
 

 

 

 

 

 

ATMOSPHERIC VISIBILITY AND CLOUD COVER 

FORECASTING WITH NOVEL  

ARTIFICIAL INTELLIGENCE METHODS FOR FIJI’S 

AVIATION SECTOR 

 

 

 

A Thesis submitted by 

 

Shiveel Raj 

BSc (Mathematics and Physics) 

 

 

 

 

For the award of 

 

Master of Research 

 

2024 

 

 



 

i 

ABSTRACT 

Visibility and ceiling are two important meteorological parameters affecting the 

operation of aircraft, especially during the critical phases of take-off and landing at 

airports. Apart from being a key factor in safe and efficient flight operations, accurate 

forecasts of these two meteorological parameters also contribute to improving the 

economics of air transportation. This Master of Research (MRES) study aims to 

develop a new forecasting model based on the latest artificial intelligence methods to 

predict atmospheric visibility and cloud cover (or ‘ceiling’). This study will address 

existing gaps in the area by advancing the practical application of deep learning with 

the following three objectives. Firstly, the study adopts the Iterative Input Selection 

(IIS) feature selection technique to deduce the optimum features for the proposed 

model from a global pool of features. Secondly, it aims to design and implement the 

proposed hybrid IIS-LSTM integrated model for a 1-hour forecast horizon and further 

compare the outcomes with four alternative AI models. Thirdly, the performance of the 

hybrid IIS-LSTM model is compared with the alternative models using performance 

evaluation metrics and graphical analysis. The study also elaborates on the suitability 

of the objective model for practical visibility and ceiling forecasts and discusses 

limitations to provide recommendations for future research. The objectives are 

achieved by using aeronautical meteorological data from two international airports in 

Fiji from 2012 to 2021. The proposed hybrid IIS-LSTM integrated model combines the 

feature selection characteristics of the IIS algorithm and the effective time series 

forecasting LSTM model. The model achieved the desired outcomes of the research 

by isolating key features for each study site. These optimum features maximised the 

efficiency of the forecasting component of the algorithm by reducing dimensionality 

and increasing generalisability of the model. The performance of this model showed 

its reliability in making accurate forecasts and was consistent for both study sites and 

for both target variables. It achieved the highest agreement metrics (Willmott’s Index) 

against the comparison model and the lowest error metrics (RMSE). The model’s 

performance against these benchmark models demonstrated its superiority over these 

models and further endorses it as a reliable practical tool. Therefore, the research 

outcomes present the proposed model as a useful practical tool for future 

implementation in the aviation industry and could enable a better understanding of the 

visibility and ceiling parameter predictions for this study region in the future.  
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Chapter 1: INTRODUCTION 

1.1. Background  

Meteorological forecasting is an important element in aviation which 

significantly contributes to the planning, decision-making and contingency actions 

taken in the industry. Accurate and reliable information on meteorological parameters 

is essential for the safe and efficient operation of flights. Two of the meteorological 

parameters that are most useful in the aviation industry are visibility and ceiling, 

which are the subjects of this Master of Research thesis.  

As defined by the International Civil Aviation Organisation, visibility is defined 

as the distance any black object can be seen and identified against a bright 

background at a ground level, or the distance at which lights 1000 candela in 

luminescence can be seen and recognised against an unlit background, whichever is 

greater (ICAO, 2004). Ceiling, on the other hand, according to the International Civil 

Aviation Organisation’s definition, is the vertical distance of the base of the lowest layer 

of cloud below 6000m from the surface of the earth or water and which covers more 

than 50% of the sky (ICAO, 2005). Accurate and reliable information obtained through 

measurements and models on these two atmospheric parameters are crucial in all 

phases of flight operations, such as the departure, arrival, and en-route phases. Figure 

1 shows the visibility and ceiling requirements for aircraft flying in the Visual Flight 

Rule.  



 

2 

 

Figure 1. Visibility and ceiling requirements for aircraft flying in Visual Flight Rule (VFR). 
Source: (Civil Aviation Authority of New Zealand, 2024) 

 

Meteorological forecasting methods have gradually developed over the last 

century along with advancements in research. This was needed to provide both pilots 

and air traffic controllers with improved real-time and short-term meteorological 

products for operational use. Early developments in forecasting were achieved by 

using a fully automated aviation observation system combined with statistical models 

(Daniel & Frost, 1982). The foundational model for the current meteorological forecast 

is the Numerical Weather Prediction (NWP) model, which attempts to synthesize all 

essential physical processes in the atmosphere over time. These models are used 

either on their own at each major agency, or shared between agencies, which is mostly 

the case (Inness & Dorling, 2013). In the United States of America, for example, an 

operationally implemented forecasting tool is the Localised Aviation Model Output 

Statistics Program (LAMP), which uses aerodrome routine meteorological reports 

(METAR) and buoy reports to produce station-based analysis of ceiling and visibility. 

The extended version is the Gridded Localised Aviation Model Output Statistics 

Program (LAMP), which has a higher horizontal resolution of 2.5 Km and produces an 

analysis every 15 minutes. Other forecasting tools include the National Ceiling and 

Visibility Analysis (NCVA), the Real-Time Mesoscale Analysis (RTMA) and the Real-

Time Mesoscale Analysis Rapid Updates (RTMA-RU) (NOAA, 2019).  
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In the latter half of the twentieth century, advancements in computer technology 

led to studies in Machine Learning (ML) for weather forecasting. In the 1970s, Glahn 

& Lowry (1972) developed the Model Output Statistics (MOS) technique. In this 

technique, predictions are obtained using multiple linear regression models to optimize 

data from real-time surface observations and mesoscale NWP outputs. Though using 

data from both inputs, the MOS scheme adds more information from the real-time 

surface observation than the NWP. Therefore, it is important that the quality of the 

observations are good. The MOS technique was compared and combined with a 

purely observation-based system (OBS) in a study by Vislocky & Fritsch (1997). The 

OBS was constructed from a network of station observations and a persistent 

climatology model which used a forecast parameters time-lagged statistical 

relationship. This study showed that incorporating an OBS with MOS improved the 

quality of the forecast, while a further study by Leyton & Fritsch (2003) showed that 

applying a higher density of surface weather observations further improved the 

forecast quality for meteorological parameters associated with low visibility and ceiling. 

Research has continued to broaden in this area after the year 2000 to include 

probabilistic forecasting techniques using ensemble models, various model averaging 

methods, and lately, artificial neural networks (Chmielecki & Raftery, 2011).  

Research which utilises Artificial Intelligence (AI) models gained significant 

impetus from the start of the twenty first century. This is prominently due to the 

increase in volume and frequency of recorded meteorological data from various 

observation locations stored in digital format and the increase in processing power of 

modern computers. AI models thrive on using large volumes of data and produce 

models which are more accurate, reliable and able to produce outputs in higher 

frequencies. Deep learning models, which are complex adaptations of neural network 

models, have shown their ability to handle high volumes of data and interpret patterns 

in stochastic system data which cannot be mathematically modelled satisfactorily 

(Solomatine & Ostfeld, 2008). Meteorological system data are therefore good 

candidates for research for forecasting using deep learning models, especially for 

scarcely studied meteorological parameters such as visibility and ceiling (Marzban et 

al., 2007).  

A common practice among researchers has been forecasting visibility in 

classes, such as high, medium, or low visibility, or occurrence of fog or no fog. (Ortega 

et al., 2020; Wang et al., 2009; Zhu et al., 2017). For example, at Canberra Airport 
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Fabbian et al. (2007) predicted occurrences of fog using an Artificial Neural Network 

(ANN) at 3, 6, 12, and 18 hour horizons. The study concluded that the ANN model’s 

classification of such events was good. A binary classification of fog study was carried 

out at Spain’s Valladolid airport by Durán-Rosal et al. (2018). The researchers again 

implemented the ANN model and used multiple meteorological input variables for 

making predictions. A similar study classing low visibility events either as FOG, MIST 

or CLEAR was conducted by Guijo-Rubio et al. (2018). This study compared multiple 

models and proposed a hybrid window model with ordinal classification as a good 

predictive model for forecasting at daily time horizons. Furthermore, Fernández-

González et al. (2019) used data from local weather monitors and satellite imagery to 

estimate cloud features and water vapour content to produce mesoscale model 

outputs. These outputs were then used to assess the risk of poor visibility events in 

the local area. Local weather station data was also used in a study done in the state 

of Florida, USA, where multiple ML models were used to classify visibility as low, 

moderate or good. 

Nevertheless, there are areas in this field of research that need greater focus 

in research, particularly as most studies treat visibility and ceiling forecasting as a 

classification problem instead of a regression problem. Some research has been 

carried out in recent years into regression forecasting of visibility and ceiling 

parameters (Castillo-Botón et al., 2022; Cordeiro et al., 2021; Cornejo-Bueno et al., 

2017; Ortega et al., 2023; Peláez-Rodríguez et al., 2023). The overall results show the 

advantages of implementing deep learning models for meteorological forecasting as 

a regression problem but also state that the applicability of these models will be further 

validated by similar studies conducted across different locations. Thus, there is a need 

to address this gap in knowledge in academic literature through further research. 
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1.2. Statement of the Problem 

The Master of Research study is focussed on Fiji, an island archipelago 

consisting of around 322 volcanic islands and atolls in the western South Pacific 

region. The focus island is the main island of Viti Levu which is a volcanic island with 

a mountainous interior and coastal plains landscape. The islands are located in a 

tropical region and experience two distinct seasons annually - a warm and wet season 

from November to April and a cool and dry season from May to October. Localised 

effects and regional effects due to geographic and oceanic effects add to the variations 

in climate (Fiji Meteorological Service, 2006). A significant feature is the South Pacific 

Convergence Zone which becomes more influential during the rainy months from 

November to April. Additionally, the prevalent Southeast Trade Winds affect the 

Eastern side of the main island causing more precipitation from greater cloud 

formation assisted by these winds. This results in a significant difference in weather 

compared to the Western side of the island which has significantly less rainfall 

(Australian Bureau of Meteorology & CSIRO, 2011). 

The two international airports are located on either side of the main island. Nadi 

international airport, which is the main international airport of the country, is situated 

on the Western side while Nausori international airport is located on the Eastern side. 

Therefore, each location is affected by the different weather conditions due to the 

previously mentioned reasons. The aviation industry relies on accurate and reliable 

weather reports and forecasts for safe and efficient operations, and visibility and 

ceiling are two of the most vital meteorological components. Most meteorological-

related aviation incidents are related to poor visibility and low cloud ceiling events 

which have led to grave outcomes on some occasions (Herzegh et al., 2015). 

According to a study by Fultz & Ashley (2016), low visibility weather events most 

commonly overlapped with meteorological-related accidents leading to fatalities 

among general aviation flights. The study accounted for 70% of such accidents where 

low cloud ceilings, clouds and obscuration were the major factors. 

Therefore, reliable and accurate meteorological forecasts of visibility and ceiling 

are essential tools for aviation stakeholders in planning and decision-making. 

Currently, studies into meteorological forecasts using deep learning algorithms are a 

growing field and is advancing rapidly due to higher computing capabilities and more 

research focus. This is especially true in visibility and ceiling forecasting as a 

regression problem, for which there is scarce academic literature. A recent study by 
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Ortega et al. (2023) recommended further research using deep learning algorithms in 

visibility forecasts as a regression problem because of its importance in the 

transportation system as well as to adding to the growing knowledge in this field of 

research. 

 

1.3. Research Questions 

The following research questions, answered through a research publication 

(see Chapter 4), are conceived to logically meet the objective of this MRES study: 

1. Which models can provide accurate hourly forecasts of meteorological 

visibility and ceiling using time-series data? How is this information 

useful for aviation applications? 

2. How can meteorological visibility and ceiling forecasts, which are 

essential atmospheric parameters for aviation safety and efficiency, be 

improved using artificial intelligence methods? 

This research answers the aforementioned questions by employing statistical 

analysis of site-specific meteorological data to extract meaning trends and patterns. 

