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SUMMARY

This paper studies the preliminary test estimator (PTE) of the parameters of
elliptically contoured distribution. The risk functions of the PTE and the sample
information based unrestricted estimator have been derived under asymmetric
linex loss function. These risk functions have been analysed both analytically
and graphically to compare with each other. It has been revealed that under
certain conditions PTE outperforms the sample information based estimator.
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1 Introduction

The class of elliptical distributions contains a wide variety of distributions. It includes the
multivariate normal (multinormal, henceforth) distribution as a special case, as well as many
non-normal distributions including Cauchy, multivariate exponential, multivariate elliptical
analogue of Student’s ¢ and non-normal variance mixtures of multinormal distributions.
Elliptical distributions are symmetric and unimodal but are not constrained regarding kur-
tosis. This class of distributions has recently gained a lot of attention to the practitioners
of statistics in different areas, especially in financial statistics. Particular use of this distri-
bution is visible in risk management. Therefore, the estimation of parameters of elliptical
distribution is of interest to its users in many areas. '
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In statistical literature different estimation strategies are suggested. Sample information
based maximum likelihood estimator (MLE) is the best linear unbiased estimator and one
of the most popular estimators. However, if the objective of any study is to minimize the
risk of the estimator, MLE may not be an ideal choice as there are other estimators that
outperform MLE. Khan et al. (2005) compared five different estimators of the intercept
parameter of simple linear regression model under squared error loss and suggested that
the least squares estimator (LSE) is not admissible as there are other estimators that out-
perform the LSE. Khan (2005) studied the different estimation strategies of parameters of
the simple multivariate linear model with Student-¢ error with squared error loss. Later
Khan (2008) investigated the estimation strategies of the intercept parameters of two linear
regression models with normal errors, when it is a priori suspected that the two regression
lines are parallel. An extensive investigation on the properties of alternative estimators of
the parameters of various models is available in Saleh (2006).

Risk of the estimator depends on the choice of the loss function. In statistical literature
there are various loss functions. Some loss functions are symmetric in nature and some
are asymmetric. Symmetric losses, e.g. squared error loss, assigns equal weight to both
under- and over-estimation. On the other hand, asymmetric losses such as linex loss assigns
appropriate wight to under- and over-estimations. In real life there are situations where
over-estimation is more severe than under-estimation and vice-versa. For example, in a
dam construction underestimation of the peak water level is more serious than its over-
estimation. In such situation the choice of an appropriate asymmetric loss is necessary for
the study of the risk.

In an applied study of real estate assessment, Varian (1975) proposed the linex loss
function. It includes the symmetric squared error loss as a special case. Hoque et al.
(2009) investigated the performance of preliminary test estimator of simple linear regression
model under asymmetric linex loss. In a recent study, Hoque et al. (2018) studied the
performance of several estimators, including the shrinkage estimator, of the simple linear
regression model under the linex loss function. For more accounts in the area readers may
see Zellner (1986). In this paper, we investigate the performance of the preliminary test

estimator of the elliptically contoured distribution under linex loss. The layout of the paper
is as follows.

Preliminaries of the linex loss function, the elliptically contoured distribution (ECD)
and the proposed estimator are discussed in Section 2. Risk functions of the estimators
are derived and analyzed in Section 3. Finally, some concluding remarks are presented in
Section 4.

2 Preliminaries

In this section we briefly describe the linex loss function and its properties along with the
elliptically contoured distribution and the proposed estimator of it’s parameter.

100

subito e.V. licensed customer copy supplied for University of Southern Queensland (SLI04X00678W)



2.1 Linex Loss Function

In many real life situations over-estimation and under-estimation of the same magnitude
of a parameter often have different economic and physical implications. As the symmetric
loss functions, such as the squared error loss, fail to differentiate between over- and under-
estimation, it is inappropriate to use such loss function, and the appropriate loss function
is an asymmetric loss such as the linex loss. For the purpose of this study, we consider the
following multivariate linear exponential (mlinex) loss function with the scale parameter b
and the p-vector shape parameter a

L(,t) = b{e* @D _a'(§ —t) — 1}, (2.1)

where 6 is any natural estimator of vector parameter . A positive a indicates that over-
estimation is more serious than under-estimation and a negative a represents the reverse
situation. The magnitude of a reflects the degree of asymmetry about (é —-t)=0.Ifa— 0,
then the linex loss reduces to the symmetric squared error loss. For simplicity, without any
loss of generality we assume b = 1 throughout this paper. For more details on the properties
of the linex loss function readers may see Zellner (1986), Varian (1975), Parsian (1990), Zou
(1997), Parsian and Kirimani (2002), Arashi et al. (2008), Hoque et al. (2009), Hoque et al.
(2018) and Zou et al. (2009).

