
!------------------------------------------------------------------------------!
! Base extinction coefficient !

0.2500
!------------------------------------------------------------------------------!
! PHYTOPLANKTON constants !
!------------------------------------------------------------------------------!
! Pmax (/day) : Maximum potential growth rate of phytoplankton !

0.50000 : dinoflagellatte growth rate
0.37000 : cyanobacteria growth rate
0.90000 : nodularia growth rate
1.20000 : chlorophyte growth rate
0.70000 : cyrptophyte growth rate
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1.90000 : marine diatom growth rate
1.80000 : freshwater diatom growth rate

! Ycc (mg C/mg chla) : Average ratio of C to chlorophyll a !
40.00000
40.00000
40.00000
40.00000
40.00000
40.00000
40.00000

!------------------------------------------------------------------------------!
! Light limitation (2=no photoinhibition, 3=photoinhibition) !
! algt (no units) : Type of light limitation algorithm !

2
3
2
3
2
2
3

! IK (microE/m^2/s) : Parameter for initial slope of P_I curve !
60.00000
95.00000
95.00000
80.00000
60.00000
90.00000
100.0000

! ISt (uEm^-2s^-1) : Light saturation for maximum production !
200.00000
200.00000
200.00000
200.00000
200.00000
400.00000
140.00000

! Kep (ug chlaL^-1m^-1) : Specific attenuation coefficient !
0.02000
0.02000
0.02000
0.02000
0.02000
0.02000
0.02000

!------------------------------------------------------------------------------!
! Nutrient limitation !
! KP (mg/L) : Half saturation constant for phosphorus !

0.00500
0.01000
0.01000
0.01000
0.00500
0.00500
0.01000

! Po (mg/L) : Low concentrations of PO4 at which uptake ceases !
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

! KN (mg/L) : Half saturation constant for nitrogen !
0.02000
0.00300
0.00300
0.07000
0.02300
0.01500
0.03500

! No (mg/L) : Low concentrations of N at which uptake ceases !
0.00000
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0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

! Sicon : Constant internal Silica concentration !
0.00000 dinoflagellates
0.00000 f'water cyanobacteria
0.00000 nodularia
0.00000 chlorophytes
0.00000 cryptophytes
0.00000 marine diatoms
0.00000 f'water diatoms

! KSi (mg/L) : Half saturation constant for silica !
0.00000
0.00000
0.00000
0.00000
0.00000
0.14000
0.14000

! No (mg/L) : Low concentrations of Si at which uptake ceases !
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

! KCa (mg/L) : Half saturation constant for carbon !
2.00000
2.00000
2.00000
2.00000
2.00000
2.00000
2.00000

! INmin (mg N/mg Chla) : Minimum internal N concentration !
2.80000
2.50000
2.50000
3.50000
2.50000
2.50000
3.50000

! INmax (mg N/mg Chla) : Maximum internal N concentration !
6.50000
5.00000
6.00000
6.00000
6.00000
6.00000
6.00000

! IPmin (mg P/mg Chla) : Minimum internal P concentration !
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

! IPmax (mg P/mg Chla) : Maximum internal P concentration !
2.00000
2.00000
2.00000
2.00000
2.00000
2.00000
2.00000

! ICmin (mg C/mg Chla) : Minimum internal C concentration !
15.00000
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15.00000
15.00000
15.00000
15.00000
15.00000
15.00000

! ICmax (mg C/mg Chla) : Maximum internal C concentration !
80.00000
80.00000
80.00000
80.00000
80.00000
80.00000
80.00000

! UCmax (mg C/mg Chla/day) : Maximum rate of carbon uptake !
50.00000
1.50000
1.50000
1.50000
1.50000
1.50000
1.50000

!------------------------------------------------------------------------------!
! Temperature representation !
! vT (no units) : Temperature multiplier !

1.08000
1.09000
1.08000
1.05000
1.08000
1.08000
1.04000

! Tsta (Deg C) : Standard temperature !
20.00000
27.00000
20.00000
22.00000
20.00000
19.00000
19.00000

! Topt (Deg C) : Optimum temperature !
33.00000
33.00000
33.00000
28.00000
33.00000
27.00000
22.00000

! Tmax (Deg C) : Maximum temperature !
39.00000
39.00000
39.00000
36.00000
39.00000
32.00000
34.00000

!------------------------------------------------------------------------------!
! Respiration, mortality, and excretion. !
! kr (/day) : Respiration rate coefficient !

0.10000
0.10000
0.10000
0.10000
0.10000
0.10000
0.10000

! vR (no units) : Temperature multiplier (no units) !
1.08000
1.09000
1.08000
1.10000
1.08000
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1.08000
1.05000

!------------------------------------------------------------------------------!
! Salinity limitation !
! maxSP (psu) : Maximum potential salinity !

36.00000 dinoflagellates
36.00000 f'water cyanobacteria
36.00000 nodularia
36.00000 chlorophytes
36.00000 cryptophytes
36.00000 marine diatoms
36.00000 f'water diatoms

! phsal (no units) : Type of water environment (Angeline 23/08/2000) !
0
0
2
0
1
1
0

! Sop (psu) : Minimum bound of salinity tolerance !
18.00000
3.00000
28.00000
14.00000
20.00000
30.00000
1.00000

! Bep (no units) : Salinity limitation value at S=0 and S=maxSP !
2.00000
3.00000
2.00000
2.50000
2.00000
5.00000
5.00000

! Aep (no units) : Salinity limitation value at S=Sop !
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

!------------------------------------------------------------------------------!
! Vertical migration and settling (0-stokes, 1-constant, 2-motile w/o
photoinhibition 3-motile w/ photoinhibition !
! phvel (no units) : Type of vertical migration algorithm !

