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ABSTRACT 
 

Endangered Brigalow (Acacia harpophylla F. Muell. ex Benth.) dominated 

ecosystems have been extensively cleared and modified for agricultural production 

throughout the Southern Brigalow Belt Bioregion of southern Queensland, Australia.  

Intensification of the agriculture in the region has resulted in significant 

fragmentation and disturbance of natural vegetation remnants.  Rehabilitating 

previously cleared vegetation (regrowth) is an important conservation alternative 

where there is inadequate cover of intact remnants, that aims to ensure the 

persistence of Brigalow communities throughout highly modified landscapes.  While 

legislation is now in place to restrict clearing of remnant and Brigalow regrowth in 

southern Queensland, little is known of the functioning and dynamics of regrowth 

communities in comparison to remnant vegetation.  This research investigates 

patterns in floristic composition, stand structure and microenvironment of Brigalow 

remnants and a number of regrowth communities differing in time since clearing. 

 

Thirty-eight sites in the Darling Downs region, southern Queensland, were sampled 

encompassing Brigalow remnant (two treatments: ‗Remnant‘ (sites with an absence 

of clearing but continue to experience small disturbances such as grazing) and 

‗Reserve‘ (sites with an absence of disturbance within state and national reserves)) 

and different aged Brigalow regrowth (<20 years; 20 – 30 years; 30 – 40 years; >40 

years).  Floristic composition and projected cover of strata were recorded in a 500m
2
 

quadrat at each site.  Patch and surrounding landscape context (spatial) 

environmental data were also determined for each site.  Soil chemical data (including 

soil, pH, organic content, cation exchange capacity and phosphorus and nitrogen 

concentrations) were determined from bulked soil samples.  Landscape spatial data 
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was derived from remotely sensed imagery.  Un-weighted paired group arithmetic 

averaging (UPGMA), non-metric multidimensional scaling (nMDS) ordination, 

analysis of similarity (ANOSIM) and analysis of variance (ANOVA) were used to 

identify patterns in composition, functional group richness and stand structure 

between remnant and regrowth sites.  Canonical Correspondence Analysis (CCA), 

Kruskall Wallis correlations and linear step-wise regression were used to identify 

potential environmental drivers of vegetation responses (Appendix I). 

 

Multivariate analyses (UPGMA and nMDS) showed general gradients from recent 

regrowth through older stages of regrowth to remnant and reserve sites for both 

floristic composition and stand structure data.  There were no differences between 

remnant and old regrowth (>40 years) in terms of stand structure (ANOSIM, p<0.05) 

and total species richness (ANOVA, p<0.05), although differences were evident 

amongst other treatments.  Remnant and Reserve sites were compositionally different 

to older regrowth (ANOSIM, p<0.05).  No significant invasion of exotic species was 

observed within any treatment type (ANOVA, p>0.05). 

 

These results suggest that stand structure in regrowth vegetation returns to that 

similar to remnant vegetation within 40 years of initial clearing, predominantly 

driven by the development of the overstorey trees and woody understorey species.  

However, Brigalow remnant and old regrowth (>40y) remain different in terms of 

floristic composition.  The significance of this finding is discussed in relation to 

Alternate Stable State Theory. 
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The proportion of surrounding vegetation and landuse type, as well as patch factors, 

such as grazing intensity and soil properties, were highly correlated (CCA) with 

patterns in composition and stand structure observed across the Brigalow treatments.  

Regrowth sites exhibited higher proportion of regrowth vegetation as well as 

cropping and grazing in the surrounding landscape compared to remnant sites.  Soil 

nutrients, such as phosphorus, potassium and cation exchange capacity, and stem 

density and grazing intensity were also higher within regrowth sites.  These findings 

suggest an environmental influence may be responsible for the differential patterns in 

composition observed between remnant and regrowth communities in the region. 

 

It is concluded that while structure of Brigalow regrowth returns to that of remnant 

Brigalow, the distinct floristic species composition of older regrowth may indicate a 

longer time period is needed for equivalence or a possible alternate stable state in 

these highly modified agricultural landscapes.  These results are significant for the 

management of highly fragmented communities in production landscapes, where 

management actions may need to be directed towards a more active approach 

towards regeneration.  To ensure the long-term persistence of Brigalow communities, 

further investigation of the development trajectory of old Brigalow regrowth is 

required.  
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GLOSSARY 
Agro-ecosystem – A natural ecosystem or landscape that has been modified to incorporate 
agricultural production, supporting both cropping and livestock grazing as well as natural 
vegetation and wildlife. 

Disturbance – A change in the physical state, composition or processes that operate within 
a specific ecosystem.  

Ecosystem Functioning – The collective interactions and processes that operate between 
biological and physical components within an ecosystem  

Ecosystem Health – A characteristic of complex natural environments relating to the 
condition and state of individual species, populations and their interactions. 

Ecosystem Integrity – see ecosystem health 

Ecosystem Processes – Physical, chemical and biological reactions which take place such as 
decomposition and primary production that are essential for the cycling and transfer of 
energy within a system.  

Ecosystem Properties – Specific component or components within an ecosystem that are 
responsible for maintaining and/or creating particular physical characteristics or processes.   

Ecosystem Services – The direct and indirect human benefits associated with ecosystem 
attributes and processes.   

Exotic or Introduced Species – Species not considered endemic or native to an area and 
have been deliberately of accidently introduced by humans.  

Fragmentation – The division or break up of a larger intact patch of vegetation increasing 
isolation. 

High Value Regrowth – Areas of regrowth vegetation of an endangered, of concern,  least 
concern Regional Ecosystem or has not been cleared since 31 December 1989 as recognised 
under the Vegetation Management and Other Legislation Amendment Act 2009.   

Regrowth Vegetation – Areas of natural vegetation that have experienced some form of 
mechanical disturbance of clearing and have since regenerated to some degree, as 
recognised by Queensland’s Regrowth Vegetation Mapping 2006.   

Remnant Vegetation – Natural ecosystems that have no, or very little, evidence of clearing 
as recognised by Queensland’s Regional Ecosystem Mapping 2003. 

Resilience – A term relating to the ability of an ecosystem to maintain ecosystem 
functioning and persist following a physical disturbance. 
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Chapter 1: General Introduction and Literature 
Review 

 

1.1 Overview 

 

Humans have been the dominant drivers of widespread landscape transformation and 

modification, affecting a significant proportion of Earth‘s ecosystems at a variety of 

scales (Vitousek et al., 1997a; Vitousek et al., 1997b; Chapin et al., 2000; Seabrook 

et al., 2006).  The influence of anthropogenic activities on the natural environment 

plays a critical role in controlling the type and rate of change these systems 

experience, particularly within production landscapes (Tscharntke et al., 2005; 

Hobbs et al., 2006).  The expansion and intensification of agricultural production has 

resulted in the modification and fragmentation of many natural ecosystems, affecting 

ecological processes, ecosystem functioning and ultimately, the ability for an 

ecosystem to persist in the landscape (Vitousek et al., 1997b; Altieri, 1999).   

 

In terrestrial landscapes, the fragmentation of natural habitat, creating patches of 

vegetation with reduced connectivity, coupled with additional forms of land 

degradation, impacts on biodiversity (Saunders et al., 1991; Walker et al., 1999).  

The management practices within agroecosystems continue to further degrade the 

condition of remnant vegetation in the landscape (Prober and Smith, 2009).  The 

application of fertilisers and pesticides to increase production yields, impacts both 

on- and off-site communities, altering soil structure, composition and disrupting soil 

biota interactions important in nutrient cycling (Vitousek et al., 1997a; Barrios, 

2007).  Compaction of soil, erosion and salinity associated with livestock grazing 

also inhibits healthy root growth and water infiltration, affecting the successful 
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recruitment and survival of plant species (Yates et al., 2000).  The continued 

fragmentation of natural ecosystems for agricultural expansion (Prober and Smith, 

2009) has resulted in increased levels of isolation between remnant patches in the 

landscape, affecting natural disturbance regimes, ecological processes and 

introducing a variety of new perturbations (Saunders et al., 1991; Walker and Salt, 

2006). 

 

The amount of physical disturbance an ecosystem can sustain and continue to persist 

within a landscape, known as ecological resilience, is important within ecological 

conservation (Gunderson, 2000; Walker and Salt, 2006). Retaining ecosystem 

resilience assists in maintaining ecological biodiversity and also social and economic 

components, such as goods and services, within a landscape.  However, as resilience 

declines, it can take progressively smaller disturbances to push an ecosystem into a 

different state, also known as an alternate state, differing in structure and ecosystem 

functioning (Scheffer et al., 2001; Walker et al., 2009).  The recognition of 

alternative equilibrium states and what constitutes a ―desirable‖ state enables 

conservation managers to identify areas requiring restoration in order to maintain 

some level of heterogeneity and biodiversity across the landscape (Walker and Salt, 

2006).   

 

Significant habitat loss worldwide, associated with increased agricultural and urban 

development and management intensity, has reduced the extent and isolation of 

natural remnant ecosystems and increased areas of regrowth and degraded vegetation 

(Brown and Lugo, 1990; Fahrig, 2003).  Growing concerns have arisen in relation to 

the persistence and resilience of natural ecosystems within these fragmented 
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landscapes to withstand continued human disturbances (Walker, 1995; Young, 

2000).   

 

The recognition of global environmental threats, such as climate change, has 

suggested a potential shift in the perception of production management, from one 

predominantly focussed on optimising production efficiency and output, opting for 

one of improved sustainable practices and management of resilience in uncertain 

environments (Fahrig, 2001; Ludwig et al., 2001; Folke et al., 2004; Barrios, 2007).  

With insufficient remnant vegetation remaining in many landscapes to achieve long 

term conservation targets, managers have acknowledged that some form of 

restoration is required (Young, 2000; Bowen et al., 2007).    

 

Australian woodlands have been greatly affected by agricultural practices despite a 

relatively short history of European settlement, with many communities experiencing 

issues such as crown dieback and woody thickening (Fensham et al., 2005; 

Lindenmayer and Fischer, 2007).  In order to maintain long-term biodiversity and 

ensure the persistence of many endangered ecosystems within highly fragmented 

landscapes, protection and passive restoration of degraded and regrowth vegetation, 

areas previously cleared of vegetation, has been employed along with the protection 

of remnant vegetation (McAlpine et al., 2002a).  However, the condition and status 

of regrowth patches, in comparison to remnant vegetation, remains relatively 

unknown and pose as a vital component in the future persistence of many threatened 

and endangered communities (Bowen et al., 2007).   

 

This study investigates the floristic composition and stand structure of Brigalow 
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remnant and regrowth communities in South-east Queensland in order to identify 

patterns in ecosystem function and vegetation response to disturbance regimes and 

the landscape context.  This study will address the following general questions: 

 

- Are there differences in floristic composition and stand structure between 

remnant and regrowth forests of different aged structure? 

 

- Are environmental habitat factors, surrounding land-use and landscape 

connectivity factors correlated with the stand structure and composition of 

Brigalow communities?   

 

1.2 Biodiversity and Ecosystem Processes 

Land use practices, resulting in widespread habitat clearing, fragmentation and 

overexploitation of natural resources, has threatened global biological diversity and 

disrupted essential functioning and processes within many ecosystems, resulting in 

the extinction and endangerment of thousands of species (Chapin et al., 1997; 

Chapin et al., 2000; Hobbs et al., 2006).  Ecosystem function refers to the habitat, 

biological or system properties or the processes that occur within ecosystems 

(Costanza et al., 1997).  Ecosystem processes, such as productivity and plant 

recruitment, are important for determining the rates of nutrient cycling and energy 

transformations through trophic interactions, essential for continued persistence and 

preservation of ecosystem health, also known as ecosystem integrity (Woodley et al., 

1993; Schulze and Mooney, 1994).  Diversity within ecosystem functioning is 

fundamental in increasing the efficiency of resource acquisition and accommodating 

the requirements of species that have strong ecosystem effects (Chapin et al., 1997).  
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Ecosystem functioning is also invariably linked to the allocation of ecosystem 

services (Costanza et al., 1997).  The regulation of environmental variables, such as 

climate and disease, and supporting services, comprising soil formation and fertility, 

are important, particularly within agricultural landscapes (Millennium Ecosystem 

Assessment, 2005; Costanza et al., 2007).   

 

The degree to which changes in ecosystem functioning affect ecosystem properties, 

particularly resilience and the magnitude of ecosystem change following disturbance, 

known as resistance, has become increasingly relevant as anthropogenic activities 

intensify across landscapes (Tilman et al., 1997; Loreau et al., 2001; Sugden, 2001).  

The disruption of key processes, such as nutrient cycling, within a system can result 

in the presence of unwanted ecosystem effects, threatening both individual species 

and functional groups within a landscape (Walker, 1992; Sinclair and Byrom, 2006).  

Negative impacts to diversity and ecosystem processes on a local scale can also have 

flow-on effects, impacting surrounding areas, initiating reduced patch health and 

widespread degradation (Chapin et al., 1997; Sinclair and Byrom, 2006).  The ability 

of an ecosystem to absorb these effects and sustain ecological processes is vital in the 

continued functioning of the system in the landscape.  

 

1.2.1 Ecological Resilience and Alternative Stable States 

Ecological resilience is an emergent property of ecosystems, highly influenced by the 

self-organisation of an ecosystem over time (Gunderson, 2000).  Resilience is 

defined as a measure of an ecosystems‘ ability to absorb disturbances in order to 

persist within the landscape and maintain essentially the same function, structure and 

composition (Walker et al., 2004a).  Resilience is an important concept within land 
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management, ecosystem modelling and conservation (DeAngelis, 1980; Walker et 

al., 1999).  All systems experience some form of gradual change over time, such as 

climate fluctuations and nutrient loading (Scheffer et al., 2001).  However, severe 

shock events and disturbances, both natural and anthropogenic, can cause notable 

changes in structural or compositional characteristics, ultimately shifting the 

equilibrium of the system towards an alternate stable state (Scheffer et al., 2001).   

 

A succinct definition of a ―stable state‖ is difficult to determine as each system 

functions differently from others (Ives and Carpenter, 2007).  The stability of an 

ecosystem can be dependent on numerous factors with no easily definable, universal 

description (Ives and Carpenter, 2007).  Similarly, ecosystems are never ―stable‖ in 

the sense that they do not change and stay at a fixed point in time (Scheffer and 

Carpenter, 2003).  Stability is best described as populations fluctuating around some 

trend or stable average over time (Scheffer and Carpenter, 2003).  The Intermediate 

Disturbance Hypothesis (Connell, 1978), for example, is based on the notion that at 

intermediate levels of disturbance, the diversity of species within an ecosystem 

remains at its highest (Molino and Sabatier, 2001).  The continued persistence of 

these perturbations works as a mechanism leading to relatively stable species 

coexistence for long periods (Roxburgh et al., 2004).  What is categorised as 

―intermediate‖ disturbance can be difficult to identify and may be different from 

system to system, relying on dominant species occurrences and discrete disturbance 

events (Hobbs and Huenneke, 1992).     

 

Disturbance plays an important role in ecosystem functioning, shaping the physical 

and behavioural adaptations of individual species (Hobbs & Huenneke, 1992).  A 
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natural disturbance can be described as an event or series of events that disrupt 

existing relationships between organisms and the environment (Gunderson and 

Holling, 2002).  The nature of disturbance regimes produces a mosaic of spatial and 

temporal variation, contributing to the creation of a heterogenous landscape 

(Moloney and Levin, 1996).   

 

There are a variety of dimensions to disturbance regimes that influence the response 

observed within a community.  Factors such as magnitude and intensity of 

disturbances are vital in determining the disruption incurred and the time a system 

may require in returning to a particular equilibrium (Palmer et al., 1997).  Other 

factors, including frequency and duration in respect to spatial and temporal scales, 

are also crucial determinants in the regeneration process of a system (Moloney and 

Levin, 1996; Palmer et al., 1997).   

 

Ecological resilience is centred on the assumption of multiple or alternate stable 

states of a system (Peterson, 1998; Gunderson, 2000).  This term also identifies the 

level or amount of perturbation a system can withstand before a shift occurs within 

the system‘s self-organisation (Gunderson, 2000).  Ecosystem thresholds are 

particular levels of magnitude of ecosystem processes or disturbance which if 

exceeded can mark sudden changes in feedbacks and responding state variables 

(Folke et al., 2004).  Shocks or disturbances can drive a system beyond its ecological 

thresholds, causing a divergence in the community trajectory resulting in one of 

many potential alternate steady states, differing in ecosystem structure and function 

(Gunderson, 2000; Walker and Salt, 2006). 
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The recognition of alternate stable states also acknowledges that in some instances, 

disturbance can shift the trajectory of a successional community, resulting in a 

different stable state compared with that prior to disturbance (Beisner et al., 2003).  

There are numerous mechanisms that dictate the stable state of an ecosystem, 

including the combined densities and interactions of biotic and abiotic components 

(Ives and Carpenter, 2007).  The principles of Alternate Stable State Theory argue 

that the state of a community is dependent on a group of dynamic state variables, 

such as population densities and species composition, that are determined by a set of 

parameters, including migration, emigration birth and death rates (Beisner et al., 

2003).  The shift between stable states can occur via two pathways, either a change in 

the parameters, such as birth and death rates, that influence the state variables or a 

direct change in state variables resulting from a large disturbance (Beisner et al., 

2003).  This relationship is best described through the threshold models, or ―Ball in 

Cup‖ diagrams (Figure 1.1).  The shift between stable states can occur via two 

pathways (Figure 1.1), either a change in the parameters (Trajectory b), such as birth 

and death rates, that influence the state variables, or a direct change in state variables 

resulting from a large disturbance (Trajectory a) (Beisner et al., 2003).     
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Adapted from Beisner et al. (2003) 

Figure 1.1. Ball in Cup Models identifying the two types of disturbance that can result 
in a change of stable states.  Small movements away from the original state may occur but 
be insufficient to result in an alternate state, however when a large disturbance occurs, two 

trajectories may potentially occur: Trajectory (a) where changes to ecosystem variables, 
such as species composition, push the state past its threshold point(s) forcing the system 

into an alternate state; or Trajectory (b) where a change to the parameters causes the 
system to progress towards a different state. 

 

 

Changes in community stable states have been observed within a number of studies 

encompassing both terrestrial and marine biomes (e.g. (Carpenter et al., 1999; Van 

Langevelde et al., 2003; Ibelings et al., 2007).  Cropp & Gabric (2002) identified a 

tendency of various frequently disturbed aquatic ecosystems to develop towards a 

state that optimizes resilience.  This progression was dependent on numerous 

imposing factors from the surrounding environment, including nutrient and resource 

availability, as well as the genetic potential of biological inhabitants (Cropp and 
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Gabric, 2002).  Similarly, Prober et al. (2008) identified two potential alternate stable 

states within temperate grassy woodlands in south-eastern Australia.  Disturbance 

from direct grazing and surrounding agricultural management was found to alter 

productivity within these communities replacing native grasses, dominated by 

Themeda australis, to a community dominated by exotic annuals (Prober et al., 

2008).    

 

Determining the resilience and state of a particular system can be difficult, typically 

dependent on the landscape context and change over time (Carpenter et al., 2005).  

Directly assessing resilience involves the recognition of ecosystem thresholds 

whereby exceeding these boundaries, forces the community into an alternate state 

(Carpenter et al., 2005).  However, specific threshold parameters are rarely identified 

prior to a crossing of these thresholds, resulting in changes to community 

components associated with a shift to an alternate stable state (Carpenter et al., 1999; 

Peterson et al., 2003).  Within shallow lake ecosystems, for instance, clear-water 

regimes are dependent on vast beds of aquatic plants to stabilise sediments and 

reduce the cycling of phosphorus (Folke et al., 2004).  An increase in phosphorus 

inputs can result in eutrophication and algal blooms, decreasing the abundance of 

aquatic plants and increasing turbidity (Folke et al., 2004).  While the reduction of 

phosphorus levels can reverse some of the damages imposed, increased turbidity can 

continue to inhibit the development of benthic vegetation (Folke et al., 2004). 

 

Positive feedback controls between the consumers in an ecosystem and limiting 

resources are considered to be a principle factor underlying catastrophic ecosystem 

shifts (Rietkerk et al., 2009).  Identifying clear and effective factors, or indicators, 
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within a particular ecosystem is crucial within studies evaluating ecological 

resilience (Walker & Salt, 2006; Rietkerk et al., 2009). 

 

1.2.2 Resilience Surrogates 
 

The recognition of alternate stable states can be determined using resilience 

surrogates, or indicators (Carpenter et al., 2005).  In contrast to threshold 

identification, resilience surrogates indirectly assess ecosystem components and 

function, and attempt to infer the relative resilience of a system (Carpenter et al., 

2005; Walker et al., 2009).  Measuring ecosystem factors, such as functional species 

diversity and soil properties, provide an indication of the ecosystem functioning and 

response to change, that can be consequently linked with a system‘s persistence 

within a landscape (Walker et al., 1999).  Relationships between surrogates and 

resilience can be highly dynamic and complex, suggesting the use of a suite of 

surrogates to measure general resilience of a system (Carpenter et al., 2005).   

 

The successful implementation of surrogates is dependent on a clear link with the 

theoretical concepts of resilience (Carpenter et al., 2005).  Walker (1999), for 

instance, identifies functional group diversity in relation to responses to change and 

functional contribution, and that they are part of the basis for maintaining ecosystem 

resilience. The functional group diversity and the response in a system can be vital to 

managing ecosystems (Carpenter et al., 2005).  In general, ecosystems consist of 

dominant species, in high abundance, and minor species, occupying the tail-end of 

the distribution (Walker et al., 1999).  The tail-end species represent a small 

proportion of plant biomass and cover and, while they may be similar to dominant 

species in relation to contributing to ecosystem function, they can differ in tolerance 
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and response to disturbances (Walker et al., 1999).  The more variety of species 

response types, or response diversity, the wider the range of conditions that can 

sustain functioning and increase the capacity of a community to absorb perturbations 

(Walker and Salt, 2006).  As a result, the abundance of minor species represent a 

―reservoir of resilience‖ that maintains the persistence of natural function in light of 

continued or future disturbance and change (Walker et al., 1999). 

 

Other surrogates, such as sampling biomass for ecosystem function and carbon 

storage and assessing community structure, can also be incorporated to assess the 

different aspects of a system‘s resilience and determine the relative state of an 

ecosystem (Carpenter et al., 2005; Walker et al., 2009).  Social-ecological systems is 

a comprehensive approach developed to assess general resilience, incorporating the 

social, economic and ecological dimensions of a system, assessing ability to continue 

to provide goods and services (Walker et al., 2009).  However, in the context of this 

study only the ecological aspects will be assessed.  

   

1.2.2 Measuring Resilience and Shifts in Trajectory 
 

The ability to measure general ecological resilience of agroecosystems is important 

in maintaining both biodiversity and production values across the landscape (Walker 

et al., 2009).  However, the intensification of agriculture in recent years has reduced 

biodiversity favouring a few select pastoral and cropping species, limiting the variety 

of species responses to disturbance and ultimately, the ecosystems‘ resilience in 

landscape (Altieri, 1999; Fischer et al., 2006).  Agricultural practices, including 

grazing and clearing regimes, have significantly affected the stability of many natural 

ecosystems (Anderies et al., 2002).  Van de Koppel et al., (1997) found at 
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intermediate levels of grazing, multiple state trajectories are possible depending on 

continued grazing pressures and soil water concentrations.  Herbivory saturation past 

a certain threshold can result in increased soil water evaporation, leading to a 

catastrophic shift towards a barren state (Van De Koppel et al., 1997).   

 

Similarly, van Auken (2000), found increased grazing and a reduction in fire 

frequency to be significant drivers in determining persistent states in semi-arid 

grasslands of North America.  The grasslands are dominated by a variety of native 

grass species, such as Andropogon gerardii (Bunch Grass) and Sorghastrum nutans 

(Indian Grass); however, following intense grazing and a reduction in fire 

occurrences, grass cover had significantly declined. As a result of the reduction in 

grass cover, woody encroachment by Prosopis sp. (Mesquite) and Larrea tridentata 

(Creosotebush) had occurred, ultimately transforming the landscape into shrublands 

(Van Auken, 2000).       

 

The stability domain of a community represents the magnitude of a disturbance a 

system can endure before a shift in stable state occurs (Holling, 1973 cited in Folke 

et al., 2004).   The adaptive capacity consists of the ecosystem properties that reflect 

the alteration in the stability domain of a landscape (Gunderson, 2000).  Prior to 

human expansion and development, properties that determined a system‘s capacity to 

change, influenced its stability at a relatively slow rate (Gunderson, 2000).  Over 

time, anthropogenic activities have reduced the environments‘ capacity to manage 

change, causing unpredictable ecosystem shifts and changes in the ability to generate 

ecosystem services (Folke et al., 2004).  The shifts observed within ecosystems 

usually correspond to significant catastrophic changes in community structure and 



14 

 

function and failure to identify these events can have detrimental consequences, 

particularly in relation to restoration costs (Carpenter et al., 1999; Beisner et al., 

2003; Peterson et al., 2003).   

 

Essential for the management for ecosystem resilience is the detection of drivers 

influencing regime shifts, identifying where potentials thresholds lie and maintaining 

particular aspects of a system that safeguard resilience (Walker and Salt, 2006).  

While species within functional groups are responsible for specific ecosystem 

functions, individual species responses to disturbances can differ (Walker & Salt, 

2006).  Therefore, the more variety of species response types, or response diversity, 

the wider the range of conditions that can sustain functioning and increase the 

capacity of a group to absorb perturbations (Walker and Salt, 2006).  However, the 

intensification of agriculture in recent years has reduced biodiversity, favouring a 

few select pastoral and cropping species, ultimately limiting the ecosystems‘ 

resilience in landscape. 

 

1.3 Anthropogenic Driven Disturbances in Production 
Landscapes 

 

The methods of modern agriculture have resulted in the extensive simplification of 

vast areas of land, substituting native plant and animal species for a small number of 

cultivated monocultures and domestic livestock (Altieri, 1999; Tilman, 1999).  While 

the expansion of new agricultural land, both in Australia and globally, has decreased 

in recent years, the management within pre-existing production landscape has 

intensified in order to meet the demands of the world‘s growing population (Tilman, 

1999).  Tilman (1999b) calculated an approximate doubling in cereal production 
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(rice, wheat, corn and barley) based on statistics from the Food and Agriculture 

Organisation between 1961 and 1996.  However, the need to meet food and fibre 

requirements of the human population has come at the expense of natural ecosystem 

functioning, altering ecological processes and biodiversity components (Tilman, 

1999; Lunt and Spooner, 2005).  The clearing and fragmentation of land has been 

one of the most catastrophic and widespread changes within landscapes and 

continues to impact ecosystem function and species viability (Vitousek et al., 1997b) 

 

1.3.1 Fragmentation in Production Landscapes of Australia 
 

Fragmentation has had a significant impact on natural landscapes and continues to be 

a key threat to biodiversity (Saunders et al., 1991).  Fragmentation is the process of 

dividing and segmenting the landscape, creating patches smaller in size than that of 

the contiguous tract of habitat (Bender et al., 1998; Ross et al., 2002).  This process 

creates islands of vegetation in a differing, often inhospitable matrix, affecting the 

connectivity and ecological functioning throughout the landscape (Saunders et al., 

1991; Prober and Thiele, 1995).   

 

Agricultural development within natural landscapes is a chief cause of habitat loss 

and fragmentation, with current expansion and intensification contributing to further 

division and hardening of the matrix (Spooner et al., 2004a).  Despite continued 

clearing in Australia, there has been an estimated average decrease of 1/3 (182 

600ha) in clearing rates since 1990 (Change, 2009).  However, the substantial history 

of land cover change in Australia has resulted in many landscapes significantly 

fragmented, with many containing less than 10% of original (pre-European) 

vegetation remaining (McIntyre and Hobbs, 1999).  For example, Fensham (1998) 
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estimates grasslands dominated by Queensland Bluegrass (Dichantheum sericeum) 

on the Darling Downs in Queensland have been reduced to almost 1% of its original 

area.  Woodland ecosystems throughout Australia have also been heavily cleared in 

order to accommodate various forms of agriculture and remains one of the greatest 

threats to biodiversity (Wilson et al., 2002).  Distinguishable from forests by their 

relative height, wide spacing and low projected foliage cover (10 – 30%), woodland 

areas have been widely utilised for their fertile soils and grazing potential 

(Lindenmayer et al., 2005).  In Victoria, for example, Plains Grassy Woodlands and 

Wimmera Mallee Woodlands were once some of the most common ecosystem types 

found (Lunt and Bennett, 2000).  However, following European settlement 

significant land cover change has resulted in less than 3% remaining in state‘s 

northern and western plains (Lunt and Bennett, 2000).  Similarly, Poplar Box 

(Eucalyptus populnea) and Mountain Coolibah (E. orgadophila) have been reduced 

in some landscapes to 6% and 28% respectively (Fensham, 1998).  Within these 

highly fragmented landscapes, factors such as patch geometry and position, become 

important in maintaining habitat health, quality and long term persistence (Saunders 

et al., 1991; McIntyre and Hobbs, 1999). 

 

The process of fragmentation affects habitats over a variety of spatial scales and 

biological organisation, altering species assemblages and ecological processes 

(Lindenmayer and Fischer, 2007).  Fragmentation not only disrupts natural 

disturbance patterns within ecosystems, but also introduces novel disturbance 

regimes associated with activities in the surrounding matrix (Turner, 1989).  

Saunders et al. (1991) recognises two primary effects of fragmentation that can 

influence remnant patches in the landscape: changes to microclimate and isolation.  
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Changes to microclimate can occur due to increased infiltration of radiation, wind 

and altered hydrological cycles, resulting from the removal or modification of 

vegetation in the surrounding matrix (Saunders et al., 1991).  The isolation of 

remnants also occurs, depending on the degree of modification in the matrix and the 

distance from surrounding patches (Saunders et al., 1991).  Within production 

landscapes, the extent to which these physical and biogeographical changes occur 

within a community is influenced by the magnitude and interaction of human 

disturbances, both within an ecosystem and from the surrounding matrix (Saunders et 

al., 1991). 