2.2 The Model and Estimators
Let S(p) be the set of all positive definite matrices and ¥, = {¥(-) : ¥(t3+--- + t2)} be a
p-dimensional characteristic function. Then ¥; D ¥y D ---. Define Voo = Nizy ¥i.

Definition 2.1. A p x 1 random vector X is said to have an ECD with parameters %,
and ¥, and function 1/ denoted by X ~ &, (t, %, ¢) if its characteristic function has the
following form

¢x(t) = exp(it't)y(t'Se),

where t € RP, £ € S(p) and ¢ € V.

Here v is called the characteristic generator. When ¢ = 0, for a positive-valued scalar o?
and ¥ = ¢2I,, X is said to have spherically symmetric distribution (SSD). Not necessarily
X possess a density. However, if it does, the density is of the form .

fx (@) = kalZ[7V2R (2 — 1) S7 (2 — t)]

for some function h (say), the density generator, where &y, is the normalizing constant. Note
that h and v determine each other for each specified member of the family of distributions.
In this case we may use the notation X ~ &,(¢, %, h). It follows E(X) =t and Cov(X) =
—2¢/(0)X provided |¢’(0)|< oo. ? expressed the density of an ECD as an integral of a set
of multivariate normal densities which is stated in the following lemma.
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Lemma 2.1. Let z is a n-dimensional elliptically contoured random vector with mean equal
to t and scale matrix ¥ and density function g(-) with density generator h(-). If h(t),
t € [0, o) has the inverse Laplace transform then there exists a scalar function W(t) defined
on (0, 00) such that

o(z) = /O°°W<t>fN<z)dt,

where fu(-) denotes the density function of N, (t,#~1%), and
W(t) = (@m)? (227 2L {h(s)},

L7*{h(s)} denotes the inverse Laplace transform of h(s).

For details on the properties of Laplace transform and its inverse see 7. On integrating
g(z) over R™, W(t) integrates to 1. Thus for non-negative function W(t), g(z) is a density.
Now precisely, let X1, Xs,---. X, be a random sample of size n from &,(t. o2V, h). Then
the sample information based unrestricted estimator (UE) of £ is given by

~ - 1 o?
nZX Ex(t,— V., h) (2.2)

=1

Subsequently, the UE of o2 is given by

6_2

(X; -6)VYX, -6). (2.3)

I

j=1

It is easy to show that S? = L= 52 is unbiased for oZ, where

op = —20%y/(0) = 0%k, k0 = / (-}) W(t)dt. (2:4)
o \t

Under a restricted setting, assume the sub-space restriction ¢t = ¢ holds. Then the restricted
estimator (RE) of t is 5. However, this restriction is under suspicion as we do not know
the outcome of testing the hypothesis Hy : t = ty. A remedy is to use the Bancroft (1944)
approach of the preliminary test estimation. A simple form of the preliminary test estimator
(PTE) is given by

APT

6 =0I(Ln>Lpo)+t0I(Ln < Lna)
é - (é - tO) I(‘C’n < En,a)a (25)

Il

where L is the test-statistic for testing Ho : t = tg, L, o is the a-level critical value of £ and
I(A) is the indicator function of the set A. The following theorem reveals the test statistic
and its non-null distribution.
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Theorem 2.1. Let X1, X5, -+, X, be a random sample from &,(¢,02V k). Also let Q =
{(t,o,V):t € R,0c € RT,V >0}, and, w = {(t,0,V) : t = to,to € R,c € RT,V > 0}.
Moreover, suppose yZ h(y) has a finite positive maximum yz. Then the likelihood ratio
criterion for testing hypothesis Hy : t = t( is given by

n(8 — to)'V (6 — to)

L, = =

and L, has the following modified generalized non-central F' distribution given by

1 %(1+27‘) E§(27‘ l)KO(Az)
(0= (ml ) (2:6)
r>o’f"B( )(1'*‘?55")
where m=n —1, A?2 = ¢/02 for £ = (t — o)V ~1(t — to), and
= 8_A2/2 r
KhA?) = / — (-4%/2) t~hW(t) dt. (2.7)
0 T
Proof: For testing Hy : t = ty against H; : t # 1o, let
52 = (Xi—to) V(X —to). (2.8)
i=1

Then using Theorem 1 and Corollary 1 of Anderson et al. (1986) we have

= (Lt V”1 Tt
max,, L(:I:) d I(f V| imath( 1( ) ( ))

maxq L(z) dn |62V |~ fmaxtf(_zza(mi-t)"’ l(mi—t)>

20°

<5>”M _ <z;‘=1(xi -6V (X - 6) >

5) hlyn)  \ iz (Xi—t0)V-1(X; —to)