4
3
0
1
1
1
1

! c1 (kgm^-3min^-1) : Rate coefficient for density decrease !
0.90000 dinoflagellates
0.90000 f'water cyanobacteria
0.90000 nodularia
0.20000 chlorophytes
0.90000 cryptophytes
0.90000 marine diatoms
0.90000 f'water diatoms

! c3 (kgm^-3min^-1) : Minimum rate of density decrease with time !
0.04150 dinoflagellates
0.04150 f'water cyanobacteria
0.04150 nodularia
0.040 chlorophytes
0.04150 cryptophytes
0.04150 marine diatoms
0.04150 f'water diatoms

! c4 (mhr^-1) : Rate for light dependent migration velocity !
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2.50000 dinoflagellates
0.85000 f'water cyanobacteria
0.85000 nodularia
0.800 chlorophytes
0.85000 cryptophytes
0.85000 marine diatoms
0.85000 f'water diatoms

! c5 (mhr^-1) : Rate for nutrient dependent migration velocity !
0.20000 dinoflagellates
0.65000 f'water cyanobacteria
0.65000 nodularia
0.15000 chlorophytes
0.65000 cryptophytes
0.65000 marine diatoms
0.65000 f'water diatoms

! IKm (uEm^-2s^-1) : Half saturation constant for density increase !
26.00000 dinoflagellates
25.00000 f'water cyanobacteria
25.00000 nodularia
25.00000 chlorophytes
25.00000 cryptophytes
25.00000 marine diatoms
25.00000 f'water diatoms

! min_pd (kg/m^3) : Minimum phytoplankton density
980.00000 dinoflagellates
980.00000 f'water cyanobacteria
980.00000 nodularia
980.00000 chlorophytes
980.00000 cryptophytes
980.00000 marine diatoms
980.00000 f'water diatoms

! max_pd (kg/m^3) : Maximum phytoplankton density !
1050.00000 dinoflagellates
1050.00000 f'water cyanobacteria
1050.00000 nodularia
1030.00000 chlorophytes
1050.00000 cryptophytes
1050.00000 marine diatoms
1050.00000 f'water diatoms

! pw20 (kgm^-3) : Density of water at 20 deg C !
1000.00000

! dia (m) : Diameter of phytoplankton !
0.10000E-04
0.40000E-04 (range 0.25-0.60E-04m)
0.50000E-04
0.10000E-04
0.10000E-04
0.10000E-04
0.20000E-04

! ws (ms^-1) : Constant settling velocity !
0.10000E-04
0.69440E-04
0.50000E-04
-2.00000E-06
0.10000E-04
0.10000E-04
-3.5000E-06

! oth (mg/l) dissolved oxgyen threshold for migration of motile phytoplankton !
0.0
0.0
0.0
0.0
0.0
0.0
0.0

!------------------------------------------------------------------------------!
! Resuspension !
! tcpy (N/m^2) : Critical shear stress !

0.02000 dinoflagellates
0.05000 f'water cyanobacteria
0.05000 nodularia
0.05000 chlorophytes



Appendices 322

0.05000 cryptophytes
0.05000 marine diatoms
0.05000 f'water diatoms

! alpPy (mg Chla/m^2/s) : Resuspension rate constant !
0.23000E-03

! KTPy (mg Chla/m^2) : Controls rate of resuspension !
1.00000 dinoflagellates
2.00000 f'water cyanobacteria
2.00000 nodularia
2.00000 chlorophytes
2.00000 cryptophytes
2.00000 marine diatoms
2.00000 f'water diatoms

! DTphy (days) : Phytoplankton sediment survival time !
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

!------------------------------------------------------------------------------!
! JELLYFISH constants !
!------------------------------------------------------------------------------!
! Jmax (/day) : Maximum potential growth rate of jellyfish !

0.40000
! Ycj (mg C/mg medusae) : Carbon meduase ratio !

0.00400
!------------------------------------------------------------------------------!
! Temperature representation !
! vT (no units) : Temperature multiplier !

1.08000
! Tsta (Deg C) : Standard temperature !

20.00000
! Topt (Deg C) : Optimum temperature !

33.00000
! Tmax (Deg C) : Maximum temperature !

39.00000
!------------------------------------------------------------------------------!
! Salinity limitation !
! Sop (psu) : Minimum bound of salinity tolerance !

25.00000
! Bep (no units) : Salinity limitation value at S=0 and S=maxSP !

27.00000
! Aep (no units) : Salinity limitation value at S=Sop !

1.00000
!------------------------------------------------------------------------------!
! Light limitation. !
! algt (no units) : Type of light limitation algorithm !

2
! IK (microE/m^2/s) : Parameter for initial slope of P-I curve !

90.00000
! ISt (uEm^-2s^-1) : Light saturation for maximum production !

90.00000
!------------------------------------------------------------------------------!
! Nutrient limitation !
! KP (mg/L) : Half saturation constant for phosphorus !

0.01000
! Po (mg/L) : Low concentrations of PO4 at which uptake ceases !

0.00000
! KN (mg/L) : Half saturation constant for nitrogen !

0.02500
! No (mg/L) : Low concentrations of N at which uptake ceases !

0.00000
!------------------------------------------------------------------------------!
! Respiration mortality and excretion. !
! krj (/day) : Respiration rate coefficient !

0.10000
! ke (/day) : Excretion rate coefficient !

0.10000
! KBODj (mg BOD/L) : Half saturation constant for organic nutrition !

2.00000
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! vuk (m/s) : Upward swimming velocity constant !
0.01000

! vdk (m/s) : Downward sinking velocity constant !
0.00000

!------------------------------------------------------------------------------!
! ZOOPLANKTON constants !
!------------------------------------------------------------------------------!
! az (no units) : assimilation rate !

0.30000 : rotifers/small cladocerans
0.30000 : large cladocerans/copepods
0.30000
0.30000
0.30000

!------------------------------------------------------------------------------!
! Respiration mortality and excretion. !
! fzz (no units) : Fraction of loss contributing to excretion only !

0.20000
! kz (/day) : Respiration rate coefficient !

0.10000
0.05000
0.05000
0.05000
0.05000

!------------------------------------------------------------------------------!
! Salinity limitation !
! Smxz (psu) : Maximum salinity, or optimum salinity for SIZE5 !