 

Exogenous disturbance, to varying intensities, associated with agricultural practices, 

such as livestock grazing and distribution of fertilisers and other chemicals, can 

degrade and modify remaining habitat within fragmented landscapes (Prober and 

Thiele, 1995).  Livestock grazing, for example, has had a significant impact within 

woodland communities, affecting floral and faunal assemblages and ecosystem 

functioning ((Yates et al., 2000).  Studies have indicated the presence of livestock 

grazing can lead to changes in community organization and alter understorey 

structure and composition of remaining vegetation (Yates et al., 2000; Jansen and 

Robertson, 2001).  As grazing pressure increases, changes in vegetation 

characteristics can occur, usually decreasing the abundance of native plants and 

supporting the establishment of exotic species (Prober and Thiele, 1995; Yates et al., 

2000).  In severely exploited landscapes, dryland salinity can also eventuate, 

reducing the ability of plants to survive and establish (Freudenberger and Brooker, 

2004).  Lechmere-Oertal et al. (2005), for instance, examined succulent Spekboom 

thickets in South Africa and found reduced soil fertility, water infiltration and 
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retention as a result of unsustainable grazing practices.  Overgrazing, resulted in a 

transition from a predominantly dense perennial shrub layer to an ephemeral grass 

and forb layer (Lechmere-Oertel et al., 2005).  This combination of impacts resulted 

in a relatively infertile state, considered dysfunctional in comparison to similar 

ecosystems in the surrounding area (Lechmere-Oertel et al., 2005).  The introduction 

of agricultural systems has also altered fire regimes in many woodland ecosystems 

affecting species abundance and inhibiting reproductive cycles of numerous native 

species (Attiwill & Wilson, 2004). 

 

The continued intensification of agricultural lands has introduced a variety of novel 

perturbations to naturally functioning ecosystems.  Technological advances enabling 

increased yields has been in part due to the increased use of fertilizers, high in 

phosphorus and nitrogen, restoring fertility and nutrients to degraded and 

depauperate soils (Tilman, 1999).  Soil biota and their associated interactions are 

critical in nutrient cycling, pest control and the regulation of soil structure, necessary 

in the establishment and maintenance of entire ecosystem functioning (Barrios, 

2007).  Increases in soil nitrogen can result in a variety of in situ and ex situ effects.  

The conversion of nitrogen into nitrates and nitrites by soil bacteria can result in 

water pollution via leaching into underground water bodies (Tilman, 1999).    Excess 

nitrogen and phosphorus accumulation in surrounding waterways can cause water 

acidification, eurotrophication and hypoxia in downstream communities (Vitousek et 

al., 1997a; Tilman, 1999).  De-nitrification also produces nitrous oxide, a greenhouse 

gas, impacting atmospheric concentrations and ultimately influencing the global 

carbon cycle (Vitousek et al., 1997a). 
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Other local impacts of agricultural practices can trigger a cascade of environmental 

problems, whereby one factor, such as erosion, can result in further degradation, such 

as nutrient deficiency and recruitment of vegetation, reducing the ability of species to 

re-establish themselves (Asner et al., 2004).  Intensive grazing, for example, can 

significantly reduce the vegetative cover which can result in erosion of the topsoil by 

wind and rain (Asner et al., 2004).  In the last 50 years, loss of topsoil has doubled, 

occurring at a rate of 760 million tonnes yr
-1

 worldwide (Walker and Salt, 2006).  

Continued erosion of topsoil can also result in increased desertification and 

salinisation (Matson et al., 1997; Asner et al., 2004).  Compaction of soil as a result 

of hooved livestock further decreases water infiltration and changes soil morphology 

(Yates et al., 2000).  Belsky and Blumenthal (1997) analysed a number of studies 

within Ponderosa Pine communities and found that livestock grazing resulted in the 

compaction of soil and loss of important soil nutrients.  Over time these changes, 

coupled with changed fire regimes, altered the composition, density and structure of 

the vegetation (Belsky and Blumenthal, 1997).  Consequently, the communities 

became less resilient to natural disturbance regimes, such as fire and disease, 

reducing the long-term community viability (Belsky and Blumenthal, 1997).       

 

1.4 Altered Ecosystem Functioning within Production 
Landscapes 

 

Significant changes to natural ecosystem functioning have occurred within 

production landscapes since European settlement (Vitousek et al., 1997a).  Tree 

clearing continues to be common practice within agricultural landscapes in an 

attempt to maximise pasture production and monetary gains (Sangha et al., 2005).  

The removal of large trees reduces ground litter and competition for light, facilitating 
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grass production in the understorey (McIvor, 2001).  Many paddocks are described 

as containing isolated large spreading trees nearing senescence, with very little or no 

recruitment due to pressures associated with chronic grazing (Vesk and Mac Nally, 

2006).  While increases in grass production are beneficial for grazing, overstorey 

clearing can affect ecosystem processes and natural understorey composition, 

potentially causing changes in the dominant plant species (McIvor, 2001).  Decline 

and mortality of native trees can limit successful recruitment processes that require a 

consistent seed supply to enable seedling establishment during favourable years 

(Close et al., 2008).  Saunders et al. (2003), for example, found reduced rates of 

recruitment within Eucalyptus salmonophloia woodlands that are continuously 

grazed.   

 

The modification of natural fire regimes has also impacted the functioning within 

production landscapes.  Fire has played a critical role in the life histories and 

adaptations exhibited by many of Australia‘s floral species (Fensham, 1997).  Woody 

thickening throughout many woodland ecosystems has resulted from the alteration of 

fire regimes, particularly reduced fire frequency (Asner et al., 2004; Fensham, 2008).  

Woody thickening, also known as woody encroachment, is the process of increased 

woody plant density, significantly decreasing grazing potential of the land (Asner et 

al., 2004; Price and Morgan, 2008).  Fensham & Fairfax (2005) found thickening of 

Gidgee (Acacia cambagei) to not only impact livestock grazing, but was also seen to 

be encroaching into nearby Mitchell grasslands in Longreach, Queensland.  Other 

factors believed to be contributing to this phenomena are overgrazing and livestock 

trampling of herbaceous cover favouring woody seedlings, and increased 

atmospheric carbon dioxide, benefiting C3 (woody) plant growth, and nitrogen 
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pollution (Asner et al., 2004; Eamus and Palmer, 2007).  Thinning required to restore 

the structure and composition of vegetation within a common range of variability is a 

contentious issue, with considerations such as imperfect background knowledge, 

labour shortages and the divergent views of landholders hampering decision making 

(Fensham, 2008). 

 

From a landscape perspective, disturbance regimes are rarely operating 

independently from one another, instead they tend to work in synergy, at a variety of 

spatial and temporal scales (Seabrook et al., 2007).    Recognising the ability of an 

ecosystem to sustain functioning in a variety of situations in relation to surrounding 

land-uses is essential within conservation initiatives and ultimately, long-term 

persistence in the landscape (Spooner et al., 2004b).  

 

Within areas of significant historical clearing, a large proportion of existing 

vegetation consists of highly disturbed vegetation and regrowth patches (Wilson et 

al., 2002).  The regeneration and development of secondary vegetation can be 

difficult to calculate as these processes can be significantly dependent on land-use 

history, incorporating intensity, duration and type, as well as other landscape 

attributes (Bowen et al., 2007). 

 

Protection and preservation of undisturbed habitat patches, or remnant vegetation, 

has been highly emphasised within conservation initiatives (e.g. Native Vegetation 

and Biodiversity Program 1994 -2009 (Land and Water Australia, 2009).  The 

distribution of remnant vegetation in the landscape partially reflects the historical 

events, settlement and development of a region (Wilson et al., 2002).  Specifically, 
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factors associated with environmental conditions, rainfall patterns, soil fertility and 

other underlying economic issues, coupled with social and political trends and 

institutions, highly influence land management (Wilson et al., 2002).  However, 

recognition of vulnerable communities as a conservation priority tend to be an 

afterthought following the crossing of thresholds whereby it can be costly or 

impossible to reverse, particularly in highly developed landscapes (Wilson et al., 

2002; Carpenter et al., 2008).  This can result in scarce and insufficient 

representation of remnant vegetation within the landscape (Hansen and Rotella, 

2002; Wilson et al., 2002).  The condition and health of many remaining woodland 

habitats has also experienced a gradual decline throughout many agricultural 

landscapes in Australia (Lindenmayer et al., 2005).  During the mid to late 1960s, the 

premature death and decline of tree health, known as rural dieback, increased 

significantly throughout a variety of woodland types (Lindenmayer et al., 2005).  

This reduction in crown cover has been attributed to a variety of causes, including 

increased insect herbivory, salinity, soil acidification, drought, changes to soil 

structure and direct mechanical damage from agricultural livestock and machinery 

(Lindenmayer et al., 2005).  The modification of fire regimes has also been 

accredited to a decline in mature tree health within agricultural landscapes 

(Lindenmayer et al., 2005).  In order to implement effective management, the 

monitoring and assessment of all vegetation, both remnant and non- remnant 

communities, remains a primary goal in landscape and biodiversity initiatives 

(Young, 2000; Wilson et al., 2002).  

 

A shifting focus has been observed in recent years from the preservation of 

predominantly intact ecosystems to restoring disturbed and degraded communities 
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(Suding et al., 2004).  The management of both remnant and regrowth vegetation is 

important, particularly within highly disturbed and fragmented landscapes not only 

for regional and global biodiversity, but also for safeguarding ecosystem function 

and services (McAlpine et al., 2002a; Bowen et al., 2009b).  The creation of ‗Viable 

Networks‘ is one example that attempts to incorporate remnant and regrowth 

vegetation in a whole landscape approach (McAlpine et al., 2002a).  Viable 

Networks are described as areas of vegetation exhibiting high connectivity, 

ecological functioning, are capable of self-generation yet can still be maintained 

within areas subjected to threatening disturbance regimes (McAlpine et al., 2002a). 

 

For example, Gardner et al. (2007) conducted a study on amphibian and reptile 

diversity in secondary forests in the Amazonian forests and found while primary 

forests contained higher levels of biodiversity, regrowth communities were also of 

significant value to maintaining diversity on a landscape scale.  A similar pattern was 

observed by Dunn (2004) where older aged regrowth exhibited an increase in bird 

and ant species richness, contributing to the overall biodiversity at the landscape 

scale.     

 

Restoration of disturbed or cleared vegetation is commonly undertaken via replanting 

and seeding of plant species endemic to the target remnant community (Dorrough 

and Moxham, 2005).  However, significant costs associated with labour and ongoing 

monitoring, and mixed success in numerous restoration projects ultimately reduces 

its effectiveness over large areas and landscapes (Dorrough and Moxham, 2005).  In 

contrast, natural regeneration relies on the colonisation of woody plants to disturbed 

or cleared patches from surrounding remnant patches (Vesk and Dorrough, 2006).  
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Consequently, natural regeneration has been adopted as a cost-effective alternative to 

replanting and seeding (Dorrough and Moxham, 2005; Vesk and Dorrough, 2006).   

 

While passively regenerated regrowth has occurred within many areas around the 

world, particularly associated with agricultural abandonment in Central and Southern 

America, there is limited empirical evidence available in relation to its overall 

effectiveness in floristic community development (Aide et al., 2000; Young, 2000; 

Ruiz-Jaén and Aide, 2005; Bowen et al., 2007).  Despite extended periods of time, 

the composition and structure of regrowth is rarely similar to remnant vegetation, 

with a number of studies indicating the return of only subsets of ecosystem 

components, such as richness of fauna or some aspects of stand structure (Turner et 

al., 1997; Lamb et al., 2005).  Martin et al. (2004) found stand structural 

characteristics, including stem density, canopy height and tree size distributions, to 

resemble remnant tropical forest after 40 years in abandoned agricultural land in 

central Dominican Republic.  However, floristic diversity still remained significantly 

different to undisturbed forests (Martin et al., 2004).  Other studies within 

agricultural landscapes have also found that former agricultural land readily returns 

to a semi natural state (Wilcox, 1998; Walker et al., 2004b).  O‘Connor et al. (2005) 

examined abandoned grasslands in South Africa and found while the general 

structure was comparable to other less disturbed grasslands, the composition and 

abundance of species still remained significantly different.   

 

In Australia, the value of regrowth vegetation has also been recognised within 

fragmented landscapes.  Bowen et al. (2009b), found the proportion of older 

Brigalow regrowth (>30 years) in the surrounding landscapes in southern 
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Queensland to have a strong positive relationship on the species richness of 

woodland dependent birds.  Similarly Michael et al. (2011) found temperate 

Eucalypt woodland regrowth in southern New South Wales provided important 

habitat for numerous reptile species.  While numerous studies have investigated the 

value of regrowth vegetation to faunal movements and potential habitat (e.g. Gascon 

et al., 1999; Neilan et al., 2006) few long-term studies have been conducted on the 

recovery of flora following human disturbance within Australian woodlands.   

 

As Alternate Stable State Theory suggests, the recovery process does not always 

necessarily suggest a return to identical pre-clearing levels (Beisner et al., 2003).  

Recovery and succession following a significant disturbance can be influenced by 

various environmental factors, including individual species biology, competition, 

stochasticity and the interaction between biotic and abiotic components (Guariguata 

and Ostertag, 2001).      

 

Further uncertainty in relation to the future impacts of climate change and changes in 

land use on ecosystem health in Australia, highlights the importance of determining 

whether regrowth vegetation, under passive regeneration, can attain the same 

biodiversity value as remnant vegetation in production landscapes. With total 

landscape restoration within production landscapes unlikely, the success of 

restoration initiatives for long term ecosystem viability and functioning relies heavily 

on the complementarity of remaining ecosystem components within the landscape 

mosaic (Walker et al., 2004b; Lamb et al., 2005).  Continued assessment of regrowth 

communities is therefore required in order to determine the general condition and 

state if the adoption of natural regeneration as a conservation strategy is to be 
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successful.  However, the status of many regrowth communities remains relative 

unknown resulting in little indication of the biological value of these communities, 

compared with relatively undisturbed remnant communities, and biodiversity in the 

greater landscape  (Nicholson et al., 2009).   

 

1.5 Study Questions and Hypotheses 

Despite evidence of some ecosystem processes and biodiversity values 

returning to regrowth communities (Martin et al., 2004; Bowen et al., 2009b; 

Michael et al., 2011), it does not ensure the return of structure and function to 

that similar of remnant vegetation, or the on-going persistence of these services.  

Many regrowth communities have been significantly transformed as a result of 

anthropogenic disturbance, resulting in alternate stable states (Van De Koppel 

et al., 1997; Carpenter et al., 1999; Van Auken, 2000; Folke et al., 2004).   

 

Current management in Queensland has protected ‗high value‘ regrowth, 

including Brigalow, from further clearing in an attempt to increase the extent of 

native remnant communities in production landscapes (Vegetation Management 

and Other Legislation Amendment Act 2009). However, little is known of the 

condition, status and general resilience of regrowth patches of Brigalow 

communities in southern Queensland, and how they compare to less disturbed 

remnant vegetation.  If the natural restoration of regrowth is intended to 

increase the extent of Brigalow communities, investigation is necessary to 

determine its relative similarity and contribution to its remnant counterparts in 

light of historical disturbance regimes.  This study will investigate the structural 

and functional components of remnant and a number of different aged regrowth 
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Brigalow communities (Regrowth >40 years; Regrowth 30-40 years; Regrowth 

20-30 years and Regrowth <20 years) and determine the relative correlation of 

patch factors and landscape factors to identify major drivers.   

 

The following specific hypotheses will be investigated:   

 

• Floristic composition, stand structure, functional group richness differs 

between Brigalow remnant, old regrowth (>40 years), intermediate regrowth 

(30-40y and 20-30y) and recent regrowth (<20y) communities. 

• Environmental, land-use and landscape connectivity factors are possible 

drivers of floristic composition and stand structure of remnant Brigalow 

vegetation and different aged regrowth. 

 

1.6 Thesis Overview 

 

In order to test the hypotheses, floristic surveys, assessments of stand structure 

and condition and spatial features were sampled within remnant and a range of 

regrowth age classes.  Chapter 2 provides a general description of the study 

area as well as a history of agricultural and conservation management in the 

area.  Patterns in floristic composition and stand structure between remnant and 

regrowth vegetation is investigated in Chapter 3.  Total species richness and 

functional group richness based on life form, perenniality and origin were also 

assessed across the sites.  In Chapter 4 the effects of the landscape context, 

landscape connectivity (spatial factors) and local patch factors, mainly soil 

nutrients and general sites condition are also tested in regards to vegetative 
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patterns observed between remnant and regrowth Brigalow.  Finally, Chapter 5 

analyses the key findings within the studies and discusses the significance in 

relation to Alternate Stable State Theory and the general resilience of these 

communities within agricultural landscapes.  The management implications and 

potential future investigations are also discussed.   
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Chapter 2: Brigalow Vegetation, Study Area and 
Design 
 

2.1 Study Region 

 

2.1.1 Brigalow Belt Bioregion 
 

The Brigalow Belt Bioregion, spans over 41 million hectares throughout much 

of inland and eastern Queensland and northern New South Wales (Figure 2.1 

map inset), and has experienced one of the most rapid landscape 

transformations ever documented (Thackway and Cresswell, 1995; Chandler et 

al., 2007).  Due to the highly fertile soils, the region has experienced significant 

agricultural and regional development over the past 100 years (Johnson, 

1984b).   

 

The Southern Brigalow Belt Bioregion occupies over 27 million hectares, 22 million 

hectares of which falls within Queensland (Dunn and Sahukar, 2003).  This region 

has been significantly modified since European occupation and remains a major 

sector for agricultural production, occupying the upper catchment of the Murray 

Darling Basin (Biggs et al., 2005).  The region consists predominantly of 

Quarternary and Tertiary sediments that have experienced significant erosion and 

aridity, coupled with a history of indigenous firestick practices (Johnson, 1984b).  

The southern bioregion also occupies a climate transition zone, straddling both the 

tropical northern climates and temperate south (Johnson, 1984b).   

 

The combination of environmental factors, such as soil and climate, has created a 

mosaic of vegetations types across the bioregion (Johnson, 1984b).  Acacia 



30 

 

communities characterise the bioregion, consisting of over 120 species, including 

Acacia harpophylla, Acacia cambagei and A. argyrodendron (Johnson, 1984b).  

Eucalypt open forests and woodlands, including those dominated by E. 

melanophloia, E. crebra. E. populnea, E. tereticornis also occupy a vast majority of 

the south east Queensland region, particularly along the Great Dividing Range, as 

well as Callitris and Casuarina open forests, grasslands and semi evergreen vine 

thickets (Johnson, 1984b).  While the acacia-dominated ecosystems are considered 

relatively biodiverse, much of the diversity in the bioregion is contributed to eucalypt 

woodlands and semi-evergreen vine thickets (Johnson, 1984a).   

 

2.1.2 Moonie and Weir River Catchments 

The study was conducted, in western Darling Downs, Southern Queensland, situated 

in the Southern Brigalow Belt Bioregion.  The study area covers approximately 3 

600 km
2
 around the townships of Moonie (27˚ 43‘ 01.2‖S, 150˚ 22‘ 15.6‖E) and 

Westmar (27˚ 55‘ 09.4‖S, 149˚ 42‘ 59.2‖E) within the Moonie and Weir River 

Catchments (Figure 2.1).   
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Figure 2.1. Map of the Moonie and Weir River Catchments in south eastern Queensland, Australia. 
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The region is characterised by a predominantly sub-tropical climate, experiencing 

highly episodic summer dominant rainfall, averaging approximately 618mm annually 

(Biggs et al., 2005); Bureau of Meteorology, 2010).  The average potential 

evaporation for the region is greater than precipitation, resulting in frequent short 

droughts (3-4 months) as well as periodic extended droughts (Coaldrake, 1973; 

Biggs et al., 2005).  The study area is approximately 240 m – 260 m above sea level 

and has an average temperature ranging between 7˚C to 25˚C in the winter months 

and 17˚C to 35˚C in summer (Bureau of Meteorology, 2010).  The area primarily 

slopes to the west and south (Biggs et al., 2005). 

 

The soils in the study area consist predominantly of grey Vertisols, in particular deep 

gilgaied clays, along with some areas of brown Sodosols that overlay Tertiary 

sandstones and other conglomerates (Biggs et al., 2005; DERM, 2009c).  Gilgaied 

clays occur on gently undulating landscapes and are usually very coarsely structured, 

up to 3 to 4.5m deep, and can experience heavy cracking in relation to soil moisture 

availability (Coaldrake, 1973; Isbell, 2002).  These soils are typically alkaline on the 

surface with a strongly acidic subsoil (pH < 4), depauperate in phosphorus but can 

contain high salinity in the upper profile (Coaldrake, 1973).  Gilgai are small land 

depressions developed as a result of shrinking and swelling associated with the 

wetting and drying of the heavy clay soils (DERM, 2009d).  This form of microrelief 

can reach up to 150 cm in depth, usually averaging between 0.6 m and 0.9 m, and 

can contain different texture, fertility and water moisture on the top, slope and 

depression (Russell et al., 1967; Coaldrake, 1973).    
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2.2 Vegetation and Management 

2.2.1 Brigalow Communities 

While Brigalow and other Acacia communities characterize Australia‘s 

Brigalow Belt, there are a number of other vegetation types that occupy the 

area.  Ironbark (Eucalyptus crebra F. Muell. and E. melanophloia F. Muell.) 

woodlands tend to dominate the hillsides and escarpments, while Poplar Box 

(E. populnea F. Muell.) generally occurs along drainage lines and on sandy 

alluvial soils and River Red Gums (Eucalyptus camaldulensis Dehnh.) along 

rivers and streams (Biggs et al., 2005).  Brigalow (Acacia harpophylla) and 

Belah (Casuarina cristata Miq.) communities dominate the extensive clay 

plains, also referred to as the ―Brigalow Claysheet‖ or ―Tara Plains‖ (Biggs et 

al., 2005).      

 

There are a number of different types of acacia dominated communities found 

within the Southern Brigalow Belt Bioregion, usually determined by changes in 

soils and climatic factors (Johnson, 1984b).  Acacia harpophylla (Brigalow) 

communities tend to occupy mid and lower slopes and plains with typical deep 

cracking tertiary clay soils (Johnson, 1984b).  The term ‗Brigalow‘, originated 

from the Aboriginal people and was used to identify areas of scrub containing, 

not only A. harpophylla, but several other species of Acacia (Bailey, 1984). 

Nowadays, the term is used to encompass both entire vegetative communities 

containing A. harpophylla, as well as referring to the particularly species 

(Bailey, 1984). 

 

The Brigalow species is a leguminous tree that can reach up to 24 m in height 
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and can become monospecific in the tree layer (Russell et al., 1967).  The 

species retain its leaves all year round, even during drought, and can grow 

rapidly when in favourable conditions, particularly following precipitation 

events (Tunstall and Connor, 1981).  Flowering generally occurs from April to 

October; however, it does not occur every year, and is highly dependent on 

rainfall conditions (Department of Sustainability, Energy, Water, Population & 

Communities, 2010).  Benson et al. (2006, cited in Department of 

Sustainability, Energy, Water, Population & Communities, 2010) described 

flowering within the species as highly irregular, noting that some individuals 

may experience heavy flowering once over a 30 year period.  Unlike other 

acacia species, Brigalow seeds have soft seed coats, and consequently, have a 

relatively low seed set and rarely stay viable over a year (Coaldrake, 1971; 

Department of Sustainability, Energy, Water, Population & Communities, 

2010).  Prolific reproduction via root-suckers can also occur, particularly 

following mechanical disturbance, where there can be damage to the root or 

stems, with suckers capable of developing faster than seedling recruits 

(Coaldrake, 1971; Department of Sustainability, Energy, Water, Population & 

Communities, 2010).  The extent of suckering within the population is 

dependent on seasonal conditions, the size and age of the individual and the 

amount of damage caused by mechanical disturbance (Department of 

Sustainability, energy, Water, Population & Communities, 2010). 

 

While Brigalow can dominate, other species frequently co-dominate, including 

Casuarina cristata and various eucalypt species such as Eucalyptus 

cambageana, E, microcarpa and E. populnea (Johnson and Burrows, 1994).  
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The tree canopy of the community, which can reach up to 20m in height, with 

an average height of 10 to 15m with some Eucalypt and Belah emergents 

(Johnson, 1984b; DERM, 2009b).  The understorey tends to be dominated by 

Geijera parviflora (Wilga) and Eremophila mitchellii (False Sandalwood); 

however, other species, including Alectryon diversifolius, Carrissa ovata, 

Citrus glauca and Apophyllum anomalum can occur (Johnson, 1984b; Biggs et 

al., 2005; DERM, 2009b).  The groundcover is relatively sparse to open and 

frequently contains large levels of leaf litter biomass, attributed to the aridity 

inhibited natural organic breakdown (Russell et al., 1967; DERM, 2009b).  

Grass species found within the ground layer include Paspalidium caespitosum, 

P. gracile, Cymbopogon refractus and Ancistrachne uncinulata (Johnson, 

1984b; DERM, 2009c).  Numerous forb species, such as Brunoniella australis, 

Enchylaena tomentosa, Rhagodia nutans and Abutilon oxycarpum, can also be 

present in the ground layer (Johnson, 1984b; DERM, 2009b).      

 

Remaining Brigalow communities also provide habitat for numerous faunal 

species, some of which are recognised as threatened or endangered under both 

state and national legislation (McAlpine et al., 2002a; Department of the 

Environment, Water, Heritage & Arts, 2010).  The region contains one of the 

highest number of endangered and of concern regional ecosystems over a large 

extent (Wilson et al., 2002).  There are an estimated 30 threatened plant and 

animal species that can be found within Brigalow communities, with three 

known plant species found exclusively within Brigalow remnant and regrowth 

vegetation (Dwyer et al., 2009).     
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2.2.2 Historic Management of Brigalow 

2.2.2.1 History of Vegetation Clearing 

Prior to European settlement, firestick farming was the main anthropogenic 

disturbance encountered across Australian landscapes, implemented by 

nomadic indigenous tribes across different seasons (Walsh, 1984).  While the 

use of fire has been shown to influence the species and type of vegetation found 

across landscapes, significant speculation still exists in relation to the degree to 

which it was employed within particular regions of Queensland (Fensham, 

1997).   

 

According to Isbell (1957, cited in Coaldrake, 1973), prior to initial clearing, 

around 55% of the area, encompassing the study region and some surrounding 

landscapes, was made up of Brigalow Belah woodlands, with the remaining 

comprising Eucalypt and other communities and some small grasslands.  Since 

European settlement in the 1840s, over 61% of remnant woody vegetation in 

the Brigalow Belt Bioregion has been cleared in order to utilise fertile, nitrogen 

rich soils for agricultural cropping and grazing (Robertson et al., 1997; 

Seabrook et al., 2007).    A large proportion of clearing in the bioregion has 

occurred on freehold land, due to the productive nature, substantial coverage 

and uncontrolled management of the area (Fensham et al., 1998).   

 

Early clearing practices began in the late 1880s, employing ring-barking and 

axing, in order to make way for pastures (Lloyd, 1984).  However, clearing 

decreased during the 1920s and 1930s with the peak infestation of Prickly Pear 

(Opuntia sp.) throughout much of eastern Australia (Lloyd, 1984; Freeman, 
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1992).  Following the success of the Cactoblastis moth (Cactoblastis cactorum) 

large areas of previously termed ―useless scrub‖, densely covered in prickly 

pear, was once more cleared for production (Lloyd, 1984; Freeman, 1992).   

According to Skerman (1953, cited in Lloyd, 1984), approximately 2.8 million 

hectares of Brigalow had been cleared by axe, fire and intense sheep grazing up 

to 1953; although Skerman (1953) also noted there was significant regrowth in 

the landscape. 

  

Clearing rates increased throughout the 1950s with the establishment of more 

efficient, mechanical methods, such as blade ploughing and heavy machinery, 

allowing developers to readily clear large expanses of Brigalow within a 

relatively short time period (Anderson, 1984; Seabrook et al., 2006).  Clearing 

rates were also exacerbated following the end of World War II as demand for 

release of leasehold land for returning soldiers grew (Lloyd, 1984). 

 

The introduction of the Queensland Brigalow and Other Lands Development 

Act 1962 institutionalised the clearing of Brigalow communities for the 

expansion of the pastoral industry (Seabrook et al., 2006).  Other development 

schemes by the Commonwealth and Queensland governments (e.g. Fitzroy 

Basin Land Development Scheme 1968) also encouraged the clearing of 

Brigalow land for development and agriculture in return for cheap land and 

reduced loans (Anderson, 1984; Fensham and Fairfax, 2003).  Fensham & 

Fairfax (2003) estimate the clearing rate in central Queensland at around 1% 

per annum between 1956 to 1993, reducing the percentage of uncleared 

vegetation from approximately 93.4% to 55.8%.   
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However, while clearing rates increased with the use of heavy machinery, the 

regrowth issue continued to frustrate developers.  The ―woody weed‖ problem 

is a result of the modifications by land developers on the original Brigalow 

communities (Anderson, 1984).  Due to the root suckering ability of the 

species, areas cleared commonly experienced substantial thickening regrowth 

in the following years (Seabrook et al., 2006).  Johnson (1997) assessed 

Brigalow regrowth stands in central Queensland and found some dense clonal 

stands reaching up to 25 000 stems/ha.  Numerous attempts were made to 

control the regrowth with differing degrees of success (Anderson, 1984; 

Johnson, 1997).   

 

Continual periodic blade ploughing, successful at removing remaining root 

structures, was found to be the most effective at controlling regrowth; however, 

this was only suitable for areas to be used for cropping (Anderson, 1984).  