Following this, the data will be used with an AI-based approach including deep learning 

algorithms to develop a forecasting model which is reliable and useful for applications 

in the aviation industry. 

 

1.4. Research Aim and Objectives 

The aim of this Master of Research project is therefore to develop an AI-based 

visibility and ceiling forecasting tool by combining aeronautical meteorological data 

with statistical and computational analysis for two different sites in Fiji. The study aims 

to investigate and understand the best statistical and ML techniques to employ in order 

to derive the optimum predictive model for visibility and ceiling using the site-specific 

aeronautical meteorological data. To achieve this primary aim, the following objectives 

have been addressed: 

1. Selecting the most appropriate features affecting the forecast of visibility 

and ceiling at each site from a global pool of all independent 

meteorological variables and their significant lags. The Iterative Input 

Selection (IIS) algorithm was used to obtain the optimum matrix of 

features to be applied to the forecasting model. 
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2. Proposing a hybrid IIS-LSTM (Long Short-Term Memory) integrated 

deep learning algorithm as an effective forecasting tool for visibility and 

ceiling for the aviation industry. The proposed model is compared to 

conventional AI models LSTM, TabNet, ANN and Random Forest to 

assess its practicality over these models. 

 

The outcomes of these objectives have been reported in a journal paper in 

IEEE Access (see Chapter 4). 

 

1.5. Thesis Layout 

This thesis is comprised of five sections and is organised as follows:  

 

Chapter 1 This chapter delivers background about this study, provides the 

  statement of the problem, presents the research questions, and 

  highlights the aims and objectives of this study. 

Chapter 2 This chapter presents the literature review of existing research 

  in this field in academic literature and data science techniques 

  employed during this research. 

Chapter 3 This chapter describes the study site, dataset and general  

  methodology used in this research. Further specific details of the 

  methodology are outlined in the following chapter. 

Chapter 4 This chapter is presented as a published article in the IEEE  

  Access journal (DOI: 10.1109/ACCESS.2024.3401091). It  

  addresses both the objectives of this study. It shows the  

  application of the IIS algorithm as a feature selection technique to 

  extract the optimum and most relevant features from each  

  independent variable in the data and their significant lags. It then 

  proposes a hybrid IIS-LSTM integrated model and compares the 

  benefits of the model against conventional machine learning  

  models. 

Chapter 5 The chapter summarises this research study, outlines limitations 

  in the works and recommends avenues to further this line of  

  research. 
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Chapter 2: LITERATURE REVIEW 

2.1. Foreword 

This chapter reviews literature relevant to the design and methodology of the 

proposed predictive model for visibility and ceiling forecasts. Each subsection 

elaborates on an important concept used in this research and highlights existing gaps 

in knowledge where applicable. 

Safe and efficient of transportation systems, especially in air transportation are 

directly affected by meteorological parameters visibility and low cloud ceiling. 

However, due to its highly stochastic nature and complex microphysical properties, 

using purely numerical and statistical-based models has been challenging (Cordeiro 

et al., 2021). This has changed in recent decades, as visibility and ceiling forecasting 

quality have improved by combining surface observations with statistical 

postprocessing of numerical models (Marzban et al., 2007). Further improvements in 

forecasting quality are being achieved by advancement in computer processing power 

and machine learning technologies. The development of neural networks is one of 

these innovations, and it is highly regarded among data scientists due to its ability to: 

(1) learn adaptively only on data without needing a physical model or prior assumption 

on statistical distribution; (2) generalise fundamental non-linearity in the data having 

complex relationships; and (3) learn and handle temporal structures in the data 

(Ortega et al., 2020). For these reasons, deep learning algorithms are becoming the 

framework of choice when dealing with problems in forecasting meteorological 

parameters, or in time-series forecasting overall. 

2.2.  Time Series Forecasting using Deep Learning 

During the ImageNet LSVRC in 2010, Krizhevsky et al. (2017) introduced an 

iteration of ANN’s, deep learning, as a solution to an image-processing problem. 

Thereafter, applications for deep learning algorithms have broadened into multiple 

fields in science and research. The simultaneous advancements in computer 

technology in terms of higher processing power and greater digital data storage 

capabilities has added to this trend. This is certainly true in the case of time-series 

forecasting, which has exploited advancements in neural network architecture. 

Studies in the fields of finance, biology, meteorology and energy demand have 

featured deep learning networks to forecast using its time series data. For example, 

Chen et al. (2018) forecasted short-term energy load demand on power grids using 
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end-to-end feed-forward network with residual connections. Similarly, Amarasinghe et 

al. (2017) employed Convolutional Neural Networks (CNN) in their research in energy 

load forecasting. A related work by Bianchi et al. (2017) compared different classes of 

recurrent neural networks (RNN) and configured them to produce optimum predictions 

from real world energy load demand data. Using meteorological data and climate 

indices, Deo & Şahin (2015) applied the Extreme Learning Machine algorithm to 

forecast the drought index for Eastern Australia. 

Innovations and developments have brought many variants to deep learning 

architectures, such as Long Short-Term Memory (LSTM) (Zheng et al., 2017), gated 

recurrent unit (Wang et al., 2018), Neural Basis Expansion Analysis for interpretable 

time series forecasting (N-BEATS) (Oreshkin et al., 2019) and Attentive Interpretable 

Tabular Learning (Arik & Pfister, 2021). Furthermore, hybrid architectures have also 

been developed exploiting each algorithms advantages and these algorithms have 

gone on to show promising results when forecasting time series data. For example, to 

forecast future flood occurrence for different locations in Fiji, Moishin et al. (2021) 

developed a hybrid CNN and LSTM algorithm. Prasad et al. (2018) designed a hybrid 

algorithm consisting of the Complete Ensemble Empirical Mode Decomposition with 

Adaptive Noise (CEEMDAN) with ELM for their research into soil moisture forecasting. 

The algorithms improved overall forecasting by addressing inaccuracies arising from 

data non-stationarity, a typical issue found when using complex and dynamic data-

driven models. 

Deep learning algorithms have also been applied in visibility forecasting. For 

instance, in their study into air quality and lower atmospheric visibility forecasting 

Sharma et al. (2020) implemented a hybrid framework of an Online Sequential ELM 

with an Improved CEEMDAN. More recently, several ML algorithms were used in 

simulating visibility and ceiling base height (Cornejo-Bueno et al., 2020). The major 

finding from this study was stating that with accurate observational data, ML 

approaches can greatly improve predictions in regressive forecasts. Furthermore, 

Ortega et al. (2023) explored visibility distance time series forecasting using five 

different deep learning models - three different CNN architectures, LSTM and Multi-

Layer Perceptron (MLP). After exploring their performance, they found that LSTM was 

the superior algorithm because of the model’s improvement in learning trends in the 

data of larger size and its ability to extract time-dependent patterns from the raw data. 



 

10 

While significant studies in forecasting meteorological visibility using deep 

learning algorithms have been done (Cornejo-Bueno et al., 2020; Ismail Fawaz et al., 

2019; Ortega et al., 2019), this review has revealed the scarcity of studies focussing 

of visibility forecasting as a regression problem. The authors of one study who 

focussed their research in this area noted similarly the limited studies involving deep 

learning models forecasting visibility as a regression problem (Ortega et al., 2023). 

Therefore, they recommended more studies researching the applicability and 

practicality of forecasting visibility as a regression problem for different study sites 

using deep learning algorithms. 

 

2.3. Feature Selection Techniques 

Feature selection techniques are used to reduce dimensionality of the input 

variables while not compromising the accuracy of the outputs. By effectively employing 

this techniques, redundant features can be eliminated, leaving behind only the most 

informative and significant features of the model. The benefits of this applying this 

procedure in model development is the reduction in computational costs, optimized 

predictive performance and improved generalisation of the model (Curreri et al., 2020). 

Supervised methods of feature selection include filters, wrappers, embedded or 

hybrid.  

Feature selection using filter methods order variables according to a criterion 

and ranks them. Usually, the principal criterion is the degree of relevancy this feature 

has to the output (Chandrashekar & Sahin, 2014). Two common relevancy measures 

are correlation and mutual information. Pearsons’s correlation coefficient detects 

linear dependencies between the target and the independent variable (Guyon & De, 

2003), while mutual information measures the amount of information one variable 

provides about the other variable using Shannon entropy and conditional entropy 

(Battiti, 1994). Filter methods are computationally light and reduces overfitting, but a 

drawback is that some redundant features may be selected or variables which have 

lower relevancy on their own but are more informative in combination with other 

variables can be discarded. 

Wrapper methods use a model’s performance to evaluate subsets of the 

variables. The models performance criteria could be Mean Squared Error (MSE), 

Akaike Information Criterion (AIC) or Mallows Coefficient statistics (Curreri et al., 

2020). Different search algorithms can be used to find a subset of variables such as 
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the Branch and Bound method (Narendra & Fukunaga, 1977), Genetic Algorithm 

(Goldberg, 1989) or Particle Swarm Optimization (Kennedy & Eberhart, n.d.). Wrapper 

methods can become computationally expensive with datasets containing more 

features as the search grows exponentially with each added feature. 

Embedded methods incorporate feature selection algorithms as part of the 

model development process, such as during the training phase. For instance, since 

mutual information had the drawback of poor results due to only the class output being 

considered, Battiti (1994) proposed a “greedy” algorithm which took the MI score of 

the variable with the target variable as well as the already selected variables into 

account. Another example of the embedded method is the least absolute shrinkage 

and selection operator – multilayer perceptron (LASSO-MLP). In their study, Sun et al. 

(2017) proposed a two-step iterative approach where a least absolute shrinkage and 

selection operator is introduced to select the optimum input variables to be used in a 

multilayer perceptron algorithm. Embedded methods work best with larger datasets 

but tend to be slower than filter methods (Radchenko & James, 2011). 

Other feature selection techniques are also used. For example, clustering is an 

unsupervised method which attempts to group unlabelled data into unknown natural 

classes (Law et al., 2004). Semi-supervised feature selection techniques use a 

combination of both labelled and unlabelled data to modify a hypothesis form labelled 

data. Finally, ensemble methods use different subsets of data through a feature 

selection algorithm and aggregate the results to obtain a final feature set 

(Chandrashekar & Sahin, 2014). 

 

2.4. Iterative Input Selection 

Iterative Input Selection (IIS) is a tree-based feature selection algorithm 

proposed first proposed by Galelli & Castelletti (2013). It enables data modellers to 

determine the optimum subset of variables from a global pool of input variables and 

can handle very large number of inputs by incorporating features of model-based 

approaches. The algorithm works by ranking variables based on a its contribution to 

variance reduction of the preselected output from an underlying model. It is executed 

in three phases: (1) Input Ranking (IR), (2) Single Input Single Output (SISO) approach 

and (3) Multiple Input Single Output (MISO) phase. In the IR phase, forward selection 

method selects the most significant inputs. The SISO phase then selects the first p-

ranked variables and assesses it as an independent p-SISO model. Finally, the MISO 
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phase assesses the effectiveness of the input matrix in forecasting by adding the most 

significant variables based on the coefficient of determination score. An in-depth 

discussion of the structure and theoretical work of the IIS is provided in the original 

work by Galelli & Castelletti (2013). 

The algorithm was first applied in streamflow forecasting for the Ticino River in 

Switzerland (Galelli & Castelletti, 2013). This initial study highlighted the algorithm’s 

ability to select the most significant and nonredundant input variables from real world 

large datasets. Galelli et al. (2014) further evaluated the algorithm against partial 

mutual information, partial correlation and Genetic Algorithm-ANN and found the IIS 

algorithm performed better. Streamflow forecasting was carried out in the study by 

Prasad et al. (2017) for the drought prone Murray Darling Basin in Australia. They 

integrated the IIS algorithm with a wavelet ANN model for precise forecasting of 

monthly streamflow and advocated the IIS’s efficacy to screen model predictors.  