50.00000
50.00000
28.00000
28.00000
27.00000

! Smnz (psu) : Minimum salinity !
0.00000
0.00000
6.00000
6.00000
0.00000

! Bez (no units) : Salinity intercept (for S=0) !
0.00000
0.00000
2.00000
2.00000
2.00000

!------------------------------------------------------------------------------!
! Dissolved oxygen limitation !
! DOmz (mg/L) : Minimum DO tolerance !

0.00000
0.00000
0.00000
1.00000
1.00000

!------------------------------------------------------------------------------!
! Temperature representation !
! vT (no units) : Temperature multiplier for growth NOTE SET TO 1.08 in
params.dat regardless of value HERE though this is the value used !

1.06000
1.10000
1.10000
1.10000
1.10000

! Tsta (Deg C) : Standard temperature !
20.00000
20.00000
20.00000
20.00000
20.00000

! Topt (Deg C) : Optimum temperature !
33.00000
33.00000
33.00000
33.00000
33.00000
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! Tmax (Deg C) : Maximum temperature !
39.00000
39.00000
39.00000
39.00000
39.00000

!------------------------------------------------------------------------------!
! Grazing !
! ki (g phyto C/m^3)/(g zoo C/m^3)/day) : Grazing rate !

1.00000 : SIZE1 grazing rate
0.40000 : SIZE2 grazing rate
0.72000
0.20000
0.20000

! vZ (no units) : Grazing/Respiration temperature dependence !
1.12000
1.06000
1.07000
1.07000
1.07000

! Pij (no units) : Preference of zooplankton for phytoplankton !
0.00000 : SIZE1 on DINOF
0.00000 : SIZE2 on DINOF
0.00000 : SIZE3 on DINOF
0.00000 : SIZE4 on DINOF
0.00000 : SIZE5 on DINOF
0.00000 : SIZE1 on CYANO
0.00000 : SIZE2 on CYANO
0.00000 : SIZE3 on CYANO
0.00000 : SIZE4 on CYANO
0.00000 : SIZE5 on CYANO
0.00000 : SIZE1 on NODUL
0.00000 : SIZE2 on NODUL
0.00000 : SIZE3 on NODUL
0.00000 : SIZE4 on NODUL
0.00000 : SIZE5 on NODUL
1.00000 : SIZE1 on CHLOR
0.00000 : SIZE2 on CHLOR
0.00000 : SIZE3 on CHLOR
0.00000 : SIZE4 on CHLOR
0.00000 : SIZE5 on CHLOR
0.00000 : SIZE1 on CRYPT
0.00000 : SIZE2 on CRYPT
0.00000 : SIZE3 on CRYPT
0.00000 : SIZE4 on CRYPT
0.00000 : SIZE5 on CRYPT
0.00000 : SIZE1 on MDIAT
0.00000 : SIZE2 on MDIAT
0.00000 : SIZE3 on MDIAT
0.00000 : SIZE4 on MDIAT
0.00000 : SIZE5 on MDIAT
0.00000 : SIZE1 on FDIAT
0.00000 : SIZE2 on FDIAT
0.00000 : SIZE3 on FDIAT
0.00000 : SIZE4 on FDIAT
0.00000 : SIZE5 on FDIAT

! Pzij (no units) : Preference of zooplankton for zooplankton !
0.00000 : SIZE1 prey of SIZE1
0.00000 : SIZE1 prey of SIZE2
0.00000 : SIZE1 prey of SIZE3
0.00000 : SIZE1 prey of SIZE4
0.00000 : SIZE1 prey of SIZE5
0.00000 : SIZE2 prey of SIZE1
0.00000 : SIZE2 prey of SIZE2
0.00000 : SIZE2 prey of SIZE3
0.00000 : SIZE2 prey of SIZE4
0.00000 : SIZE2 prey of SIZE5
0.00000 : SIZE3 prey of SIZE1
0.00000 : SIZE3 prey of SIZE2
0.00000 : SIZE3 prey of SIZE3
0.00000 : SIZE3 prey of SIZE4
0.00000 : SIZE3 prey of SIZE5
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0.00000 : SIZE4 prey of SIZE1
0.00000 : SIZE4 prey of SIZE2
0.00000 : SIZE4 prey of SIZE3
0.00000 : SIZE4 prey of SIZE4
0.00000 : SIZE4 prey of SIZE5
0.00000 : SIZE5 prey of SIZE1
0.00000 : SIZE5 prey of SIZE2
0.00000 : SIZE5 prey of SIZE3
0.00000 : SIZE5 prey of SIZE4
0.00000 : SIZE5 prey of SIZE5

! Pbij (no units) : Preference of zooplankton for detritus !
0.00000 : FBOD by SIZE1
0.00000 : FBOD by SIZE2
0.00000 : FBOD by SIZE3
0.00000 : FBOD by SIZE4
0.00000 : FBOD by SIZE5
0.00000 : SBOD by SIZE1
0.00000 : SBOD by SIZE2
0.00000 : SBOD by SIZE3
0.00000 : SBOD by SIZE4
0.00000 : SBOD by SIZE5

! Kj (g C/m^3) : Half saturation constant for grazing !
2.00000
0.24000
1.00000
1.00000
1.00000

!------------------------------------------------------------------------------!
! Predation !
! kk (/day) : Grazing rate of fish on zooplankton !

0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000
0.20000

! PFi (no units) : Preference of fish for zooplankton !
0.20000
0.20000
0.20000
0.20000
0.20000

! KFk (g/m^3) : Half saturation constant for grazing !
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000

!------------------------------------------------------------------------------!
! FISH constants !
!------------------------------------------------------------------------------!
! swin (m/s) : Swimming speed !

0.02000
0.00200
0.00200
0.00200
0.00200
0.00200
0.00200
0.00200
0.00200

! mfl (/day) : Threshold of fish mortality !
0.30000
0.30000
0.30000
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0.30000
0.30000
0.30000
0.30000
0.30000
0.30000

! mtol (%) : Mortality migration tolerance !
2.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

!------------------------------------------------------------------------------!
! Temperature representation !
! vT (no units) : Temperature multiplier !