Regrowth within grazing pastures proved to be more troublesome, with 

deliberate burning only providing a temporary solution with minimal effect on 

stem densities (Anderson, 1984). Intense sheep grazing was found to be useful 

in impeding thick regrowth; however, following the wool price slump (1969 -

1972) sheep grazing decreased significantly, particularly in the southern 

Brigalow Belt (Lloyd, 1984; Scanlan et al., 1991).  Aerial spraying of Brigalow 

regrowth was also trialled during the 1950s and 1960s, although the overall 

success was highly dependent on the age of the regrowth and the available soil 

moisture (Anderson, 1984).   More recently, soil applied herbicides, such as 

Tebuthiuron, have been implemented to assist in the control of woody regrowth 

thickening (Scanlan et al., 1991). 
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2.2.2.2 Changes in Land-use 

Since early European settlement in the 1840s, mainly round Tara, the Moonie 

River Catchment and surrounding areas have undergone significant land-use 

changes (Lloyd, 1984).  Originally utilised for the region‘s growing beef and 

wool industries, dairy farming increased during the 1920s and 1930 until its 

decline in the 1960s following prolonged periods of drought (Biggs et al., 

2005).  In order to increase stocking rates, Mitchell (Astrebla spp.) and Flinders 

(Iseilema spp.) grasses were introduced to many areas, particularly in the 

Goondiwindi, Taroom and Dalby districts (Lloyd, 1984).    Following the 

collapse of the wool and beef markets in the 1950s and 1970s, respectively, 

farmers turned to wheat cropping because of its high economic return (Biggs et 

al., 2005).  During the 1970s, summer cropping, particularly sorghum, also 

increased throughout the region (Biggs et al., 2005). 

 

Prior to the 1950s, grazing and limited cropping (mainly cotton) was prevalent 

in the Southern Brigalow Belt; however, a significant increase in development 

in summer cash cropping was observed following 1950 (Lloyd, 1984).  While 

native pastures were found to support livestock, increased stocking rates could 

be obtained by introducing exotic grass species.  Chloris gayana (Rhodes 

Grass) and Panicum maximum (Green Panic) were commonly sown in recently 

cleared Brigalow land and areas previously colonised by prickly pear (Lloyd, 

1984).  The introduction of Cenchrus ciliaris (Buffel Grass) was not observed 

in the southern region until 1965, following a prolonged period of drought 

(Lloyd, 1984). Between 1961 and 1976, the area sown to exotic grasses 

increased from approximately 335, 000 ha to 2, 146, 000 ha before stabilising at 
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around 2, 000, 000 ha in the following years, associated with an increase in 

cropping (Lloyd, 1984). 

 

Sheep grazing significantly decreased between the early 1960s and 1980s as the 

cattle industry began to develop following a slump in wool prices (Lloyd, 1984).  

Despite some policies and schemes in place to entice farmers back to sheep grazing 

during the 1970‘s, it was perceived as uneconomic under the labour and financial 

crises at the time (Lloyd, 1984).  Farmers were instead resorting to summer cropping 

due to the high prices for wheat and sorghum (Lloyd, 1984).  The cattle industry and 

dryland cropping continue to be the primary type of landuse in the Southern 

Brigalow Belt (Seabrook et al., 2006). 

2.2.3 Current Land-use 

Little change in land-use in the study region has occurred over recent years, 

with the majority of land dedicated to pastoral and cropping agriculture (Biggs 

et al., 2005).  While grazing is currently the most significant land use in 

Moonie and Weir River catchments, 79% and 61%, respectively, the 

combination of summer and winter cropping accounts for up to 65% of the 

agricultural income of the region (Biggs et al., 2005; Bowen et al., 2009b) 

(Table 2.1).  The year to date (June 2010) estimated gross value of agricultural 

production in the area is over $409 m (Statistics, 2010).   Some areas of forestry 

also exist within both catchments totally around 19% of land-use (Biggs et al., 

2005).  While no significant changes in land-use are expected in the future, 

attributed to limited water availability, woody vegetation cover is expected to 

increase slightly due to natural regeneration in grazing land by 2020 (Biggs et 

al., 2005).   
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Apart from a number of state forests and national parks, the majority of 

remnant Brigalow vegetation exists as linear strips along roadside and fence-

lines (Bowen et al., 2009a).  Erringibba National Park (900 ha) and Southwood 

National Park (7,120 ha) are two of the larger nature reserves in the area that 

contain Brigalow Communities. 

 

Table 2.1. Landuse by catchment based on 1999 Landuse cover data 

 Moonie Catchment Weir River Catchment 

Hectares % Hectares % 

Grazing 1 137 841 (78.9%) 940 893 (61.0%) 

Dryland 
Cropping 

233 329 (16.2%) 256 305 (16.6%) 

Irrigated 
Cropping 

    4 087 (0.3%)     70 621 (4.6%) 

Forestry 47 931 (3.3%) 238 364 (15.5%) 

Nature 
Conservation 

     7 769 (0.5%)      4 821 (0.3%) 

Other 12068 (1.7%) 31 050 (2%) 

          Source: (Biggs et al., 2005) 

 

Brigalow communities and other associated/co-dominant ecosystems have been 

identified as endangered by the Queensland Herbarium (DERM, 2010).  However, 

some regions continued to be cleared, with over one million hectares of woody 

vegetation removed in the Southern Brigalow Belt since 1995, leaving between 7 – 

30% remnant vegetation (Wilson et al., 2002; Seabrook et al., 2006).  In Queensland, 

the implementation of the Vegetation Management and Other Legislation 

Amendment Act 2004 aimed to phase out broadscale clearing in Queensland by the 

end of 2006 (Seabrook et al., 2006).  The implementation of this legislation resulted 

in a considerable decrease, almost 50%, in clearing rates in the following years, 
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falling from 235 000 ha yr
-1

 (129 000ha remnant) in 2006-2007 to 123 000 ha yr
-1

 

(56 000ha remnant) in 2007-2008 (DERM, 2009a) (Table 2.2).   

 

Table 2.2. Statewide Total Woody and Remnant Vegetation Clearing Rates (‘000 ha year
-1

) 

according Statewide Landcover and Tree Studies (SLATS) 1988 – 2009 

  Time Period Total Woody 
Vegetation (000 

ha yr
-1

) 

Remnant 
Vegetation 
(000 ha yr

-1
) 

State-wide 
Woody and 
Remnant 
clearing 

 

 

 

 

 

1995 – 1997 340 227 

1997 – 1999 425 286 

1999 – 2000 758 505 

2000 – 2001 378 213 

2001 – 2002 498 276 

2002 – 2003 554 366 

2003 – 2004 482 267 

2004 – 2005 351 172 

2005 – 2006 375 222 

2006 – 2007 235 129 

2007 - 2008 123 56 

 

 

Furthermore, the introduction of the Vegetation Management and Other Legislation 

Amendment Act 2009, following a clearing moratorium, prohibits the clearing of 

‗high value‘ regrowth vegetation.  The condition and status of remaining vegetation 

within the landscape is, hence, central in the persistence and survival of many native 

species and communities (Fensham, 2008).    

 

The Moonie and Weir River Catchments also experienced a reduction in woody 

clearing rates in recent years in response to changed Queensland legislation (Table 

2.3).  Both catchments experienced a relatively high clearing rate during the 1990s 

and early 2000s.  Clearing rates significantly declined from 7410 ha yr
-1

 and 2672 ha 

yr
-1

 in the period 2006-2007 to 3054 ha yr
-1

 and 2633 ha yr
-1

 respectively in the 
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period 2007-2008 (DERM, 2009a).  Regeneration of regrowth cover in the region 

averages around 4-7% with a high rate of turnover due to multiple re-clearing and 

regrowth events (Bowen et al., 2009b).   

  

Table 2.3. Clearing Rates (‘000 ha year
-1

) of Moonie and Weir River Catchments (total area) 

based on Statewide landcover and Tree Studies (SLATS) 1988 – 2009 

 Time Period Moonie Catchment 
(1 391 ha) 

Weir River 
Catchment   
(1 540 ha) 

Catchment 
Woody 

and 
Remnant 
clearing 

 

 

 

 

 

1988 – 1991 28.18 18.92 

1991 – 1995 5.00 4.40 

1995 – 1997 17.76 9.99 

1997 – 1999 30.97 15.92 

1999 – 2001 22.90 9.77 

2001 – 2003 22.41 10.03 

2003 – 2004 11.73 4.03 

2004 – 2005 8.18 4.33 

2005 – 2006 5.58 2.39 

2006 – 2007 7.41 2.67 

2007 - 2008 3.05 2.63 

 

 

Brigalow regrowth communities were protected under the Vegetation Management 

and Other Legislation Amendment Act 2009, with many remnant acacia communities 

throughout the Brigalow Belt, particularly on fertile clays, remaining below the 30% 

threshold necessary for biological conservation efforts (McAlpine et al., 2002b).  

Over-grazing, soil erosion, raised water tables and salinity also continue to degrade 

the quality of much of the remaining habitat (Seabrook et al., 2006). 
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2.3 Study Design 

2.3.1 Site Selection 

This study focussed on Acacia harpophylla and Casuarina cristata woodlands 

(Regional Ecosystem 11.4.3; Sattler & Williams, 1999).  This endangered 

ecosystem is described as open forest dominated by Acacia harpophylla and in 

some instances co-dominant with Casuarina cristata (Sattler & Williams, 

1999; DERM, 2009b).  Other tree species, including E. populnea, E. 

cambageana and E. orgadophila, may also be present in the canopy (DERM, 

2009b).  The shrub layer consists predominantly of Geijera parviflora and 

Eremophila mitchelli with Carissa ovata in the lower shrub cover, the ground 

layer is sparse to open with some scattered grasses and forbs (DERM, 2009b). 

 

Potential study sites were selected based on area of vegetation patch (20 – 

50ha), specified using the Queensland Regional Ecosystem Data Version 5 

2003 and Queensland Regrowth Data provided by the Queensland Herbarium.  

Reserve sites were those found within state forests and national reserves and are 

assumed to have experienced relatively minimal disturbance.  Remnant sites 

were recognised as vegetation that had no previous history of clearing but may 

have been subjected to some form of extrinsic disturbance (sporadic grazing, 

minor selective logging, recreational activity etc.).  While some Reserve sites 

were sampled within much larger blocks (e.g. Southwood National Park (7120 

ha)), small blocks (<50 ha) were preferred and where possible, thin linear strips 

of vegetation were avoided.  Sites containing water sources, such as dams and 

streams, were also excluded from sampling.  Other factors, such as access to 

sites, landholder permission and the spatial distribution of sites, were also 
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considered during the site selection process.  Sites also had to be visually 

representative of the local vegetative community. 

 

The age of regrowth patches was determined based on aerial photographs of the 

area and oral history according to land holders and managers.  The four 

regrowth treatments were established based on the availability of replication of 

sites.  Due to the small number of available regrowth patches that met the 

established criteria, site randomisation was not a viable option.  The majority of 

sites were located on private property and along road sides with some situated 

in surrounding state forests and national parks.  Sites also encompassed a 

number of surrounding land-uses, including grazing, cropping and reserves.  

The method of clearing and land-use history for each site was recorded from 

discussion with landholders where possible. 

 

2.3.2 Experimental Design  

Thirty-eight sites were sampled encompassing both remnant (―Reserve‖ and 

―Remnant‖) and regrowth classes (Regrowth>40, Regrowth30-40, Regrowth20-30, 

Regrowth<20) in the study area (Figure 2.2).  Sites had to be a minimum of 1km 

from other sites within the landscape.  Quadrats were placed subjectively within 

in an area deemed representative of the vegetation within the patch.  

Precautions were taken to avoid areas of recent anthropogenic disturbance and 

potential edge effects, leaving at least a 10-15m buffer between the edge of the 

patch and the sample quadrat.  The effects of livestock grazing were partially 

reduced by incorporating both grazed and ungrazed sites in each treatment, 

except for Reserve remnant, in an attempt to reduce potential grazing influence 
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on patterns observed. 

 

The availability of suitable replicates within the six treatments created an 

uneven factorial design (Table 2.4; Appendix A).   Apart from the Reserve 

sites, at least 5 replicates were recorded for each treatment. 

 

Table 2.4. Description of treatment types, abbreviated label, site number and total number of 

sites for each treatment. 

Treatment Label Time since 
last cleared 

(years) 

n Site Number 

Reserve  REF - 4 3, 9, 10, 15. 

Remnant REM - 8 5, 6, 7, 8, 11, 
13, 14, 16. 

Regrowth greater 
than 40 years since 
clearing 

R>40 > 40 7 1, 2, 25, 30, 
31, 33, 37. 

Regrowth 30 to 40 
years since clearing 

R30-40 30-40 7 4, 22, 24, 27, 
28, 35, 38. 

Regrowth 20 to 30 
years since clearing 

R20-30 20 – 30 7 12, 20, 21, 26, 
32, 34, 36. 

Regrowth less than 
20 years since 
clearing 

R<20 < 20 5 17, 18, 19, 23, 
29. 
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Figure 2.2. Map of study area showing the approximate location of study sites (n=38).
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Chapter 3: Composition and structure in remnant and 
regrowth Brigalow communities, western Darling 
Downs. 
 

3.1  Introduction 

 

The recent protection of high value regrowth, particularly Brigalow, in Queensland 

and throughout the east coast of Australia aims to increase biological diversity and 

ultimately, the extent of endangered ecosystems within highly fragmented 

agricultural landscapes (Dorrough and Moxham, 2005).  Significant habitat 

disturbance and past and current land management practices can influence the 

succession and development of a community, affecting the composition and 

structural complexity and the ability of a system to recover to  pre-disturbed states, 

resembling remnant vegetation (Aide et al., 2000).      

 

The protection of regrowth vegetation based on remotely sensed data as an indicator 

of vegetation type and function is yet to be proven effective, with the relative 

composition and condition of regrowth patches relatively unknown (Turner et al., 

2003; Bowen et al., 2007). The recovery of certain environmental attributes through 

recovery processes does not necessarily suggest a return to identical pre-clearing 

levels.  Traditionally, secondary succession follows a single pathway, whereby a 

cleared site, or partially cleared site, progresses through a number of transition states 

until it eventually comes to resemble a community similar in function, diversity and 

structure to its previous uncleared state (Figure 3.1) (Odum, 1969; Cattelino et al., 

1979).  The emergence of multiple succession pathway models (see (Connell and 

Slatyer, 1977; Cattelino et al., 1979) and alternate stable state theory (see (Scheffer 

et al., 2001; Beisner et al., 2003; Scheffer and Carpenter, 2003) has recognised that 
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recovery from disturbances may not always follow a single pathway resulting in a 

similar community assemblage (‗climax‘ community sensu Clements, 1916) prior to 

disturbance (Figure 3.1) (Cattelino et al., 1979).  State and Transition Models 

(Westoby et al., 1989) are an effective method to conceptualise potential alternate 

states over time.  These models differ from traditional plant succession models 

(progressing towards a single ―climax‖ community) and describe vegetation as 

variety of alternate states over time, dependent on disturbances and how it affects 

particular state factors, including species populations, life histories and 

environmental variables (Cattelino et al., 1979; Whalley, 1994; Garnier et al., 

2004)).   

 

 

 

Figure 3.1. Concept model of secondary succession and the development of alternate stable 
states.  (Note: Alternate stable state trajectories may divert at any given stage over time, 
similarly disturbances may occur at any time resulting in regression along the pathway.  

Circles represent other theoretical transition states over the course of succession (adapted 
from (Connell and Slatyer, 1977; Beisner et al., 2003). 
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3.1.1 Composition and Structure in Determining Ecosystem Recovery 
 

Species composition, species richness and community structure are important aspects 

that can influence the persistence and ultimate resilience of an ecosystem and can be 

employed to gauge the recovery of a system (Ruiz-Jaen and Aide, 2005).  Ecosystem 

and community response to disturbance is dependent on the morphology, life 

histories, tolerances and physiology of the species within the ecosystem (Galindo-

Jaimes et al., 2002).  During succession, further disturbances can significantly affect 

internal dynamics and successional pathways, ultimately impacting on the 

community‘s ability to recover and function to pre-clearing levels (Turner et al., 

1998; Hobbs et al., 2007).  By measuring different ecosystem attributes, such as 

vegetation structure, diversity and composition, the overall success of the recovery 

process can be assessed (Ruiz-Jaen and Aide, 2005).  

 

Measures of vegetation structure and complexity are important attributes that can 

assist in providing information on habitat development and suitability at different 

stages of recovery (McElhinny et al., 2005; Ruiz-Jaén and Aide, 2005).  Assessment 

of structure can reveal the potential successional pathways of a particular community 

by the development of ecosystem processes and provide an indication of ecosystem 

productivity (Ruiz-Jaén and Aide, 2005).  Stand structure can greatly influence the 

growth of plant species by contributing to the availability of nutrients and soil 

fertility, as well as affecting the microclimate (Buchmann et al., 1997; Rhoades et 

al., 1998; Chen et al., 1999).  The recovery of vegetation structure following major 

disturbance has also been linked with the return of fauna and ecosystem processes 

such as productivity (DeWalt et al., 2003; Ruiz-Jaen and Aide, 2005).  A number of 

studies have found a positive correlation between species diversity and the 
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development of secondary forests in relation to fauna (e.g. (Fisher, 2000; Nichols and 

Grant, 2007; Woinarski et al., 2009), particularly bird diversity (see Raman et al., 

1998; Stouffer and Bierregaard, 2007; Kanowski et al., 2008).  

 

Measuring the composition and richness of species can also provide an indication of 

the long-term stability of an ecosystem (Ruiz-Jaen and Aide, 2005).  Species 

composition can provide information on trophic levels, functioning and dynamics 

within populations and communities, and can influence the ability of a community to 

withstand different disturbances and persist in the landscape (Walker, 1995; Ruiz-

Jaen and Aide, 2005).  Species richness can affect numerous aspects of an ecosystem 

through species interactions and individual tolerances (Hooper and Vitousek, 1997, 

1998).  For example, complementarity in nutrient uptake can impact ecosystem 

processes, such as productivity, with different species accessing various parts of the 

available nutrient reserves (Hooper and Vitousek, 1998).  Analysing functional 

groups aids in providing an indication of the importance of species richness within an 

ecosystem, highlighting the diversity of species contributing to particular aspects of 

structure and ecosystem functioning (Hooper and Vitousek, 1997; Peterson, 1998).  

Measuring functional group diversity further assists in providing an indication of 

overall ecosystem resilience, showing the strength and robustness of groups to 

differing intensities and frequencies of disturbances (Peterson, 1998).     

 

Recovery and succession following a significant disturbance can be influenced by 

various environmental factors, including individual species biology, competition, 

stochasticity and the interaction between biotic and abiotic components (Guariguata 

and Ostertag, 2001).  In some instances, ecosystem function within regrowth 
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vegetation may recover long before similar composition is achieved, if at all 

(Guariguata and Ostertag, 2001).  In other circumstances, the availability and uptake 

of soil nutrients may be similar to the original system, but may be dominated by a 

single or very few species, typical of a monoculture (Hooper and Vitousek, 1998).   

 

Long-term perturbations, such as livestock grazing, can also influence the recovery 

of regrowth communities.  Grazing has been found to influence floristic composition 

and species richness in a variety of community types, interfering with soil dynamics 

and favouring particular plant species (McIntyre and Lavorel, 1994; Pettit et al., 

1995; Prober and Thiele, 1995).  Similarly, continued disturbances may also promote 

invasion of exotic species, increasing competition, particularly during early stages of 

recovery or when coupled with other disturbance regimes (Hobbs and Huenneke, 

1992).   

 

Identifying changes in stand structure and species composition can be manifestations 

of altered ecological functioning within a system brought about by past and 

continued disturbance regimes (Turner et al., 1998; Ruiz-Jaen and Aide, 2005).  

Assessment of these ecosystem components can be used to determine the 

development and potential trajectory of regrowth vegetation following disturbance, 

providing an indication of a community‘s general resilience (Aide et al., 2000).      

 

In this chapter, species composition and community stand structure were compared 

across different aged regrowth vegetation, including old regrowth (Regrowth >40y), 

intermediate regrowth (Regrowth 30-40y and Regrowth 20-30y) and recent regrowth 

(Regrowth <20y), and remnant (Reserve and Remnant) vegetation types to provide 
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an indication of plant community regeneration since last disturbance.  In addition, 

analysis of overall plant species richness and functional group species richness were 

used to describe any patterns observed across the treatment types.   

 

The general question examined was: are there differences between Brigalow remnant 

and regrowth communities at different regeneration stages?  The specific hypothesis 

examined are:    

 

• Floristic composition, stand structure, compositional and structural functional 

group richness differ between Brigalow treatments (Reserve, Remnant, 

Regrowth>40, Regrowth30-40, Regrowth20-30 and Regrowth<20). 

 

3.2  Methodology 

3.2.1 Study Sites 
 

The Brigalow vegetation sampled in the study area was identified as RE 11.4.3 under 

the Regional Ecosystem Mapping (Version 5, 2003; Sattler & Williams 1999) and 

regrowth mapping (Queensland Herbarium, 2008) provided by the Queensland 

Herbarium. The study contrasts the stand structure, species richness and floristic 

composition of 38 sites across the six treatment types: 

1) Reserve remnant Brigalow vegetation (‗Reserve‘) with an absence of 

clearing and minimal other disturbance (e.g. grazing), protected within 

reserves and national parks. 

2) Remnant Brigalow vegetation (‗Remnant‘) with an absence of clearing 

but some continued disturbance, mainly grazing. 

3) Brigalow regrowth greater than 40 years since last cleared (Regrowth>40). 

4) Brigalow regrowth 30 – 40 years since last cleared (Regrowth30-40). 
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5) Brigalow regrowth 20 – 30 years since last cleared (Regrowth20-30). 

6) Brigalow regrowth less than 20 years since last cleared (Regrowth<20).   

 

Most regrowth sites are currently grazed to varying intensities.  More detail of study 

site characteristics and experimental design can be found in Section 2.3.  

 

3.2.2  Field Techniques 

Remnant and regrowth sites were sampled between 10 February and 20 May 

2010.  At each site a 500 m
2
 quadrat was established covering an area that was 

deemed representative of the selected vegetation patch (see Section 2.3.2).   

 

Within each quadrat, structural and general site condition was recorded.  

Structural characteristics were visually estimated based on the Specht (1981) 

structural classification scheme.  Several vegetative strata were recognised 

within the study sites, including trees (> 30 m; 20-30 m; 10-20 m; < 10 m), 

shrubs (> 2 m; <2 m), graminoids and herbs/forbs (Table 3.1) (after (Le 

Brocque and Buckney, 1995b).  Overhanging branches, falling within quadrat 

boundaries, from trees outside were included in cover assessments.  Ground 

litter cover was also visually estimated within the sample quadrat, classified 

according to logs (< 20 cm circumference; 10-20 cm circumference), coarse 

leaf litter (branches and twigs 5-10 cm circumference), fine leaf litter (< 5cm 

circumference), cryptogams, bare ground and rock (Table 3.1). 

 

Overall site condition was subjectively ranked based on evidence of disturbance 

within the sample quadrat.  Livestock grazing, feral animal invasion, erosion, 
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logging, clearing, pollution and exotic weed invasion were scored on a scale of 

0-3 (0 = absent; 1 = minor; 2 = moderate; 3 = severe) (Table 3.1).  The 

presence or absence of gilgai within the site were also recorded and scored 

based on the degree of undulation (1 = Light (<50cm deep); 2 = moderate (50-

100cm deep); 3 = heavy (>100cm deep) (Table 3.1) (Russell et al., 1967).   
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 Table 3.1. Summary of variables measured at each sample site 
  

Variable Area Description 

i) Structural Features 

      Cover Trees > 30m 
 

500m
2
 

 
Dominant species was also recorded 

      Cover Trees 20 – 30m 500m
2
 Dominant species was also recorded 

      Cover Trees 10 – 20m 500m
2
 Dominant species was also recorded 

      Cover Trees < 10m 500m
2
 Dominant species was also recorded 

      Cover Shrubs > 2m 500m
2
 Dominant species was also recorded 

      Cover Shrubs < 2m 500m
2
 Dominant species was also recorded 

      Cover Graminoids 500m
2
 Non-woody grasses and sedges 

      Cover Herbs / Forbs 500m
2
  

      Cover Large Logs 500m
2
 Logs > 20cm in circumference 

      Cover Small Logs 500m
2
 Logs 10 – 20cm in circumference 

      Cover Coarse Litter  500m
2
 Twigs and branches 5 – 10cm in circumference 

      Cover Fine Litter  500m
2
 Twigs and branches < 5cm in circumference 

      Cover Rock 500m
2
  

      Cover Cryptogams 500m
2
  

      Cover Bare Ground 500m
2
  

      Tree Stag Count 500m
2
  

      Tree Basal Area m
2
/ ha  

      Tree Stem Density 200m
2
  

ii) Site Condition 

      Weed Invasion 
 

500m
2
 

 
4 levels scored: (0) absent; (1) minor; (2) moderate; (3) severe 

      Grazing Intensity 500m
2
 4 levels scored: (0) absent; (1) minor; (2) moderate; (3) severe 

      Feral Animals 500m
2
 4 levels scored: (0) absent; (1) minor; (2) moderate; (3) severe 

      Erosion 500m
2
 4 levels scored: (0) absent; (1) minor; (2) moderate; (3) severe 

      Logging 500m
2
 4 levels scored: (0) absent; (1) minor; (2) moderate; (3) severe 

      Clearing 500m
2
 4 levels scored: (0) absent; (1) minor; (2) moderate; (3) severe 

      Pollution 500m
2
 4 levels scored: (0) absent; (1) minor; (2) moderate; (3) severe 

      Gilgai 500m
2
 Present / absent; 3 levels scored: (1) light; (2) medium; (3) heavy 

iii) Floristic Composition 

      Species Richness 
 

500m
2
 

 
Total number of species found at each site 

      Species Frequency Score 500m
2
 Number of quadrats species are present divided by the number of 

quadrats (9) 
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Leaf litter biomass was also collected at four points along four transects that 

extended from the centre to each corner of the 500m
2
 quadrat.  Using a random 

number generator (between 0 -20), the number of steps from the centre 

outwards along each transect was determined.  A 0.25m
2
 square quadrat was 

placed to the right hand side of the transect line and all dead leaf litter collected, 

bulked and tagged.  The procedure was repeated for the remaining three 

transects and bulked together.  Sampling at the bottom of gilgai was avoided in 

order to reduce the effects of litter pooling (Facelli and Pickett, 1991).  Biomass 

samples were dried in an oven at 40˚C for four days and dry weight recorded.   

 

Floristic composition was evaluated, as a frequency, using the Nested Quadrat 

Method (Le Brocque and Buckney, 1995a; Morrison et al., 1995).  Nine concentric 

sub-quadrats were erected (1m
2
; 2m

2
; 5m

2
; 10m

2
; 20m

2
; 50m

2
; 100m

2
; 200m

2
; 

500m
2
) based on species area curves previously conducted.   The presence of each 

vascular plant species was recorded for each sub-quadrat to obtain a frequency 

(Frequency score, sensu (Morrison et al., 1995).  Such scores have been found to be 

functionally equivalent to more traditional, randomly or contiguously positioned 

frequency (Morrison et al., 1995).  Unidentified species were collected and tagged 

for later identification (International Code of Botanical Nomenclature).  Plant species 

were categorised within 3 key functional groupings based on life origin 

(exotic/introduced or native), life histories (annual or perennial) and growth form 

(tree, shrub, graminoid or herb) for further analysis (McIntyre et al., 1995; Lavorel et 

al., 1997).    

 



   

 

58 

 

3.2.3  Numerical Analyses 

An unweighted pair-group using arithmetic averages clustering (UPGMA, 

(Clarke and Warwick, 2001) and non-metric multidimensional ordination 

(nMDS), using Bray Curtis Similarity Matrices derived from floristic 

composition (frequency) and stand structure data were created to clarify a 

priori groups (PRIMER for Windows V5.2.9 (PRIMER-E, 2000)).  UPGMA 

clustering analyses the similarity between sites where least similar sites diverge 

early in the analysis, grouping sites that are most similar (Clarke and Warwick, 

2001).  Structural data (Foliage Projected Cover of strata) was transformed 

using an ArcSine function before analysis in order to prevent bounded effects 

on percentages (Quinn and Keough, 2002) (Table 3.2).  An Analysis of 

Similarities (ANOSIM) (Clarke and Warwick, 2001) was used to identify 

significant differences between the six treatment groups based on floristic 

composition and structure data. 

 

One-way Analysis of Variance (ANOVA) (SPSS Inc. V17, 2007) was used to 

analyse the cover of each strata and species richness across the six a priori 

groupings.  Residual plots and tests of variance were used to assess data 

variance in order to meet the assumptions for the analysis.  Tukey‘s post hoc 

tests were calculated (p<0.05) in order to identify differences between the 

groups (De Veaux and Velleman, 2004).  One-way ANOVA was also 

performed on functional traits, categorising species richness based on origin 

(native/ exotic) and perenniality (annual/ perennial), and  structural functional 

traits according to life form (trees, shrubs, groundcover; graminoids, 

herbs/forbs) (after (Lavorel et al., 1997; McIntyre et al., 1999).  Raw data was 
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transformed using a natural log function (Ln or Ln+1) to improve 

homoscedasticity (Table 3.2) and checked for skewed data using Q-Q Plots.    
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Table 3.2. Summary of response variables, analyses carried out and data transformations used. 
 