The algorithm has since been used in studies other than streamflow 

forecasting, such as spatial variability patterns in surface water quality in lotic 

mountains carried out by Mejía & Barrios (2023). Using the IIS algorithm, the authors 

were able to identify three key variables which contributed the quality of water from 

their global pool of twenty-eight candidate variables. Finally, IIS was also used to 

select the optimal input features for use in the CNN model in a study to generate 

annual irrigation water use maps in China (Zhang et al., 2023). Still, the IIS algorithms 

strengths are yet to be applied in studies using meteorological data for forecasting 

visibility and ceiling as a regression problem. 

The benefit of this algorithm is achieved from the fact that this can be applied 

to any sort of sample because of its reliance on ranking-based evaluation instead of 

statistical characteristics of the data. Another benefit is it is generally faster and more 

efficient than compared to computationally expensive methods such as bootstrapping. 

Thus, it is able to guard against data redundancy and contribute further to the 

robustness of the overall predictive model. However, as noted in the studies it has 

been used, the IIS algorithm only goes through a thorough process for selecting 

features from the complete set of features. It will need to be integrated with accurate 

predictive algorithms, such as deep learning algorithms, to output reliable forecasts 

and form a useful hybrid forecasting model. 

 



 

13 

2.5. Deep Learning Predictive Models 

Deep Learning algorithms offer state-of-the-art predictive frameworks for time-

series forecasting and has gained immense prominence due to its high performance 

compared to traditional models. Due to their superior capabilities in time-series 

forecasting, these algorithms are highly applicable for forecasting stochastic and 

weather parameters from large meteorological datasets. Algorithms are being 

innovated and hybridised constantly to meet the specific needs of each forecasting 

case. The subsections below elaborate further the potential for TabNet and LSTM 

deep learning models to address the aims of this study due to these two algorithms 

proven time-series forecasting capabilities and ability to handle tabular data efficiently 

in literature. Further characteristics of each algorithm is noted in the following 

subsections. 

 

2.5.1. Attentive Interpretable Tabular Learning (TabNet) 

TabNet is a deep learning algorithm which was first proposed by Arik & Pfister 

(2021) to address the limitations of tabular data while benefitting from a deep learning 

architecture. It utilises sequential attention to select the most significant features at 

each decision step resulting in a highly efficient learning model. This algorithm can be 

compared to tree-based ML models in that it can also offer explainability of each 

feature's importance and interpretability for tabular data. It also delivers high 

performance due to its deep learning design. Additionally, an encoder/decoder system 

is built into the algorithm which negates the need for normalizing global numerical 

features while also allowing for categorical features to be formatted automatically. This 

feature of the algorithm reduces the time and memory needed during the pre-

processing phase of model development (Son et al., 2022). 

Arik & Pfister (2021) first used this algorithm to test various types of real-world 

tabular datasets, from forest cover type, poker hand, Sarcos, Higgs boson, and 

Rossmann store sales. The performance of TabNet outshone popular tree-based 

models like Random Forest, CatBoost, LightGBM, XGBoost, and also an MLP model. 

Clements et al. (2020) used TabNet to design a credit risk detection technique, which 

showed similar performance to that of sequential models LSTM and Temporal 

Convolutional Network (TCN). Lv et al. (2022) similarly used TabNet to analyse the 

volatility of stock prices in the market. The study’s outcome showed that the TabNet 

model produced the best results, as it outperformed the Naïve Bayes, SVM and 
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XGBoost models. The comparison in this study was made using Root Mean Squared 

Percentage Error (MAPE) to evaluate the performance. Additionally, TabNet has been 

used in medical predictions such as to differentiate between comorbid functional 

seizures and epilepsy from pure functional seizures (Asadi-Pooya et al., 2022), 

diagnosis of breast cancer (Chen et al., 2021), and explainable and early-stage 

detection of diabetes (Joseph et al., 2022). Moreover, the TabNet model has also been 

utilised on meteorological data. A study used it to explore estimation of air quality and 

to identify the most influential chemical components affecting the quality of air using 

the interpretability feature of this model (Son et al., 2022). 

 

2.5.2. Long Short-Term Memory 

This deep learning architecture has been proven to perform well in time series 

forecasting. The reason for this is due to its architecture, being a type of Recurrent 

Neural Network (RNN) which learns long-term time-dependent patterns from data 

(Ghimire et al., 2023). However, its ability to retain historical information for long 

periods is due to having gate functions in the cell structure, which is different to RNN.  

Visibility forecasting using LSTM has been explored in several studies. For 

example, Deng et al. (2019) investigated the use of LSTM to predict visibility from data 

obtained for an observational station in Beijing, China. Another study by Meng et al. 

(2020) presented a framework for visibility predictions using LSTM and data collected 

at observation stations at airports. The feasibility of the proposed framework was 

verified with a prediction accuracy of 68.9%.  

Finally, the study by Zixuan et al. (2021) aimed to use LSTM with airport ground 

station data to forecast the visibility of the Urumqi Airport located on a plateau in 

Northwest China. The authors concluded that the forecasting model based on the 

LSTM architecture was a good fit for effectively characterizing changing visibility 

scenarios and being used operationally as an important reference to dispatchers when 

formulating flight plans. 

 

2.6. Summary 

In summary, accurate and reliable predictive models are an essential tool for 

forecasting meteorological parameters. The inter-related nature of most 

meteorological parameters and their relative historical information make data-driven 

models for meteorological forecasting both feasible and dependable. However, 
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compared to statistical, physical-based models, data-driven deep learning AI models 

are proving more reliable and accurate. Visibility and ceiling time-series forecasting 

have utilised AI models frequently in studies, although most of these studies were 

carrying this out as a classification problem instead of a regression one. Feature 

selection is an important aspect of model development, enabling it to be more compact 

and efficient without compromising the accuracy of the model.  

The IIS algorithm showed superior ability to be applied to any sort of data and 

be less computationally intensive while being able to effectively select the optimal 

subset of features compared to the traditional feature selection method. Deep learning 

models offer the best advantages for data-intensive and highly stochastic time series 

forecasting. The TabNet model is designed to be effective in using tabular data and 

giving interpretable results, while LSTM is highly efficient is learning and retaining 

patterns of historical data for a long time.  

For this study, the LSTM algorithm is chosen to be integrated with the IIS 

algorithm due to its proven performance in reliable time-series forecasting in multiple 

studies found in literature. This research will thus address the need for regressive 

visibility and ceiling forecasting, using feature selection techniques and deep learning 

algorithms to design a data driven predictive model for applications into the aviation 

industry. 
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Chapter 3: STUDY AREA, DATA AND METHODOLOGY 

3.1. Foreword 

This chapter presents an overview of the study area, the dataset used, and the 

general methodology applied in this research work. Since this is a Thesis by 

Publication, further details of the study area, specific methodology and implementation 

are presented in Chapter 4 (journal paper 1).  These factors were the core contributors 

to developing the proposed integrated deep learning model forecasting visibility and 

ceiling in this Master of Research thesis. Two different sites were chosen with differing 

climates and geography. The data were obtained for these two sites and are described 

in the following subsections. Furthermore, a brief description of the methodology is 

provided, with specific details of model development presented in the following 

chapter. 

 

3.2. Study Area 

The emphasis of this research is on the Fiji Islands. It is an island archipelago 

consisting of 322 islands and situated between 15 to 20 degrees South latitude and 

175 to 182 degrees East longitude. The islands are spread across these coordinates, 

with most of the population living on the two main islands of Viti Levu and Vanua Levu 

(Berdach, 2005). These two main islands which are of volcanic origins have rocky 

mountainous interior geography and flat coastal plains. The island group experiences 

two distinct seasons owing to it lying in the tropical region, a warm and rainy season 

from November to April, and a cool and dry season from May to October. Other 

significant factors that affect the weather for this region include the Southeast Trade 

Winds, the South Pacific Convergence Zone and the occurrence of tropical cyclones 

during the warm and rainy season. 

The study locations are the two international airports located on one of the main 

islands of Viti Levu. Nadi International Airport, the main international airport of the 

country, is located on the Western side of the Island while Nausori International Airport 

is located on the Eastern part of the island.  
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A brief description of the weather patterns for each study site is as follows: 

• Nadi International Airport is located near the coast of the western part of 

Viti Levu. It has more days of sunshine and receives significantly less 

rainfall due to being located on the leeward side of the island. For 

December 2023, it was reported that the average daily temperature 

ranged from a maximum of 32.6 degrees Celsius to a minimum of 22.8 

degrees Celsius. It had approximately 58 millimetres of rainfall from 

receiving rainfall on 28% of the days in the month. The average relative 

humidity was at 60%. 

• Nausori International Airport is located on the Eastern part of Viti Levu 

and a few kilometres from the coastline. It has significantly more 

occurrences of rainfall due to being on the windward side of the main 

island. The Southeast Trade Winds blow moisture up the mountainous 

interior, causing much cloud formation and rainfall on the Eastern part of 

the islands. For December 2023, it was reported that Nausori Airport 

received approximately 181mm of rainfall from 68% of the days in the 

month is received rainfall. The average maximum temperature was 31.2 

Figure 2. Map of Viti Levu indicating site locations 
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degrees Celsius, and the average minimum temperature was 23.3 

degrees Celsius. The average relative humidity was 76% (Fiji 

Meteorological Service, 2024). 

 

3.3. Dataset 

The data is the routine aviation meteorological observations recorded at each 

station. These observations are made as per International Civil Aviation Organisation 

(ICAO) and World Meteorological Organisation (WMO) standards for observing and 

recording meteorological data for aeronautical use. Since the two international airports 

chosen for this study operate 24 hours a day, they are required to provide hourly 

weather observations which are made available to other aviation stakeholders. The 

organisation responsible for making these observations at our study sites is the Fiji 

Meteorological Services (FMS) and they record the specified meteorological 

parameters following international standards for aeronautical meteorological reports 

on an hourly basis. For our study, this data was requested and successfully obtained 

for a period of 10 years, beginning from January 1st, 2012, 0000 local time to 

December 31st, 2021, 2300 local time. 

The data obtained for this research is suitable for Deep Learning (DL) model 

development. DL models are most suited to handle high volumes of data for model 

development, both in terms of higher dimensionality of the data as well as high volume 

of time-series inputs (Chen & Lin, 2014). This enables DL models to be effectively 

trained on the data and discover underlying patterns and trends that would not be fully 

accounted for by purely statistical models. The dataset obtained fits the characteristics 

for effectively developing a DL model. It had 10 years of hours of data instances 

totalling 87,672 and recorded 14 different meteorological attributes. Most importantly, 

it recorded the meteorological variables ‘Visibility’ and ‘Total Low Cloud’, the variables 

analogous to visibility and ceiling chosen as the target variables in the forecasting 

models. A summary of these and all other variables in the raw dataset obtained from 

FMS for the two study sites is shown in Table 1.  

 

Table 1. Characteristics of the raw dataset for the study sites Nadi International Airport and 
Nausori International Airport located in Fiji. 