1.08000
1.08000
1.08000
1.08000
1.08000
1.08000
1.08000
1.08000
1.08000

! Tsta (Deg C) : Standard temperature !
20.00000
20.00000
20.00000
20.00000
20.00000
20.00000
20.00000
20.00000
20.00000

! Topt (Deg C) : Optimum temperature !
33.00000
33.00000
33.00000
33.00000
33.00000
33.00000
33.00000
33.00000
33.00000

! Tmax (Deg C) : Maximum temperature !
39.00000
39.00000
39.00000
39.00000
39.00000
39.00000
39.00000
39.00000
39.00000

!------------------------------------------------------------------------------!
! Salinity limitation !
! maxS (psu) : Maximum potential salinity !

45.00000
! SL (psu) : Optimal salinity growth for fish !

10.00000
10.00000
10.00000
10.00000
10.00000
10.00000
10.00000
10.00000
10.00000
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! SU (psu) : Salinity response for S>Slim (not including MULLT) !
30.00000
30.00000
30.00000
30.00000
30.00000
30.00000
30.00000
30.00000
30.00000

! cfs (no units) : Max. fractional salinity respiration increment !
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000

!------------------------------------------------------------------------------!
! Dissolved oxygen limitation. !
! DOmin (mg/L) : Lower dissolved oxygen tolerance !

0.00000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000

! KDO (mg/L) : Dissolved oxygen response for DO>=DOmin (mg/L) !
0.40000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

! ofl (no units) : Max. fractional oxygen respiration increment !
10.00000
10.00000
10.00000
10.00000
10.00000
10.00000
10.00000
10.00000
10.00000

!------------------------------------------------------------------------------!
! Predation response to light. !
! dfs (no units) : Max. fractional light respiration increment !

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

! Ikf (uE/m^2/s) : Half saturation constant for light !
400.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
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1.00000
1.00000

!------------------------------------------------------------------------------!
! Grazing constants !
! FZ (/day) : Grazing rate !

0.14000
0.11000
0.11000
0.11000
0.11000
0.11000
0.11000
0.11000
0.11000

! KFb (g C/m^2) : Half saturation constant for grazing on benthos !
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

! PFij (no units) : Preference of fish grazing on invertabrates !
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

! PFij (no units) : Preference of fish grazing on detritus !
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

!------------------------------------------------------------------------------!
! Respiration, mortality and excretion !
! kf (/day) : Respiration rate coefficient !

0.07000
0.08000
0.08000
0.08000
0.08000
0.08000
0.08000
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0.08000
0.08000

! vF (no units) : Temperature multiplier for respiration !
1.08000
1.08000
1.08000
1.08000
1.08000
1.08000
1.08000
1.08000
1.08000

!------------------------------------------------------------------------------!
! Biomass size distribution !
! Ft1 (mg C change/mg fish C/day) : Threshold biomass for adults !

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

! Ft2 (mg C change/mg fish C/day) : Threshold biomass for juveniles !
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

!------------------------------------------------------------------------------!
! SEAGRASS constants !
!------------------------------------------------------------------------------!
! Yes (no units) : Ration of epiphyte C to seagrass C !

1.00000
! Vmax (/day) : Maximum growth rate !

0.12500
!------------------------------------------------------------------------------!
! Light limitation !
! IK (microE/m^2/s) : Parameter for initial slope of P-I curve !

120.00000
! ISt (uEm^-2s^-1) : Light saturation for maximum production !

90.00000
!------------------------------------------------------------------------------!
! Respiration !
! kb (/day) : Respiration rate coefficient !

0.01250
! vB (no units) : Temperature multiplier !

1.08000
!------------------------------------------------------------------------------!
! Salinity limitation !
! Sop (psu) : Minimum bound of salinity tolerance !

26.00000
! Bep (no units) : Salinity limitation value at S=0 and S=2 x Sop !

5.11600
! Aep (no units) : Salinity limitation value at S=Sop !

0.58200
!------------------------------------------------------------------------------!
! Temperature representation !
! vT (no units) : Temperature multiplier !

1.08000
! Tsta (Deg C) : Standard temperature !

20.00000
! Topt (Deg C) : Optimum temperature !

25.00000
! Tmax (Deg C) : Maximum temperature !

30.00000
!------------------------------------------------------------------------------!
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! MACROALGAE constants !
!------------------------------------------------------------------------------!
! Vmax (/day) : Maximum growth rates !

0.35000
0.30000
0.30000
0.30000

! Ycc (mg C/mg chla) : Average ratio of C to chlorophyll a !
50.00000
50.00000
50.00000
50.00000

!------------------------------------------------------------------------------!
! Light limitation. !
! algt (no units) : Type of light limitation algorithm !

2
2
2
2

! IK (microE/m^2/s) : Parameter for initial slope of P-I curve !
90.00000
90.00000
90.00000
90.00000

! ISt (uEm^-2s^-1) : Light saturation for maximum production !
90.00000
90.00000
90.00000
90.00000

! Hmac (m/(gm^2)) : Conversion macroalgae biomass to height !
0.01000
0.01000
0.01000
0.01000

! Kmac (g C/m^2/m) : Specific light attenuation coefficients !
1.00000
3.00000
3.00000
3.00000

!------------------------------------------------------------------------------!
! Nutrient limitation !
! KP (mg/L) : Half saturation constant for phosphorus !