Analyses Response Variable Statistical Test Transformation 

Multivariate Analyses Floristic Composition UPGMA (Bray Curtis Similarity) Cluster Analysis  

nMDS/ ANOSIM  

  

Stand Structure UPGMA (Bray Curtis Similarity) Cluster Analysis 
 

ArcSin 

nMDS/ ANOSIM ArcSin 

Univariate Analyses Species Richness ANOVA  
Ln 

Tree Species Richness ANOVA  
Ln 

 Shrub Species Richness ANOVA  
Ln+ 1 

 Groundcover Species Richness 
 

ANOVA  
Ln 

Herb/Forb Species Richness 
 

ANOVA Ln 

Graminoid Species Richness 
 

ANOVA Ln 

Introduced Species Richness 
 

ANOVA Ln + 1 

 Native Species Richness 
 

ANOVA Ln 

 Perennial Species Richness 
 

ANOVA Ln 

 Annual Species Richness 
 

ANOVA Ln 

 Tree 10m-20m  Foliage Projected 
Cover 
 

ANOVA Ln + 1 

 Tree <10m Foliage Projected Cover 
 

ANOVA ArcSin 

 
 

Shrub >2m Foliage Projected Cover ANOVA Ln + 1 

 Shrub <2m Foliage Projected Cover ANOVA ArcSin 
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Analyses Response Variable Statistical Test Transformation 

Univariate Analyses Graminoid Cover ANOVA Ln 

 Herb/Forb Cover ANOVA Ln 

 % Logs < 20cm circum. 
 

ANOVA Ln + 1 

% Logs 10cm – 20cm circum. 
 

ANOVA Ln 

Coarse Litter Cover 
 

ANOVA ArcSin 

Fine Litter Cover 
 

ANOVA ArcSin 

% Bare Ground 
 

ANOVA Ln 

 Leaf Litter Biomass ANOVA Ln 
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3.3. Results 

 

3.3.1 Patterns in Floristic Composition in Remnant and Regrowth Brigalow 
Communities 
 

3.3.1.1 General patterns in Floristic Composition 
 

A total of 148 plant species were identified across the 38 sites sampled (Appendix 

B).  The plant species recorded included 6 tree species, 18 shrub species, 3 mistletoe 

species and 121 herbaceous species.  A total of 49 species were endemic to regrowth 

sites compared to 26 species found only in the remnant sites sampled (Appendix B).  

Remnant sites had the highest total number of species with Regrowth<20 exhibiting 

the least number of species (Table 3.3).    Herbaceous plant species included 37 

species of dicot perennials, 34 monocot perennials, 16 dicot annuals and 8 monocot 

annual species.  Sixteen introduced species were also found within the sites sampled.  

Homopholis belsonii (Belson‘s Panic), classified as Vulnerable under the EPBC Act 

1999 and Endangered under Queensland‘s Nature Conservation Regulation 2006, 

was found in one site (site 13) in relatively low abundance. 

 
Table 3.3. Cumulative native, exotic and total plant species recorded for each 

treatment. Values in parentheses are total species found exclusively in that treatment. 
 

Treatment Native species Introduced 

species 

Total species 

Reserve 57 (6) 5 (1) 62 (7) 

Remnant 75 (13) 7 (2) 82 (15) 

Regrowth>40 60 (6) 5 (1) 65 (7) 

Regrowth30-40 72 (11) 7 (1) 79 (12) 

Regrowth20-30 54 (3) 5 (1) 59 (4) 

Regrowth<20 49 (6) 9 (3) 58 (9) 
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3.3.1.2 Multivariate Gradients in Floristic Composition 
 

UPGMA Cluster Analysis of frequency data for the six vegetation types shows the 

treatment groups (Reserve, Remnant, Regrowth>40, Regrowth30-40, Regrowth20-30, 

Regrowth<20) were generally well-recovered in the analysis although some overlap is 

evident (Figure 3.2).  Remnant and Reserve sites were more similar to each other 

than to regrowth treatments, with the exception of sites 8 and 14.  Regrowth<20 were 

also well clustered compared to other regrowth sites.  Intermediate regrowth 

treatments (Regrowth30-40 and Regrowth20-30) and older regrowth (Regrowth>40 sites) 

were more dispersed throughout the dendrogram.   

 

nMDS ordination showed a general gradient from Remnant and Reserve sites, 

through older regrowth (Regrowth>40, Regrowth30-40) to more recent regrowth from 

the left to right of the ordination diagram (Figure 3.3).  The Regrowth20-30, 

Regrowth30-40 and Regrowth>40 sites showed considerable overlap in terms of 

similarity.  Site 4 (Regrowth30-40) was recognised as an outlier and was excluded 

from the analysis.  This was the only site in this treatment protected in a reserve 

(Booroondoo Reserve) and contained relatively high Callitris glaucophylla 

abundance.   

 

Analysis of Similarity (ANOSIM) showed significant differences in floristic 

composition between the treatment types (Global R = 0.364, p = 0.001) (Figure 3.3b) 

(Appendix C).  Reserve remnant and remnant sites were significantly different 

floristically to all regrowth types (p < 0.05).  Recent regrowth (Regrowth<20) was 

also significantly different to all other treatments (p < 0.05).  There was no difference 
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in floristic composition between intermediate (Regrowth30-40 and Regrowth20-30) and 

older (Regrowth>40) regrowth treatments (Figure 3.3b). 
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Figure 3.2. Dendrogram based on UPGMA cluster analysis of floristic composition (frequency data) showing sample sites.
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Figure 3.3. nMDS ordination of floristic composition (frequency data) of (a) site sample 
scores (excluding site 4) and (b) treatment centroids (Stress = 0.18).  Pairwise comparisons 
of ANOSIM represented by circles, encapsulated treatments are not significantly different at 

p<0.05.   = Reserve remnant,  = Remnant,  = Regrowth>40,  = Regrowth30-40,  = 

Regrowth20-30,  = Regrowth<20.   

 

 

(b) 

(a) 

Reserve and Remnant 

Old and Intermediate 
Regrowth 

Recent Regrowth 
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3.3.1.3 Patterns in plant origin and perenniality species richness 

Species richness ranged between 16 to 36 species/500m
2
 across the 38 sites sampled, 

with mean species richness varying between 20.3 and 29.6/500m
2
.  Species richness 

was significantly different between the treatment types (ANOVA, F = 4.730; p = 

0.002), with higher species richness in the reserve and remnant sites than 

Regrowth20-30 sites (Figure 3.4a; Appendix D).  Remnant sites were also significantly 

higher in species richness than the Regrowth<20 sites (Figure 3.4a). 

 

Exotic species were recorded in 37 of the 38 sites sampled.  There were no 

significant differences in introduced species richness between the six treatments 

(Figure 3.4b).  Regrowth <30 years since disturbance had significantly less native 

species richness than remnant and reserve treatments (Figure 3.4c) (p<0.05).  No 

significant differences in native species richness were observed between regrowth 

treatments.     

 

Mean perennial species richness was significantly higher in remnant sites than both 

Regrowth20-30 and Regrowth<20 treatments (F= 3.185; p =0.019) although not 

different to other treatments (Figure 3.4d).  Mean annual richness was significantly 

higher in Regrowth<20 sites than Regrowth>40 and Regrowth20-30 (ANOVA F = 3.640, 

p = 0.010) although not different to other treatments (Figure 3.4e).
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Figure 3.4. Mean (a) total species richness, (b) native species richness, (c) exotic species 
richness, (d) perennial and (e) annual species richness for each of the treatments.  Error 

bars are standard error.  Means sharing the same letter (e.g. a, b and c) are not significantly 
different using natural log (Ln) transformation (Tukey’s post hoc tests, p< 0.05). 
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3.3.2 Patterns in Stand Structure in Remnant and Regrowth Brigalow 
Communities 
 

3.3.2.1 General Patterns in Stand Structure 

There were no trees greater than 20m recorded in any of the regrowth treatments 

(Appendix E).  Total tree and shrub foliage projected cover ranged between 33% to 

52% and 3% to 21% respectively between Brigalow treatments (Table 3.4).  

Groundcover ranged between 17% with Regrowth>40 and 39% in Regrowth<20.   

Cover of logs (>10cm) varied between 4% to 18% and litter (<10cm) ranged 

between 40% to 66% (Appendix E).    

 
Table 3.4. Summary of total strata cover for each treatment.  Standard errors are 

shown in parentheses. 

 
 Reserve Remnant Regrowth>40 Regrowth30-40 Regrowth20-30 Regrowth<20 

 
Total Tree  
Cover 
 

 
52.0% (5.4) 

 
48.0% (2.2) 

 
40.9% (2.5) 

 
42.9% (3.6) 

 
49.0% (4.1) 

 
33.4% (3.8) 

Total Shrub 
Cover 
 

21.0% (0.7) 14.8% (2.4) 12.0% (2.7) 5.9% (1.2) 4.6% (1.1) 3.0% (1.5) 

Groundcover 
 
 

21.3% (1.4) 22.3% (2.9) 16.7% (3.7) 22.7% (4.4) 17.3% (1.7) 39.0% (7.5) 

Total Log  
Cover 
 

18.3% (2.3) 12.5% (1.9) 7.8% (2.1) 5.0% (1.7) 4.1% (0.9) 7.8% (2.7) 

Total Litter 
Cover 
 

66.0% (6.3) 64.8% (3.8) 59.5% (3.6) 60.1% (6.7) 57.3% (6.6) 39.6% (4.4) 

Bareground 7.0% (3.0) 8.0% (1.7) 19.4% (4.7) 18.7% (3.8) 23.3% (6.0) 21.6% (3.4) 

 

3.3.2.2 Multivariate Gradients in Stand Structure  
 

The UPGMA analysis of the structural cover data showed the majority of Remnant 

and Reserve sites were more similar to each other than to regrowth sites (Figure 3.5), 

with the exception of two Regrowth>40 sites (Sites 1 and 25).  Regrowth<20 sites were 

more similar to each other in stand structure compared to other regrowth sites.  

Regrowth>40, Regrowth30-40, and Regrowth20-30 sites overlapped in relation to 
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structural cover similarity.  Regrowth30-40 and Regrowth>40 were more similar to one 

another, as were Regrowth20-30 and Regrowth<20 sites.  Site 19 was identified as an 

outlier and excluded from further analysis.  This site was heavily grazed, had a more 

open tree canopy than other recent regrowth sites and contained a much higher cover 

of grasses (Appendix H).      

 

Patterns observed in the UPGMA of structure data were reflected in the nMDS 

ordination, with the remnant sites most similar to one another (Figure 3.6a).  The 

regrowth sites were more widely dispersed, particularly the older regrowth 

(Regrowth>40, Regrowth30-40).  The Regrowth<20 sites were also relatively similar 

structurally.   

 

There were significant differences in the similarity of treatments in structural cover 

(ANOSIM; Global R = 0.354; p = 0.001) (Figure 3.6b) (Appendix F).  A general 

gradient was observed in relation to age, with Regrowth<20, Regrowth20-30 and 

Regrowth30-40 significantly different from remnant classes; Regrowth20-30 and 

Regrowth30-40 not significantly different from Regrowth>40; and Remnant sites not 

significantly different from Regrowth>40.  The Reserve remnant sites, while not 

distinguishable from remnant sites, were significantly different from Regrowth>40 

sites (Figure 3.6b). 
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Figure 3.5. Dendrogram based on UPGMA Cluster Analysis of stand structure (cover data) showing sample sites. 
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Figure 3.6. nMDS ordination of stand structure (cover data ArcSine transformed) of (a) sites 

(excluding site 19) and (b) treatment centroids (Stress = 0.15). Pairwise comparisons of 
ANOSIM represented by circles, encapsulated treatments are not significantly different at 

p<0.05.   = Reserve remnant,  = Remnant,  = Regrowth>40,  = Regrowth30-40,  = 

Regrowth20-30,  = Regrowth<20.   

 

(a) 

(b) 
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3.3.2.3 Patterns in Strata Cover 
 

There were significant differences between treatments in relation to tree strata 

(ANOVA, p<0.05; Figure 3.7a, b) (Appendix G).  Both remnant treatments had 

significantly higher cover of trees between 10m – 20m than Regrowth30-40 and 

Regrowth<20 (p<0.05; Figure 3.7a) (recent regrowth excluded).  Regrowth30-40 and 

Regrowth20-30 had a significantly higher cover of trees less than 10m in height 

compared with remnant and reserve sites (p<0.05; Figure 3.7b). 

   

Remnant and Reserve sites were significantly higher in shrub cover than the 

Regrowth<20 (p<0.05; Figure 3.7c,d).  Reserve sites exhibited a higher shrub cover 

(>2m) than both Regrowth30-40 and Regrowth20-30 (p<0.05).  Regrowth20-30 also had 

significantly less shrub cover (>2m) than the remnant treatment (p<0.05; Figure 

3.7c).  Reserve and remnant communities were also higher in shrub cover (<2m) in 

comparison to Regrowth<20 (p<0.05; Figure 3.7d). 

 

Total groundcover was significantly higher in Regrowth<20 sites compared to 

Regrowth20-30 and Regrowth>40 (p<0.05; Figure 3.7e).  Graminoid cover was 

significantly higher in Regrowth<20 in comparison to Regrowth20-30 and Regrowth>40 

(p<0.05) (Figure 3.8a).  Herb and forb cover were not significantly different among 

treatments (p>0.05; Figure 3.8b). 
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Figure 3.7. Mean FPC of (a) trees 10-20m, (b) trees <10m, (c) Shrubs >2m, (d) Shrubs <2m 
and (e) groundcover for each of the treatments.  Error bars are standard error.  Means 

sharing the same letter (e.g. a, b and c) are not significantly different using natural log (Ln) 
transformation.  (Tukey’s post hoc tests, p< 0.05). 
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Figure 3.8. Mean percentage cover of (a) graminoid and (b) forbs/herbs for each of the 
treatments. Error bars are standard error.  Means sharing the same letter (e.g. a, b and c) 

are not significantly different using natural log (Ln) transformation (Tukey’s post hoc tests, p< 
0.05).

 

 

Remnant and Reserve sites had a significantly higher percentage cover of large logs 

(>20cm circumference) compared to regrowth sites less than 40 years since clearing 

(Figure 3.9a).  Log cover, 10-20cm circumference, was also higher in the Reserve 

sites than Regrowth20-30 and Regrowth30-40 (p<0.05).   
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There were no differences in coarse leaf litter (p>0.05).  Fine leaf litter (<5cm 

circumference) was significantly higher in both remnant sites and Regrowth>40 than 

Regrowth<20 (p<0.05) (Figure 3.9d).  Cover of bare ground was significantly higher 

in all regrowth treatments than reserve sites (p<0.05), although not significantly 

different to remnant sites (p>0.05) (Figure 3.9e).   
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Figure 3.9. Mean percentage structural cover for (a) logs >20cm, (b) logs 10 - 5cm, (c) 

coarse leaf litter (d) fine leaf litter and (e) bareground for each of the treatments. Error bars 
are standard error.  Means sharing the same letter (e.g. a, b and c) are not significantly 

different using arcsine transformation (a) and natural log (Ln) transformation (b) (Tukey’s 
post hoc tests, p< 0.05). 
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Leaf litter biomass was significantly lower in Regrowth<20 than all other treatments 

except Regrowth20-30 (Figure 3.10).  Old regrowth (Regrowth>40, Regrowth30-40), with 

the highest estimated mean dry weight, had more leaf litter biomass/m
2
 than 

Regrowth20-30.  

 
Figure 3.10. Mean leaf litter biomass (g/m2) for each of the treatments.  Error bars are 

standard error.  Means sharing the same letter (e.g. a, b and c) are not significantly different 
using natural log (Ln) transformation (Tukey’s post hoc tests, p< 0.05). 

 

3.3.2.4 Patterns in structural functional group richness 
 

Reserve sites had a significantly higher richness of tree species than Regrowth<20 (F= 

2.721; p<0.05; Figure 3.11a) although no other differences between treatments 

(Appendix D).  Shrub species richness was significantly lower in Regrowth<20 than 

all other treatments (F= 4.092; p>0.05; Figure 3.11b).  Remnant sites were 

significantly higher in groundcover species richness than Regrowth20-30 sites (F= 

3.744; p<0.05; Figure 3.11c). 
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Figure 3.11. Mean species richness for tree (a), shrub (b) and ground (c) layer for each of 

the treatments.  Error bars are standard error.  Means sharing the same letter (e.g. a, b and 
c) are not significantly different using natural log (Ln) transformation (Tukey’s post hoc tests, 

p< 0.05). 
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There were no significant differences between the treatments in relation to herb/forb 

species richness (F = 1.898; p = 0.122) (Figure 3.12b).  Recent regrowth had 

significantly higher graminoid species richness than Regrowth20-30 sites (F = 2.833; 

p< 0.05; Figure 3.12a), although no further differences between treatments.    

 

 

 
Figure 3.12. Mean species richness for graminoid (a) and forb and herb (b) layers for each 
of the treatments. Error bars are standard error.  Means sharing the same letter (e.g. a, b 

and c) are not significantly different using natural log (Ln) transformation (Tukey’s post hoc 
tests, p< 0.05). 
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3.4 Discussion  

 

3.4.1 Patterns in Floristic Composition 
 

Plant species recorded across the remnant and regrowth communities in this study 

were consistent with other studies in Brigalow vegetation in the region (Litchfield, 

1975; Johnson, 1984b; Johnson and Burrows, 1994; Bradley et al., 2010).  

Differences were observed between remnant and regrowth Brigalow vegetation 

treatments, in relation to floristic composition, with significant differences in the 

overall species composition (multivariate) between remnant and regrowth treatments 

and between intermediate and older regrowth and more recent regrowth.  This is 

consistent with other patterns observed in secondary succession in relation to plant 

composition.  For example, Bradley (2006) examined the composition and species 

richness of woody plant species in Brigalow vegetation and found that while 50% of 

woody plant species were present shortly after a disturbance (~4yr), it would take 

over 50 years for regrowth stands to reach 90% of species present in remnant 

Brigalow communities.  Similarly, Aide et al. (2000) found that despite recovery of 

stand structure in secondary tropical forests, species composition was not matched 

with that of old growth forests (greater than 80 years).  Other studies have also found 

that despite long periods of recovery (~ 100 years), many regrowth communities still 

differ in species composition and diversity compared with remnant and intact 

communities (Grau et al., 1997; Turner et al., 1997; Foster et al., 1998).   

 

Total and native species richness generally increased with the age of regrowth, with 

species richness within regrowth communities over 30 years since disturbance 

(Regrowth>40 and Regrowth30-40) similar to that recorded in remnant communities.  

This result is supported by Standish et al. (2007) who found some remnant Eucalypt 
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woodlands in Western Australia had plant species richness almost double that of 

regrowth (>40yrs) vegetation patches.  The low species richness within recent 

regrowth may be associated with early successional trends and the low structural 

complexity compared to older regrowth that allows niche creation and species 

specialisation (Bazzaz, 1996; Aide et al., 2000).   This pattern is also likely to be at 

least partly driven by the development of stand structural complexity, replacing open 

grassland species with more shade tolerant species as the overstorey develops 

(Veblen, 1992), discussed further in section 3.4.2. 

 

Little response in relation to exotic species richness was observed between regrowth, 

remnant and reserve sites.  Although 16 introduced species were observed within the 

study, the exotic species richness at each site was relatively low.  McIntyre & Martin 

(2001) also experienced limited exotic species response in grassy woodland 

ecosystems following the removal of tree species.  Fensham (1998) notes most exotic 

species do not significantly affect the integrity of native species colonisation in 

grassy woodlands on the Darling Downs; however, the conversion from native to 

exotic colonisation can occur when mechanical disturbance increases.  Despite the 

disturbance experienced during clearing, the relatively rapid recovery of structure 

and the early dominance of some native species may increase the resilience of these 

communities to exotic invasion.  Some exotic species found during this study (e.g. 

Panicum maximum and Eragrostis cilianensis) have also been shown to be poor 

competitors and can be kept in low abundances with light grazing (Fensham, 1998), 

which was observed at most regrowth sites (see Chapter 4). 
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No significant differences in annual richness were observed between remnant, 

reserve and regrowth 20 years since disturbance.  Annual plant species are 

commonly favoured by perturbations, particularly grazing, compared to perennial 

species (Lavorel et al., 1997).  Despite higher annual richness in regrowth<20 

compared with R20-30 and R>40, the richness of annual plants in all regrowth 

treatments was not significantly different from remnant and reserve sites.  In 

contrast, perennial plant species required a longer time, 30-40 years, in order to attain 

equivalent richness to remnant and reserve sites.  This is consistent with the literature 

whereby perennial richness tends to increase over time as they replace annual species 

that can dominate early successional stages (Bazzaz, 1996; Foster and Tilman, 2000).  

Due to the ability to delay reproduction until favourable conditions are met, perennial 

plant species are able to buffer seasonal variation, accumulate growth and store 

resources, maintaining diversity over the long term (Bazzaz, 1996).  Consequently, 

perennial species are usually indicative of stable conditions within terrestrial 

ecosystems (Frank, 1968; Aronson et al., 1993).         

 

However the patterns observed with respect to species composition and richness 

between the treatments does not necessarily apply to stand structure. 

  

3.4.2 Patterns in Stand Structure 

Following clearing of woody vegetation, a number of factors can influence the 

regeneration of trees and woody shrubs, impacting community structure development 

and composition.  The cover of grasses and herbaceous species can significantly 

influence woody plant recruitment following vegetation removal (Zimmerman et al., 

2000; Skinner et al., 2010).  Graminoid species frequently have buds near the surface 
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and following disturbance, can have a competitive advantage over woody plant 

species (Wilson, 1998).  Tree recruits compete with herbs and grasses for light, water 

and nutrients and can result in high tree seedling mortality (Gordon and Rice, 2000; 

Skinner et al., 2010).  In this study, the relatively rapid re-establishment of tree and 

shrub structure could be dependent on the combination of high groundcover and the 

suckering nature of Brigalow following disturbance (Chandler et al., 2007).    

 

Recent regrowth sites had relatively high groundcover, attributed mostly to increased 

graminoid cover.  This may be due to the rapid growth and development of Brigalow 

suckers creating a greater area of shade over time.  Following initial clearing, grasses 

(and forbs/herbs) and the Brigalow suckers would be actively competing for 

resources including light, water and nutrients.  However, over time (after 20 years, 

but possibly earlier given the high variability in grass cover in Regrowth<20), the 

Brigalow suckers have reached a height capable of increasing shade over an area.  

When overstorey structure is present, the dominance of less shade tolerant grass 

species, can result in a decrease in grass cover (Tremont and McIntyre, 1994).  The 

reduction in groundcover may open up potential niches in the understorey for other 

herbaceous and woody species, more shade tolerant, to germinate and establish 

themselves within the community (Grubb, 1977).  The reduction in graminoid cover, 

not surprisingly, coincided with an increase in shrub and tree species richness 20 

years since disturbance.  Despite little variation in the richness of ground cover 

species across treatments, with the exception of regrowth sites 20-30yrs old, the 

assemblage of species may have changed with the development of the overstorey, 

reflected in the multivariate comparisons on floristic composition and stand structure.  

Clarke (2003), for instance, found that shade created by the tree canopy decreased 
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the competitive ability of the herbaceous layer, allowing the recruitment of other 

woody shrubs and tree species. In this study, similar tree and shrub cover in regrowth 

and remnant was reached within 20 years; however, a longer period of time (30 to 40 

years) was needed to match the cover found in reserve sites.   

 

Assessment of litter cover also identified a number of patterns between the a priori 

community types.  The cover of fine leaf litter was equivalent to remnant 

communities within 20 years following disturbance.  Similar leaf litter biomass in 

comparison to reserve sites was reached within 20-30 years since disturbance.  As 

the cover and size of trees and shrubs increase with time since initial clearing, the 

aggregation of leaf litter would be expected to rise and the available bare ground to 

decrease.  The accumulation of litter is characteristic of Brigalow communities, with 

the decreased rate of composition attributed to the seasonably dry conditions typical 

of these communities (Tunstall and Connor, 1981).   Litter is important in changing 

the physical and chemical properties of soil, as well as manipulating the 

microclimate within an ecosystem (Facelli and Pickett, 1991; Yates, 1992).  

Responsible for the release of nutrient back into the soil following decomposition, 

litter can also influence the evaporation rates of soil moisture and intercept light, 

affecting the germination and survival of seeds and seedlings (Facelli and Pickett, 

1991).  The increase in litter cover since disturbance and slow decomposition rate 

(discussed in Chapter 2) may also have contributed to the reduction in the cover of 

graminoids over time.  Facelli and Pickett (1991b) found increased litter 

accumulation to significantly decrease the density of Setaria faberii and Panicum 

dichotomiflorum, which also impacted seed production.  
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The presence of larger logs and debris, as would be expected, required a longer time 

frame, achieving similar levels to remnant and reserve sites after approximately 40 

years.  The lack of differences observed in relation to coarse litter and logs between 

regrowth<20 and other age classes would be a result of the clearing method 

employed.  A number of recent regrowth sites had been cleared repeatedly in the past 

and most recently were pulled but not burnt, including sites 23 and 24 (observation 

and pers. comm.).  This has more than likely resulted in the higher levels of medium 

sized logs and large standard error (size of new regrowth stems not mature trunks) 

within Regrowth<20 compared to other regrowth treatments that had been burnt after 

clearing.   

 

The return of similar structure within Brigalow regrowth appears to be dependent on 

the development of the shrub and tree layers.  As these layers grow and develop, 

cover of grass decreases and the accumulation of leaf litter and logs increases to 

levels that resemble remnant vegetation.  

 

3.4.3 Alternate states and ecological implications 

Based on the age of regrowth assessed in this study, the return of similar plant 

dynamics and functioning, in terms of structure and composition, to remnant 

vegetation is yet to be observed.  Recent studies by Ngugi et al. (2010), using spatial 

community simulation models, found other community factors, such as stem density, 

may be influencing vegetative patterns in regrowth.  Models estimated Brigalow 

regrowth communities in central Queensland may require up to 95 years before tree 

stem densities are naturally thinned to levels similar to remnant Brigalow vegetation 

(Ngugi et al., 2011).   As community structure and diversity return following 
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disturbance, feedback controls driven by environmental properties, such as soil 

nutrients and biomass, and interactions between component plant species help 

regulate the development and composition of the community (Tilman et al., 1997).   

 

 

Multivariate analysis showed general stand structure attributes and complexity to 

recover to levels resembling remnant vegetation after approximately 40 years since 

initial clearing (Figure 3.13 cf Figure 3.1).  While studies on the development of 

regrowth structure, excluding fire disturbances, is sparse in relation to Australian 

woodland and forest communities, other studies elsewhere have identified similar 

time frames in relation to the return of stand structure in regrowth communities 

following clearing (Guariguata et al., 1997; Aide et al., 2000).  Aide et al. (2000) 

assessed secondary wet and dry tropical forests and found, with little soil degradation 

from past agricultural practices and limited fire disturbance, regrowth achieved 

similar structure to old growth forests (greater than 80 years) after 40 years of 

pasture abandonment.  Chazdon (2003) also reviewed a number of studies assessing 

the recovery of tropical forests and found that patches post-agriculture obtained stand 

structure, soil nutrient stores and species richness more rapidly than species 

composition. 
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Figure 3.13. Sucessional pathway in relation to stand structure within Brigalow regrowth 
communities. Equivalent structure in regrowth compared with remnant and reserve was 

reached after approximately 40 years since last disturbed.  Circles represent other 
theoretical transitional states during the recovery process. 

 

 

In contrast, Kanowski et al. (2003) in North Queensland found stand structure in 

mixed 30 to 40 year old regrowth tropical and subtropical forests, when left to 

regenerate naturally, had not achieved equivalent structure to that of intact forests.  

Similar structure was only achieved in actively reforested sites 20-30 years after 

abandonment (Kanowski et al., 2003).  Differences in return of ‗remnant‘ structure 

may be attributed to the life histories of dominant plant species in a given community 

(Glenn-Lewin and van der Maarel, 1992).  The rapid response of resprouting species, 

such as Brigalow, following disturbance may result in a faster recovery of stand 

structure compared to seeding species, particularly when dealing with more arid 

environments (Bazzaz, 1996; Midgley, 1996). 
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Despite recovery of stand structure observed in this study, floristic composition in 

regrowth after 40 years (and up to 60 -70y in some sites; Appendix A) still remains 

significantly different to remnant vegetation (Figure 3.14).  Although Brigalow 

regrowth progresses through a number of transition states, in comparison to Figure 

3.13, Brigalow regrowth is not floristically the same as remnant vegetation.  

Consequently it cannot be determined whether old regrowth represents an alternate 

stable state or is still in another transition state.  As previously discussed, Bradley 

(2010) also found woody understorey composition within Brigalow regrowth to be 

significantly different to remnant vegetation.  Other studies within forest regrowth 

fragments (Grau et al., 1997; Turner et al., 1997; Aide et al., 2000) have also 

reported significant differences in species richness compared to undisturbed remnant 

forests.  So while some ecological components may return to regrowth communities, 

the ability to recover entire ecosystem functioning evident prior to clearing remains 

unknown.  Determining if Brigalow regrowth >40y is still in a transition phase 

progressing towards a community similar in composition to remnant, or is in an 

alternate state, with its successional pathway altered by past anthropogenic 

disturbance needs to be further investigated.     
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Figure 3.14. Successional pathway in relation to floristic composition within Brigalow 
regrowth communities.  Regrowth >40 years is yet to resemble that of reserve or remnant 

communities.  Circles represent other theoretical transitional states during the recovery 
process. 

 

The confirmation of an alternate stable state, particularly within a short ‗snapshot‘ 

study, can be difficult to determine as not all stable equilibriums can be clearly 

demonstrated (Suding et al., 2004).  Further assessment of species and functional 

groups present, as well as community structure, are required along different periods 

of succession to further understand the potential direction of regrowth communities 

and their contribution to their remnant counterparts and overall landscape resilience.  

A long term investigation may help determine the exact trajectory of Brigalow 

regrowth and the community‘s resilience under continued management practices.  An 

enhanced understanding of these communities may also assist land managers to 

guide communities along a desired trajectory to meet an ultimate goal of 

conservation (Hobbs & Norton, 1996). 
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Furthermore, other factors may be affecting the observed patterns in flora and 

structure within Brigalow communities.  Environmental variables, such as soil 

nutrients and surrounding landuses can significantly affect recovery processes 

following disturbance.  For example, the position of a patch within a landscape can 

influence factors such as hydrology, fluxes of nutrients and patch connectivity, in 

relation to other surrounding landscape elements, affecting species populations and 

dynamics (Saunders et al., 1991; Simberloff et al., 1992).  Factors such as livestock 

grazing intensity and the intensity of agricultural development in the matrix can also 

affect abundance and composition of species in a particular patch of vegetation 

(Yates et al., 2000; Williams et al., 2006).  So, despite the return of similar stand 

structure creating niches for specialised native species, other environmental factors 

may be inhibiting seed dispersal and species recruitment between remnant and 

regrowth communities.  The question if patch factors and spatial characteristics 

influence the floristic and structural patterns observed in this study will be 

investigated in Chapter 4. 