Variable Total 
Values 

Data Type Unit of 
Measurement 

Test Site 1: Nadi Test Site 2: Nausori 

Missing 
Value 
Count 

Missing 
Value 
(%) 

Max – 
Min 
Value 

Missing 
Value 
Count 

Missing 
Value 
(%) 

Max – 
Min 
Value 
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Air 
Temperature 

87672 Continuous Degrees 
Celsius (°C) 

0 0 13.4 – 
35 

11854 13.521 14.5 – 
34.5 

Wet Bulb 
Temperature 

87672 Continuous Degrees 
Celsius (°C) 

961 1.096 12.8 – 
30.1 

17695 20.183 12.95 
– 
29.75 

Dew Point 
Temperature 

87672 Continuous Degrees 
Celsius (°C) 

442 0.504 0.1 – 
30.2 

12850 14.657 2.4 – 
28.15 

Relative 
Humidity 

87672 Continuous Percentage 
(%) 

945 1.078 21.5 – 
100 

13193 15.048 19.6 - 
100 

Rain 87672 Continuous Millimetres 
(mm) 

0 0 0 – 99 919 1.048 0 – 
58.7 

MSL 
Pressure 

87672 Continuous Hectopascals 
(hpa) 

179 0.2 968 – 
1021.3 

11721 13.369 988.8 
– 
1022.5 

Visibility 87672 Continuous Kilometres 
(Km) 

19 0.022 0.1 – 
50 

118424 13.487 0.05 – 
50 

Wind Speed 87672 Continuous Metres per 
second (m/s) 

8 0.009 0 – 
30.9 

1097 1.251 0 – 
23.1 

Wind 
Direction 

87672 Discrete Degrees (°) 24 0.027 0 - 360 1150 1.312 0 – 
360 

Present 
Weather* 

87672 Nominal Encoded N/A N/A N/A N/A N/A N/A 

Past 
Weather* 

87672 Nominal Encoded N/A N/A N/A N/A N/A N/A 

Total Cloud 87672 Discrete Oktas 961 1.096 0 – 8 14687 16.752 0 – 8 

Total Low 
Cloud 
(Ceiling) 

87672 Discrete Oktas 3153 3.600 0 – 8 20395 23.263 0 – 8 

Total Low 
Cloud Height 

87672 Continuous Metre (m) 3033 3.460 0 – 
2133.6 

19707 22.480 0 – 
3657.6 

* Categorical Value – Not used for analysis in this research 

Data imputation was carried out for instances of missing values in the data 

using two main methods. For a single instance of a missing value, a simple average 

of the preceding and succeeding values was taken. For consecutive instances of 

missing values, the calendar average method was used in combination with the simple 

average method. Specifically for relative humidity, which is a derived unit, the following 

formula was used to impute data for missing values: 

𝑅𝐻 = 100ⅇ (
𝑐𝑏(𝑇𝑑−𝑇𝑎)

(𝑐+𝑇𝑎)(𝑐+𝑇𝑑)
)     (1) 

 where 𝑏 = 17.625; 𝑐 = 243.04; 𝑇𝑎 = Air Temperature; and 𝑇𝑑= Dew Point Temperature. 

 

There were very few instances of data which were obviously erroneous or fell outside 

the acceptable range of values to be recorded in the report. Those that met this 

criterion were adjusted according to the standards of recording meteorological 

observations as set out by the World Meteorological Organisation (2018). 

 

3.4. Methodology 

After obtaining the necessary data and carrying out an initial investigation on it, 

the data was ready to follow the steps for model preparation and development. Firstly, 

the data underwent a series of processes to be converted into an acceptable form for 
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the model to be trained on it. This involved the initial cleaning and data imputation to 

produce a whole dataset, including removing the two variables containing categorical 

data. Next, statistical inferences were obtained for each variable to assist in 

recognising the ideal method to be used in the model development. The most 

important of these statistics were the Partial Auto Correlation Function (PACF) and the 

Cross Correlation Function (CCF). These statistics determined the number of 

significant lags that would be needed to effectively train the model to produce the 

optimum output of the predictor variable. All the independent variables and their 

significant lags, including the significant lags of the target variable, produced a global 

pool of features. 

Secondly, feature selection was carried out to select the best features from the 

global pool. The feature selection algorithm used was the Iterative Input Selection (IIS) 

algorithm which was chosen due to its ability to be applied to any sort of model 

because it evaluates on a ranking-based approach and due to the algorithm being 

exhaustive in its evaluation while not being computationally expensive (Galelli & 

Castelletti, 2013). The algorithm was run for each target variable, visibility, and total 

low cloud, and for each of the two study sites. This resulted in obtaining distinct 

optimum features for four different models. 

The deep learning model chosen for forecasting was the LSTM due to its 

proven excellent performance in time series forecasting as evidenced by literature 

search (Yu et al., 2019). The following chapter will discuss in greater detail the steps 

involved in the development of the model and its parameters. After the model 

architecture was finalised, the optimum features obtained from the IIS algorithm were 

supplied to the model to train it on a portion of the data and then test its forecasting 

performance on the remaining portion of the data. This phase constituted the 

development of the proposed forecasting model for this research, the hybrid IIS-LSTM 

integrated model. This proposed model was then compared with another benchmark 

model to evaluate its performance. The benchmark models chosen were the 

standalone LSTM algorithm, TabNet (Arik & Pfister, 2021), Artificial Neural Networks 

(Kim & Valdés, 2003), and Random Forest (Breiman, 2001). 

Finally, several performance evaluation metrics were implemented to gauge the 

model’s performance both independently and in comparison, with the benchmark 

models. These included correlation Pearson’s Correlation Coefficient (r), Willmott’s 

Index (WI), Nash-Sutcliffe Efficiency Index (ENS), Root Mean Squared Error (RMSE), 
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Mean Absolute Error (MAE), Legates-McCabe Efficiency (LM) and Kling Gupta 

Efficiency Index (KGE). The mathematical equations and statistical indices are 

depicted in the following chapter of this thesis, which is a journal paper published in 

IEEE Access. 
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CHAPTER 4: PAPER – Atmospheric Visibility and Cloud 

Ceiling Predictions with Hybrid IIS-LSTM Integrated Model: 

Case Studies for Fiji’s Aviation Industry 

4.1. Introduction 

In this chapter, a copy of the paper entitled “Atmospheric Visibility and Cloud 

Ceiling Predictions with Hybrid IIS-LSTM Integrated Model: Case Studies for Fiji’s 

Aviation Industry”, which has been accepted for publication in the journal, IEEE 

Access, is presented in its exact form. In this paper, a hybrid IIS-LSTM integrated 

model was developed to forecast aviation visibility and ceiling forecasts. This 

predictive model used meteorological variables from hourly aeronautical 

meteorological observation data and their significant lags to make forecasts. The IIS 

component of the algorithm selected the optimum features for visibility and ceiling for 

each of the two study sites, which was used to train the LSTM model to make 

predictions. The performance of this model was evaluated using agreement and error 

metrics and results indicated the model to make accurate and reliable predictions. The 

model was further compared with benchmark models LSTM, TabNet, ANN and 

Random Forest, and the hybrid model developed showed superior performance 

against these.  

Based on these results, it can be concluded that the proposed IIS-LSTM 

integrated model presented in this paper is an additional efficient tool for practical use 

in the aviation industry and which can be explored further for its implementation in a 

cost-effective and convenient manner for the other sites in Fiji and the Pacific region. 

 

 

4.2. Published Paper 
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ABSTRACT Atmospheric visibility and cloud ceiling forecasts are essential for the safety and efficiency of
flight operations and the aviation industry. Routine hourly aviation meteorological observations are recorded
at every airport. However, forecasts of these two meteorological parameters using artificial intelligence
techniques are limited. This research utilizes data from two study sites in Fiji, Nadi, andNausori International
Airport, and proposes a hybrid Iterative Input Selection – Long Short-Term Memory (IIS-LSTM) integrated
model to forecast the consecutive hour’s visibility and ceiling parameters. The IIS algorithm acts as a
feature selector from the global predictor matrix of predictor variables with its significant lagged inputs
and the significant lagged inputs of the target variable, while the LSTM algorithm acts as the learning
model and makes forecasts. The performance of the proposed hybrid IIS-LSTM model is evaluated using
seven statistical score metrics and compared with four competing benchmark models. The evaluated results
illustrate the superiority of the proposed hybrid IIS-LSTM integrated model and its advanced capability to
generate accurate atmospheric visibility and cloud ceiling forecasts for the next consecutive hour compared
to the benchmark models. The most important features selected were the second lagged input of visibility
and first lagged input of rainfall to improve visibility forecasts while the first and the fifth lagged inputs of
the total low cloud cover were paramount for accurate cloud ceiling forecasts. Considering the geography
of the study sites, the overall efficacy of the IIS method is strongly advocated to screen most suitable model
predictors and the subsequent integration of this input selection method with the LSTM predictive algorithm
to attain enhanced performance of the hybrid IIS-LSTM forecast model. This objective model is therefore
proposed to be an efficient and cost-effective predictive tool for atmospheric visibility and cloud ceiling
forecasts, especially its applications in the aviation industry for aeronautical purposes.

INDEX TERMS Visibility forecast, ceiling forecast, deep learning, machine learning, iterative input
selection, long short-term memory.
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approving it for publication was Rosario Pecora .

I. INTRODUCTION
The aviation industry heavily relies on meteorological
parameters for the overall safety and efficiency of flight
operations in terms of the planning, decision-making and
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contingency procedures.While all meteorological parameters
have their relative importance to the overall aviation oper-
ations, of immediate interest are the atmospheric visibility
and the low cloud ceiling parameters used at the respective
airports for the monitoring of flight safety.

According to the International Civil Aviation Associa-
tion [1], visibility, used as the first objective variable in
this research study, is the distance in the lower atmosphere
a black object can be seen and identified against a bright
background at the ground level, or the distance at which light
of 1000 candela in luminescence can be seen and recog-
nized against an unlit background, whichever is greater. The
description of ceiling, used as the second objective variable
in this research study, is the vertical distance of the base
of the lowest layer of cloud below 6000m from the surface
of the earth or water and which covers more than fifty per
cent of the sky [2]. These two variables play a crucial role
in the operation of flights, especially in the critical phase
of landing and taking-off, since most meteorological-related
aircraft incidents occur during periods of poor visibility and
low cloud ceiling [3]. Prior studies showed that low clouds
and obscuration contributed to about 70% of fatal accidents
in general aviation flights [4]. This emphasizes that a timely,
reliable, and precise observation of these two meteorological
parameters is essential for planning and assisting aircraft in
maneuvering through hazardous situations, which is crucial
for safe aviation operations.

There are currently products that are operationally imple-
mented providing forecasts of weather elements, including
visibility and ceiling, using meteorological reports. For
example, in the United States of America, the Gridded Local-
ized Aviation Model Output Statistics Program (GLMP)
is implemented which has a 2.5 km horizontal resolution
and produces an analysis every 15 minutes. This algorithm
extends the Localized Aviation Model Output Statistics
Program (LAMP), which is station-based ceiling and vis-
ibility analysis produced by the integration of METAR
(aerodrome routine meteorological report) and buoy reports
(NOAA, 2019). Other products include the National Ceiling
and Visibility Analysis (NCVA), the Real-Time Mesoscale
Analysis (RTMA) and the Real-Time Mesoscale Analysis
Rapid Updates (RTMA-RU). Various types of data are used
as inputs into these products including surface observa-
tions from a combination of human and automated systems
(METAR), fully automated surface observation stations
(ASOS), regional networks of automated meteorological
observing systems (Mesonets), and satellite data fromGOES-
16. Despite these products developed for visibility and ceiling
analysis, accurate predictive models utilizing meteorological
datasets currently remain relatively limited.

The inherent abrupt and stochastic nature of the mete-
orological system makes mathematical modelling highly
complex and resource-intensive [6]. To develop in-situ mod-
els with higher frequency and accuracy to make reliable
meteorological forecasts of variables such as visibility and

ceiling, Artificial intelligence (AI) models and big data
approaches are necessary especially in the current era of
increasing volume of datasets regarding atmospheric prop-
erties recorded at various airports. Scholars have modelled
visibility as a classification problem, grading the classes as
high, medium, and low or fog versus no fog instances [7], [8],
[9]. For instance, a study done at Spain’s Valladolid airport
used hybrid prediction models such as Proportional Odds
Model and Support Vector Machines (SVM) for ordinal clas-
sification of visibility events in three categories (FOG, MIST,
CLEAR) [10]. Another research tried to forecast hourly
short-term low visibility events at the same airport using
a combination of Machine Learning (ML) techniques [11].
Similarly, an exploratory study conducted in Florida, USA
used various ML algorithms to classify visibility as low,
moderate, and good using local weather station data [12].