0.01000
0.01000
0.01000
0.01000

! Po (mg/L) : Low concentrations of PO4 at which uptake ceases !
0.00000
0.00000
0.00000
0.00000

! KN (mg/L) : Half saturation constant for nitrogen !
0.05000
0.05000
0.05000
0.05000

! No (mg/L) : Low concentrations of N at which uptake ceases !
0.00000
0.00000
0.00000
0.00000

! INmin (mg N/mg Chla) : Minimum internal N concentration !
0.00500
0.00500
0.00500
0.00500

! INmax (mg N/mg Chla) : Maximum internal N concentration !
0.02000
0.02000
0.02000
0.02000

! IPmin (mg P/mg Chla) : Minimum internal P concentration !
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0.00100
0.00100
0.00100
0.00100

! IPmax (mg P/mg Chla) : Maximum internal P concentration !
0.00000
0.00000
0.00000
0.00000

!------------------------------------------------------------------------------!
! Temperature representation !
! vT (no units) : Temperature multiplier !

1.08000
1.08000
1.08000
1.08000

! Tsta (Deg C) : Standard temperature !
20.00000
20.00000
20.00000
20.00000

! Topt (Deg C) : Optimum temperature !
33.00000
33.00000
33.00000
33.00000

! Tmax (Deg C) : Maximum temperature !
39.00000
39.00000
39.00000
39.00000

!------------------------------------------------------------------------------!
! Salinity limitation !
! Sop (psu) : Minimum bound of salinity tolerance !

25.00000
25.00000
25.00000
25.00000

! Bep (no units) : Salinity limitation value at S=0 and S=2 x Sop !
2.00000
2.00000
2.00000
2.00000

! Aep (no units) : Salinity limitation value at S=Sop !
1.00000
1.00000
1.00000
1.00000

!------------------------------------------------------------------------------!
! Respiration !
! kb (/day) Respiration rate coefficient !

0.07000
0.07000
0.07000
0.07000

! vB (no units) : Temperature multiplier for respiration !
1.08000
1.08000
1.08000
1.08000

!------------------------------------------------------------------------------!
! Grazing !
! PCm (no units) : Preference of crustaceans grazing on macroalgae !

0.20000
0.20000
0.20000
0.20000

!------------------------------------------------------------------------------!
! INVERTABRATE constants !
!------------------------------------------------------------------------------!
! IZ (g C consumed/(g invert. C)/day) : Maximum consumption rate !

0.00000
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0.00000
0.00000

! KIZ (g C/m^3) : Half saturation constant for grazing !
0.00000
0.00000
0.00000

! KDOI (mg/L) : Half saturation for dissolved oxygen limitation !
0.00000
0.00000
0.00000

! BDOi (no units) : Basal respiration increase from DO limitation !
0.00000
0.00000
0.00000

!------------------------------------------------------------------------------!
! Salinity limitation !
! Minimum salinity tolerance for bivalves !

8.00000
! Maximum salinity tolerance for bivalves !

35.00000
! Sop (psu) : Minimum bound of salinity tolerance !

8.00000
8.00000
25.00000

! Bep (no units) : Salinity limitation value at S=0 and S=2 x Sop !
2.00000
2.00000
2.00000

! Aep (no units) : Salinity limitation value at S=Sop !
1.00000
1.00000
1.00000

!------------------------------------------------------------------------------!
! Respiration !
! kb (/day) : Respiration rate coefficient !

0.10000
0.10000
0.08000

! vB (no units) : Temperature multiplier !
1.08000
1.08000
1.08000

!------------------------------------------------------------------------------!
! SUSPENDED SOLID constants !
!------------------------------------------------------------------------------!
! denSS (g/m^3) : Mean density of suspended solid in the sediment !
0.25000E+07 : SSOL1 sediment density
0.25000E+07 : SSOL2 sediment density

! des (kg/m^3) : Density of suspended solid particles !
0.11500E+04 : SSOL1 particle density
0.12500E+04 : SSOL2 particle density

! diaSS (m) : Diameter of suspended solids groups !
0.10000E-04 : SSOL1 particle diameter
0.10000E-04 : SSOL2 particle diameter

! KeSS (mg^L-1m^-1) : Specific attenuation coefficient !
0.05000E+00 : SSOL1 particle specific attenuation
0.05000E+00 : SSOL2 particle specific attenuation

!------------------------------------------------------------------------------!
! Resuspension constants !
! tcs (N/m^2) : Critical shear stress !
0.50000E-01
0.50000E-01

! alpS (g/m^2/s) : Resuspension rate constants !
0.30000E-03
0.30000E-03

! KTS (g/m^2) : Controls rate of resuspension !
0.40000E+00
0.40000E+00

!------------------------------------------------------------------------------!
! pH constants !
!------------------------------------------------------------------------------!

0.0000 kpho (m^3/g O) : Photosynthetic / respiration pH constant
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0.0000 kphp (m^3/g O) : BOD pH constant
1.00000 KDOS (g/m^3) : Controls release of sediment nutrients via O
7.00000 KpHS (no units) : Controls release of sediment nutrient via pH

!------------------------------------------------------------------------------!
! Colour / tracer constants !
!------------------------------------------------------------------------------!

0.00000 decr (/day) : Decay rate for colour/tracer
!------------------------------------------------------------------------------!
! DISSOLVED OXYGEN constants !
!------------------------------------------------------------------------------!

1.08000 vOP (no units) : Temperature multiplier for phytoplankton
1.08000 vON (no units) : Temperature multiplier for nitrification
1.60000 KSO (mg_O/L) : Half saturation cons. for sediment BOD uptake
50.00000 PCmax (g/m^2) : Maximum limit of polychaete biomass
2.66667 YOC (mg C/mg O) : Respiration stoichiometric ratio of C to

oxygen
1.00000 YOZ (mg zooC/mg O) Stoichiometric factor, zooplankton C : DO
0.10000 fox (no units) : Fraction of net DO allocated to seagrass roots
2.66667 YSG (mg seagC/mg O) : Stoichiometric factor, seagrass C : DO
2.66667 YOJ (mg jelC/mg O) : Stoichiometric factor, jellyfish C : DO
0.05000 koNH (/day) : Nitrification rate coefficient
3.42857 YNH (mg N/mg O) : Ratio for O2 to N during nitrification
1.50000 KOn (mg O/L) : Half saturation constant for nitrification
1.60000 DOs (cm^2/day) : Molecular diffusion of the sediments
24.80000 DOb (cm^2/day) : Diffusivity due to bioturbation
0.00500 doxmin (m) : Minimum depth of the oxic layer
0.30000 doxmax (m) : Sediment depth=max depth of the oxic layer
0.03000 oxmin (mg/L) : Minimum DO in the bottom layer (mg/L)
0.10000 rSOs (g/m^2/day) : Static sediment exchange rate
2.00000 KSOs (mg O/L) : 1/2 sat constant for static DO sediment flux
0.14000 prc (no units) : Photo-respiration phytoplankton DO loss