1=

mS? = B
) <m52+n<é—to>'v—l<é_to>> = L+ La/m) ™

Here £, is the likelihood ratio test statistic for testing the underlying null hypothesis. For
its non-null distribution, we note that under the assumption in which X ;. X,,---, X, is a
random sample from N, (t,t"10?V') the test statistic £, follows non-central F-distribution
with (1,m) d.f. and non-centrality parameter AR = T—%’f Saleh (2006). Then applying
Lemma 2.1, the result follows. Accordingly, we have

Corollary 2.1. Under Hy the pdf of L, is given by

gIm([’Tl) =
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which is the central F-distribution with (1,m) d.f.

Corollary 2.2. The power function at v-level of significance of L, say, modified generalized
non-central F cumulative distribution function of the statistic £, is given by

Gpm(ly; A2 = 'KO (A%)] [ (1+2r), %} (2.9)

r>0

where I, (-,-) is the incomplete beta function, z = El-;—zi and L, = F1 m(v).

The nature of the PTE depends on a (0 < a < 1), the level of significance of the
test. Also it yields the extreme results, either the unrestricted estimator or the restricted
estimator, depending on the outcome of the test.

3 Risk Functions

In this section we derive the risk functions of the estimators under the LINEX loss function
given by (2.1). By definition, the risk function for any estimator t* of ¢ associated to any
loss function is given by

R(t*;t) = E[L(t*,t)]. (3.1)

To facilitate the derivation of the risk functions of our proposed estimators we need the
following lemma.

Lemma 3.1. If Z ~ Ny(p,I,) and S? ~ x? are independent, then for any Borel measurable
function ¢ : R x (0,00) = R and for any ¢ € R?,

Elexp(c'Z) ¢(Z,5%)] = exp(c'p+c'c/2)E [¢(Z + c+ p, S?)]

provided (exp(c’Z) ¢(Z, S?)) is integrable.
Proof: Using the method of double expectation

Elexp(c'Z) 6(Z. 5%)] = E (E(exp(c' Z) ¢(Z, 5))|5? = s)

_E{( LY [ sty s - ==

o o 5] () f e
xexp{ -12— [z = (c+p)) [z—(c+u)]}dz 52=s}
=exp(c'u+c'c/2)E{(2 Y& SM¢(u—%—c—+—;L,b )exp (— u’u/2)du}

=exp(c'p+c'c/2)E [¢(Z + c+ p, S?)]

5% = s}
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which completes the proof of the lemma.
As X is an unbiased estimator of ¢t we have a’E[X — t| = 0. Consider under normality
2 —
D = (‘;’—TLV)"%T (X —t)|t ~Ny(0,I,). Then applying Lemma 3.1 with ¢ as identity we get
the risk function of the unrestricted estimator 8 as follows.

~2a'Va

R(8;t) = /OOOW'(t) e zm dt— 1. (3.2)

Theorem 3.1. The risk function of the preliminary test estimator of ¢ under LINEX loss
function is given by

~PT

R(& ;t)= ea’(to—t)gp,m(lv; A?) + '1 = Gpm (ly; AE)]
o s2a’'Va
X / Wi(t)e e _ a'(t - tO)gp+l,TH(l’7;A2) -1,
0

where G; j(k; A) is the cumulative distribution function of the non-central F' distribution
with (7, j) d.f., non-centrality parameter A and evaluated at k.

Proof: By definition we have
RO ;t)=E(e*") - a’E(t") -1, (3.3)

where t* = —t. .
Let T =V ~2(6 — to). Using the fact that T ~ &, (i, ZI,,h) where p = V=3(t — 1),
and Lemma 2.1 we get

ult =1T|t ~Np (T, Ipy), 7= Vin/o

is independent of mS2|t ~ o%t~1x2,. Applying Lemma 3.1 we get

E {e“'(é_t)f([,n > Cn(a))H = ¢% (t-t)E {exp [a'(é - to)]

» (n(é ~t) V(6 -to) En(a)> lt}

5’2

/
— (@' (t-0F {exp [T—lalvéu] I <:9_2/?_t?10_2) > En(a)) !t}

_ _1 2q'V
— (ial(to—t)(BT la'v 2rp,” a4

u+7"1V-2a) ~1V-2a
xE{l—]C i VyA¥1% v )g£4m>k}. (3.4)