However, visibility and ceiling forecasts as a regression
problem have been least explored and have recently gained
some popularity. In a study conducted at Santos Dumont
Airport Brazil, four machine learning models were used for
both classification and regression forecasting of visibility,
and regression forecasting for ceiling base height [13]. Simi-
larly, a low visibility event forecasting study was carried out
as both a classification and regression problem in Galicia,
Spain using a large number of ML approaches [14]. The
authors found the Artificial Neural Network (ANN) model
with a simple standardization method to be the most effi-
cient formulation after evaluating the performance of the
models under a common framework. Additionally, single-
step visibility forecasts using five different deep learning
models were studied by [15] for weather stations in Florida.
The authors recommended deep learning models for further
research in visibility forecasting as a regression problem
considering its importance to safety in transportation sys-
tems and a lack of similar studies. Furthermore, a study by
Pelaez-Rodriguez et. al [16] concluded that a deep learning
ensemble methodology gave very satisfactory results in fore-
casting visibility at two locations in Spain due to the ensemble
containing information from all individual learners of the
different deep learning architectures.

An essential aspect of model development is model parsi-
mony, i.e., a reduction of overall model input variables whilst
achieving the same level of accuracy. This is achieved by
discarding irrelevant or redundant variables while selecting
only the most applicable variables. The implication is that
necessary information is still retained in the dataset, while
variables that do not contribute to output information are
excluded. The benefits of reducing the dimensionality of the
data include a decrease in computational cost, improvement
in generalization capability, and reduction in the probability
of missing data and outliers being included in the data [17].
These input selection or dimensionality reduction methods
can be classified broadly into feature extraction or feature
selection techniques. Feature extractionmethods transform or
combine original inputs to create new features, while feature
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selection methods use the original input features and select
the best subset of features from these.

Feature selection methods are further classified as filters,
wrappers, embedded or hybrid [17], [18]. Some filter meth-
ods applied in the literature include correlation analysis [19],
[20], [21], information-theoretic subset selection (ITTS) [22],
minimum Redundancy Maximum Relevancy [23], [24], and
the Lipschitz quotient [25] which is a backward elimination
filter method. The least absolute shrinkage and selection
operator – multilayer perceptron (LASSO-MLP) is an exam-
ple of an embedded method [26] while studies by [26]
and [27] are examples of hybrid methods of feature selection
used in literature.

An alternative feature selection method called Iterative
Input Selection (IIS) was proposed by [28], which can deter-
mine the optimum predictor variables from a global pool
using a tree-based algorithm. The accuracy of this algorithm
was demonstrated in the study for streamflow forecasting in
Ticino River, Switzerland. A further study in [29] revealed
that the IIS algorithm performed better than partial mutual
information, partial correlation andGenetic Algorithm-ANN.
Additionally, the IIS-optimized models have been found to
perform better than standalonemodels in forecastingmonthly
streamflow in Australia’s Murray-Darling Basin and were
recommended as a suitable tool for feature selection [31].
Nonetheless, the application of the IIS algorithm in visibility
and ceiling forecasting using aviation meteorological obser-
vational data is yet to be explored.

Therefore, this study aims to extend the investigative
approach of utilizing deep learning architecture AI models
for visibility and ceiling forecasting using hourly routine
aviation meteorological observation data. The site locations
chosen are two international airports in Fiji. To the best of the
authors’ knowledge, no such research has been undertaken
to explore the capabilities of AI models for forecasting the
weather elements’ visibility and cloud ceiling for these two
study sites, let alone deep learning models. Additionally,
current literature shows a lack of research being conducted
in forecasting visibility and ceiling as regression problems
using aviation meteorological observational data.

This study aims to address these gaps in research by
advancing the applications of deep learning AI models for
visibility and ceiling forecasts, with the following objectives:

1. Use the Iterative Input Selection (IIS) feature selection
technique to find the optimum features for the model from all
meteorological variables and significant lagged series.

2. Design and implement the proposed hybrid IIS-LSTM
integrated model for a 1-hour forecast horizon and compare
the outcomes with alternative AI models LSTM, TabNet, ANN
and Random Forest.

3. Evaluate the performance of the objective model (pro-
posed hybrid IIS-LSTM) with the alternative models using
performance evaluation metrics and graphical analysis of the
observed dataset with the forecasted dataset.

4.Briefly elaborate on the suitability of the objective model
for practical visibility and ceiling forecasts, discuss any

FIGURE 1. Map of Fiji showing the present study locations for which the
proposed IIS-LSTM model was developed and implemented.

limitations and comment on any recommendation for future
research.

II. THEORETICAL OVERVIEW
A. ITERATIVE INPUT SELECTION (IIS) ALGORITHM
The study of [28] has proposed the IIS as a robust input
selection tool that utilizes highly randomized trees (Extra
trees). The IIS is not computationally intensive; thus, faster,
andmore efficient [32]. The IIS algorithm is executed in three
phases. The first phase is the Input Ranking (IR), whereby the
most significant predictors are selected in a forward selection
method process. The variables are ranked in order or signifi-
cance, but the contribution of each input information towards
the output may be hidden due to the possibly redundant
variable(s).

Therefore, the second phase groups the most significant
p-ranked variables and assesses their significance using a
Single Input Single Output (SISO) approach. The Extra-Trees
model with the SISO approach is trained and compared to
the observed outputs and assessed based on accuracy evalua-
tion metrics. Based on this assessment, the best-performing
inputs are added to the set p′. The third phase is the
Multiple Input Single Output (MISO) phase whereby the
prescribed screening model aims to rate the effectiveness
of each input matrix in forecasting the output. This is done
to minimize overfitting, and the procedure is repeated with
the residuals from the previous iteration as the new output
variable in the previous 2 phases. The operation is iterated
until either the best IR variable is found in the selected
p′ variables, or the performance of the model does not
show significant improvement based on the coefficient of
determination (R2) [33].

To further improve the feature selection process, the IIS
algorithm performs K-fold cross-validation, which has the
advantage of using all the data in both training and validation,
which reduces the possibility of overfitting the model.
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B. LONG SHORT-TERM MEMORY (LSTM)
The proposed model is a hybrid, integrating the IIS algorithm
with the Long Short-TermMemory (LSTM) architecture. The
deep learning LSTM Network model is a special type of
Recurrent Neural Network (RNN) which can learn long-term
dependencies and therefore can perform well in time-series
data predictions [34]. It has memory capabilities because
its gate structure is different from the RNN structure and
is therefore able to retain historical information for a long
time [35], [36]. The technical details of the objective model
LSTM architecture are well studied and found in literature
elsewhere [37], [38], [39], [40].

III. MATERIALS AND METHOD
A. STUDY AREA
This study focuses on two study sites located in Fiji, an island
archipelago which sits in the Southwestern Pacific Ocean.
It lies approximately between 15◦ to 20◦ South latitudes and
between 175◦ and 182◦ East longitude.
The main islands are Viti Levu and Vanua Levu while the

remaining islands are smaller, low-lying, and widely spread
across the ocean [41]. Fiji experiences a mostly tropical
climate with two major seasons observed annually – a warm
and wet season from November to April, and a cool and dry
season from May to October. The most significant influence
on the rainy season is the South Pacific Convergence Zone
causing the formation of tropical low-pressure systems and
cyclones as well [42]. Additionally, there are localized and
regional effects which impact the weather across the islands.
One cause of this is the geography of the islands, particularly
the two main islands of Viti Levu and Vanua Levu, which are
of volcanic origins and generally have mountainous interior
terrain with flatter coastal plains [43]. Another factor which
affects localizedweather on themajor islands is the prevailing
Southeast Trade Winds which cause greater cloud formation
and precipitation on the eastern parts of the main islands.

TABLE 1. The geographic description of the present study sites.

The two sites are Nadi International Airport and Nausori
International Airport, which are located on the main island
of Viti Levu (Table 1). Nadi International Airport (Nadi) is
the main international airport of the country and is located
on the western side of the island, while Nausori International
Airport (Nausori) is the secondary international airport and
is located on the eastern part of the island. As the tourism
industry is one of the largest revenue earners for the country,
the airport and aviation efficiency and safety are imperative.
These two airports are the locations where the meteorological
observations are recorded on-site. These observations are
routine aviation meteorological observations and are made

following the international standards for aviation weather
observations [44].

Since these two airports operate 24 hours a day, they are
required by the International Civil Aviation Organization
(ICAO) standards to provide these routine weather observa-
tions at the airport every hour for use by aviation stakeholders
such as airlines and air traffic service providers. These reports
are called METAR and contain meteorological parameters
which have been specified by the World Meteorological
Organization (WMO) to be observed and made available at
airports. Although all meteorological parameters play a role
in overall flight operations, the two target variables to be
forecasted, i.e. visibility and ceiling are vital for safe and
efficient flight operations during the crucial phases of landing
and taking off.

B. DATASET
Historical meteorological data spanning over 10 years was
used for the development of the proposed forecasting model.
Table 2 (a) describes the variables in the dataset that were
obtained for the development of the proposed forecasting
model. The data was recorded from January 1st, 2012,
0000 local time to December 31st, 2021, 2300 local time. This
equated to 87672 data instances with 12 variables which were
recorded in numerical values.

The visibility variable was measured in kilometers, while
the Total Low Cloud variable from the dataset was used as
the ceiling. Total Low Cloud is measured in oktas and is the
amount of low cloud covering the sky in eight parts. Even
though instrument measurements are possible, current obser-
vations for these two variables are done manually following
the standards set out by the WMO [44].

While preprocessing the data, the following data impu-
tation methods were applied to fill in the missing values.
Where there was a single missing value, a simple aver-
age of the preceding and succeeding values was taken.
For instances of consecutive missing values, a combina-
tion of calendar-averaged values and simple averages was
applied [45]. Additionally, flawed values (falling out of the
range of correct values) were replaced with the median value
for better model learning [46]. In terms of the missing values
for visibility (Tabel 2 (b)), there were none for Nadi but
around 13.5% of missing data was recorded for Nausori. Sim-
ilarly, for total low cloud cover, Nadi has significantly fewer
missing data (∼3.6%) compared to Nausori with 23.26%.
In respect to missing data, it was noticed that significant
portions of the data were missing at Nausori. This could have
been due to the station being unmanned for periods of time
and no observations taken as the instances of missing data
coincided with the lockdown during the Covid-19 pandemic.
Thus, after analyzing data by year, the years with greater
than 10%missing values were excluded frommodel building,
which left 6 consecutive years of data for study site Nausori
International Airport with total data of 52632 data points.

Table 2 (b) further gives statistical aggregates of the two
predictor variables - visibility and total low cloud cover - for
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TABLE 2. The characteristics of the predictor and objective variables used to develop the proposed hybrid IIS-LSTM integrated model for 1-hourly visibility
and total low cloud cover forecasting; and (b) the descriptive statistics of Visibility (km) and Total Low Cloud cover (oktas) with details of missing data.

the 2 study sites. The visibility magnitudes ranged from a
maximum value of 50 km for both study sites to a minimum
of 0.1 km at Nadi and 0.05 km at Nausori. The mean visibility
was 46.19 km at Nadi, higher than the value at Nausori, which
was 41.14 km.

The median visibility value was also higher at Nadi
at 50 km compared to Nausori at 40 km. Furthermore,
the visibility data at Nadi showed high negative skewness
(−3.10) and leptokurtic (10.54) tendency compared to Nau-
sori, which exhibited a similar tendency although to a lesser
degree (Skewness=−1.70, Kurtosis=2.31). This indicated
that much of the data distribution is greater than the mean
values with a higher probability of it being on the tail end of
the data distribution [47].
Considering the statistical aggregates for total low cloud

cover, it was noticed that the range was from a maximum
value of 8 to a minimum value of 0 oktas for both study sites.
Themean andmedian scores are significantly different for the
2 study sites, with Nadi having 3.45 and 3 oktas, respectively,
and Nausori having 5.28 and 6 oktas, respectively. This was
consistent with the physical attributes at these two study sites,
where Nausori is situated in a more cloudy and rainy part of
the main island compared to Nadi. The skewness and kurtosis
values of total low cloud cover at both study sites indicated
an almost normal distribution.