! Fraction of P respiration relative to total loss rate !
0.70000E+00
0.70000E+00
0.70000E+00
0.80000E+00
0.70000E+00
0.70000E+00
0.70000E+00
0.80000E+00
0.80000E+00
0.80000E+00
0.80000E+00
0.80000E+00

!------------------------------------------------------------------------------!
! BOD Cconstants !
!------------------------------------------------------------------------------!
0.12000E+07 denB (g/m^3) : Mean density of BOD in the sediment

1.08000 vOB (no units) : Temperature multiplier for BOD
! dib (m) : Diameter of BOD particles !
0.1000E-04 : SBOD diameter
0.1000E-04 : FBOD diameter

! deb (kg/m^3) : Density of BOD particles !
0.11000E+04 : SBOD density
0.10500E+04 : FBOD density

! tc (N/m^2) : Critical shear stress !
0.05000 : SBOD shear streass
0.05000 : FBOD shear stress

! Kmass (g/m^2) : Controls rate of resuspension !
0.10000 : SBOD control on rate of resuspension
0.10000 : FBOD control on rate of resuspension

! alp (g/m^2/s) : Resuspension rate !
0.12500E-03 : SBOD resuspension rate
0.12500E-03 : FBOD resuspension rate

! tref (N/m^2) : Reference shear stress !
1.00000

! koB (/day) : Water column mineralisation rate !
0.01000 : SBOD mineralization rate
0.10000 : FBOD mineralization rate

! KBOD (mg BOD/L) : Half saturation constant for mineralisation !
5.0000

! kan (no units) : Anerobic relative to aerobic decomposition !
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0.30000
! kdB (/day) : Sediment decay rate !

0.00010 : SBOD sediment decay rate
0.01000 : FBOD sediment decay rate

! KeBOD (m^2/g) : Specific attenuation coefficient !
0.01000 : SBOD specific attenuation
0.01000 : FBOD specific attenuation

!------------------------------------------------------------------------------!
2.66667 YCBOD (mg C/mg BOD) : BOD to C ratio
2.66667 YBODZ (mg BOD/mg zooC) : Zooplankton C to BOD ratio
2.66667 YBODJ (mg BOD/mg jelC) : Jellyfish C to BOD ratio
2.66667 YBODPC (mg BOD/mg polC) : Polychaete C to BOD ratio
2.66667 YBODBV (mg BOD/mg bivC) : Bivalve C to BOD ratio
2.66667 YBODMB (mg BOD/mg macC) : Macroalgae C to BOD ratio
0.90000 mabw (no units) : Macroalgae beach wrack constant

!------------------------------------------------------------------------------!
! NITROGEN constants !
!------------------------------------------------------------------------------!
! UNmax (mg N/mg Chla/day) : Maximum rate of nitrogen uptake !
0.15000E+01 : uptake rate for dinoflagellates
0.25000E+01 : uptake rate for cyanobacteria
0.15000E+01 : uptake rate for nodularia
0.20000E+01 : uptake rate for chlorophytes
0.15000E+01 : uptake rate for crptophytes
0.15000E+01 : uptake rate for marine diatoms
0.20000E+01 : uptake rate for freshwater diatoms

! UNmax (mg N/mg C/day) : Maximum rate of nitrogen uptake !
0.20000E-02
0.20000E-02
0.20000E-02
0.20000E-02

! INcon (mg N/mg Chla) : Phytoplankton constant internal nitrogen !
3.00000

! INZcon (mg N/mg C) : Zooplankton constant internal nitrogen !
7.00000 INZconF : Freshwater systems
7.00000 INZconM : Marine systems
7.00000 INZconE : Estuarine systems

-99.00000 INZcon : If INZcon/=-99, then use the specified value
!------------------------------------------------------------------------------!

1.08000 vN2 (no units) : Temperature multiplier for denitrification
0.05000 koN2 (/day) : Denitrification rate coefficient
0.20000 KN2 (mg/L) : Half saturation const for denitrification
0.0100 KMAN (/day) : Anaerobic organic mineralisation rate
0.0200 KMN (/day) : Aerobic organic mineralisation rate
1.08000 vM (no units) : Temp. multiplier for mineralisation
1.50000 kONm (mg O/L) : Half saturation for mineralisation
-0.10E-5 Nset (m/s) : Settling velocity for particulate N
2.50000 tcn (N/m^2) : Critical shear stress
0.00005 alpN (g/m^2/s) : Resuspension rate constants
0.50000 KTNr (g/m^2) : Controls rate of resuspension
0.10000 Smpn (g/m^2/day) : Maximum potential sediment fluxes

!------------------------------------------------------------------------------!
! PHOSPHORUS constants !
!------------------------------------------------------------------------------!
! UPmax (mg P/mg Chla/day) : Maximum rate of phosphorus uptake !
0.20000E+00
0.25000E+00
0.20000E+00
0.07500E+00
0.20000E+00
0.20000E+00
0.15000E+00

! UPmax (mg P/mg C/day) : Maximum rate of phosphorus uptake !
0.13000E-03
0.10000E-03
0.10000E-03
0.10000E-03

! IPcon (mg P/mg Chla) : Phytoplankton constant internal phosphorus !
1.00000

! IPZcon (mg P/mg C) : Zooplankton constant internal phosphorus !
1.00000 IPZconF : Freshwater systems
1.00000 IPZconM : Marine systems
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1.00000 IPZconE : Estuarine systems
-99.00000 IPZcon : If INZcon/=-99, then use the specified value

!------------------------------------------------------------------------------!
0.02000 KOAP (/day) : Anaerobic organic mineralisation rate
0.01500 KOP (/day) : Aerobic organic mineralisation rate
1.50000 kOPm (g/m^3) : Half saturation for mineralisation
-0.10E-5 Pset (m/s) : Settling velocity for particulate P
2.50000 tcp (N/m^2) : Critical shear stress
0.00001 alpP (g/m^2/s) : Resuspension rate constants
0.05000 KTP (g/m^2) : Controls rate of resuspension
0.00500 Smpp (g/m^2/day) : Maximum potential sediment fluxes

!------------------------------------------------------------------------------!
! IRON constants !
!------------------------------------------------------------------------------!