    

3.5 Conclusion 

 

A number of significant patterns in floristic composition and stand structure were 

identified between the remnant and regrowth Brigalow treatments.  The majority of 

compositional functional groups reached similar levels of richness to remnant after 

approximately 30 years after clearing.  Despite considerable mechanical disturbance, 

no significant exotic invasion was found across the treatment types, possibly 

inhibited by the rapid recovery of native species.  Structural functional group 

richness recovered within a shorter time period, with most plant form richness 
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similar to remnant after 20 years.  While regrowth communities greater than 40 years 

recovered similar stand structure to remnant and reserve communities, floristic 

composition in old regrowth was still significantly different to both remnant and 

reserve sites, resulting in a partial rejection of the initial hypothesis.  The 

redevelopment of similar stand structure to remnant vegetation does not assure the 

eventual return of equivalent floristic composition.   

 

Whether older regrowth patches are still in transition towards a state equivalent to 

―remnant‖ status in relation to composition, or the communities are in fact in an 

alternate state remains uncertain.  Further investigation is required in order to 

ascertain the trajectory of older Brigalow regrowth communities within the 

landscape.    

 

Other potential ecosystem drivers also need to be assessed in order to further 

understand the floristic patterns observed within regrowth Brigalow communities 

following significant disturbance. The impact of surrounding spatial attributes and 

current disturbance regimes along with environmental factors may provide further 

insight into the patterns observed within these remnant and regrowth communities.  
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Chapter 4: Spatial and patch drivers of stand 
structure and composition in Brigalow remnant and 
regrowth communities. 
 

4.1 Introduction 

 

Further investigation is required in order to determine if environmental factors may 

help explain the differential patterns in composition and structure observed across the 

Brigalow treatments in Chapter 3.  Spatial and environmental variables can be 

important drivers affecting the plant community dynamics and structural complexity 

within highly fragmented landscapes (Saunders et al., 1991; McIntyre and Hobbs, 

1999).  External disturbances and inputs, as well as in-patch attributes, can 

significantly affect the persistence of ecological processes critical in the development 

of plant species and community dynamics within an ecosystem (Tilman, 1987; 

Saunders et al., 1991).  The ability of disturbed communities to regenerate can be 

significantly impacted by the type, frequency, intensity and duration of continued 

disturbance regimes (Denslow, 1980; Hobbs et al., 2007).  Identifying and measuring 

potential ecosystem drivers, both local and extrinsic, is critical in identifying 

ecosystem thresholds and establishing successful conservation strategies (Groffman 

et al., 2006).  This chapter will investigate the relationship of environmental 

variables, both spatially and in-patch, to the patterns in floristic composition and 

stand structure across remnant and regrowth Brigalow treatments in order to help 

determine why old regrowth remains distinctly compositionally different to remnant.  
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4.1.1 Patch drivers influencing plant community dynamics 
 

There are a number of local habitat characteristics, or patch variables, that can drive 

changes in biotic composition and structure within an ecosystem.  Measures of 

ecosystem processes assist in providing information on biogeochemical cycles and 

nutrient cycling necessary for long-term stability of an ecosystem (Ruiz-Jaen and 

Aide, 2005; Ruiz-Jaén and Aide, 2005). Direct assessment of ecosystem processes is 

rarely undertaken due to their slow recovery following disturbances and they require 

multiple measurements of different ecosystem components, resulting in a costly and 

time consuming process (Ruiz-Jaen and Aide, 2005).  Assessment of patch variables, 

such as soil and nutrient pools, are an indirect measure that can help efficiently 

assess one aspect of ecosystem processes and have been extensively utilised within 

studies of community dynamics (Doran and Zeiss, 2000). 

  

Changes within plant community development are highly dependent on soil nutrient 

availability (Roem and Berendse, 2000).  The interdependence between soil 

chemistry and plant composition, involves numerous complex interactions and 

feedbacks over time, particularly following a disturbance (Eviner & Chapin, 2003).  

Soil nutrients and structure interact with plant biogeophysical properties, influencing 

growth, development and ultimately plant survival and reproduction (Eviner and 

Chapin, 2003).  As the composition of plant species change over time, so too can the 

levels of nutrients in the soil, leading to further changes in plant recruitment 

processes (Hooper and Vitousek, 1997).  Individual soil characteristics can also 

influence the richness and diversity of species within a community.  Tilman (1987), 

for example, assessed different aged native oak regrowth and existing remnants in 

southern Minnesota in the United States and established plots of varying nitrogen 
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gradients using commercial fertiliser (NH4NO3).  Over time, a significant decrease in 

species richness was observed with increased levels of nitrogen (Tilman, 1987).   

 

Other soil characteristics, such as soil pH and phosphorus, have also been found to 

be good indicators of plant species diversity and composition (Roem and Berendse, 

2000).   Gould & Walker (1999) found a significant positive correlation between soil 

pH and the richness of vascular plants in riverine communities in northern Canada.  

Dorrough et al. (2006) found species richness within Eucalypt grassy woodlands in 

central Victoria decreased with increased input of phosphorus.  The decrease in plant 

richness, in relation to increased nutrient availability, has been attributed to increased 

competition between dominant plant species as well as tolerance limitations of some 

species to high nutrient availability (Dorrough et al., 2006).  

 

Continued local scale disturbances can also play a pivotal role in the composition and 

development of plants in a community.  Plants respond in a variety of ways to 

different disturbances, as well as disturbance intensities and frequencies (Lavorel et 

al., 1997).  Altered fire regimes can significantly change plant community dynamics, 

triggering invasion of exotic species and altering abundances of resprouters and 

seeders across the landscape (Fisher et al., 2009).  Watson et al. (2009) found 

reduced fire frequency in Eucalypt woodland (E. moluccana, E. tereticornis & E. 

crebra) on the eastern coast of Australia transformed these systems into shrublands 

dominated by Blackthorn (Bursaria spinosa).  

 

Livestock grazing can also impact upon plant populations and composition.  

Fensham et al. (1999) found differences in plant functional group diversity in 
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Queensland Bluegrass (Dichantheum sericeum) pastures in response to grazing 

pressure in central Queensland.  A decrease in many native perennial species was 

observed in relation to increased grazing intensity, favouring a number of more 

tolerant species, particularly exotics such as Parthenium hysterophorus (Parthenium 

Weed) (Fensham et al., 1999).  Livestock grazing can also impact community 

structure within woodlands, reducing the biomass of understorey grasses, herbs and 

litter deposits, resulting in further changes in species composition and diversity 

(Bakker, 1998; Landsberg et al., 2002).  Robertson & Rowling (2000) surveyed 

riparian Eucalypt woodlands on the Murrumbidgee floodplain in southern New 

South Wales and found significantly less groundcover biomass and leaf litter within 

grazed sites compared to ungrazed sites.  As well as containing significantly higher 

cover of bare ground, grazed sites also had three times fewer seedlings and saplings 

compared to ungrazed sites (Robertson and Rowling, 2000).     

 

Other factors, such as patch geometry may also affect plant community composition 

and structure within fragmented landscapes (Ewers and Didham, 2007).  Positive 

relationships between patch size and species richness have been observed within a 

number of habitat types with a tendency of larger patches to contain more 

heterogeneity than small habitat areas, enabling the creation of niches for specialist 

species (Cagnolo et al., 2006).  A nation-wide survey of lowland woodlands in Great 

Britain, for example, found larger patches had significantly higher herbaceous plant 

species richness compared to smaller patches (Petit et al., 2004).  Similarly, Krauss 

et al. (2004) found species richness of habitat specialist and generalists increased 

with area within calcareous grasslands in central Germany.    
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The shape of a patch can also affect community organisation and interactions, 

through associations with ‗edge effects‘, within the landscape (Saunders et al., 1991; 

Ewers and Didham, 2007).   Laurance et al. (1998), for example, found increased 

tree mortality and turnover rates within 60 m of rainforest patches in the central 

Amazon, attributed to changed forest microclimate and wind turbulence.  Young & 

Mitchell (1994) found plant composition to differ between edges and interior of 

Podocarp-Broadleaf forests in northern New Zealand.  Changes in microclimate 

resulted in differences in the abundance and occurrence of specific plant species 

between edge and interior sites (Young and Mitchell, 1994).   Changes to plant 

species dynamics associated with edge effects are greatest within small irregular 

patches where the ratios of edge to area are higher (Laurance et al., 1998).  While 

considerable studies have assessed the effects and importance of edges on vertebrate 

(Sisk et al., 1997; Schlaepfer and Gavin, 2001; Fletcher, 2005) and invertebrate 

(Dauber and Wolters, 2004; Ewers and Didham, 2008) species composition and 

richness, little is known in relation to the condition and viability of plant 

communities of Australian woodlands (Batterham, 2008).  While some authors have 

noted no differences in tree density or recruitment patterns in Eucalypt woodlands in 

relation to patch shape (Norton et al., 1995; Batterham, 2008), evidence suggests 

reproductive cycles can be impacted (Cunningham, 2000).  Cunningham (2000) 

surveyed Acacia brachybotrya and Eremophila glabra populations within mallee 

woodlands in central New South Wales.  Individual plants within linear remnant 

strips of vegetation were found to receive less pollen than those in nearby reserves, 

resulting in a reduced fruit set, highlighting the potential threats to population 

viability and biodiversity within fragmented landscapes (Cunningham, 2000).                 
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To fully understand the effects of local scale factors on the variability of species 

responses, one also needs to investigate surrounding landscape level variables that 

may be influencing ecosystem processes (Mazerolle and Villard, 1999).    

 

4.1.2 Spatial drivers influencing plant community dynamics 
 

Spatio-temporal characteristics can also play an important role in the development of 

plant species and community structure within fragmented landscapes (Waldhardt and 

Otte, 2003).  The diversity and abundance of plant species within agricultural 

landscapes is highly dependent on the current and previous land-uses and intensities, 

as well as the patterns and dynamics in the surrounding matrix and landscape 

(Waldhardt and Otte, 2003).  Changes in land-use, land-use intensity and decreases 

in surrounding habitat can, for instance, result in a loss of rare and specialist species, 

at times reducing species richness and favouring more generalist species within an 

environment (Saunders et al., 1991; Vellend et al., 2007).  Vellend et al. (2007) 

analysed worldwide studies of alpha diversity within regrowth and remnant forests 

and found that within regrowth, surrounding land uses modified for agricultural 

production acted as ecological filters, reducing plant diversity by impeding the 

dispersal of different species.   

 

The expansion and intensification of the agricultural industry can also result in 

changed fire regimes, increased erosion, from both wind and water, soil salinisation, 

and increased nutrient inputs, impacting on remnant and other vegetation patches in 

the landscape (Saunders et al., 1991; Williams et al., 2006).  Williams et al. 2006 

found increased plant population extinctions in remnant grasslands, attributed to 

increased exogenous disturbance from a rise in urban and rural development in the 
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surrounding matrix over a 20 year period.  Similarly, Guirado et al. (2006) found 

forest fragments surrounded by urban development in north eastern Spain contained 

significantly higher richness of common forest plant species compared to similar 

sized forest patches surrounded by cropping.   

 

Different surrounding land uses can also increase the possibility of exotic invasions 

into remaining vegetation patches within the landscape.  Borgmann & Rodewald 

(2005) examined riparian forests along a rural – urban gradient and found increased 

cover of Lonicera spp., an exotic shrub, in vegetation surrounded by urban 

development compared to areas of agriculture.   

 

 

The arrangement and structure of landscape features, or landscape configuration, can 

also have a significant effect on local diversity and community structure (Dauber et 

al., 2003).  The quality and different characteristics of the matrix can significantly 

influence the dispersal success of species between patches, as well as factors such as 

nutrient fluxes and hydrology (Saunders et al., 1991; Simberloff et al., 1992; 

Debinski, 2006).  Distance between patches and matrix permeability is crucial in the 

long-term persistence of vegetation patches and the recovery of highly disturbed 

communities (Suding et al., 2004; Debinski, 2006).  Dzwonko (1993) found distance 

to remnant oak-pine woodlands significantly influenced the floristic composition 

within regrowth communities.  The fragmentation and loss of vegetation within 

landscapes reduces the regional pool of propagules that can assist in recolonisation 

and development following disturbances (Suding et al., 2004).  Landscape 

configuration can also influence ecosystem processes, such as primary productivity.  

Ludwig et al. (1999) also assessed landscape patchiness using a simulation model 
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(SEESAW – Simulation of the ecology and economics of semi arid woodlands) and 

found patch shape to influence soil water availability directly impacting annual 

primary productivity. 

 

Agricultural land use affects a significant proportion of the landscape and its 

contribution to regional biodiversity is imperative within conservation initiatives, not 

only for biota, but the continuance of ecosystem services (Tscharntke et al., 2005).  

Identifying matrix parameters and drivers of community change are important in 

determining the impacts on rates of recovery of fragmented communities following 

significant disturbance, and their ultimate persistence in the landscape (Altieri, 1999; 

Dauber et al., 2003).   

 

4.1.3 Study aims 
 

In this chapter, I examine the relationship between environmental factors and 

floristic composition and stand structure of remnant and regrowth Brigalow 

vegetation in order to help explain trends observed in Chapter 3.  The correlation of 

soil chemistry, landscape connectivity and proportion surrounding landuse on 

vegetative composition and structure are analysed.  How these factors relate to 

species richness, native and exotic richness as well as strata cover classes across 

Brigalow vegetation in general, encompassing both remnant and regrowth 

communities, are also be assessed.  

 

The hypotheses assessed in this chapter are: 

• Spatial and patch variables explain the differential patterns in stand structure 

and floristic composition across reserve, remnant and different aged Brigalow 
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regrowth vegetation (Regrowth>40, Regrowth30-40, Regrowth20-30 and 

Regrowth<20). 

• Spatial and patch variables explain patterns in total species richness, life 

origin functional group richness or strata cover classes in Brigalow remnant 

and regrowth communities. 

   

4.2 Methodology 

4.2.1 Study Sites 
 

The Brigalow sites sampled in Chapter 3 for composition and structure were further 

examined in terms of habitat and landscape (spatial) relationships across the six 

treatments: 

1) Reserve remnant Brigalow vegetation never been cleared and protected 

within reserves and national parks (Reserve). 

2) Remnant Brigalow vegetation never been cleared (Remnant). 

3) Brigalow regrowth cleared over 40 years ago (Regrowth>40) 

4) Brigalow regrowth cleared between 30 – 40 years ago (Regrowth30-40) 

5) Brigalow regrowth cleared between 20 – 30 years ago (Regrowth20-30) 

6) Brigalow regrowth cleared < 20 years ago (Regrowth<20)   

 

More detail of the study site characteristics and design can be found in section 2.3 of 

Chapter 2.  

 

4.2.2 Field techniques 
 

Sites were sampled between 10 February and 20 May 2010.  Plant species 

frequency score was calculated using nested quadrats and foliage projected 
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cover of strata was estimated over a 500m
2
 plot.  Further detail on the 

collection of species data is provided in Chapter 3. 

 

A complete list of habitat factors investigated is provided in Table 4.1.  

Livestock grazing was scored on from 0-3 (0 = absent; 1 = minor; 2 = 

moderate; 3 = severe) based on evidence of understorey herbivory and stock 

faeces (cow ‗pats‘).  The presence or absence of gilgai (see section 2.1.2) 

within the site was also recorded and scored based on the degree of undulation 

(1 = light (<50cm deep); 2 = moderate (50-100cm deep); 3 = heavy (>100cm 

deep).  Overstorey tree stem density was also recorded in a 10m x 20m plot by 

direct counting. 

 

Soil samples were collected at each site sampled using four transects, 

intersecting at the centre of a 500m
2
 plot.  Following the collection of leaf litter 

biomass (Chapter 3.2.2), a 125g soil sample, consisting of the first 10 cm of 

topsoil (see (Adams et al., 1994), was taken at the centre of the biomass quadrat 

for each of the four transects using a PVC soil corer.  The four soil samples 

acquired at each site were bulked together, labelled and stored in a freezer for 

later analysis.  Soils were analysed commercially by SGS Food and Agriculture 

Laboratory, in Toowoomba, for pH, nitrogen, phosphorus, potassium, calcium, 

magnesium, sodium, organic carbon and cation exchange capacity (Table 4.1).  

Sampling at the base of gilgai was excluded to avoid potential variation in soil 

nutrient concentration (Russell et al., 1967). 
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Land-use data for each site was derived using Land-use imagery (1999) provided by 

the Queensland Department of Environment and Resource Management (DERM). 

Using ArcGIS V9 (ESRI, 2008), a 2km buffer was produced around each site and 

intersected with the Queensland Land Use and Management Mapping (1999).  Land-

use was classified into five land-use categories; 1) grazing in natural vegetation; 2) 

cropping; 3) water bodies, 4) production forestry and 5) national park cover (Table 

4.1).  Other minimal land-uses, such as public services and recreation, were omitted 

from the analysis.  Surrounding area of remnant and regrowth Brigalow (RE 11.4.3) 

was also calculated for each site using ArcGIS (ESRI, 2008) buffer tool (2km) on the 

Queensland Regional Ecosystem Mapping (Version 5, 2003) and Regrowth Mapping 

(Queensland Herbarium, 2008).  The area, in hectares, was recorded for each land-

use category and log transformed.   

 

Other landscape factors, including site area and distance to nearest remnant 

(measured from centroid to centroid), were also recorded for each site.  Perimeter to 

core ratio, used to determine how much of the patch is influenced by edge effects 

(Saunders et al., 1991; Ewers and Didham, 2007), was also calculated for each site 

(Table 4.1). 
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Table 4.1. Patch and spatial variables recorded and associated unit of measurement, transformation performed and abbreviated code. 

Variable Transformation Code Method 

Patch Variables 

Grazing Intensity (score) 

 

- 

 

Grazing Int. 

 

Score 

Gilgai Presence/ Depth (score) - Gilgai Score 

Tree Stem Density (/200m
2)

 Log10 Stem Density Direct counting 

pH - pH 1:5 – Soil: Water (Rayment and Higginson, 1992) 

Cation Exchange (meq/100g) Log10 Cation Exch. Ammonium acetate, pH7 extraction no adjustment for soluble salts (Rayment 
and Higginson, 1992) 

Nitrate/ Nitrogen (mg/kg) Log10 N 1:5 – Soil: Water, Colourimetric determination (Rayment and Higginson, 1992) 

Phosphorus (mg/kg) Log10 P Colwell – 0.5M bicarbonate, pH8.5  (Colwell, 1963) 

Potassium (mg/kg) Log10 K Ammonium acetate, pH7 extraction no adjustment for soluble salts (Rayment 
and Higginson, 1992) 

Calcium (mg/kg) Log10 Ca Ammonium acetate, pH7 extraction no adjustment for soluble salts (Rayment 
and Higginson, 1992) 

Sodium (mg/kg) Log10 Na Ammonium acetate, pH7 extraction no adjustment for soluble salts (Rayment 
and Higginson, 1992) 

Magnesium (mg/kg) Log10 Mg Ammonium acetate, pH7 extraction no adjustment for soluble salts (Rayment 
and Higginson, 1992) 

Organic Carbon (%) - OC Walkley Black Method (Walkley and Black, 1934) 
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Variable Transformation Code Method 

Spatial Variables 

Forestry area (ha) 

 

Log10 (log10 +1) 

 

Forestry 

 

Cropping area (ha) Log10 (log10 +1) Cropping  

Grazing area (ha)  Log10 (log10 +1) Grazing  

National Parks (ha)  Log10 (log10 +1) Nat. Parks  

Remnant Area (ha)  Log10 (log10 +1) Remnant 2km  

Regrowth Area (ha)  Log10 (log10 +1) Regrowth 2km  

Water Bodies (ha)  Log10 (log10 +1) Water  

Patch Area (ha) Log10 (log10 +1) Site Area  

Perimeter: Area - P:A  

Distance to Closest Remnant (km) - Distance 2 Rem.  
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4.2.3 Numerical Analyses 
 

Correspondence Analyses (CA) was performed on the floristic composition data and 

arcsine transformed structure data to identify patterns evident within the data, using 

CANOCO V4.5 (Ter Braak and Smilauer, 1991).  Canonical Correspondence 

Analysis (CCA) was performed on composition/structure data and environmental 

variables (Patch and Spatial variables) in order to explain the variation in community 

composition evident in the CA (Leps and Smilauer, 2003).  Canonical 

correspondence analysis is a multivariate direct gradient technique whereby the axes 

of an ordination are constrained to linear combinations of explanatory environmental 

variables (represented by vectors) (Leps and Smilauer, 2003).  Highly correlated 

explanatory variables, if evident, were removed from the analysis and the process 

repeated.  

 

Correlation analysis was performed on all spatial and habitat variables, using 

Pearson‘s correlation in SPSS V17 (SPSS Inc., 2007).  Mann-Whitney U test was 

performed on the spatial and patch variables between remnant and Regrowth>40 to 

determine which environmental factors may be responsible for differences in floristic 

composition.  This non-parametric test compares the medians across the sites and 

then ranks the scores across the two groups to determine the significance (Pallant, 

2011).   

 

Stepwise multiple regression, using SPSS V17 (SPSS Inc.,2007), following the 

standardisation of spatial variables, was used to identify spatial and patch factors 

influencing total, native and exotic species richness and strata cover classes (tree 

cover, shrub cover, groundcover, herb/forb cover and graminoid cover) across the 38 
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remnant and regrowth sites.  Analyses were performed with the GIS-derived spatial 

factors and patch factors as explanatory variables.  Some highly correlated factors 

were removed in order to create a more parsimonious set of parameters.  However, 

inferences from these analyses will only be made in relation to broad patterns 

relating to variables used. 

   

4.3 Results 

4.3.1 General patterns in environmental variables. 
 

No evidence of livestock grazing was recorded within reserve sites, with mean 

intensity ranging between 0.4 and 2.0 of the remaining five treatments (Table 4.2; 

Appendix H).  Mean soil nitrogen and phosphorous levels ranged between 3.6 to 6.6 

mg/kg and 4.8 to 16.4 mg/kg respectively.  Organic carbon varied between 1.2% and 

1.6% within the Brigalow treatments.  Mean stem density was highest in 

Regrowth<20, averaging around 207 stems/200m
2
 and lowest within reserve sites at 

approximately 53 stems/ 200m
2 

(Table 4.2). 

 

No cropping or water bodies were recorded in the 2km buffer zone around Reserve 

sites (Appendix H).  The mean area of cropping and grazing ranged between 609 to 

984ha and 121 to 419ha respectively, between the six treatments.  Regrowth<20 had 

the highest mean distance from the closest remnant patches of 3.7km compared to 

Regrowth30-40 which had the shortest mean distance of 1.9km to the nearest remnant 

patch.  The highest mean area of regrowth vegetation in the surrounding landscape, 

approximately 155ha, was within Regrowth<20 and averaged lowest around Reserve 

sites at 1.6ha. 
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Table 4.2. Summary of mean environmental variables for each treatment.  Standard errors are shown in parentheses. 
 

Variable Reserve Remnant Regrowth>40 Regrowth30-40 Regrowth20-30 Regrowth<20 

Patch Variables 

Grazing Intensity (score) 

 

0.0 (0.0) 

 

0.4 (0.2) 

 

0.6 (0.4) 

 

1.3 (0.4) 

 

1.0 (0.6) 

 

2.0 (0.3) 

Gilgai Presence/ Depth (score) 1.3 (0.5) 1.0 (0.3) 1.1 (0.3) 1.6 (0.5) 1.0 (0.5) 0.6 (0.2) 

Tree Stem Density (/200m
2)

 53.3 (10.5) 56.5 (6.5) 60.9 (3.7) 114.7 (36.5) 192.2 (45.2) 206.8 (39.4) 

pH 7.0 (0.2) 7.1 (0.2) 7.0 (0.3) 7.1 (0.3) 7.4 (0.2) 7.4 (0.4) 

Cation Exchange (meq/100g) 18.1 (2.2) 28.4 (2.5) 26.4 (3.5) 26.7 (4.4) 27.5 (3.1) 28.5 (4.7) 

Nitrate/ Nitrogen (mg/kg) 5.5 (1.3) 5.3 (0.5) 6.3 (1.5) 3.6 (0.7) 4.2 (1.6) 8.6 (1.7) 

Phosphorus (mg/kg) 4.8 (1.1) 6.4 (1.5) 6.9 (1.0) 16.4 (6.9) 9.8 (2.0) 6.2 (1.1) 

Potassium (mg/kg) 285.3 (30.8) 357.6 (23.2) 406.0 (59.3) 432.9 (92.7) 333.3 (52.0) 353.0 (63.8) 

Calcium (mg/kg) 2257.5 (175.5) 3968.8 (500.0) 3962.9 (601.6) 4052.9 (698.6) 4028.3 (609.6) 3944.0 (868.7) 

Sodium (mg/kg) 160.5 (57.8) 225.3 (57.4) 128.7 (46.8) 133.9 (67.1) 165.3 (23.0) 364.4 (40.7) 

Magnesium (mg/kg) 640.3 (165.9) 796.1 (79.1) 600.3 (45.7) 569.1 (104.6) 696.5 (32.7) 808.6 (55.4) 

Organic Carbon (%) 

 

 

1.6 (0.1) 1.6 (0.1) 1.5 (0.1) 1.4 (0.2) 1.2 (0.1) 1.3 (0.1) 
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Variable Reserve Remnant Regrowth>40 Regrowth30-40 Regrowth20-30 Regrowth<20 

Spatial Variables 

Forestry area (ha) 

 

252.9 (147.1) 

 

0.0 (0.0) 

 

57.0 (52.8) 

 

123.8 (123.8) 

 

0.0 (0.0) 

 

21.7 (14.5) 

Cropping area (ha) 0.0 (0.0) 120.8 (39.7) 351.0 (88.2) 175.3 (81.5) 418.8 (106.8) 179.4 (117.3) 

Grazing area (ha)  609.4 (203.1) 983.7 (41.2) 634.4 (47.0) 809.5 (121.8) 669.0 (98.2) 907.9 (110.5) 

National Parks (ha)  248.0 (248.0) 0.0 (0.0) 66.7 (66.7) 0.0 (0.0) 6.2 (6.2) 0.0 (0.0) 

Remnant Area (ha)  1056.4 (985.1) 55.5 (10.5) 618.5 (541.8) 48.6 (21.4) 27.1 (13.9) 5.7 (2.6) 

Regrowth Area (ha)  1.6 (1.6) 16.2 (9.4) 61.0 (16.2) 107.5 (38.8) 74.1 (30.1) 154.7 (30.7) 

Water Bodies (ha)  0.0 (0.0) 0.6 (0.6) 0.9 (0.7) 0.6 (0.4) 9.85 (7.3) 0.3 (0.3) 

Patch Area (ha) 995.3 (952.8) 42.1 (16.4) 25.3 (3.8) 65.7 (36.7) 17.5 (2.4) 50.7 (15.6) 

Perimeter: Area 11.5 (3.9) 16.0 (2.8) 17.1 (2.6) 13.9 (2.6) 16.0 (1.3) 13.5 (1.5) 

Distance to Closest Remnant (km) 2.2 (0.6) 2.0 (0.3) 2.2 (0.5) 1.9 (0.4) 2.5 (0.5) 3.7 (0.8) 
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4.3.2 Correlation of spatial and habitat variables on floristic composition 
and stand structure within Brigalow communities. 
  

Correspondence Analysis (CA) of floristic species composition (Figure 4.1a) 

reflected a similar pattern to the nMDS ordination produced in Chapter 3 (Figure 

3.2a).  A gradient from reserve and remnant sites through older regrowth to more 

recent sites can be observed.  However, Regrowth<20 sites are more dispersed within 

the CA ordination (Figure 4.1a).  Sites 4 and 14 were identified as outliers and were 

removed from further analysis.  

 

CCA of composition constrained to the spatial and patch variables, explained 22% of 

the variance in the first two axes (Axis 1= 0.341; Axis 2 = 0.217; F= 1.316; p= 

0.002).  Each of the vectors in the ordination from the CCA represent an 

environmental axis (extends from either end of the arrow).  The length of each vector 

is equal to the rate of change of the related variable across the ordination, providing 

an indication of  its importance (Le Brocque and Buckney, 1995a).  The main 

gradient across Reserve/ Remnant through older regrowth to recent regrowth was 

associated with increased grazing intensity and proportion of regrowth in the 

landscape (Regrowth 2km), high soil nutrients (Phosphorus, Potassium, Cation 

Exchange and to a lesser extent magnesium) and stem density, low proportion of 

forestry in the landscape and smaller patch area (Figure 4.1b).  Regrowth<20 sites 

were also characterised by higher distance to remnants in the landscape and stem 

density.  Variation within Regrowth<20 was explained by the proportion of water 

bodies in the landscape and soil nitrogen.   
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Figure 4.1. a) CA ordination of sample floristic composition and b) CCA ordination of sample 
floristic composition and patch and spatial variables (Eigenvalues x-axis = 0.347, y-axis = 

0.212; F=1.316; p= 0.002).   = Reserve remnant,  = Remnant,  = Regrowth>40,  = 

Regrowth30-40,  = Regrowth20-30,  = Regrowth<20. 

(a) 

(b) 
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CA of stand structure showed a gradient in relation to the six treatment types, from 

remnant and reserve through to more recent regrowth (right to left; Figure 4.3a).  

Forty-six percent of the variation in stand structure was explained by the first two 

axes of the ordination.  While Reserve sites were distinguished from all regrowth 

treatments, considerable overlap was evident between remnant and regrowth sites.  

Regrowth<20 was discernible from Remnant sites but not from older regrowth 

(Regrowth>40, Regrowth30-40) (Figure 4.3a).    