C. PROPOSED MODEL DESIGN
1) DATA PRE-PROCESSING
After pre-processing the data, extraction of significant lagged
inputs was carried out using cross-correlation (CCF) and par-
tial auto-correlation function (PACF) statistical assessments.
This assessment was also used to determinewhether the target
variables visibility and total low cloud cover have correlations
both in time-space, as well as between other meteorological

FIGURE 2. Flowchart detailing the proposed methodology for the
proposed hybrid IIS-LSTM model in the model development stage
implemented forecast 1-hourly atmospheric visibility and total
low cloud cover ceiling.

variables. PACF and CCF were undertaken for both visibility
and total low cloud cover target variables for the two study
sites. Figure 3 shows the result of the CCF statistical assess-
ments, which indicated the correlation of the target variable
visibility or total low cloud cover with the predictor variables.

Meteorological variables in the dataset are stochastic and
impacts are short-lived in nature, so only up to 24 antecedent
lags are considered as longer lags would be unreliable in
capturing useful information for predicting the target [48].
Similarly, Figure 4 shows the results of the PACF statistical
assessment, which indicates the best preceding lagged values
correlating to the target variable’s value in that instance. Only
lags up to 12 hours were considered due to the reason men-
tioned earlier. For both CCF and PACF, lags were considered
significant if they exceeded the 95% confidence band. This
generated a global pool of 151 features each for visibility
and total low cloud cover at study site Nadi, and 154 features
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FIGURE 3. Cross-correlations coefficients (rcross) showing the amount of
co-variance between visibility vs. its predictor variables for the case of
(i) Nadi and (ii) Nausori; and the co-variance between total low cloud vs.
its predictor variables for the case of (iii) Nadi and (iv) Nausori.

each for study site Nausori. All predictor variables and their
significant lags formed a matrix of global predictors.

2) THE IIS PROCEDURE
The global predictors were analyzed with the IIS algorithm
of the proposed hybrid integrated model to extract the most

FIGURE 4. Partial Auto-Correlation Function (PACF) coefficient of the
target variables for (i) Nadi and (ii) Nausori. The lag circled in blue
indicates the most significant lagged inputs used in the development of
the forecasting model.

useful features from this global list of features. Figure 5 illus-
trates the results for the two target variables at the two study
sites from the IIS process. The cumulative performance of
the Extra-Tree model within the IIS algorithm is R2 denoted
as the line graph in the plot while the contribution of each
screened variable is 1R2, denoted by the bars on the plot.
For Nadi’s visibility target, the performance increased up to
the second variable with the second hourly-lagged input of
visibility being the most significant one. For target total low
cloud cover, the performance of the model again increased
up to the second variable with the first hourly lagged input of
total low cloud being the most significant feature.

In contrast, for Nausori’s target variable visibility, the
performance increased up to the fourth variable; however,
only 3 features were significant with the first lagged input
of hourly rainfall being the most significant. For total low
cloud cover, the performance of the model decreased after the
second feature, with the first and fifth hourly lagged inputs
of total low cloud cover being almost equally significant.
It is noteworthy that the algorithm determined the optimum
number of variables up to the point where additional variables
decreased performance (as was the case in Figure 5(a) targets
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FIGURE 5. Cross-correlations coefficients (rcross) showing the amount of
co-variance between visibility vs. its predictor variables for the case of
(i) Nadi and (ii) Nausori; and the co-variance between total low cloud vs.
its predictor variables for the case of (iii) Nadi and (iv) Nausori.

visibility and total low cloud cover, and Figure 5(b) target
total low cloud cover), or when an algorithm tolerance value,
ε, of performance increase was not surpassed (as was the case
in Figure 5(b) target visibility). Further insights into these
results will be discussed in a later section.

3) THE PROPOSED IIS-LSTM MODELLING APPROACH
The IIS algorithm supplied the optimum dataset to be used
in the chosen deep-learning LSTM forecasting model. This
dataset was divided into a training and testing set with 20% of
the training set used in validation to fine-tune the model [49].
Researchers have used different ratios of training set, such
as 70% [31], [50] or 80% [51] as there are no set rules for
dividing data [42]. Thus, in this study, the dataset had training
(75%) and testing (25%) subsets.

The LSTM architecture was designed with one LSTM
cell layer with 80 neurons, the sigmoid activation function,
and a dense layer with a single output. This architecture
was used to learn from the training subset data and make
forecasts from the testing subset data after the data was
reshaped into a format that could be acceptably processed by
the model. The model was trained on different combinations
of hyperparameters manually to achieve the optimum set of
hyperparameters [51]. These were:

• optimizer = ‘‘adam’’
• batch size = 15
• maximum epochs = 500
• Validation loss criteria = mae (Mean Absolute Error)
Furthermore, to prevent the model from overfitting or

underfitting the data, early stopping [52] and ReduceLROn-
Plateau [53] were utilized respectively. The early stopping
method was employed in 10 epochs (patience=10) when
therewas no further decrease in the validation loss criteria and
the lowest value was saved. ReduceLROnPlateau callback
method reduced the learning rate when no improvement was
detected with patience of 5 [49]. The simple design of the

architecture was sufficient to achieve optimal model config-
uration as the number of features had been greatly reduced
by the preceding IIS algorithm. This negated the need for an
unnecessarily large architecture which reduced the training
time of the model, and the generalization of data for improved
predictions [54].

4) MODEL EVALUATION PROCEDURE
The superiority of the proposed hybrid IIS-LSTM integrated
model was tested by forecasting using the predictor variable
from the testing subset and evaluating it with the observed
data.

The performance evaluation metrics included Pearson’s
Correlation Coefficient (r), Willmott’s Index (WI), Nash-
Sutcliffe Efficiency Index (ENS ), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Legate-McCabe Effi-
ciency Index (LM) and Kling-Gupta Efficiency Index (KGE)
[55], [56], [57], [58], [59]. These evaluation metrics are
widely used in research and their mathematical equations are
as follows:

Pearson’s Correlation Coefficient (r)
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6ŷ
)2] (−1 ≤ r ≤ 1)

(1)

Willmott’s Index (WI)

WI = 1 −
6N
i=1

[
y− ŷ
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)

=

√
1
n

∑n−1

0

(
yi − ŷi
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∣∣ (5)

Legate and McCabe’s Index (LM)
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In the equations above, the observed value for the target
variable’s visibility and total low cloud cover is represented
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as y, while the predicted value from the model is denoted ŷ
from the model. The metrics for our objective model were
then compared with metrics output by the benchmarkmodels.

The benchmark models included standalone Artificial
Neural Networks (ANN) [60], Random Forest [61], the deep
learning LSTM [62], and TabNet [63] models. These models
were selected due to their optimal forecasting performance
using atmospheric and meteorological data as shown in pre-
vious work [31], [37], [64], [65].

IV. RESULTS
This section presents the outcomes of the performance eval-
uation of the proposed hybrid IIS-LSTM integrated model
with competition models for forecasting hourly visibility and
hourly total low cloud cover using meteorological data as
model inputs. The competing models included standalone
TabNet, LSTM, ANN, and RF. The predictive performance
of the proposed hybrid IIS-LSTM integrated model was
tested against these benchmark models for the two study sites
at a 1-hour forecasting horizon. The performances are sum-
marized using the evaluation metrics as in (1) – (7) and
assessed via graphical means.

Table 3 shows the outcomes of all the performance metrics
for each model design for the two sites. From the results,
the proposed hybrid IIS-LSTM integrated model produced
the best outputs based on the performance evaluation metrics
used.

For Nadi, the IIS-LSTM model has the highest agreement
indices (r≈ 0.73,WI≈ 0.83, ENS ≈ 0.52) and the lowest error
metrics (RMSE ≈ 4.81 km, MAE ≈ 1.9 km) for visibility
forecasts. It also registered the highest agreement indices
(r ≈ 0.84, WI ≈ 0.91, ENS ≈ 0.71) and least values of error
(RMSE ≈ 0.92 oktas, MAE ≈ 0.67 oktas) for total low cloud
forecasts.

Likewise, for Nausori, the IIS-LSTM model produced the
highest agreement indices (r ≈ 0.72, WI ≈ 0.82, ENS ≈

0.52) and least error (RMSE ≈ 8.08 km, MAE ≈ 5.1 km)
for visibility forecast. Similarly, it has the highest agreement
indices (r ≈ 0.78, WI ≈ 0.87, ENS ≈ 0.60) and lowest error
values error (RMSE≈ 1.23 oktas,MAE≈ 0.93 oktas) for total
low cloud forecasts (Table 3).
A widely used evaluation metric to measure agreement

between predicted and observed values is the Nash-Sutcliffe
Index (ENS ). This is a dimensionless value and is a scaled
version of the mean squared error. However, a limitation of
this index is that it can exaggerate the impact of extreme out-
liers. To address this, Willmott’s Index (WI) is used because
it considers the ratio of the mean squared error instead of the
differences [66]. This testing performance is considered one
of the most robust parameters to evaluate the superiority of a
model against its competitors [50].
Figure 6 shows a 3D bar graph portraying the WI for each

model. In Figure 6(i), for the case of visibility forecasting,
the improvement in the model’s performance can be seen
with the proposed hybrid IIS-LSTM integrated model com-
pared to the benchmark models. The IIS-LSTM model had

TABLE 3. The testing performance of the proposed hybrid IIS-LSTM
integrated model compared with the standalone models using all
variables. (a) Objective variable 1: Visibility for (i) Nadi International
Airport and (ii) Nausori International Airport, and (b) Objective variable 2:
Total Low Cloud for (i) Nadi International Airport and (ii) Nausori
International Airport. Note: r = Pearson’s Correlation coefficient, WI =

Willmott’s Index, ENS = Nash Sutcliffe Efficiency coefficient, RMSE = root
mean square error, and MAE = mean absolute error. The most accurate
model is boldfaced, presented in orange.

FIGURE 6. Testing performance of IIS-LSTM vs. the 4 competing models
evaluated using the Willmott index of agreement (WI) for (i) visibility and
(ii) total low cloud.

approximately 0.83 score for Nadi and 0.82 score for Nausori,
which was an increase of almost 160% from the second-best
performingmodel for Nadi and an increase of 7% forNausori.

Similarly, Figure 6(ii) depicts theWI performance for total
low cloud cover forecasts. Again, the IIS-LSTMmodels have
the best score at site Nadi with approximately 0.91 and
Nausori with 0.87 which is an approximate increase of
2.5% and 4 % respectively. The proposed hybrid IIS-LSTM
integrated model produces the best agreement between the
observed and predicted outputs compared to the benchmark
models in our dataset.

Comparatively, Figure 7 shows the error metrics used to
evaluate the model performances, where Root Mean Squared
Error (RMSE) is used. For visibility forecasts (Figure 7(i))
the proposed hybrid IIS-LSTM integrated model produces
the lowest error for Nadi with 4.81 km and 8.08 km for Nau-
sori. When comparing the error for total low cloud forecasts
(Figure 7(ii)) the IIS-LSTMmodel again has the lowest value
of RMSE at approximately 0.92 oktas for Nadi and 1.23 oktas
for Nausori. Based on these results, the proposed hybrid
IIS-LSTM integrated model has been shown to minimize the
RMSE for the forecast at both study sites with this dataset.
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FIGURE 7. 3D Bar graph of root mean square error in the testing phase of
the IIS-LSTM vs. the 4 competing models for (i) visibility (RMSE, km) and
for (ii) total low cloud (RMSE, oktas).

TABLE 4. Evaluating the Testing performance of the proposed hybrid
IIS-LSTM integrated model for one-hourly forecasts for (a) Objective
variable 1: Visibility for (i) Nadi International Airport and (ii) Nausori
International Airport, and (b) Objective variable 2: Total Low Cloud for (i)
Nadi International Airport and (ii) Nausori International Airport; using
LM = Legate’s and McCabe’s Index, and KGE = Kling-Gupta efficiency. The
best model is boldfaced and presented in orange.

The Legates and McCabe’s Index (LM) is an improved
measure from the WI which further eliminates the amplifi-
cation from outliers by removing the squaring effect [56].

Compatibly, the KGE avoids the limitations of the ENS by
computing the Euclidian distance of the correlation, bias, and
variability measure instead of it being scaled by the standard
deviation of the observed values [67]. Table 4 shows these
alternative metrics used to evaluate the model’s performance,
LM and KGE. For visibility forecasts, the proposed hybrid
IIS-LSTM integrated model has the highest value of LMwith
0.397 and 0.405 for Nadi and Nausori respectively.