1.08000 vFeR (no units) : Temperature multiplier for reduction
0.10000 kFeR (/day) : Maximum reduction rate
2.00000 K_FeR (mg/L) : Half saturation for reduction
1.08000 vFeO (no units) : Temperature multiplier for oxidation
0.10000 kFeO (/day) : Maximum oxidation rate
2.00000 K_FeO (mg/L) : Half saturation for oxidation
0.01000 SFe (g/m^2/day) : Sediment release rate
4.00000 KDOFe (mg/L) : Oxygen sediment half saturation
7.00000 KpHFe (no units) : pH sediment half saturation
0.00001 alpFe (g/m^2/s) : Resuspension rate
0.05000 tcFe (N/m^2) : Critical shear stress
0.00000 Feset (m/s) : Settling velocity of particulate iron

!------------------------------------------------------------------------------!
! MANGANESE constants !
!------------------------------------------------------------------------------!

1.08000 vMnR (no units) : Temperature multiplier for reduction
0.10000 kMnR (/day) : Maximum reduction rate
2.00000 K_MnR (mg/L) : Half saturation for reduction
1.08000 vMnO (no units) : Temperature multiplier for oxidation
0.10000 kMnO (/day) : Maximum oxidation rate
2.00000 K_MnO (mg/L) : Half saturation for oxidation
0.01000 Smn (g/m^2/day) : Sediment release rate
4.00000 KDOMn (mg/L) : Oxygen sediment half saturation
7.00000 KpHMn (no units) : pH sediment half saturation
0.00001 alpMn (g/m^2/s) : Resuspension rate
0.05000 tcMn (N/m^2) : Critical shear stress
0.00000 Mnset (m/s) : Settling velocity of particulate Mn

!------------------------------------------------------------------------------!
! ALUMINIUM constants !
!------------------------------------------------------------------------------!

1.08000 vAlR (no units) : Temperature multiplier for reduction
0.10000 kAlR (/day) : Maximum reduction rate
2.00000 K_AlR (mg/L) : Half saturation for reduction
1.08000 vAlO (no units) : Temperature multiplier for oxidation
0.10000 kAlO (/day) : Maximum oxidation rate
2.00000 K_AlO (mg/L) : Half saturation for oxidation
0.01000 S_AL (g/m^2/day) : Sediment release rate
4.00000 KDOAl (mg/L) : Oxygen sediment half saturation
7.00000 KpHAl (no units) : pH sediment half saturation
0.00001 alpAl (g/m^2/s) : Resuspension rate
0.05000 tcAl (N/m^2) : Critical shear stress
0.00000 Alset (m/s) : Settling velocity of particulate Al

Meteorological, inflow and withdrawal files are not included in this appendix because

the number of lines for each files is 18263 lines which require 240 pages.
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Appendix B.1 Sensitivity of water quality simulations of Cooby
reservoir

A. Sensitivity of radiation to Cyanobacteria and dissolved oxygen

Surface Layer

Layer 9.14 m depth

Layer 16.46 m depth
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Bottom Layer

Pumping Layer

B. Sensitivity of rainfall to Cyanobacteria and dissolved oxygen

Surface Layer
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Layer 9.14 m depth

Layer 16.46 m depth

Bottom Layer

Sensitivity of BGA in Changing Rainfall
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Pumping Layer

C. Sensitivity of suspended solid to Cyanobacteria and dissolved oxygen

Surface Layer
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Layer 16.46 m depth

Bottom Layer

Pumping Layer

Sensitivity of BGA in Changing TSS
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D. Sensitivity of phosphorus to Cyanobacteria and dissolved oxygen

Surface Layer
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Bottom Layer

Pumping Layer

E. Sensitivity of nitrate to Cyanobacteria and dissolved oxygen

Surface Layer
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Layer 9.14 m depth

Layer 16.46 m depth
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Pumping Layer

Sensitivity of BGA in Changing N
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Appendix B.2 Sensitivity of water quality simulations of Cressbrook
reservoir

A. Sensitivity of radiation to Cyanobacteria and dissolved oxygen
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Layer 15.75 m depth
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Layer 29.75 m depth

Bottom Layer

B. Sensitivity of rainfall to Cyanobacteria and dissolved oxygen

Surface Layer
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Layer 9.30 m depth
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Layer 19.25 m depth
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Bottom Layer

C. Sensitivity of suspended solid to Cyanobacteria and dissolved oxygen
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Layer 12.25 m depth
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Layer 22.75 m depth

Layer 29.75 m depth

Bottom Layer
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D. Sensitivity of phosphorus to Cyanobacteria and dissolved oxygen
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Layer 15.75 m depth

Layer 19.25 m depth

Layer 22.75 m depth
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Layer 29.75 m depth

Bottom Layer

E. Sensitivity of nitrate to Cyanobacteria and dissolved oxygen

Surface Layer
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Layer 9.30 m depth

Layer 12.25 m depth

Layer 15.75 m depth

Sensitivity of BGA in Changing N
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Layer 19.25 m depth

Layer 22.75 m depth

Layer 29.75 m depth

Sensitivity of BGA in Changing N
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Bottom Layer