 

CCA of stand structure constrained by spatial and patch variables increased the 

explained variance between sites to 71.7% within the first two axes (F= 1.581; p= 

0.05).  Spatial factors were strong correlates explaining structural differences in 

remnant and reserve sites compared to regrowth sites (Figure 4.2b).  A gradient can 

be seen across axis 1 from Reserve through to Remnant and older regrowth to recent 

regrowth sites (right to left).  This gradient is associated with low proportion of 

regrowth and grazing in the landscape in Reserve sites and a higher proportion of 

natural vegetation in the landscape (Remnant 2km, National Parks and Forestry) and 

patch area.   Grazing intensity and, to a lesser extent, soil phosphorus are also 

associated with this gradient.  Soil factors (Nitrogen, Cation exchange) and the 

proportion of water bodies and cropping in the landscape explained the variation 

within the older regrowth sites (Regrowth>40, Regrowth30-40) (Figure 4.2b).  
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Figure 4.2. a) CA ordination of stand structure and b) CCA of site stand structure (ArcSine 
transformed) and patch and spatial variables (Eigenvalues x-axis = 0.133, y-axis = 0.036; 

F=1.481, p = 0.05).   = Reserve remnant,  = Remnant,  = Regrowth>40,  = 

Regrowth30-40,  = Regrowth20-30,  = Regrowth<20. 

(a) 

(b) 
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Remnant sites contained a significantly higher soil magnesium concentration than 

regrowth>40 (Mann-Whitney U Test, p<0.05).  Regrowth>40 also had a significantly 

higher proportion of regrowth, cropping and grazing in the surrounding landscape 

compared to remnant sites (p<0.05).  No other variables were different between 

Remnant and old regrowth (Table 4.3). 

 
Table 4.3. Summary Table of Independent Sample Mann-Whitney U Tests for mean spatial 

and patch variables (Standard error) between Remnant and Regrowth>40 treatments. 

Patch and Spatial Variables Remnant Regrowth >40 p- value 

Grazing Intensity (score) 0.38 (0.18) 0.57 (0.43) 0.889 

Gilgai Presence/ Depth (score) 1.00 (0.27) 1.14 (0.26) 0.702 

Tree Stem Density (/200m
2
) 1.73 (0.05) 1.78 (0.03) 0.487 

pH 7.05 (0.20) 6.97 (0.27) 0.643 

Cation Exchange (meq/100g) 1.44 (0.04) 1.40 (0.05) 0.324 

Nitrate/ Nitrogen (mg/kg) 0.71 (0.05) 0.72 (0.11) 0.907 

Phosphorus (mg/kg) 0.73 (0.10) 0.81 (0.07) 0.558 

Potassium (mg/kg) 2.55 (0.03) 2.58 (0.06) 0.728 

Calcium (mg/kg) 3.55 (0.05) 3.57 (0.06) 0.954 

Sodium (mg/kg) 2.25 (0.12) 1.94 (0.17) 0.093 

Magnesium (mg/kg) 2.89 (0.04) 2.77 (0.03) 0.032* 

Organic Carbon (%) 1.55 (0.12) 1.54 (0.14) 1.000 

Forestry area  0.57 (0.39) 0.00 (0.0) 0.118 

Cropping area  1.88 (0.17) 2.39 (0.18) 0.037* 

Grazing area  2.99 (0.02) 2.80 (0.03) 0.002** 

Remnant Area  1.64 (0.15) 1.57 (0.5) 0.728 

Regrowth Area  0.78 (0.26) 1.71 (0.10) 0.011* 

Water Bodies  0.10 (0.10) 0.17 (0.11) 0.457 

Patch Area 1.49 (0.11) 1.37 (0.07) 0.562 

Perimeter: Area 15.95 (2.76) 17.08 (2.64) 0.563 

Distance to Closest Remnant 2.05 (0.30) 2.15 (0.45) 0.908 
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4.3.3 Correlation of spatial and habitat variables on species richness and 
strata cover classes in Brigalow communities.  
 

Tree stem density and proportion of remnant vegetation in the surrounding area (2 

km buffer) explained approximately 49% of the variation in species richness in 

Brigalow regrowth and remnant vegetation (Step-wise Regression, F= 18.699; p 

<0.001; Table 4.4).  These factors also explained 53% of the variation of native 

species richness (F= 22.357; p<0.001; Table 4.4).  No predictor variables 

significantly explained exotic species richness in the Brigalow sites assessed 

(p>0.05). 

 

The proportion of regrowth in the surrounding landscape explained 16.5% of the 

variation in tree cover (Step-wise Regression F= 8.332; p<0.05; Table 4.4).  Over 

59% of the variation in shrub cover within Brigalow vegetation was explained by a 

combination of tree stem density, surrounding regrowth vegetation and soil organic 

carbon (Table 4.4).  No predictor variables were identified for total groundcover, 

herb/forb cover or graminoid cover.   
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Table 4.4. Summary of stepwise regression results for the dependent variables total, native, 

exotic species richness and strata cover classes for Brigalow sites. 

Dependent 
Variable 

Explanatory 
Variables in 
Final Model 

d.f. Adjusted 
R

2
 

F p-
value 

β β 
Coefficient 

(SE) 

p-value 

Species 
Richness 

Stem 
Density + 
Remnant 
Area (2km 
Buffer)  

2, 35 0.489 18.699 0.000 
 

 
Constant 
 
 

 
1.661 
(0.089) 
 

 
0.000 
 
 
 

Stem 
Density 
 

-0.170 
(0.040) 
 

0.000 
 

Remnant 
Area 

0.036 
(0.014) 

0.017 

Native SR Stem 
Density + 
Remnant 
Area (2km 
Buffer) 

2, 35 0.536 22.357 0.000  
Constant 
 
 

 
1.644 
(0.095) 

 
0.000 
 
 
 

Stem 
Density 
 

0.193 
(0.043) 

0.000 
 

Remnant 
Area 

0.046 
(0.016) 

0.006 

Exotic SR No variables significant in the model 
 

Tree 
Cover 

Regrowth 
(2km Buffer) 

1, 36 0.165 8.332 0.007 Constant 0.554 
(0.036) 

0.000 

Regrowth 
Area 

-0.64 
(0.22) 

0.007 

Shrub 
Cover 

Stem 
Density + 
Regrowth 
Area (2km 
buffer) + 
Organic 
Carbon 

3, 34 0.596 19.203 0.00 Constant 0.236 
(0.71) 

0.002 

Stem 
Density 

-0.92 
(0.28) 

0.002 

Regrowth 
Area 

-0.44 
(0.11) 

0.000 

OC 0.72 (0.25) 0.006 

Ground-
cover 

No variables significant in the model 

Forb/Herb 
cover 

No variables significant in the model 

Graminoid 
cover 

No variables significant in the model 
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4.4 Discussion 

 

A number of environmental and spatial factors were correlated with the patterns in 

plant community composition, richness and stand structure identified across 

Brigalow remnant and regrowth vegetation in Chapter 3.  Consistent with other 

studies (see (Pettit et al., 1995; Boutin and Jobin, 1998; Dorrough et al., 2004), 

composition and structure were explained by a combination of spatial and 

environmental factors, particularly those related to agricultural intensification.   

 

The spatial and habitat factors assessed were correlated with floristic composition 

between the sites, with spatial features explaining the gradient between remnant and 

older regrowth, and recent regrowth.  Remnant and Reserve sites contained a higher 

proportion of vegetation in the surrounding areas while an increasing trend in soil 

nutrient concentrations was evident from regrowth sites to remnant sites.  Regrowth 

sites also exhibited increased grazing intensity and a larger proportion of surrounding 

regrowth vegetation compared to remnant sites.  The proportion of grazing and 

regrowth in the surrounding area was also a significant difference between 

Regrowth>40 and Remnant sites, suggesting spatial factors may be influencing 

vegetation patterns within patches.  Similar spatial and landscape variables were 

found to explain the gradient in relation to stand structure within the treatments.  

Univariate results identified similar environmental variables as the multivariate 

analyses, with spatial factors, particularly the proportion of remnant and regrowth in 

the surrounding landscape and stem density explaining patterns in relation to 

functional group richness and structural cover classes.  However, some caution 

should be used in the generalisations made from the regression analysis as the age of 
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regrowth may be strongly correlated with stem density.  The rates of self thinning of 

overstorey trees within a patch can be dependent on stand age and other spatial 

factors (Chen et al., 2008; Dwyer et al., 2010).  Patch geometry, such as size and 

perimeter to core ratio, for instance, while related to some of the patterns in 

composition and structure, was not found to affect species richness or tree cover 

classes.   

 

4.4.1 Spatial and Patch factors impacting stand structure, composition and 
richness in Brigalow Communities 
 

The proportion of different land-use within the surrounding landscape was associated 

with the differences in stand structure and floristic composition between the sites 

sampled.  The different floristic composition within regrowth sites was related to the 

area of surrounding agricultural management.  Metzger (2000) found surrounding 

matrix complexity, modified for coffee bean plantations, to be significantly related to 

the diversity of tree species found within Brazilian rainforest fragments.  

Surrounding agricultural has also been found to impact on the health and quality of 

remnant fragments within the landscape.  Increased tree mortality was found within 

rainforest fragments bordering cattle grazing pastures compared to those surrounded 

by forest regrowth in the Amazon Basin (Mesquita et al., 1999).  These factors might 

also be preventing older regrowth from reaching similar composition to remnant.     

 

Intensification in the surrounding matrix has also been linked to increased 

vulnerability to invasive species (Saunders et al., 1991).  Although there was no 

relationship recognised in regards to exotic species richness, the abundance of 

introduced species may have contributed to the patterns found in the CCAs.  



 

119 

 

Disturbances, coupled with increased nutrients can also increase the invasibility of 

non-native species (McIntyre et al., 1995; Lake and Leishman, 2004).  Nutrient 

fluxes from surrounding agricultural practices, particularly cropping, can affect 

community composition and ecological processes within adjacent communities 

(McIntyre and Lavorel, 1994).  Fertiliser drift from surrounding agricultural practices 

can alter the soil chemistry within landscape fragments influencing plant 

communities.  Burke & Grime (1996) found increases in nutrient availability 

increased the invasion success of exotic species following a disturbance in limestone 

grasslands.  Surrounding landuse, mainly proportion of cropping, may have also 

contributed to influxes of nutrients within some sites, resulting in differences in 

abundance and composition of plant species, particularly in the herbaceous 

understorey. 

     

Stem density was also associated with not only the patterns in composition but also 

shrub cover, total and native species richness.  Overstorey tree stem density has been 

found to influence the composition and diversity of understorey species within 

woody thickened communities.  Price & Morgan (2008) found reduced groundcover 

and understorey diversity within E. camaldulensis open woodlands suffering 

encroachment by Leptospermum scoparium.  Thickening of particular overstorey 

species can out-compete understorey plant species and other woody species for light 

and nutrients, increasing homogeneity within communities (Gordon and Rice, 2000; 

Vellend et al., 2007).  This may in-turn impact the total cover and richness of 

understorey strata and species.  Over time the gradual thinning of the overstorey, via 

natural processes, would allow other species, such as woody shrubs, to establish 

themselves (Grubb, 1977).   Dwyer et al. (2010) identified a relationship between 
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Brigalow tree stem density and the recovery rate within regrowth communities.  

Selective thinning was shown to increase woody species diversity and influence 

groundcover species within 29 year old Brigalow regrowth (Dwyer et al., 2010).  As 

an active management intervention, the thinning of younger regrowth stands may 

assist in the understorey recovery of disturbed Brigalow patches in the study area, 

enabling the communities to reach more similar composition and richness to older 

regrowth and remnant patches.       

 

Soil chemistry explained some variation in composition and stand structure between 

the remnant and regrowth treatments.  Soil properties relating to plant growth and 

development can be highly dynamic over time, relating to complex interactions 

between soil and plant components and feedback mechanisms within an ecosystem 

(Eviner and Chapin, 2003).  Christensen & Peet (1984) found soil chemistry, 

particularly soil pH, calcium, and magnesium, to be significant factors explaining the 

variance in floristic composition in old field and different aged secondary Pine 

forests in south eastern America.  Fluxes of soil nutrients, such as nitrogen, calcium 

and magnesium are primarily controlled by biological processes while potassium and 

sodium levels are largely dominated by physical processes, including leaching and 

atmospheric deposition (Laskowski et al., 1995; Eviner and Chapin, 2003). Fluxes in 

phosphorus are strictly reliant on a combination of physical and chemical processes 

(Laskowski et al., 1995).  The large standard error for the mean phosphorus for 

Regrowth30-40y (Table 4.2) was attributed to high levels recorded in some sites, 

particularly sites 24 and 28, and may have been a result of the use of fertiliser to 

increase pasture productivity or run-off from surrounding properties. Also, while 

levels of soil organic carbon recorded were on the lower end of the scale found 
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within some Brigalow studies (e.g. Dalal et al., 1986; Collard & Zammit, 2006), they 

are still within the range recorded within other studies in both Brigalow and Eucalypt 

woodlands with similar soil types and climate (e.g. Graham et al., 1981; Jackson & 

Ash, 1998). 

 

The differences in soil nutrient concentrations observed between the treatments may 

be a result of the disturbance history of sites and changes in biological processes 

within regrowth patches at different stages of development.  The removal of 

vegetation followed by periods of grazing or cropping can affect soil nutrient 

concentrations (Saunders et al., 1991; Murty et al., 2002; Sangha et al., 2005).  Due 

to limited site history, possible changes in land use following clearing and prior to 

abandonment may impact on available soil nutrients, in-turn influencing differences 

in species composition and general recovery.  Investigation into clearing techniques 

and prior land uses may provide further information on the recovery of Brigalow 

regrowth both within and between treatments. 

 

The soil nutrients measured did not influence species richness or the foliage 

projected cover of strata.  This, along with the small variation explained in the CCAs, 

may be due to all sites being based on the same soil classification under 

Queensland‘s Regional Ecosystem classification, resulting in limited variation across 

the sites assessed.  Graham et al. (1981) also found no significant differences in soil 

nitrogen in relation to Brigalow regrowth age.  However, some differences were 

observed in relation to changes in land-use, with an organic carbon and nitrogen 

reduction with increased agricultural production (cropping and grazing) (Graham et 

al., 1981).  This may be attributed to fluxes in nutrients associated with inputs from 
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agricultural activity discussed earlier.  Species richness may not always be a good 

indicator of biodiversity within different systems (see (Reyers et al., 2000; Gotelli 

and Colwell, 2001).  As a result, while small changes in soil chemistry may not 

influence the number of species found, the composition of species may be different 

(Hooper and Vitousek, 1997).  So, while the number of species may not be 

influenced significantly by soil chemistry, the composition of species may be 

dependent on particular site nutrient availability and properties. 

 

In contrast, Dauber et al. (2003) found patch factors, chiefly soil type and aspect, to 

solely explain species richness in regression analysis in grasslands in Germany.  

However, the surrounding matrix and other spatial factors may be more critical in 

impacting plant recolonisation and diversity following significant environmental 

disturbances (Kupfer et al., 2006).  

 

The distance and connectivity between regrowth and remnant vegetation explained 

some of the differences in structure and composition between treatments.  Distance 

to surrounding mature vegetation patches can affect seed dispersal and recolonisation 

rates within plant populations (Brunet and Von Oheimb, 1998; Metzger, 2000; Reed 

et al., 2000).  Grashof-Bokdam & Geertsema (1998) found increased distance to old 

forest remnants to significantly reduce the occurrence of species within younger 

patches of evergreen forests.  Similarly, species richness within Brigalow sites was 

also found to be highly dependent on area of remnant vegetation in the surrounding 

landscape.  Limited proximity to remnant vegetation may impact the recovery time 

of floristic composition, particularly native species, to that of ‗remnant‘ status, with 

seeds having to cross longer distances before reaching suitable habitat for 
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germination.  Dorough & Moxham (2005) also found surrounding tree cover to be 

critical in successful regeneration in Eucalypt forests and grassy woodlands (E 

goniocalyx, E. polyanthemos, E. macrorhyncha, E. camaldulensis and E. 

macrocarpa) in central Victoria.  Simulations showed decreases (30%) in 

surrounding tree cover significantly reduced the area of regeneration by over 50% 

(Dorrough and Moxham, 2005).  Although Regrowth>40 did not have a significantly 

different proportion of remnant vegetation in the landscape compared to remnant 

sites, a significantly higher proportion of regrowth was found in the surrounding area 

compared to remnant.  Seed dispersal between regrowth patches may be contributing 

to the difference in composition between older regrowth and remnant.  Regrowth 

patches would be more likely to receive seeds and propagules from other regrowth 

patches as opposed to the few remnant communities remaining in the surrounding 

area.    

 

Patch grazing intensity can also impact on stand structure and floristic composition.  

Yates et al. (2000) found heavily grazed sites had reduced cover of shrubs and herbs 

in comparison to lightly grazed and ungrazed sites in E. salmonophloia woodlands in 

the central wheatbelt of Western Australia, suggesting reductions in grazing intensity 

can assist in ecosystem recovery.  Similarly, Spooner et al. (2002) found reduced 

recruitment of understorey species, particularly herbs and forbs, in unfenced grassy 

Eucalypt woodlands compared to fenced sites in southern New South Wales.   

Grazing intensity has also been found to affect community regeneration over time.  

Dorrough & Moxham (2005) found Eucalypt regeneration under frequent livestock 

management was practically non-existent, while, the highest levels of plant 

regeneration were found in ungrazed sites, and some evidence of regeneration was 
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also exhibited in sites under intermittent grazing levels (Dorrough and Moxham, 

2005).  Other studies have also found reduced regeneration ability under livestock 

grazing (Walker et al., 1981; Milchunas and Lauenroth, 1993; Pettit et al., 1995).   

 

Patterns in stand structure were also related to increased grazing intensity within the 

patch.  Livestock grazing can impact the cover of grasses and the woody understorey, 

reducing germination via trampling and favouring grazing tolerant species.  For 

example, Robertson & Rowling (2000) found livestock grazing and trampling to 

significantly impact the recruitment success of Eucalypt tree species in riparian 

woodlands in southern New South Wales.  Areas of high livestock grazing had 

significantly higher seedling and sapling mortality compared with sites that were 

ungrazed (Robertson and Rowling, 2000).  Overgrazing and trampling by livestock 

can also significantly reduce the amount of dead leaf litter and logs, resulting in an 

increase in bare ground (Belsky and Blumenthal, 1997; Robertson and Rowling, 

2000).  The relatively high grazing intensity within regrowth, particularly 

Regrowth<20 (high percentage of bare ground and low shrub cover; Appendix H), 

may have contributed to the differences in overall stand structure when compared 

with remnant Brigalow sites.        

            

Livestock grazing can also influence soil chemistry characteristics.  Long-term 

grazing can result in decreased soil phosphorus and potential loss of magnesium, 

potassium and calcium (Asner et al., 2004).  While the loss of some soil nutrients, 

mainly phosphorus, remains relatively uncertain, erosion and leaching further into 

the soil profile have identified within grazing systems (Asner et al., 2004).  Turner 
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(1998) similarly found long-term grazing to impact the availability of plant nutrients, 

particularly phosphorous, in central Mali.     

 

A number of patch variables were not found to be related with the composition or 

richness of plant species across the Brigalow sites sampled.  Perimeter to core ratio 

assists in determining the amount of potential edges effects of a given patch (Ewers 

and Didham, 2007).  The extent of edge effects can influence the germination, 

development and composition of species present via changes to microclimate, light 

intensity, soil moisture and evaporation rates (Saunders et al., 1991; Jules and 

Rathcke, 1999; De Blois et al., 2002).  However, this was not significant within this 

study and may be a result of sampling sites away from the edge of the patch and the 

exclusion of long, narrow shaped patches.    

 

Patch size has also been shown to affect plant composition, with large patches 

generally exhibiting greater environmental heterogeneity than smaller patches (De 

Blois et al., 2002).  A number of studies have found fragment area to be significantly 

related to patterns observed in plant richness and diversity (Soulé et al., 1992; Kohn 

and Walsh, 1994).  However, patch size may not always influence the composition or 

richness of plants within fragmented landscapes.   Holt et al. (1995) for example, 

found that patch size did not influence the pattern or rate of secondary succession in 

varying sized plots (up to 0.5ha) in disturbed oak woodlands in central America: 

However, the present study was not designed to test the effect of patch size as sites 

were restricted to much larger patches of <50ha.  The few noted exceptions, mainly 

site 9 and 13 may also have strongly influenced the results obtained in relation to 
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patch size and were identified as extremes within the CCA analysis (see ter Braak, 

2002). 

 

The magnitude of gilgai also had limited effect on structure and composition within 

remnant and regrowth in relation to time since disturbance.  There has been some 

literature in relation to the effects microrelief can have on vegetation, particularly 

annual shrubs and grass species (see (Wilson and Leigh, 1964; Mott and McComb, 

1974; Malik et al., 1976).  Microrelief can also effect ecological processes, 

particularly decomposition, and play an important role in soil moisture dynamics 

(Dickson and Wilsey, 2009).  However, Eldridge et al. (1991) found that microrelief 

had minimal affect on shrub seedling survival, noting other environmental variables, 

such as soil nutrients and seasonal climate variation to be more influential on plant 

development.  The inclusion of soil moisture levels may help in further explaining 

some of the patterns found within these systems (Russell et al., 1967; Tunstall and 

Connor, 1981). 

 

4.4.2 Spatial autocorrelation, limitations and implications for Brigalow 
communities in Production Landscapes 
 

The significant relationship between some spatial and patch factors may limit the 

inferences deduced within this study.  Some significant associations between 

variables may be a result of confounding effects relating to historical and landscape 

management effects.  For instance, areas recently cleared and modified for grazing 

and cropping are more likely to be surrounded by areas of further cultivation and 

livestock grazing, due to similarity in soil chemistry and landscape morphology.  

Under these circumstances, neighbouring vegetation patches are more likely to be 

other patches of recent regrowth as opposed to remnant vegetation.  Significant 
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differences in shrub and tree cover in relation to time since disturbance have already 

been identified between recent regrowth and remnant and reserve sites (see Chapter 

3).  Consequently the results obtained in this study may be confounded by the fact 

that recent regrowth sites are more likely to be surrounded by similarly 

disturbed/modified vegetation.  The subjective selection of sites within patches, 

aimed at reducing potential error, may also slightly constrain the generalisation 

made.  These confounding variables may also be contributing to patterns observed in 

relation to stand structure and floristic composition. 

 

Distance to Brigalow remnants and the proportion of vegetation (National Parks, 

Remnant vegetation) in the surrounding landscape were found to be key factors 

associated with the patterns in similarity of composition and stand structure.  

Reserve, Remnant and some Regrowth>40 sites were spatially closer to other remnant 

Brigalow patches and surrounded by a higher area of remnants compared to more 

recent regrowth.  In contrast, recent regrowth (Regrowth<20 and some Regrowth20-30) 

tended to be further from remnant patches and surrounded by other patches of 

regrowth vegetation.  Within the context of the study area, this spatial autocorrelation 

appears to identify two ‗contrasting‘ landscapes occurring in regards to Brigalow 

communities, one containing high proportions of remnant vegetation and the other 

more intensively agriculturally managed, containing a high proportion of regrowth in 

the surrounding area.  However, while autocorrelation may constrain the results 

observed, it may be a result of small scale pattern analysis.  Discerning true spatial 

gradients from artificial ones is a common challenge within ecological studies and 

are significantly dependent on spatial scale (Legendre, 1993). While the two 

landscape types were identified on a relatively small scale (2 km buffer), over a 
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larger extent (e.g. Figure 2.2) regrowth and remnant vegetation appears to be more 

interspersed, potentially minimising the significance of this finding.  Time 

constraints prevented further assessment of the spatial arrangement of remnant and 

regrowth communities in the study area; however, future assessment of land-uses at a 

variety of scales may provide additional information on the spatial dynamics and 

effects of surrounding disturbance on Brigalow communities in the landscape, and 

the implications for natural restoration.    

 

However, despite autocorrelation, the study findings do highlight the importance of 

landscape connectivity and disturbance, both in-patch and in the surrounding matrix, 

in community recovery following vegetation clearing.  Incorporating the matrix and 

adjacent vegetation patches is vital in understanding the interactions and effects 

between species and the environment needed for conservation on a landscape scale 

(Hersperger and Forman, 2003).  While some differences between Remnant and 

Regrowth>40 was observed, other patch or spatial factors may be influencing 

vegetation patterns and preventing the recovery or return of similar floristic 

composition in older regrowth.  Future studies need to investigate how these patch 

factors and ‗matrix effects‘ influence recruitment processes within Brigalow 

vegetation in order to determine if different management actions are required to help 

restore regrowth to a state resembling remnant communities.    

  

4.5 Conclusion 

 

Spatial and environmental factors were found to help explain the differential patterns 

in floristic composition, stand structure and species richness within Brigalow 

remnants and regrowth patches observed in Chapter 3.  The proportion of 
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surrounding land-use type and connectivity as well as patch variables, including stem 

density and grazing intensity, were found to explain the presence and abundance of 

plant species, resulting in the acceptance of the study hypotheses.  

 

Differences in species composition within regrowth appeared to be inhibited by 

isolation from remnant patches as well as exogenous disturbance associated with 

agricultural management.  Based on the scale analysed, regrowth communities 

experienced higher proportion of agricultural intensity, such as grazing and cropping 

and a higher percentage of regrowth in the surrounding matrix, compared to remnant 

communities.  Patch factors, including high stem density and grazing intensity as 

well as soil phosphorus and potassium, were also found to explain the patterns in 

plant composition between regrowth and remnant treatments.  Stem density and the 

proportion of remnant vegetation within the surrounding landscape was also found to 

help clarify patterns of species richness in Brigalow communities in the study area.   

 

Similar spatial and patch variables were associated with the patterns in stand 

structure between remnant and regrowth communities, with lower proportions of 

regrowth and grazing in the landscape, and a higher proportion of remnant vegetation 

in Reserve and Remnant sites compared to regrowth communities.  Patch grazing and 

soil properties, including cation exchange capacity and nitrogen, were also related to 

structural differences within regrowth treatments.  

 

Despite potential spatial autocorrelation in relation to the location of regrowth and 

remnant sites, highlighting two contrasting landscapes in the region, spatial and 

environment features and disturbances were found to explain compositional and 



 

130 

 

structural differences in regenerating Brigalow communities.  Furthermore, 

differences in spatial features, particularly the proportion of grazing, cropping and 

regrowth, may be affecting recovery processes and influencing the significant 

differences in composition between old regrowth and remnant communities.  

Consequently, it is important to incorporate not only local site habitat factors into 

conservation strategies, but also management of surrounding landscape and spatial 

connectivity of landscape elements. 
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Chapter 5: General Discussion and Conclusions 
 

5.1 Study Summary 

 

The protection of regrowth vegetation on the premise of natural regeneration, 

presumes similar ecosystem structure and function to pre-clearing states will be 

achieved over time (Aide et al., 2000).  Consequently, current management in 

Queensland considers old regrowth the same as remnant vegetation, and has been 

protected from future clearing in order to allow the communities to naturally recover 

over time (Butler, 2009; DERM, 2009b).  However, minimal scientific investigation 

of plant communities within Brigalow vegetation has been undertaken in order to 

determine if these communities could passively regenerate to a state similar to that of 

remnant vegetation.  This study found while overall structure and total species 

richness exhibited evidence of recovery within regrowth communities after 40 years 

since clearing, old Brigalow regrowth (40-60 years since clearing) still remains 

floristically different to remnant communities, questioning the resilience of these 

communities in light of disturbance history.   

 

Furthermore, continued perturbations within regrowth patches and changes in the 

surrounding landscape may be affecting the recovery of these communities in 

relation to plant establishment and dispersal.  Agricultural modification and 

intensification in the surrounding matrix as well as patch connectivity was strongly 

related to the vegetative patterns in floristic composition and stand structure.  Despite 

possible spatial autocorrelation, the increased isolation of Brigalow regrowth 

communities from less disturbed remnant communities may be a contributing factor 

responsible for the differences in floristic composition found between treatments.  
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Habitat factors, including tree stem density, grazing intensity and to a lesser extent 

soil nutrient concentrations, were also found to be related to the patterns in stand 

structure and floristic composition.    

5.1.1 Overview 
 

This chapter discusses the key findings from previous chapters outlining the potential 

trajectory of regrowth communities in relation to remnant communities within 

production landscapes as well as the relationships of surrounding spatial attributes 

and local scale environmental factors.  In consideration of study findings the relative 

value, persistence and viability of regrowth within highly fragmented communities 

are discussed.  Finally, the broader management implications are discussed in 

relation to Brigalow communities and other vegetation types within highly 

fragmented production landscapes. 

 

5.2 Impact of Disturbance on Brigalow Regrowth Vegetation 

Recovery 

The Southern Brigalow Belt Bioregion has experienced significant landscape 

fragmentation and modification following European settlement (Bowen et al, 2009b).  

Since the early 1900s, changes to state legislation and the agricultural market have 

dictated the modifications in management, land use and conservation within these 

landscapes shifting from one dominated by Briglow/Belah and Eucalypt woodlands, 

to one extensively cleared for pastoral grazing and cropping (Johnson, 1984b; Biggs 

et al., 2005).  The extent of much of the remnant vegetation in the landscape has 

been reduced by over 90% compared to pre-clearing levels and has resulted in the 

protection of regrowth vegetation in an attempt to increase the area of this 

endangered community in fragmented landscapes (Seabrook et al., 2007; Bowen et 
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al., 2009b; Butler, 2009).  However, little research has examined the condition and 

relative composition of regrowth communities and how they contribute to 

biodiversity in the greater landscape (Bowen et al., 2007; Bradley et al., 2010).  