Likewise, for total low cloud cover forecasts, the
IIS-LSTM model scores were 0.538 and 0.440 for Nadi and
Nausori respectively. Negative values for some benchmark
models can be attributed to the lower bound of this coefficient
being negative infinity, indicating poor performance of these
models [68].

When theKGEmetrics are considered, the proposed hybrid
IIS-LSTM integrated model performed the best according

to this criterion as well. When considering visibility fore-
casts, the Nadi and Nausori international airport site scores
of 0.645 and 0.595 were registered by the IIS-LSTM model
respectively. Similarly, for total low cloud cover forecasts,
the IIS-LSTM model had the highest scores of 0.762 and
0.683 for Nadi and Nausori airports, respectively.

V. DISCUSSION
In this section, the results of this study are expounded on
in terms of its highlights as well as its limitations of the
present study. The proposed hybrid IIS-LSTM integrated
model has shown its superiority in performance compared
to the benchmark models in forecasting visibility and total
low cloud cover at two study sites. This was shown from the
results of various performance evaluation metrics depicted in
the previous section.

The results emphasized the suitability of the IIS algorithm
in selecting useful features for the model. This is consistent
with the outcomes of similar studies, such as [30], where the
results from the performance metrics (WI, ENS , RMSE and
MAE) determined the suitability of the IIS-optimized model
compared to the standalone models. As previously deduced
by [28], IIS was a useful tool for selecting non-redundant
inputs in different test conditions (e.g., different sites, differ-
ent target variables, presence of several redundant features).
Removal of redundant features was shown to be an important
aspect affecting the forecasting accuracy of data-driven mod-
els. Fewer input variables imply low dimensionality of the
sources of uncertainty and lower propagation of error from
input variables [33].
Additionally, the LSTM model’s efficiency in ‘learning’

and making predictions from this time-series data is also
pivotal in this study. Reference [13] concluded from their
results thatMLmethods can improve the visibility and ceiling
forecasts up to an hour ahead forecast horizon when accurate
observations are used for analysis.

Similarly, [15] recommended the development of deep
learning models, particularly LSTMmodels, from their study
due to LSTM’s ability to extract time-dependent features
from the raw data auto automatically and its increase in
efficiency when the size of the training set increases.

Referring to the results of the features selected by the IIS
algorithm as shown in Figure 5, some assumptions can be
made regarding the correlation between the objective vari-
able and the optimal feature selected variables. For visibility
forecasting, the most significant feature at Nadi International
Airport was the second lagged value of visibility, while for
Nausori international airport it was the first lagged value of
the Rainfall variable. The difference in the selected feature
can be explained by the geography of the sites, as Nausori
International Airport is located in the region which receives
significantly more rainfall, while Nadi International Airport
is located in the drier region of the country.

The study of [64] reported that for December 2023, Nadi
airport received 57.7 mm of rainfall while Nausori airport
received 181 mm of rainfall. The total days of rainfall were
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FIGURE 8. 3D Comparison of observed (actual) and forecasted
(predicted) values for the IIS-LSTM model in the testing phase for
(i) Visibility – Nausori, and (ii) Total Low Cloud – Nadi.

11 for Nadi airport and 21 for Nausori airport, which is 28%
and 68%of themonth respectively and represents a difference
of 40% rain days a month between the two sites. Rainfall
is naturally known to be a significant physical factor in the
reduction of visibility [70], [71].

Consequently, variation in rainfall data was the most
important factor in determining the variation in visibility at
Nausori International Airport than it was for Nadi Interna-
tional Airport. On the other hand, when the optimal variable
for total low cloud cover is considered at both study sites, the
most significant feature variable is the 1st hourly lagged data
series of total low cloud cover, with Nausori also having the
5th hourly lagged data series as equally significant.

Clouds have been difficult to forecast due to their 3D
nature, various physical properties such as coverage, thick-
ness, top height and base height, and the different types
of clouds. Additionally, mechanisms driving cloud forma-
tion vary from region to region and current models offer
mesoscale resolution in cloud forecasts and extrapolation for
higher resolution forecasts [72], [73]. Therefore, it is reason-
able that the IIS algorithm identified the lagged values of only
total low cloud cover as the optimal and reliable features for
future total low cloud cover predictions.

Generalization of the model was an important factor
for consideration with the design of the proposed hybrid
IIS-LSTM integrated model, ensuring that the model’s appli-
cability is not limited to the study locations used for this
research. This was achieved firstly by training the model on a
large dataset which accounted for variations caused by daily
and seasonal changes. Secondly, the IIS component ensured
that the model learned patterns of data from only the relevant
features affecting the predictand. It also reduced dimension-
ality and complexity of the model, preventing overfitting

on the data used for this study. Additionally, early stopping
technique and an overall simple architecture of the LSTM
algorithm contributed to the prevention of overfitting.

Figure 8 takes a closer look at the comparison between the
observed data and the forecasted output. When Figure 8(i)
is examined visually, the visibility graph of the forecasted
output follows the pattern of the graph of the observed outputs
for Nadi. However, the values at the lower extremities are
not fairly forecasted. A possible reason for this could be a
limitation in the dataset.

As noted in Table 2 (b) earlier, the visibility data for Nadi
has a mean of 46.19 km, a median of 50 km, and notably,
a high kurtosis of −3.10. This indicated that many of the data
points in the higher extremity and the lower values are not
proportionately represented in the dataset. This would have
been a factor when the model was trained as the extreme
magnitudes might not have been properly captured.

Added to this fact is the consistency and accuracy of the
observational data. For instance, visibility data is collected
through manual observations according to international avia-
tion meteorological observation standards at both study sites.
The data intervals vary, ranging from 50m intervals when
visibility is less than 800m; 100m intervals until 5 km; 1 km
intervals until 10 km; and 10 km intervals until 50 km [44].
Thus, manual observations could readily be affected by irreg-
ularities from different observers and would not have been as
consistent as instrument measurements adding another layer
of complexity.

VI. CONCLUSION
In this study, a hybrid deep learning IIS-LSTM integrated
model is proposed for forecasting visibility and total low
cloud cover for two study sites in Fiji, Nadi International Air-
port and Nausori International Airport. The proposed model
was tested against four benchmarkmodels using performance
evaluation metrics for a 1-hourly forecast horizon.

The following are the main contributions and key findings
of this research:

1. The analysis focusing on hourly aviation meteorological
observation data for Nadi International Airport and Nausori
International Airport found key statistical metrics of target
variables visibility and total low cloud cover to develop
models.

2. A hybrid IIS-LSTM integrated model was presented
which combined the effectiveness of the IIS algorithm to
select the optimum features from the range of predictor vari-
ables and their significant lags, with the deep learning LSTM
model with the superior capability for time-series forecasting.

3. The robustness of the proposed hybrid IIS-LSTM inte-
grated model to forecast visibility and total low cloud cover
was illustrated when the performance of the IIS-LSTM
model was evaluated against the benchmark models (TabNet,
LSTM, ANN, RF). The objective model had the highest
agreement metrics (r, WI, ENS) while also having the least
error (RMSE, MAE) compared to the benchmark models.

VOLUME 12, 2024 72539



S. Raj et al.: Atmospheric Visibility and Cloud Ceiling Predictions

4. This research study makes a significant contribution to
knowledge in the scope of visibility forecasts as a regression
problem using deep learning models, and a first of any kind
of AI-based forecasting study of visibility and total low cloud
cover predictions for the chosen study sites.

5. The development of this objective model using only
hourly aviation meteorological observation data indicates the
capacity of this method to be extended to any station with
similar data for further investigative research into practical
usage in the aviation industry.

The approach undertaken for this study can be enhanced
with the scope of further research. Firstly, model hyperparam-
eters for this study were optimized with an inexhaustive grid
search method. This can be improved with state-of-the-art
techniques such as Hyperband [74] and Bayesian Optimiza-
tion [75], [76], which can further assist in fine-tuning the
model to attain the optimum architecture of the model and
its forecast. Additionally, the potential for data inconsistency
which could have arisen from manual measurements of the
visibility and low cloud cover variables in the data can be
mitigated through the use of instrument measures. Moreover,
recording and using shorter and near-real-time data would
be beneficial bearing in mind the highly dynamic nature of
visibility and cloud base, since current industry and ICAO
standards have meteorological data being collected at hourly
intervals.

Further independent study can be undertaken to evaluate
forecasts at higher timesteps, such as 3-hour, 6-hour, 12-hour
or 24-hour horizons as necessary for practical operational use.
The approach undertaken in this study can be extended to
other aviation meteorological data collection sites in Fiji and
elsewhere. This will verify the applicability of this approach
beyond the study sites, as well as the possibilities of connect-
ing multiple sites in a network for higher resolution forecasts
for a region.

The main factor in implementing the proposed forecasting
model effectively is data availability and data quality. In order
to have high quality data for aviation purposes, the main
prerequisite is that the data needs to be recorded under the
ICAO standards. The recording station needs to be certified
by both the International Civil Aviation Organization (ICAO)
and the World Meteorological Organization (WMO). The
data for this study was obtained from the Fiji Meteorologi-
cal Service which abide by WMO and ICAO standards for
aviation meteorological reports. The observations are made
according to international requirements, which ensures that
data is consistent, accurate, reliable, and reported in standard-
ized units. Such weather reports, which are readily available
for specific locations, would be reliable for use in the pro-
posed model. Additional factors would need to be addressed
to have the proposed model’s practical implementation for
operational use. Firstly, the model would need to be modified
accordingly to accept real-time data and produce real-time
analysis. Secondly, comparisons to assess the accuracy and
reliability of this proposed hybrid model with existing fore-
casting tools in a live environment will have to be undertaken.

Thirdly, the appropriate computational resources will need to
be allocated based on whether a cloud based, or in-situ model
is implemented. For example, an online cloud-based system
would not be suitable for remote and maritime locations
with poor or no internet connectivity. Hence, in-situ models
would need to be parsimonious (as shown by the removal of
the redundant features using IIS) and lightweight requiring
least computational resources. Other considerations include
assessing the practicality of use for the proposed model as
a forecasting tool at a particular location considering the
availability of other such tools.

Looking further towards the adoption and acceptance of
the proposed model as a predictive tool used within the
aviation industry, important considerations must be taken into
account. The aviation industry is a highly regulated industry,
especially for aviation stakeholders operating under the Inter-
national Civil Aviation Organization body, and any change
to standard operating procedures are assessed subject to very
standards before being adopted for widespread use. However,
such predictive tools still have a niche such as in general
aviation, private or recreational flights. It could be used by
pilots flying to destinations with a limited flight information
service provision but having weather reports available at or
in the vicinity of the airport. Additionally, it could be a
cost-effective but efficient tool for flight information service
providers at airports where there is a lack of infrastructure
for accurate on-site forecasts, such as at remote or private
airports. Therefore, this study paves the path for further appli-
cations of AI in aviation industry, particularly forecasting of
important parameters such as visibility and cloud base.
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4.3. Links and Implications 

A newly constructed hybrid IIS-LSTM model demonstrates its superior 

performance in forecasting aeronautical visibility and ceiling meteorological 

parameters for the consecutive hour. Against the benchmark AI models, the proposed 

model shows its outstanding performance by achieving the highest agreement metrics 

as well as the lowest error metrics when forecasting either visibility or ceiling for each 

of the study sites of Nadi and Nausori international airports in Fiji. The integration of 

the IIS algorithm into the proposed model not only selects the most optimum features 

for the forecasting model but also ranks the features according to their degree of 

relevancy (in terms of coefficient of determination, R2). The most important feature for 

visibility forecasting was found to be the lagged input of visibility for Nadi and rainfall 

variable for Nausori, with relative humidity and total low cloud have minor importance. 