Sensitivity of BGA in Changing N

-5

0

5

10

15

20

1050-5-10

Nitrogen Change (%)

B
G

A
C

h
a

n
g

e
(%

)

Mixers No Mixers

Sensitivity of DO in Changing N

-0.3

0.0

0.3

0.6

0.9

1.2

1050-5-10

Nitrogen Change (%)

D
O

C
h

a
n

g
e

(%
)

Mixers

No Mixers



Appendices 359

Appendix C Individual water quality rating

A. Ratings of water quality indicators for Cooby storage

Cyanobacteria

- Surface layer during warm period
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- Pumping layer during warm period
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- Average of all layers during cold period
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Dissolved oxygen
- Surface layer during warm period
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- Pumping layer during warm period
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- Average of all layers during cold period
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- Pumping layer during warm period
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- Average of all layers during cold period
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- Pumping layer during warm period
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- Average of all layers during cold period
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Nitrate
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- Pumping layer during warm period
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- Average of all layers during cold period
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Salinity
- Surface layer during warm period
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- Pumping layer during warm period
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- Average of all layers during cold period
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- Pumping layer during warm period
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- Average of all layers during cold period
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- Pumping layer during warm period
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- Average of all layers during cold period
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Total manganese
- Surface layer during warm period
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- Pumping layer during warm period
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- Average of all layers during cold period
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B. Ratings of water quality parameters for Cressbrook Storage

Cyanobacteria
- Surface layer during warm period
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- Pumping layer during warm period
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- Average of all layers during cold period
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- Pumping layer during warm period
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- Average of all layers during cold period

0

20

40

60

80

100

Apr 04 Apr 09 Apr 14 Apr 19 Apr 24 Apr 29 Apr 34 Apr 39 Apr 44 Apr 49

Time (date)

T
P

R
a
ti

n
g

No_Mix

Mix

Nitrate
- Surface layer during warm period

0

20

40

60

80

100

Jan 04 Jan 09 Jan 14 Jan 19 Jan 24 Jan 29 Jan 34 Jan 39 Jan 44 Jan 49

Time (date)

N
it

ra
te

R
a
ti

n
g

No_Mix

Mix

- Surface layer during cold period

0

20

40

60

80

100

Apr 04 Apr 09 Apr 14 Apr 19 Apr 24 Apr 29 Apr 34 Apr 39 Apr 44 Apr 49

Time (date)

N
it

ra
te

R
a
ti

n
g

No_Mix

Mix



Appendices 387

- Pumping layer during warm period

0

20

40

60

80

100

Jan 04 Jan 09 Jan 14 Jan 19 Jan 24 Jan 29 Jan 34 Jan 39 Jan 44 Jan 49

Time (date)

N
it

ra
te

R
a
ti

n
g

Mix

No Mix

- Pumping layer during cold period

0

20

40

60

80

100

Apr 04 Apr 09 Apr 14 Apr 19 Apr 24 Apr 29 Apr 34 Apr 39 Apr 44 Apr 49

Time (date)

N
it

ra
te

R
a
ti

n
g

No_Mix

Mix

- Average of all layers during warm period

0

20

40

60

80

100

Jan 04 Jan 09 Jan 14 Jan 19 Jan 24 Jan 29 Jan 34 Jan 39 Jan 44 Jan 49

Time (date)

N
it

ra
te

R
a
ti

n
g

No_Mix

Mix



Appendices 388

- Average of all layers during cold period
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- Average of all layers during cold period
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- Average of all layers during cold period
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- Average of all layers during cold period
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Appendix D Conversions

ALGA CONVERSION

No. Name of Species Low Concentration High Concentration

1 Anabaena circinalis 1000 gyres/mL = 10 ug chl-a/L 1400 gyres/mL = 10 ug chl-a/L

Anabaena s f spiroides 18000 cells/mL = 10 ug chl-a/L 25200 cells/mL = 10 ug chl-a/L

1800 cells/mL = 1 ug chl-a/L 2520 cells/mL = 1 ug chl-a/L

2 Anabaena flos-aquae or 760 gyres/mL = 10 ug chl-a/L 2300 gyres/mL = 10 ug chl-a/L

Anabaena aphanizomoides 19760 cells/mL = 10 ug chl-a/L 59800 cells/mL = 10 ug chl-a/L

1976 cells/mL = 1 ug chl-a/L 5980 cells/mL = 1 ug chl-a/L

AVERAGE 1888 cells/mL = 1 ug chl-a/L 4250 cells/mL = 1 ug chl-a/L

3 Aphanizomenon flos-aquae
1200 filaments/mL = 10 ug chl-
a/L 4200 filaments/mL = 10 ug chl-a/L

a. Single filament (60 cells) 72000 cells/mL = 10 ug chl-a/L 252000 cells/mL = 10 ug chl-a/L

7200 cells/mL = 1 ug chl-a/L 25200 cells/mL = 1 ug chl-a/L

b. Filements (60-70 cells)
1200 filaments/mL = 10 ug chl-
a/L 4200 filaments/mL = 10 ug chl-a/L

(take max 70 cells) 84000 cells/mL = 10 ug chl-a/L 294000 cells/mL = 10 ug chl-a/L

8400 cells/mL = 1 ug chl-a/L 29400 cells/mL = 1 ug chl-a/L

AVERAGE 7800 cells/mL = 1 ug chl-a/L 27300 cells/mL = 1 ug chl-a/L

4 Microcystis aeruginosa 200 um colonies = 10000 cells 90 um colonies = 1000 cells

3 colonies/mL = 10 ug chl-a/L 40 colonies/mL = 10 ug chl-a/L

30000 cells/mL = 10 ug chl-a/L 40000 cells/mL = 10 ug chl-a/L

3000 cells/mL = 1 ug chl-a/L 4000 cells/mL = 1 ug chl-a/L

5
Cylindropermopsis
raciborskii
(average anabaena &
Aphanizomenon) 4544 cells/mL = 1 ug chl-a/L 14725 cells/mL = 1 ug chl-a/L
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