  

In this study, stand structure, total species richness and functional group richness of 

the regrowth communities recovered to similar levels as remnant communities after 

40 years following clearing (Chapter 3).  No significant invasion of exotic species 

was observed within any remnant or regrowth sites.  Native and perennial species 

richness increased with time since disturbance, reaching equivalent richness to 

remnant after 30 to 40 years.  While overall stand structure within regrowth 

resembled that of remnant after approximately 40 years, individual strata differed in 

the time required to recover, suggesting much of the variation in understorey cover in 

regrowth treatments to be driven by shrub and tree development.   

 

However, the species composition of old regrowth still remains significantly different 

from that of remnant communities.  This finding is supported by other literature that 

has found unique assemblages of species within highly disturbed vegetation 

(McIntyre and Lavorel, 1994; Fensham, 1998; Dauber et al., 2003).  Species 

typically exhibit different response patterns to physical disturbance, resulting in 

differences in composition and abundance over time (Fensham et al., 1999; Walker 

et al., 1999).  The composition of species within a community can significantly 

influence ecological functioning and can potentially result in what is recognised as 

an alternate stable state (Beisner et al., 2003).    
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While older Brigalow regrowth (as defined here) represents a novel ecosystem in the 

landscape (Hobbs et al., 2006), there is insufficient data to determine if these 

communities are in, or progressing towards, an alternate state or are still developing 

into a community resembling remnant vegetation.  Determining the possibility of an 

alternate stable state in an ecosystem can be difficult over small areas and short time 

periods (Petraitis and Latham, 1999; Suding et al., 2004).  Other regrowth 

communities have been found to take extended periods of time, in some instances 

centuries, to recover to similar composition to remnant ecosystems despite similar 

structure and biochemical attributes returning (Turner et al., 1997; Guariguata and 

Ostertag, 2001).  Furthermore, dealing with a system with slow transient 

successional change, as may be the case for Brigalow regrowth communities (see 

(Ngugi et al., 2011), determining internal recovery and relative stability can be 

problematic, highlighting the importance of continued long term research (Suding et 

al., 2004).   

 

However, recognising regrowth, or a degraded system, as an alternate stable state can 

be beneficial for conservation management.  Acknowledging that the population and 

community dynamics within regrowth are different from those in a less disturbed or 

more ‗natural‘ state, such as remnant vegetation, recognises the trajectory to recovery 

will be different (Suding et al., 2004).  Consequently, different management tools 

may need to be applied if the degraded system is ever to recover the same function, 

structure and composition of the ‗target‘ state (Young et al., 2001; Suding et al., 

2004).  While old regrowth may not be the same as remnant, employing more active 

restoration techniques may accelerate the recovery and help guide the community to 

a state resembling remnant.  With a significant proportion of remnant Brigalow 
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vegetation cleared from the Southern Brigalow Belt, representing a relictual 

landscape (sensu (McIntyre and Hobbs, 1999), the restoration of regrowth, 

particularly older patches, should be an important priority.  Without effective 

management, this nationally recognised endangered ecosystem may become further 

degraded, impacting regional biodiversity, or in some instances, disappear entirely 

from the landscape.        

 

Increased vegetative suckering may be a key factor inhibiting the return and 

establishment of other plant species within Brigalow communities (Dwyer et al., 

2010; Ngugi et al., 2011).  Dwyer et al. (2010) conducted selective thinning trials 

within regrowth Brigalow vegetation (29 years old) in southern Queensland over a 

two year period.  Thinned treatments were found to contain a significantly higher 

woody species diversity and grass cover compared to non-thinned sites (Dwyer et al., 

2010). Within the present study, recent (regrowth<20) and some intermediate 

regrowth (Regrowth20-30) had higher tree stem density, and significantly lower total 

species richness compared with remnant sites (Chapter 4).  Selective thinning may be 

an effective tool in assisting the recovery and establishment of species within 

Brigalow regrowth allowing the communities to continue to develop towards similar 

composition compared to remnant.     

 

However, old regrowth did not contain significantly high stem density compared 

with remnant vegetation (Chapter 4), indicating other factors, potentially patch and 

spatial characteristics, may be driving the differences in composition.  
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5.2.1 Impacts of Patch and Spatial Variables on Communities 

Spatial and environmental variables helped explain the differential patterns observed 

in floristic composition and stand structure between regrowth and remnant 

vegetation.  The proportion of vegetation in the surrounding matrix as well as land 

use, were identified as key factors correlated with floristic patterns between Brigalow 

remnant and regrowth communities.  Remnant communities were found to have a 

reduced proportion of agricultural land within the surrounding matrix compared to 

regrowth communities.  While an autocorrelation suggests essentially two landscapes 

operating in the study region in relation to Brigalow vegetation; one with a higher 

proportion of remnant vegetation in the surrounding area and one containing a higher 

proportion of regrowth, on a broader scale, these two distinct landscape types may 

become less apparent at different scales of assessment.  Further investigation using a 

larger study area and buffer zone may provide further understanding on surrounding 

matrix effects and the position of landscape features on Brigalow regrowth and 

remnant communities.    

 

However, despite spatial autocorrelation of management intensity in the surrounding 

matrix and the location of isolated regrowth communities in the landscape, the 

findings highlight the importance of the matrix within community succession and 

recovery processes.  The relative isolation of regrowth from mature remnant 

vegetation may affect the long term community development and persistence of these 

Brigalow communities within the landscape.  The implications of the extent of other 

landscape elements, such as cropping and grazing, and their relative location in the 

landscape also needs to be considered within management decisions.  Other studies 

(see (Ricketts, 2001; Dauber et al., 2003; Murphy and Lovett-Doust, 2004; Debinski, 
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2006) have also noted the importance of including the matrix within conservation 

initiatives.   

 

In Australia, intensive agricultural practices, such as grazing and cropping, have been 

recognised as key drivers altering the composition and abundance of plant species in 

a variety of woodland types (Yates et al., 2000; McIvor, 2001; Spooner et al., 2002; 

McIntyre et al., 2004).  In the case of Brigalow regrowth, land use changes and 

effects from the surrounding landscape appear to be strongly correlated with the 

ability of these communities to recover similar floristic characteristics to remnants. 

 

Patch variables, including grazing intensity and soil chemistry, were also found to 

partially explain the differential patterns between regrowth and remnant vegetation.  

Recent and intermediate regrowth were found to exhibit higher grazing intensity and 

increased soil nutrient concentrations, particularly soil phosphorus compared to older 

regrowth and remnant communities.  Older regrowth exhibited significantly higher 

proportion of grazing and regrowth in the surrounding matrix compared to remnant 

communities, suggesting isolation and continued exogenous disturbance may be 

impacting species recruitment and establishment, particularly in the understorey.   

 

Differences in environmental variables, particularly patch factors, including soil 

chemistry, may also be indicative of reduced habitat condition and quality within 

regrowth as a result of past clearing and continued disturbance regimes 

(Lindenmayer et al., 2005).  Further research into the spatial and environmental 

differences and individual species dynamics between old regrowth and remnant 
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communities may help identify specific factors, reducing or potentially inhibiting the 

recovery of old Brigalow regrowth.  

 

5.3 Ecological Value and Importance of Continued Research 

of Regrowth Vegetation 

While it was evident that remnant and Reserve Brigalow communities support 

significantly different floristic composition compared to regrowth Brigalow 

vegetation, it does not imply regrowth communities are of little conservation value.  

Regrowth communities can still provide critical habitat for both flora and fauna at 

different stages of regeneration, as well as improve connectivity and matrix 

permeability across highly fragmented systems (Chandler et al., 2007; Bowen et al., 

2009b; Dwyer et al., 2010; Michael et al., 2011).  These communities can also assist 

in the provision of other ecosystem services within the landscape.  Regrowth 

vegetation can act as shelterbelts, synonymous with shade-lines or wind breaks, 

particularly surrounding crops, protecting against direct solar radiation and harness 

long-wave radiation influencing functional processes, such as evaporation and plant 

growth (Cleugh, 1998; Vandermeer et al., 1998).  Young Brigalow regrowth has also 

been recognised as a significant source for carbon sequestration, with high stem 

densities and increased biomass storing large amounts of carbon within a relatively 

short to medium term (Chandler et al., 2007).   

 

However, despite evidence that regrowth currently provides important ecosystem 

services, it does not imply that these services will continue into the future.  

Ecological processes impacted by past disturbance regimes may not fully recover 
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within some systems, affecting long term, regional biodiversity and functioning 

(Folke et al., 2004).  Reduced rates of recruitment within a patch, for example, may 

significantly impact the long term stability and persistence of the community (Bond 

and Midgley, 2001).  Recruitment processes can be impacted by a variety of 

historical and on-going disturbances.  For example, Yates et al. (1994) suggested the 

reduction in recruitment processes of E. salmonophloia may be a result of continued 

fragmentation and agricultural development in the surrounding landscape, disrupting 

natural disturbance regimes necessary for normal recruitment.   

 

Increased grazing pressures may also be affecting woody recruitment rates within 

highly disturbed vegetation patches (Hobbs, 2001).  Tiver & Andrew (1997) found 

past and present grazing significantly decreased rates of recruitment and regeneration 

of 10 of the 18 shrub and tree species examined within woodlands of eastern South 

Australia.  Similarly, Scanlan et al. (1996) found livestock grazing within E. 

drepanophylla and E. erythrophloia dominated woodlands significantly reduced 

recruitment and increased mortality of woody plant population in north eastern 

Queensland.    Reliance on surrounding vegetation for propagule recruitment, 

particularly within a highly fragmented and regrowth dominated landscape, may 

affect the persistence of a community in a landscape, especially if connectivity 

further decreases (Standish et al., 2007). 

  

Stand structure and floristic composition can also be crucial in determining habitat 

suitability and long term persistence of faunal species within a landscape (DeWalt et 

al., 2003).  Variation in these ecosystem components, associated with habitat, food 

and resource availability, can significantly influence the return and persistence of 
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animal species in the area (DeWalt et al., 2003).  Coppedge et al. (2001), for 

example, investigated avian species richness within disturbed and undisturbed native 

grasslands in the southern United States.  The disturbed grasslands had experienced 

woody plant invasion (mostly Juniper virginianus) attributed to changes in fire 

regimes and surrounding land-use (Coppedge et al., 2001).  Although the disturbed 

sites contained higher avian richness due to an increase in resource base for avian 

communities associated with the shrub encroachment, over the long term, increased 

abundances of exotic and habitat generalists could possibly occur, displacing many 

specialist and obligate bird species endemic to the grasslands (Coppedge et al., 

2001).  While Brigalow communities may be useful conduits and habitat for some 

generalist species, further understanding on the long term response and implications 

for both common and rare specialist species of a variety of taxa needs to be 

addressed (Bowen et al., 2007; Michael et al., 2011).    

 

Future climatic changes to the study region may further impact on the recovery of 

regrowth communities and the continued services provided by these landscape 

elements.  Vegetation within Australia has adapted to specific nutrient and water 

limitations and considerable uncertainty remains in relation to the response of 

vegetation dynamics and productivity to future climate change (Hughes, 2003; 

Eamus and Palmer, 2007).  With up to 90% of the productivity within Australian 

rangelands and grasslands dependent on water availability, these communities can be 

highly sensitive to changes in hydrology (Campbell and Stafford, 1997).  Debuse et 

al. (2009) found a combination of spatial, site factors and rainfall to explain 

differences in tree density and composition within different aged Eucalyptus 

populnea woodlands in southern Queensland.  Similarly, Fensham et al. (2005) 
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analysed the changes in overstorey and understorey cover of vegetation in central 

Queensland over a 50 year period, and found rainfall to be a critical factor 

determining structural cover.  In both instances increased rainfall events were found 

to positively influence the cover and density of vegetation over time (Fensham et al., 

2005; Debuse et al., 2009).  Long term patterns in water availability may be 

influencing the abundance and occurrence of plant species within regrowth.   

 

El Nino events can impact plant productivity resulting in changed biodiversity and 

ecosystem function throughout many ecosystem types (Holmgren et al., 2001).  The 

long period of drought experienced throughout eastern Australia, coupled with 

continued agricultural related disturbance, may be affecting recovery processes 

within Brigalow regrowth communities.  Rainfall events may also play a critical role 

in germination and recruitment processes impacting the regeneration and recovery 

rates of species and the community in general.  Pulse recruitment events have been 

strongly linked with seasonal precipitation and soil moisture, triggering the flowering 

and seeding of many Australian tree and shrub species (Yates et al., 1996; Clarke 

and Davison, 2001; Batterham, 2008).  Climate modelling (medium emissions 

scenario, IPCC, 2007) predicts the Brigalow Belt region could experience an increase 

in temperature of 1.5˚C to 2˚C and a reduction of  2 - 5% in annual rainfall by 2050 

(Commonwealth Scientific and Industrial Research Organisation (CSIRO) and 

Meteorology, 2010).  Reductions in water availability may be further exacerbated by 

a 4 to 8% increase in potential evaporation by 2050 (Commonwealth Scientific and 

Industrial Research Organisation (CSIRO) and Meteorology, 2010).  These changes 

may affect the recruitment and successful establishment of propagules within 

Brigalow communities in production landscapes, particularly when coupled with 
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necessary water and nutrient inputs for continued agricultural production.  Continued 

investigation of recruitment processes in light of recent rainfall events, associated 

with a La Nina event (Bureau of Meteorology, 2010), may increase our 

understanding on the recovery within Brigalow regrowth communities. 

 

5.4 Implications for Management and Recommendations 

The results obtained within this study are significant for management of fragmented 

communities within production landscapes.  Natural regeneration has been adopted 

as a cost effective method of restoring disturbed and regrowth vegetation in order to 

increase the extent of ecosystems within highly fragmented landscapes (Aide et al., 

2000).  While evidence does suggest some ecosystems components may recover 

following disturbance (Aide et al., 2000; Dunn, 2004; Martin et al., 2004; Ruiz-Jaén 

and Aide, 2005), there is insufficient evidence to suggest older Brigalow regrowth 

communities are, or will eventually, obtain similar floristic composition to remnant 

communities.  However, in relation to management implications, this study has 

emphasised the importance and role of multiple landscape elements in affecting the 

structural and compositional development of Brigalow regrowth in production 

landscapes. 

 

Conservation initiatives concerning Brigalow communities need to incorporate the 

surrounding spatial and environmental characteristics in order to recognise the 

potential impacts of surrounding land-uses on community dynamics.  With entire 

landscape revegetation and restoration highly unlikely, managers need to 

acknowledge production landscapes are made up of a variety of landscape elements, 

including areas of cropping and grazing as well as patches of remnant vegetation and 
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regrowth at a variety of different ages and condition.  These elements do not act 

independently but interact at a variety of scales in a landscape, providing ecosystem 

services and disservices, ultimately affecting regional biodiversity and functioning 

and resilience (Fahrig and Merriam, 1994; Forman, 1995).  The recognition that 

Brigalow regrowth tends to occur within areas of higher agricultural intensity and 

proportion of regrowth compared to remnant communities suggests different 

communities may require different management strategies.  Effective conservation 

needs to maintain balance between a variety of landscape elements in order to sustain 

continued agricultural productivity as well as conserve ecological communities and 

functioning (Forman, 1995; Fahrig, 2003).   

 

Although recent regrowth was shown to exhibit significantly different composition 

and structural complexity and is generally subjected to higher exogenous disturbance 

in the way of agricultural activity, regrowth retention in the landscape still remains 

important.  Under Queensland‘s legislation (Vegetation Management and other 

legislation Amendment Act 2009) regrowth patches created after 1980 are not 

protected.  However, even the retention of young regrowth can be an effective 

method in landscape restoration (Bradley et al., 2010).  The monitoring and 

management of all regrowth types can assist in improving the coverage and 

persistence of this ecologically endangered ecosystem within agricultural landscapes.  

Clear and specific guidelines and targets are required within conservation initiatives 

in order to clearly define which ecological processes and components are essential 

within regrowth vegetation to improve the functionality of Brigalow communities 

and ensure long term persistence in the greater landscape.  While a particular 

regrowth patch may exhibit different ecological components, such as floristic 
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composition, and represents an alternate state, the patch may still maintain and 

provide particular services complementary or similar to less disturbed remnant 

communities and still be recognised as ―of value‖ within the context of conservation 

goals.  Alternatively, regrowth contributing little to regional biodiversity or 

providing disservices to surrounding vegetation patches and populations, such as 

sites containing prolific suckering impeding further community development, may be 

deemed dysfunctional and require a more active management approach. 

 

As well as maintaining the condition and functioning within remnant communities, 

incorporating more active management into conservation initiatives may assist the 

recovery of regrowth Brigalow communities in the region.  For example, attempts to 

reduce the management intensity within some regrowth patches, particularly older 

regrowth, may assist in recovery of Brigalow communities following disturbance.  

Enabling the development of structural complexity and function within regrowth 

patches can increase the number of species supported in the landscape, as opposed to 

one consisting of less complex features in a landscape (Fischer et al., 2006).  Grazing 

exclusion has been identified as a useful method of improving habitat quality and 

plant development in some communities (Pettit et al., 1995; Belsky and Blumenthal, 

1997).  Spooner & Briggs (2008), for instance, found grazing exclusion to 

significantly increase overstorey tree regeneration and native ground cover richness 

across a variety of woodland types in southern New South Wales.  However, other 

trials (Tremont, 1994; Lunt and Morgan, 1999; Le Brocque and Cockfield, 2008) 

have shown mixed responses in relation to the effectiveness of grazing exclusion, 

highlighting the importance of continued monitoring and adaptive management.  Due 

to the thickening response of Brigalow to disturbance, the inclusion of other 
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techniques, such as selective thinning, may also assist in re-establishing species 

composition and increasing rates of recovery within regrowth (Chandler et al., 2007; 

Dwyer et al., 2010). 

 

Continued investigation into the recovery and trajectory of regrowth communities is 

required in order to maintain and continue to improve their conservation value within 

production landscapes.  If regrowth communities are in fact developing towards a 

dysfunctional or alternate state, continued long term monitoring is necessary in order 

to guarantee the continuance of these ecological services.  Without continued 

monitoring and investigation the effectiveness of broad-scale passive restoration 

within this landscape will remain relatively unknown. 

  

5.4 Limitations and Future Directions 

There are a number of other potential factors and limitations that may have 

contributed to the patterns in composition, structure and richness observed within 

this study and may be incorporated in future studies to further support the patterns 

observed.  While this investigation was essentially a ‗snapshot study‘, increasing the 

sample size may further separate the age classes, identifying patterns over a longer 

temporal scale.  The selection of regrowth sites in the area was restricted based on 

the availability of aerial photography and accessibility, expanding the study area may 

identify other potential sites.  Identifying older regrowth classes (e.g. 60 – 80 years 

since clearing) may also shed further light on the trajectory of regrowth.  Similarly, a 

more prolonged investigation may provide further detail in relation to seasonal 

variation and longer term climatic change in community composition within 

regrowth and remnant Brigalow communities (Block et al., 2001).   
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The disturbance history, including clearing frequency and changes in land use, may 

further assist in explaining the patterns in composition and structure across treatment 

types.  The type of disturbance experienced within a patch can affect the response of 

species and processes, resulting in differences in overall diversity of the community 

through successional stages (Denslow, 1980).  The availability of patch history of 

regrowth and remnant sites was in some cases incomplete, associated with changes in 

land ownership over time and limited availability of aerial photography.  A number 

of sites may have potentially been cleared multiple times or may have been heavily 

grazed or cropped prior to abandonment.  Blocking of sites based on management 

history may further explain the variation in floristic composition and stand structure 

within treatment types; however, determining an accurate management history, 

particularly for old regrowth, may prove problematic.   

 

The method of clearing utilised may also have affected the assemblages of plant 

species.  Technological changes throughout the 1900s revolutionised the methods 

and effectiveness of clearing Brigalow vegetation in Queensland (Anderson, 1984).  

Initial methods employed the use of ringbarking and axing, but with the introduction 

of mechanical machinery, ―pulling‖ became readily employed within the region 

(Anderson, 1984).  Some plant species may require certain types of disturbances in 

order to grow and develop or trigger reproductive cycles (Clarke and Davison, 2001).  

The degree of suckering of Brigalow, for instance, is significantly influenced by the 

level of mechanical disturbance (Johnson and Burrows, 1994). Some older regrowth 

sites, according to land managers, were cleared via ringbarking and axing while more 

recent regrowth were pulled and in some instances burned afterwards.  Differences 
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between older and more recent regrowth treatments, particularly in relation to stem 

density, may be contributing to the differences observed in floristics and ultimately 

the rate of recovery.  However, the ability to control for clearing methods, without 

experimentation, was strongly limited based on the availability of patch history and 

replication, particularly for older regrowth patches. 

 

Investigation into specific species assemblages, abundances and recruitment 

processes may also help identify individual species or groups of species responsible 

for the significant differences between older regrowth and remnant vegetation stands.  

For example, the analysis of the soil seed banks may help shed some light on the 

composition, recruitment and recovery of plant species within Brigalow regrowth 

following disturbance.  Identification of seed viability and species can assist in 

providing an indication of the importance of surrounding vegetation as a source of 

propagules and which species can survive significant and on-going disturbances 

(Thompson, 2000; Wills and Read, 2007).  An in-depth study of overstorey 

recruitment processes of shrub and tree species as well as the genetic diversity within 

Brigalow populations may also provide information on the recovery and ultimate 

persistence of Brigalow communities.  Improved tree regeneration and population 

turnover can be a useful indicator of healthy ecosystem functioning (Gibbons and 

Freudenberger, 2006; Spooner and Briggs, 2008). 

 

Finally, spatial analysis of the study region may help clarify the correlation of 

elements in the landscape and the relative implications for Brigalow communities in 

the region.  Spatial patterns are a result of complex interactions between physical, 

biological and social drivers and need to be investigated in order to fully understand 
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landscape dynamics (Turner, 1989).  Continued analysis could help identify areas 

requiring further restoration in order to maintain biodiversity over the broader 

landscape. 

 

5.6 Conclusion 

 

The research presented in this dissertation provides a significant contribution to 

understanding of recovery processes and the role of Brigalow regrowth in the study 

landscape and production systems in general.  However, although the existing 

literature generally supports the benefits of regrowth vegetation for faunal 

populations, significant differences in floristic composition were identified in 

Brigalow regrowth compared with remnant communities despite a relatively lengthy 

recovery period.  Furthermore, this study emphasizes the importance of the 

surrounding matrix in the recovery processes of regrowth vegetation and maintaining 

ecological functioning across landscapes. 

 

Brigalow regrowth communities were found to recover similar stand structure and 

plant species richness after approximately 40 years since being cleared.  However, 

species composition within old regrowth remains significantly different to remnant 

vegetation, indicating the possibility of an alternate stable state.  Population and 

recruitment studies may further help in identifying specific barriers and issues 

affecting the re-establishment of floristic composition prior to disturbance.      

   

The location of regrowth within the landscape is largely a reflection of management 

history, and has resulted in potentially higher exogenous disturbance from grazing 

and cropping in the surrounding landscape as well as reduced connectivity with 
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remnant patches.  Continued grazing and changes in soil nutrient availability also 

explained differences in the development of stand structure and species composition 

in regrowth communities.  The presence and influence of landscape elements, both 

production and ecological, needs to be examined and incorporated into the 

management of regrowth communities in production landscapes in order to maintain 

not only agricultural productivity but also environmental sustainability.      

 

Despite differences in composition, regrowth communities still provide important 

ecosystem services within production landscapes, enabling faunal migration as well 

as benefiting agricultural practices, through shelterbelts and carbon sinks.  However, 

further research is required on the recovery of older regrowth patches in order to 

determine their relative trajectory and identify key spatial and patch factors affecting 

plant recruitment, in order to ensure the long term persistence of Brigalow 

ecosystems in these landscapes.  More active management, via grazing exclusion or 

selective thinning, may need to be employed in order to accelerate recovery patterns 

and improve the relative conservation value of regrowth communities.     

 

While the full ramifications of habitat clearing on the capacity of Brigalow regrowth 

to regenerate and recover were not comprehensively assessed, this research does 

provide important information for land managers on Brigalow communities in highly 

fragmented, agricultural landscapes.  However, further investigation is required in 

order to determine if old Brigalow regrowth is still in a transition state or is 

progressing towards an alternate stable state and which specific compositional 

elements and patch and landscape variables are preventing old regrowth communities 

from resembling Brigalow remnants.   
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Appendix A: Summary of site data 

 
Table A1.1. Summary table of general site data including site number, treatment, area, perimeter, time since last cleared and added notes for each site. 

 

Site Treatment Co-ordinates Area (ha) Perimeter 
(km) 

Time since 
last cleared 

(yrs) 

Clearing 
Method 

Notes 

1 Regrowth>40 27.75799˚S, 150.36362˚E 38.65 5.75 >47 Unknown  

2 Regrowth>40 27.67031˚S, 150.56650˚E 21.05 2.98 >47 Unknown Boondandillla State Forest 

3 Reserve 27.84505˚S, 150.35865˚E 14.00 2.57 - - Booroondoo State Forest 

4 Regrowth30-40 27.85269˚S, 150.39014˚E 280.31 13.51 30-35 Unknown Booroondoo State Forest 

5 Remnant 28.04516˚S, 150.32574˚E 25.00 3.53 - -  

6 Remnant 27.97885˚S, 150.33765˚E 22.00 3.44 - -  

7 Remnant 27.73795˚S, 150.24946˚E 16.00 2.99 - -  

8 Remnant 27.75834˚S, 150.29993˚E 43.00 8.01 - -  

9 Reserve 27.83196˚S, 150.10567˚E 3853.00 120.60 - - Southwood National Park 

10 Reserve 27.90702˚S, 149.83533˚E 97.00 6.27 - - Kinkora State Forest 

11 Remnant 27.99533˚S, 149.89526˚E 155.00 11.71 - -  

12 Regrowth20-30 28.09900˚S, 150.16225˚E 28.23 5.01 20-25 Unknown  

13 Remnant 27.96916˚S, 150.19400˚E 20.00 2.23 - -  

14 Remnant 27.95761˚S, 150.20823˚E 25.00 2.34 - -  

15 Reserve 27.92765˚S, 150.26133˚E 17.00 3.04 - - Calingunee State Forest 

16 Remnant 27.75939˚S, 150.51870˚E 31.00 10.07 - -  

17 Regrowth<20 27.80430˚S, 150.46859˚E 26.19 4.36 10-15 Pulled & burnt Cleared 2-3 times prior in 
1950s &60s 

18 Regrowth<20 27.82003˚S, 150.47941˚E 41.15 4.76 14-15 Pulled & burnt  

19 Regrowth<20 27.81688˚S, 150.50228˚E 35.27 6.23 10-15 Pulled & burnt  



 

177 

 

 

Site Treatment Co-ordinates Area (ha) Perimeter 
(km) 

Time since 
last cleared 

(yrs) 

Clearing 
Method 

Notes 

20 Regrowth20-30 27.97905˚S, 150.08695˚E 11.92 2.35 20-23 Pulled & burnt  

21 Regrowth20-30 27.98747˚S, 150.10897˚E 12.55 2.35 20-25 Pulled  

22 Regrowth30-40 27.98259˚S, 150.07300˚E 73.73 5.23 33-47 Rim-barked  

23 Regrowth<20 27.96934˚S, 150.07589˚E 112.23 11.30 10-12 Pulled  

24 Regrowth30-40 27.95459˚S, 150.12133˚E 36.15 5.10 30-35 Rim-barked & 
burnt 

 

25 Regrowth>40 27.93665˚S, 150.14830˚E 34.00 3.79 60-70 Unknown  

26 Regrowth20-30 27.74095˚S, 150.36850˚E 17.98 2.40 26-33 Unknown  

27 Regrowth30-40 27.90613˚S, 150.04234˚E 12.98 1.90 40 Pulled & burnt  

28 Regrowth30-40 27.91390˚S, 150.02420˚E 11.43 2.70 30-35 Pulled & burnt  

29 Regrowth<20 27.97629˚S, 150.04316˚E 38.76 4.50 15-20 Pulled  

30 Regrowth>40 27.96078˚S, 150.06101˚E 32.71 2.95 60-70 Rim-barked & 
burnt 

 

31 Regrowth>40 27.93871˚S, 150.06561˚E 14.31 2.71 45-50 Unknown  

32 Regrowth20-30 27.87789˚S, 150.04706˚E 17.66 2.26 26 Pulled Cleared twice prior 

33 Regrowth>40 27.85412˚S, 150.03458˚E 23.08 6.78 35-47 Unknown  

34 Regrowth20-30 27.79341˚S, 149.98551˚E 11.64 1.56 20-25 Pulled & burnt Cleared once prior 

35 Regrowth30-40 27.65707˚S, 150.25469˚E 21.48 2.55 40 Unknown  

36 Regrowth20-30 27.81243˚S, 150.35605˚E 22.68 3.98 26-30 Unknown  

37 Regrowth>40 27.78753˚S, 150.36142˚E 13.51 2.97 35-40 Unknown  

38 Regrowth30-40 27.64886˚S, 150.44867˚E 23.61 4.93 33 Unknown  
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Appendix B: Species frequency data and functional groups 
 

Table B1.1 – Summary table of plant species (ICBN), species frequency (0-9) for sites and functional groups; Life origin (Native or Exotic); Life form (Tree; 
Shrub and Groundcover (Herb/forb or Graminoid)); Perenniality (Annual or Perennial).  Species number for each site denotes frequency score recorded using 

Nested Quadrats (500m
2
). 