For ceiling forecasting, the antecedent memory of total low cloud has the most 

influence for its predictions. The results are consistent with the geography and climate 

of the study sites together with physical mechanisms driving cloud formation and are 

further validated by the remarkable performance of the forecasting model when using 

the optimal features.  

This proposed hybrid IIS-LSTM integrated model constructed using aviation 

meteorological observational data can be implemented as an additional tool for 

visibility and ceiling forecasts in the aviation industry. It can be applied to other sites 

in the region as the model is trained on site-specific data and will be able to interpret 

the most applicable variables affecting visibility and ceiling for that location. Because 

it relies on data which is collected at most airfields and all manned airports, this tool 

can support aviation stakeholders in routine aviation operations where information on 

visibility and ceiling is required. In particular, remote locations or unmanned airports 

where data is available coupled with automatic weather observation stations can 

benefit from the implementation of this forecasting model to deliver accurate and 

reliable forecasts of visibility and ceiling. 
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CHAPTER 5: CONCLUSION, STUDY LIMITATIONS, AND 

FUTURE RESEARCH DIRECTIONS 

5.1. Summary of Research and Findings 

This study has focussed on advancing the development of artificial intelligence 

models to predict atmospheric visibility and cloud cover (ceiling) as important 

properties for the aviation industry. The primary areas of the study are the two 

international airports located on Fiji’s main island of Viti Levu, where the 

meteorological observations were made and the data were obtained. Given the high 

volume and dimensionality of the data, a hybrid model was proposed to select 

optimum features as well as effectively forecasting the time-series data, which was 

attained through the IIS-LSTM integrated model. The hybrid model demonstrated its 

ability to uniquely select the optimum features for each target variable at each distinct 

study location and effectively make accurate and reliable forecasts. 

This research made key findings from the meteorological data and forecasting 

model development. Firstly, it verified the quality and the availability of aviation 

meteorological data that could be used to develop data-driven AI models effectively. 

Ten years’ worth of hourly data were retrieved successfully, with minor data 

imputations made to recover missing data, and each individual meteorological variable 

was analysed individually and in relation to the predictor variables visibility and ceiling. 

The data for each variable indicated that the overall weather pattern for both of the 

study sites were considered tropical based on the temperature range, humidity and 

rainfall pattern. However, the significant difference between the two locations were the 

frequency and amount of rainfall and cloud cover were greater for Nausori than for 

Nadi.    

Secondly, it was able to identify the variables and the significant lags which 

influenced the target variable's visibility and ceiling at each of the study sites. This 

global pool of variables was then narrowed down using the IIS algorithm to identify the 

optimum subset of variables that would efficiently be able to train the forecasting 

model. As mentioned in the journal paper presented in Chapter 4, the most significant 

features for predicting visibility were noted to be the second lagged input of visibility 

for Nadi, and the rainfall variable for the Nausori site. This was deemed to be 

consistent with the physical observations, where increased rainfall was a major factor 

in reduction of visibility (Bernardin et al., 2014). Considering the difference in 
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geography and climate between the two sites, this factor was more profound for 

Nausori than for Nadi and was rightly indicated as such through the selection of the 

different optimum feature for visibility between Nadi and Nausori. Additionally, in 

predicting low cloud cover, the most significant feature both study sites were identified 

as the lagged inputs of low cloud cover. Cloud formation and development is a highly 

stochastic process, and descriptions using mathematical and physical models require 

the consideration of numerous variables interacting in a highly complex manner (Ye & 

Chen, 2013). Additionally, these would necessarily need accurate upper atmospheric 

variables and is not included in this study’s dataset, which is limited to mostly 

atmospheric variables observed at ground level. Therefore, it is logical that the most 

optimum feature for cloud cover forecasts from this dataset are its lagged variables, 

and this consistently shown in the analysis result for both Nadi and Nausori. 

The next step in developing the model was training the LSTM algorithm on the 

data and testing its forecasts. The performance evaluation metrics of the model 

emphasised the model’s suitability to make reliable and accurate forecasts. The 

agreement metrics which indicated this was the Willmott’s Index (WI). This index 

produced a score of 0.83 and 0.82 in predicting visibility for Nadi and Nausori 

respectively. When predicting total low cloud cover, the WI similarly produced a high 

score of 0.91 for Nadi and 0.87 for Nausori. The proposed model also minimised the 

error metrics. When the Root Mean Squared Error (RMSE) in visibility forecasting is 

considered, the values are 4.8km and 8.1km for Nadi and Nausori respectively, and 

when forecasting total low cloud cover, it is 0.9 oktas and 1.2 oktas for Nadi and 

Nausori respectively. These results also have an overall better performance in terms 

of having higher agreement metrics and minimising error compared to other 

benchmark models. The benchmark models were the standalone LSTM, TabNet, ANN 

and Random Forest models, which have proven their ability in time series forecasting 

in numerous previous studies. Therefore, fact that this proposed integrated model not 

only performed on par with, but bettered the performance of the benchmark models 

confirms the reliability of this model. These results also validated that the outputs 

produced from previous component of this model (IIS algorithm) are optimum for the 

forecasting algorithm to be accurately and efficiently trained and for it to produce 

superior results. 

This study has made a significant unique contribution in advancing the 

knowledge in this field of research. Firstly, key statistical metrics for visibility and 
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ceiling were found for Nadi and Nausori international airports in Fiji after analysing 

hourly aviation meteorological observation data and these were vital in developing a 

suitable forecasting model. Secondly, a novel hybrid IIS-LSTM integrated model is 

presented which combines the IIS algorithm’s feature selection ability with the LSTMS 

model's superior time-series forecasting capability. The robustness of the model was 

verified by comparing the model with benchmark ML and DL models using various 

statistical performance evaluation metrics for both agreement and error. Thirdly, this 

research work has made further contributions to knowledge in the scope of forecasting 

visibility and ceiling as a regression problem by applying deep learning algorithms. 

Additionally, meteorological forecasting of visibility and ceilings using AI-based models 

are a first of its kind for these study sites in Fiji. Finally, the development of this data 

driven model demonstrates the capacity of this methodology to be extended to any 

study location with similar availability of data for both investigative research and 

practical usage in the aviation industry. 

 

5.2. Contributions and Novelty 

This study has various distinctive aspects which justifies it as a novel research 

work. Firstly, this study has used aviation meteorological data from Fiji, and this 

dataset has not been used in any previous research in academic literature to the best 

of the author’s knowledge. Furthermore, the meteorological variable chosen to be 

forecast, visibility and total low cloud, have limited studies carried out in terms of have 

AI-based deep learning models developed for forecasting it as noted in the literature 

review. Certainly, these two variables have not been used in any previous research 

work for the chosen study sites. Additionally, this study proposes a new hybrid IIS-

LSTM integrated model which is one of a kind. Though the LSTM standalone model 

has been recommended as an effective and reliable forecasting algorithm for visibility 

and ceiling, the IIS algorithm has mostly been used in streamflow forecasting studies. 

Therefore, this study has successfully employed the IIS algorithm in using 

meteorological dataset to form the feature selection component of the overall visibility 

and total low cloud cover forecasting model. Thus, the overall forecast of the two 

meteorological target variables using this methodology with applications to the aviation 

industry makes this work original and unique. 

This research work encompasses a multidisciplinary approach by applying 

artificial intelligence methods on meteorological data specific for use in the aviation 
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industry. The inferences drawn from the results are applied practically for the aviation 

industry. Although this work is original and unique, the core artificial intelligence 

techniques utilised are an extension of previous studied and established work in this 

field. Considering the core objectives of this study focused on forecasting 

meteorological visibility and ceiling parameter as a regression problem using aviation 

meteorological data from the two study sites in Fiji, this study made the following 

contributions in this field of research: 

• It analysed hourly aviation meteorological observation data for Nadi 

International Airport and Nausori International Airports and found key statistics 

of the dataset. In particular, the statistics for the target variables visibility and 

total low cloud cover were used to design a novel forecasting model using 

artificial intelligence methods. 

• This study designed a hybrid IIS-LSTM integrated model which was made up 

of two major components, the IIS algorithm which is an effective algorithm to 

select the optimum features from the range of predictor variables and their 

significant lags, and the deep learning LSTM algorithm, which has proven to 

have superior capability for time-series forecasting. 

• The study also tested the robustness of the proposed hybrid IIS-LSTM 

integrated model to forecast visibility and total low cloud cover. This was 

demonstrated when the performance of the IIS-LSTM model was evaluated 

using performance evaluation statistics of agreement and error. The proposed 

model was further compared to four benchmark models (TabNet, LSTM, ANN, 

RF). The results showed that objective model had the highest agreement 

metrics (r, WI, ENS) while also having the least error (RMSE, MAE) compared 

to the benchmark models and thus proved its superiority over them. 

• When the results are analysed, this research study makes a significant 

contribution to knowledge in the scope of visibility forecasts as a regression 

problem using deep learning models, and a first of any kind of AI-based 

forecasting study of visibility and total low cloud cover predictions for the chosen 

study sites. It has described the key features that are significant in affecting 

visibility and ceiling forecasts for each study site and has provided a benchmark 

on the accuracy of a deep learning models for visibility and ceiling forecasts at 

these two study sites for any future research work. 
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• The development of this objective model using only hourly aviation 

meteorological observation data indicates the capacity of this method to be 

extended beyond the scope of this study region to any station with similar data. 

This study has therefore provided a foundation for implementing this proposed 

model for further investigative research as well as for its practical usage as an 

additional tool in the aviation industry. 

 

5.3. Limitations of the Study and Recommendations for Future Work 

Although the objectives of this research were met, there remain some 

limitations that could be the subject of future studies. The specific limitations linked 

with addressing the objectives are discussed in the journal paper presented in Chapter 

5. Further, only the general limitations associated with this overall research work are 

discussed here. Firstly, only two different sites were used to compare and contrast the 

data-driven models built in this study. This constraint was due to the scope of this 

research being limited to the international airports operating 24 hours a day. The other 

sites not located within the vicinity of, or away from the airport were not considered 

due to not meeting this criterion or not having data recorded 24 hours at these stations. 

Therefore, this study was limited in its ability to rigorously compare the model for the 

2 study sites with multiple other sites in Fiji. This could be a potential for future research 

work when the scope is expanded or when the required data becomes available. 

The study also considered creating a hybrid model using one feature selection 

technique (IIS) and one DL model (LSTM). This model was then compared to 

standalone benchmark DL and ML models only. It is recommended that in future, other 

feature selection techniques be explored, many of which have been outlined and 

discussed thoroughly by Pudjihartono et al. (2022). Additionally, more efficient 

architectures for deep learning models are being designed, as have been done with 

the introduction of convolutional layers and then attention layers in the recent past. It 

is thus beneficial to consider the rapid innovations being made to deep learning 

architectures to make significant improvements and apply efficiency techniques for 

further research and experimental gains (Menghani, 2023). Furthermore, model 

optimization techniques such as Hyperband and Bayesian Optimization, which have 

shown good performance in recent studies (Joseph et al., 2022; Wang et al., 2018), 

could be explored further to improve the efficiency in model development.  
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It is further recommended that in-depth investigative research should be done 

to discuss the process of taking this proposed model and similar ones in future from 

the realms of research to full practical implementation into the aviation industry. The 

main challenge would no doubt be the hurdles in airline, air traffic service operator, 

state and international regulatory standards, which would need to be met before is 

accepted for use. There could also be niches in the aviation sector that may not be 

governed under as stringent standards where this tool may be examined, such private 

operators of airport and airlines or remote location with implementation in situ due to 

online connectively challenges. Furthermore, this the application of implementing the 

proposed model in road and marine transportation applications is also recommended 

to be explored. 

Finally, this research project has shown that by using from the two study sites 

in Fiji, a novel hybrid deep learning forecasting model has been developed which can 

be used practically in the aviation industry. This was done without any prior research 

having explored this data in research work for forecasting models which limited the 

literature this study could refer to while designing methodologies and comparing the 

results of this research. However, this research study has laid the foundation for future 

research in data-driven meteorological forecasting models for Fiji, particularly for 

visibility and ceiling forecasting using aeronautical meteorological data. 
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