Thus, integrating with respect to ¢ from (3.4) and using Corollary 2.2 we get

a

E [(ﬁa(é—t)I([:n > En(()'))jl — [1 — gpm([’Y’Az)] / W(T)(‘Q_tff a/Vadt (35)
J0
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where A2 = A2 + 2a/(t — to) + 442,

o2

Now using (3.5) and Corollary 2.2 we get
E(e®t) = E {E [ea’(é—t)—a'(é-to)l(ﬁnSCn(a))|£n < L‘n(a)]}
+E {E [ea%é—t)—a'(é—to)z(cnscn(a))lﬁn > En(a)] }
= @ (-DE[[(L, < Ln(a))] +E [ea’(é—”f(z:n > cn(a))}

= ea,(to_t)gp,m(lw; Az) +[1 - gp,m(l'y; Ag)]

o0 02 ;
X / W(t)ezm @ Vadt, (3.6)
0
Also we have
E(t*) =E(@  —1t)=(t - to)Fpr1,m(ly; A?) (3.7)

which is the bias function of the PTE of 4. Substituting the results from (3.6) and (3.7) in
(3.3), we obtain the final expression of the risk function of PTE.

3.1 Performance of PTE

In this subsection we compare the risk of PTE with that of the UE. From equation (3.2)
and Theorem 3.1 we get

~PT

R(6 ;t) = R(6;t) + F(A), (3.8)
where
’ 0o 52
F(a) = @G, n(ly; A%) = Gpm(ly; A2) ( / W(t)edm V"dt)
0
-a’l(t - tO)gp+1,m(l'y; Az) (39)
Under the null hypothesis § = 6, and hence A = 0. Then from (3.8) we obtain
" x o° o2 1 ol it B
ROV RO o ([ Wi vea) > rlioy
0 Gp,m (Ly; ra
20 =2 1-—- Y
o W(t)ezm @ V“dt) > —
(/0 gp,m(l'y; a_o"g'g)
since Gp.m(ly;.) > 0 and Gp m(l4;0) =1 — ~ (see Corollaries 2.1 and 2.2).
Since R(6;t) > 0, using equation (3.2) we get
/ W(t)edm @Vegs > 1. (3.10)
0
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If, Gp.m(ly; a_\;g,_) > 1 — ~, we conclude that, 6" outperforms 6 under the null hypothesis.
For the values t > to, from (3.10) and the fact that all G, (ly;A%), Gpm(ly; A2) and

Gp+1,m(ly; A?) are < 1, we get

—Gpm(ly; %) (/Ooc W(t)efo% “'V"dt> <1
e -G (1,;A%) <1
—a'(t — to)Gpr1,m(ly; A%) < 1.
Collecting all the terms in (3.11) and replacing in (3.9) yields
F(A) <1, whenever t > to.

(3.11)

(3.12)

Thus from (3.12) we conclude that 6" outperforms § for t > to. In a more general

Figure 1: Risk of the UE and PTE against the estimation error for a = 4

condition, since for every z, exp(z) —z — 1 > 0, from (3.9) we obtain
F(A) > a'(to—1t) [Gpm(lyi A%) + Gpr1,m(ly; A%)]
+Gpm(ly; A%) = Gpm(ly; A2) </ Wit)cF “lvadf>
> 0, h
whenever
Gy (1 82) (J5= W(t)eFm @'Vodt) = Gpm(ly: A?)
“p-f= Gl A2 ) F Gprtmlly; A7)

b
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Therefore, UE outperforms PTE and vice versa whenever

Gp.m (143 A) <fo e;t_" : Vadt) — Gpm(ly; A%)
(Gp.m (ly; A%) + Gpar,m(ly; A2)]

To illustrate the superiority of the PTE over the UE, data has been simulated from the
risk functions of both estimators and plotted against the estimation error in Figure 1. It
reaffirms that if the estimation error A is not too high, the PTE outperforms the UE. As
A starts departing from 0, the risk of the PTE starts increasing with a higher rate in the
positive side of A than the negative side. This is because the value of a is taken as positive
assuming that the over-estimation is more serious than the under-estimation. Similar to the
shape of the linex loss function, the risk function of the PTE is also asymmetric in nature.
As the UE is solely based on the sample information, the risk of this estimator is constant
regardless of the value of A.

a/(to = t) S

4 Concluding Remarks

In this paper, we have derived and compared the risk of the preliminary test estimator with
that of the unrestricted estimator. It has been found that if the prior information is not
too far from the true value of the parameter, PTE is a better choice than the unrestricted
estimator. As the prior information is usually obtained from some previous study or expert
knowledge, such information is expected to be close to the true value of the parameter and
hence the value of A is expected to be near 0.
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