 

Species 
Life 

origin 
Life 
form 

Perenniality 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Abutilon oxycarpum N G/H P 
    

6 1 
       

3 
    

 

Acacia harpophylla N T - 6 5 5 6 7 7 8 5 7 5 5 6 6 5 6 8 9 6 7 

Acacia sp. - - - 
             

3 
    

 

Alectryon 
diversifolius 

N S - 3 
   

1 3 
  

1 
   

3 3 
 

3 
  

 

Alternanthera 
denticulata 

N G/H A 
              

1 
  

2  

Amyema cambagei N - - 
                  

 

Amyema quandang N - - 
                  

 

Amyema sp. N - - 
             

3 
    

 

Ancistrachne 
uncinulata 

N G/G P 
 

4 8 1 4 3 2 1 3 3 5 
 

6 4 2 1 
  

 

Apophyllum 
anomalum 

N S - 
    

2 

    

2 

 

1 

   

2 

      
 

Aristida calycina N G/G P 
             

6 
    

 

Aristida ramosa N G/G P 
  

1 7 
  

1 
 

1 1 
  

3 
     

 

Asteraceae 1 N G/H - 
                

1 
 

 

Atriplex muelleri N G/H A 
                  

 

Atriplex semibaccata N G/H P 
 

3 1 
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Species 
Life 

origin 
Life 
form 

Perenniality 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Austrochloris 
dichanthoides 

N G/G P 
                  

 

Boerhavia dominii N G/H P 
 

5 
  

1 5 1 4 
  

2 
     

3 
 

 

Boronia sp. N S - 
   

3 
        

1 
     

 

Bothriochloa 
decipiens 

N G/G P 
             

9 

     
 

Brachyachne 
convergens 

N G/G A 
                  

 

Brachyscome 
aculeata 

N G/H P 
              

6 
   

 

Brunoniella australis N G/H P 7 9 8 9 9 8 9 8 9 9 9 
 

9 7 9 7 1 
 

 

Bryophyllum 
delagoense 

E G/H P 
    

9 
             

 

Callitris glaucophylla N T - 
   

2 
              

 

Calotis scabiosifolia N G/H P 
          

2 
       

 

Capparis canescens N T - 
  

1 
               

 

Capparis lasiantha N S - 
        

4 
         

 

Capparis 
sarmentosa 

N S - 
                  

 

Carex inversa N G/H P 
         

1 
     

2 1 
 

 

Carissa ovata N S - 2 
      

2 4 1 1 
       

 

Cassine australis N S - 2 
       

2 
         

 

Casuarina cristata N T - 4 5 3 1 4 1 3 
 

4 5 1 
 

5 5 5 
   

 

Cenchrus ciliaris E G/G P 
     

1 
   

1 3 3 
    

6 4 2 



 

180 

 

Species 
Life 

origin 
Life 
form 

Perenniality 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Centipeda 
cunninghamii 

N G/H P 
                  

 

Cheilanthes sp. N G/H - 5 2 4 8 
 

1 5 1 
 

2 9 
   

2 
   

1 

Chenopodium 1 N G/H - 
         

4 
      

2 
 

 

Chenopodium 2 N G/H - 
                  

 

Chenopodium 
desertorum 

N G/H P 
 

2 
 

3 4 2 
   

3 4 2 
      

 

Chloris divaricata N G/G P 4 9 5 2 7 9 5 9 3 8 7 6 9 4 5 8 6 6 8 

Chloris truncata N G/G P 1 
                 

 

Chloris unispiceus N G/G P 
      

3 
 

4 2 4 5 
 

6 
    

 

Citrus glauca N S - 
       

1 2 
  

2 
   

1 
  

4 

Commelina cyanea N G/H P 
 

3 7 
  

6 7 1 
 

2 5 
 

1 
 

4 
   

 

Convolvulus 
clementii 

N G/H P 
 

2 
                

 

Cymbopogon 
refractus 

N G/G P 
  

2 
   

7 3 2 
 

5 
 

1 2 
 

2 
  

 

Cyperus brevifolius E G/G P 
              

6 
  

4  

Cyperus gracilis N G/G P 
 

6 3 
 

3 4 5 6 
    

4 
  

4 
  

 

Cyperus rigidellus N G/G A 
                 

2  

Cyperus rotundus E G/G P 
                

2 
 

 

Cyperus vaginatus N G/G P 
                  

1 

Dactyloctenium 
radulans 

N G/G A 
             

2 
    

 

Damasonium minus N G/H A 
              

6 1 
  

 

Danthonia tenuior N G/G P 4 
 

3 3 
     

1 
   

1 
  

5 
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Species 
Life 

origin 
Life 
form 

Perenniality 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Desmodium varians N G/H P 
   

4 
 

2 
 

4 3 
 

1 
 

3 3 
 

1 
  

 

Dianella revoluta N G/H P 
   

1 
              

 

Dianella sp. N G/H P 
 

1 
  

1 3 1 1 
          

 

Dichantheum 
sericeum 

N G/G P 
       

1 
          

5 

Echinochloa colona N G/G A 
               

2 8 4 2 

Eclipta platyglossa N G/H A 
  

5 
               

 

Einadia hastata N G/H P 
 

3 1 
  

7 
      

2 
 

2 5 
  

 

Einadia nutans N G/H P 
    

2 
             

2 

Eleocharis sp. - G/H - 
              

3 
   

 

Enchylaena 
tomentosa 

N G/H P 4 6 7 
 

7 6 4 2 6 7 7 2 5 
 

4 8 
  

3 

Ennaepogon 
polyphyllus 

N G/G A 
                  

 

Eragrostis brownii N G/G P 
             

4 
    

 

Eragrostis cilianensis E G/G A 
                

2 
 

 

Eragrostis lacunaria N G/G P 
  

5 1 8 9 3 
 

2 9 6 
 

6 
 

7 5 
  

 

Eremophila debilis N S - 3 3 
   

1 3 
     

1 
 

1 2 
  

 

Eremophila glabra N S - 
     

3 
   

6 
        

 

Eremophila mitchelli N S - 
    

3 
      

2 
      

 

Eremophila sp. N S - 2 2 
    

4 
 

3 
 

3 
   

3 
   

 

Eremophila sp.2 N S - 
                  

 

Eriochloa procera N G/G P 
             

1 
    

 

Eucalyptus populnea N T - 
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Species 
Life 

origin 
Life 
form 

Perenniality 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Evolvulus alsiniodes N G/H P 
        

1 
 

1 
       

 

Geijera parviflora N S - 4 3 5 4 5 6 5 4 7 5 3 
 

6 5 5 4 
  

 

Gomphocarpus 
fruiticosa 

E S - 
        

2 
         

 

Goodenia bellidifolia N G/H - 
    

8 2 
 

3 
          

 

Homopholis belsonii N G/G P 
            

6 
     

 

Juncus sp. N G/H - 
             

3 
    

 

Justicia procumbens N G/H P 
 

1 
      

1 
         

 

Justicia sp. N G/H P 
               

1 
  

 

Lomandra 
leucocephala 

N G/H P 
        

1 
      

2 
  

 

Maireana villosa N G/H P 
                  

 

Marsdenia sp. N G/H - 
 

1 
                

 

Marsdenia sp. 2 N G/H - 
           

1 
 

4 
    

 

Marsilea sp.  N G/H - 
                  

1 

Maytenus 
cunninghamii 

N S - 
   

1 
              

 

Melaleuca sp. N T - 1 
 

4 
               

 

Neobassia 
proceriflora 

N G/H A 
    

1 
  

1 
          

 

Nicotiana 
megalosiphon 

N G/H P 
                  

2 

Nyssanthes diffusa N G/H A 
  

2 
 

1 2 2 
     

2 
     

 

Opuntia aurantiaca E G/H - 
 

8 4 
 

4 
  

1 
  

2 
   

1 
   

 

Opuntia tomentosa  E S - 2 3 1 
 

7 7 6 1 
 

4 2 4 2 
 

4 
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Species 
Life 

origin 
Life 
form 

Perenniality 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Oxalis sp. - G/H - 
   

3 
 

3 
    

3 
  

1 
 

2 
  

 

Panicum antidotale E G/G P 
                  

 

Panicum buncei N G/G P 
                 

2  

Panicum maximum E G/G P 
                  

 

Panicum 
queenslandicum 

N G/G P 
  

1 3 
 

4 5 2 3 5 
 

3 
 

5 6 4 
 

2 3 

Parsonsia lanceolata N G/H - 
        

4 
 

4 
       

 

Parsonsia sp. N G/H - 
   

3 
              

 

Paspalidium 
caespitosum 

N G/G P 5 5 9 8 8 6 9 5 7 7 9 7 5 8 6 5 5 4  

Paspalidium 
constrictum 

N G/G P 
    

6 
           

6 3  

Phyllanthus virgatus N G/H P 
   

3 
              

 

Physalis lanceifolia E G/H A 
     

1 
 

1 
          

 

Pimelea sp. - G/H - 
   

1 
              

 

Plectranthus 
parviflora 

N G/H P 
    

3 3 
            

 

Plectranthus sp. - G/H - 
                

1 
 

 

Poaceae sp. - G/G - 
                  

 

Portulaca filifolia N G/H A 
   

6 
  

1 
           

 

Portulaca oleracea N G/H A 
 

3 1 1 3 8 
   

3 1 6 
  

6 5 7 6 5 

Pseudoranthemum 
variabile 

N G/H P 
   

5 
              

 

Salsola kali N G/H A 
                

2 7  
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Species 
Life 

origin 
Life 
form 

Perenniality 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Santalum 
lanceolatum 

N S - 
         

3 
 

4 
      

 

Sarcostemma 
australe 

N G/H P 
        

3 3 
        

 

Sclerolaena birchii N G/H P 
               

2 
  

 

Sclerolaena 
calcarata 

N G/H P 
                  

 

Sclerolaena muricata N G/H P 
                  

 

Sclerolaena 
tetracuspis 

N G/H P 
          

5 8 
  

3 3 2 
 

6 

Sclerolaena tricuspis N G/H P 
                  

 

Sida cordifolia N G/H P 
                

9 
 

 

Sida corrugata N G/H P 
     

7 
    

7 
    

3 9 
 

 

Sida pleiantha N G/H P 
            

1 
     

 

Sida rohlenae N G/H P 
     

3 
  

3 
         

 

Sida sp. N G/H P 
  

6 9 4 
 

1 5 
 

1 
  

1 
 

1 2 
  

5 

Sida trichopoda N G/H P 
        

1 3 3 3 
   

3 
  

3 

Sigesbeckia 
orientalis 

- G/H P 
               

2 
  

 

Solanum ellipticum N G/H P 
 

1 
  

4 4 
      

2 
     

 

Solanum esuriale N G/H P 
   

3 
   

3 
  

1 
       

 

Solanum sp. N G/H P 
                  

 

Solanum stelligerum N G/H P 
    

5 4 4 2 
 

1 
  

3 
  

1 
  

 

Soliva sp. E G/H - 
   

1 
              

 

Sonchus oleraceus E G/H A 
     

1 
 

4 
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Species 
Life 

origin 
Life 
form 

Perenniality 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Spartothamnella 
juncea 

N S - 
                  

 

Sporobolus caroli N G/G P 2 2 
 

1 
 

2 1 4 
 

3 2 1 
   

4 7 7 8 

Stipa aristiglumis N G/G P 
  

5 
       

4 
       

 

Stipa verticillata N G/G P 
                

3 
 

 

Tetragonia 
tetragonioides 

E G/H A 
          

5 
    

5 7 7 6 

Tragus australianus N G/G A 
   

4 
  

1 
  

1 
      

8 
 

 

Trianthema triquetra N G/H A 
           

6 
     

2  

Tribulus terrestris E G/H A 
           

5 
      

 

Unknown 1 - G/H - 
                  

 

Unknown 2 - G/H - 
    

1 
             

 

Urochloa 
mosambicensis 

E G/G P 1 
                 

7 

Vittadinia 
pterochaeta 

N G/H A 
                  

 

Vittadinia sulcata N G/H A 
  

4 
               

 

Xanthium 
occidentale 

E G/H A 
                

1 
 

1 

Zygophyllum 
apiculatum 

N G/H P 
              

4 
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Species 
Life 

origin 
Life 
form 

Perenniality 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

Abutilon oxycarpum N G/H P 
                   

Acacia harpophylla N T - 7 8 6 8 7 6 7 7 9 9 6 8 8 6 8 6 7 6 9 

Acacia sp. - - - 
                   

Alectryon 
diversifolius 

N S - 
    

3 3 3 2 1 
  

1 
 

1 
     

Alternanthera 
denticulata 

N G/H A 
                   

Amyema cambagei N - - 
          

2 
        

Amyema quandang N - - 
      

1 
            

Amyema sp. N - - 
                   

Ancistrachne 
uncinulata 

N G/G P 
  

8 
   

2 
    

1 
       

Apophyllum 
anomalum 

N S - 1 
   

1 1 
      

1 2 
  

1 
  

Aristida calycina N G/G P 
                   

Aristida ramosa N G/G P 
   

4 
           

1 
   

Asteraceae 1 N G/H - 
                   

Atriplex muelleri N G/H A 
       

3 
  

3 
        

Atriplex semibaccata N G/H P 
                   

Austrochloris 
dichanthoides 

N G/G P 
   

4 
               

Boerhavia dominii N G/H P 
     

2 1 
     

3 
      

Boronia sp. N S - 
                   

Bothriochloa 
decipiens 

N G/G P 
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Species 
Life 

origin 
Life 
form 

Perenniality 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

Brachyachne 
convergens 

N G/G A 
            

1 
      

Brachyscome 
aculeata 

N G/H P 
                   

Brunoniella australis N G/H P 7 5 6 8 6 2 2 
    

5 3 3 
 

3 7 4 
 

Bryophyllum 
delagoense 

E G/H P 
                   

Callitris glaucophylla N T - 
                   

Calotis scabiosifolia N G/H P 
               

1 
   

Capparis canescens N T - 
                   

Capparis lasiantha N S - 
               

1 
   

Capparis sarmentosa N S - 
                 

2 
 

Carex inversa N G/H P 
 

3 
      

3 1 1 1 
       

Carissa ovata N S - 
  

1 
   

5 
            

Cassine australis N S - 
      

2 
            

Casuarina cristata N T - 
    

1 2 4 1 1 
 

4 
  

2 
 

2 1 
  

Cenchrus ciliaris E G/G P 1 
 

2 
 

2 4 3 6 3 8 4 3 
 

2 7 5 3 4 4 

Centipeda 
cunninghamii 

N G/H P 
        

1 
          

Cheilanthes sp. N G/H - 4 6 3 
  

3 4 
     

4 
 

2 2 
 

3 
 

Chenopodium 1 N G/H - 3 
          

2 
 

1 
    

2 

Chenopodium 2 N G/H - 
 

3 
   

2 
        

1 1 3 
  

Chenopodium 
desertorum 

N G/H P 2 
 

2 
 

7 5 7 9 1 3 7 3 4 5 2 
   

3 

Chloris divaricata N G/G P 8 6 9 7 3 7 3 4 2 4 5 4 5 6 4 3 4 5 
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Species 
Life 

origin 
Life 
form 

Perenniality 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

Chloris truncata N G/G P 
     

4 1 
            

Chloris unispiceus N G/G P 
                

4 
  

Citrus glauca N S - 2 
  

2 
  

2 
 

2 
  

2 4 
 

1 1 4 
  

Commelina cyanea N G/H P 
 

1 

          

4 

    

2 

  

2 

  

Convolvulus 
clementii 

N G/H P 
                   

Cymbopogon 
refractus 

N G/G P 
     

1 1 
    

1 
   

1 3 2 
 

Cyperus brevifolius E G/G P 
                   

Cyperus gracilis N G/G P 5 
 

4 
 

1 
 

1 
    

5 1 2 
 

2 
 

5 
 

Cyperus rigidellus N G/G A 
           

2 
       

Cyperus rotundus E G/G P 
                   

Cyperus vaginatus N G/G P 
                   

Dactyloctenium 
radulans 

N G/G A 
   

2 
               

Damasonium minus N G/H A 
 

3 
      

2 
          

Danthonia tenuior N G/G P 
   

3 
 

2 
   

1 
   

3 
     

Desmodium varians N G/H P 
                   

Dianella revoluta N G/H P 
                   

Dianella sp. N G/H P 
           

1 
   

3 
  

1 

Dichantheum 
sericeum 

N G/G P 
         

1 
         

Echinochloa colona N G/G A 
      

3 
 

2 
          

Eclipta platyglossa N G/H A 
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Species 
Life 

origin 
Life 
form 

Perenniality 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

Einadia hastata N G/H P 
    

3 
        

6 
  

1 
  

Einadia nutans N G/H P 
    

3 
          

4 
   

Eleocharis sp. - G/H - 
                   

Enchylaena 
tomentosa 

N G/H P 4 3 2 2 6 4 5 5 1 4 1 3 5 6 1 5 2 3 4 

Ennaepogon 
polyphyllus 

N G/G A 
        

1 
      

1 
   

Eragrostis brownii N G/G P 
                   

Eragrostis cilianensis E G/G A 
                   

Eragrostis lacunaria N G/G P 
  

2 9 1 
 

3 2 
  

4 1 2 
  

1 3 2 
 

Eremophila debilis N S - 
               

1 
 

4 3 

Eremophila glabra N S - 
                   

Eremophila mitchelli N S - 
  

4 
  

3 
             

Eremophila sp. N S - 
    

1 
 

1 
    

2 5 3 
 

2 
   

Eremophila sp.2 N S - 
   

2 
               

Eriochloa procera N G/G P 
        

1 
          

Eucalyptus populnea N T - 
 

1 2 1 
               

Evolvulus alsiniodes N G/H P 
                   

Geijera parviflora N S - 
  

1 2 2 2 4 
    

4 3 3 
 

1 2 2 1 

Gomphocarpus 
fruiticosa 

E S - 
                   

Goodenia bellidifolia N G/H - 
                   

Homopholis belsonii N G/G P 
                   

Juncus sp. N G/H - 
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Species 
Life 

origin 
Life 
form 

Perenniality 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

Justicia procumbens N G/H P 
                   

Justicia sp. N G/H P 
     

1 
             

Lomandra 
leucocephala 

N G/H P 
              

1 
    

Maireana villosa N G/H P 
    

1 1 
    

1 
 

2 3 
     

Marsdenia sp. N G/H - 
                 

2 
 

Marsdenia sp. 2 N G/H - 
                   

Marsilea sp.  N G/H - 
 

2 
                 

Maytenus 
cunninghamii 

N S - 
                   

Melaleuca sp. N T - 
                   

Neobassia 
proceriflora 

N G/H A 
                   

Nicotiana 
megalosiphon 

N G/H P 
                   

Nyssanthes diffusa N G/H A 
                   

Opuntia aurantiaca E G/H - 
  

1 
    

1 
      

2 
  

1 
 

Opuntia tomentosa  E S - 2 1 4 4 3 2 1 
    

4 3 5 2 4 3 3 3 

Oxalis sp. - G/H - 
        

1 
  

2 
       

Panicum antidotale E G/G P 
           

1 
       

Panicum buncei N G/G P 
   

5 
          

2 
   

3 

Panicum maximum E G/G P 
      

3 
            

Panicum 
queenslandicum 

N G/G P 
 

2 
 

8 
 

4 
 

2 2 
  

4 3 2 
 

2 
   

Parsonsia lanceolata N G/H - 
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Species 
Life 

origin 
Life 
form 

Perenniality 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

Parsonsia sp. N G/H - 
                   

Paspalidium 
caespitosum 

N G/G P 3 4 9 7 5 6 3 2 1 
  

6 4 3 
 

4 6 5 
 

Paspalidium 
constrictum 

N G/G P 
                   

Phyllanthus virgatus N G/H P 
                   

Physalis lanceifolia E G/H A 
   

1 
    

1 
          

Pimelea sp. - G/H - 
                   

Plectranthus 
parviflora 

N G/H P 
                   

Plectranthus sp. - G/H - 1 
                  

Poaceae sp. - G/G - 
       

1 
           

Portulaca filifolia N G/H A 
                   

Portulaca oleracea N G/H A 1 
  

2 4 2 
 

5 1 6 3 
    

3 
 

3 3 

Pseudoranthemum 
variabile 

N G/H P 
  

2 
          

1 
     

Salsola kali N G/H A 
       

2 
 

6 
   

4 
    

4 

Santalum 
lanceolatum 

N S - 
                   

Sarcostemma 
australe 

N G/H P 
                   

Sclerolaena birchii N G/H P 
     

2 
 

3 
 

1 
    

1 
    

Sclerolaena 
calcarata 

N G/H P 
       

4 
 

3 
         

Sclerolaena muricata N G/H P 
               

1 
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Species 
Life 

origin 
Life 
form 

Perenniality 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

Sclerolaena 
tetracuspis 

N G/H P 
    

5 4 2 4 
  

3 2 3 5 4 
   

2 

Sclerolaena tricuspis N G/H P 
    

3 
              

Sida cordifolia N G/H P 
  

4 
  

1 
   

1 
         

Sida corrugata N G/H P 
 

4 
 

5 
 

5 1 
 

3 
   

2 
  

4 
 

4 
 

Sida pleiantha N G/H P 
           

3 
   

1 
   

Sida rohlenae N G/H P 
         

1 
  

1 
      

Sida sp. N G/H P 
    

3 
 

2 
      

4 4 
  

1 2 

Sida trichopoda N G/H P 
  

5 2 
      

1 
     

1 
  

Sigesbeckia 
orientalis 

- G/H P 
                   

Solanum ellipticum N G/H P 
                

1 7 
 

Solanum esuriale N G/H P 
   

1 
               

Solanum sp. N G/H P 
          

2 
        

Solanum stelligerum N G/H P 1 
 

2 
             

2 
  

Soliva sp. E G/H - 
                   

Sonchus oleraceus E G/H A 
                   

Spartothamnella 
juncea 

N S - 
  

1 
                

Sporobolus caroli N G/G P 4 5 4 9 4 9 5 9 
 

9 6 3 6 5 3 4 
 

5 3 

Stipa aristiglumis N G/G P 
   

1 
               

Stipa verticillata N G/G P 
  

5 
  

2 
   

2 
         

Tetragonia 
tetragonioides 

E G/H A 1 
   

4 
 

1 3 3 
         

1 

Tragus australianus N G/G A 
         

1 
       

2 2 
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Species 
Life 

origin 
Life 
form 

Perenniality 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

Trianthema triquetra N G/H A 
                   

Tribulus terrestris E G/H A 
                   

Unknown 1 - G/H - 
          

1 
  

1 
     

Unknown 2 - G/H - 
                   

Urochloa 
mosambicensis 

E G/G P 
       

3 
 

5 
         

Vittadinia 
pterochaeta 

N G/H A 
         

1 
         

Vittadinia sulcata N G/H A 
                   

Xanthium 
occidentale 

E G/H A 
                   

Zygophyllum 
apiculatum 

N G/H P 
  

1 
 

6 8 5 
 

6 
   

1 4 
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Appendix B-1:  Plant Species List 

 
Table B1.2 – Summary table of plant species names and authorities.  

 

Abutilon oxycarpum F. Muell. Chenopodium 1 

Acacia harpophylla F. Muell. Chenopodium 2 

Acacia sp. Chenopodium desertorum J. M. Black 

Alectryon diversifolius (F. Muell.) S. T. 
Reynolds 

Chloris divaricata R. Br. 

Alternanthera denticulata R. Br. Chloris truncate R. Br. 

Amyema cambagei (Blakely) Danser Chloris unispiceus (F. Muell.) Clayton 

Amyema quandang (Lindl.) Tiegh. Citrus glauca (Lindl.) Burkill 

Amyema sp. Commelina cyanea R. Br. 

Ancistrachne uncinulata (R. BR.) S. T. Blake Convolvulus clementii Domin. 

Apophyllum anomalum F. Muell. Cymbopogon refractus (R. Br.) A. Camus 

Aristida calycina R. Br. Cyperus brevifolius (Rottb.) Hassk. 

Aristida ramosa R. Br. Cyperus gracilis R. Br. 

Asteraceae 1 Cyperus rigidellus (Benth.) J. M. Black 

Atriplex muelleri Benth. Cyperus rotundus L. 

Atriplex semibaccata R. Br. Cyperus vaginatus  R. Br. 

Austrochloris dichanthoides (Everist) Lazarides Dactyloctenium radulans (R. Br.) P. Beauv. 

Boerhavia dominii Meikle & Hewson Damasonium minus (R. Br.) Buchenau 

Boronia sp. Danthonia tenuior (Steud.) Conert 

Bothriochloa decipiens (Hack.) C. E. Hubb. Desmodium varians (Labill.) G. Don. 

Brachyachne convergens (F. Muell.) Stapf. Dianella revoluta R. Br. 

Brachyscome aculeata (Labill.) Less. Dianella sp. 

Brunoniella australis (Cav.) Bremek. Dichantheum sericeum (R. Br.) A. Camus 

Bryophyllum delagoense (Eckl. & Zeyh.) 
Schinz. 

Echinochloa colona (L.) Link 

Callitris glaucophylla Joy Thomps. & L. A. S. 
Johnson 

Eclipta platyglossa F. Muell. 

Calotis scabiosifolia Sond. & F. Muell. Einadia hastata (R. Br.) A. J. Scott 

Capparis canescens Banks ex DC. Einadia nutans (R. Br.) A. J. Scott 

Capparis lasiantha R. Br. ex DC. Eleocharis sp. 

Capparis sarmentosa A. Cunn. ex Benth Enchylaena tomentosa R. Br. 

Carex inversa R. Br. Ennaepogon polyphyllus (Domin) N. T. Burb. 

Carissa ovata R. Br. Eragrostis brownii (Kunth) Nees 

Cassine australis (Vent.) Kuntze Eragrostis cilianensis (All.) Vignolo ex Janch. 

Casuarina cristata Miq. Eragrostis lacunaria F. Muell. Ex Benth. 

Cenchrus ciliaris L. Eremophila debilis (Andrews) Chinnock 

Centipeda cunninghamii (DC.) A. Braun & 
Asch. 

Eremophila glabra (R. Br.) Ostenf. 

Cheilanthes sp. Eremophila mitchelli Benth. 
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Eremophila sp. Portulaca oleracea L. 

Eremophila sp.2 Pseudoranthemum variabile (R. Br.) Radlk. 

Eriochloa procera (Retz.) C. E. Hubb. Salsola kali L. 

Eucalyptus populnea  F. Muell. Santalum lanceolatum R. Br. 

Evolvulus alsiniodes (L.) L. Sarcostemma australe R. Br. 

Geijera parviflora Lindl. Sclerolaena birchii (F. Muell.) Domin 

Gomphocarpus fruiticosa (L.) W. T. Aiton Sclerolaena calcarata (Ising) A. J. Scott 

Goodenia bellidifolia Sm. Sclerolaena muricata (Moq.) Domin 

Homopholis belsonii C. E. Hubb. Sclerolaena tetracuspis (C. T. White) A. J. 
Scott 

Juncus sp. Sclerolaena tricuspis (F. Muell.) Ulbr. 

Justicia procumbens L. Sida cordifolia L. 

Justicia sp. Sida corrugata Lindl. 

Lomandra leucocephala (R. Br.) Ewart Sida pleiantha F. Muell. Ex Benth. 

Maireana villosa (Lindl.) Paul G. Wilson Sida rohlenae Domin 

Marsdenia sp. Sida sp. 

Marsdenia sp. 2 Sida trichopoda F. Muell. 

Marsilea sp.  Sigesbeckia orientalis L. 

Maytenus cunninghamii (Hook.) Loes. Solanum ellipticum R. Br. 

Melaleuca sp. Solanum esuriale Lindl. 

Neobassia proceriflora (F. Muell.) A. J. Scott Solanum sp. 

Nicotiana megalosiphon Van Heurck & Mull. 
Arg. 

Solanum stelligerum Sm. 

Nyssanthes diffusa R. Br. Soliva sp. 

Opuntia aurantiaca Lindl. Sonchus oleraceus  L. 

Opuntia tomentosa Salm-Dyck Spartothamnella juncea (A. Cunn. ex Walp.) 
Briq. 

Oxalis sp. Sporobolus caroli Mez. 

Panicum antidotale Retz. Stipa aristiglumis F. Muell. 

Panicum buncei F. Muell. Ex Benth. Stipa verticillata Spreng. 

Panicum maximum Jacq. Tetragonia tetragonioides (Pall.) Kuntze 

Panicum queenslandicum Domin. Tragus australianus S. T. Blake 

Parsonsia lanceolata R. Br. Trianthema triquetra Willd. 

Parsonsia sp. Tribulus terrestris L. 

Paspalidium caespitosum C. E. Hubb. Unknown 1 

Paspalidium constrictum (Domin) C. E. Hubb. Unknown 2 

Phyllanthus virgatus G. Forst. Urochloa mosambicensis (Hack.) Dandy 

Physalis lanceifolia Nees Vittadinia pterochaeta (F. Muell. Ex Benth.) J. 
M. Black 

Pimelea sp. Vittadinia sulcata N. T. Burb. 

Plectranthus parviflora Willd. Xanthium occidentale Bertol. 

Plectranthus sp. Zygophyllum apiculatum F. Muell. 

Poaceae sp.  

Portulaca filifolia F. Muell.  
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Appendix C: Floristic composition ANOSIM 

 

Floristic Composition ANOSIM Results 

 

Global Test 

Sample Statistic (Global R) = 0.364 

Significance Level of Sample Statistic = 0.1% (p<0.05) 

Number of Permutations = 999 (Random sample from a large number) 

Number of Permuted Statistics Greater than or equal to Global R = 0 

 

Table C1.1. Summary table of ANOSIM Pair-wise Tests for floristic composition of 
treatments. 

 
Pair-wise 
Groups 

R Statistic p-value Possible 
Permutations 

Actual 
Permutations 

Number ≥ 
Observed 

REF, REM -0.040 0.570 495 495 282 

REF, R>40 0.339 0.030 330 330 10 

REF, R30-40 0.468 0.014 210 210 3 

REF, R20-30 0.497 0.003 330 330 1 

REF, R<20 0.781 0.016 126 126 2 

REM, R>40 0.328 0.004 6435 999 3 

REM, R30-40 0.545 0.002 3003 999 1 

REM, R20-30 0.509 0.001 6435 999 0 

REM, R<20 0.806 0.002 1287 999 1 

R>40, R30-40 0.014 0.382 1716 999 381 

R>40, R20-30 -0.001 0.487 1716 999 486 

R>40, R<20 0.620 0.003 792 792 2 

R30-40, R20-30 0.036 0.316 1716 999 315 

R30-40, R<20 0.275 0.050 462 462 23 

R20-30, R<20 0.549 0.004 792 792 3 

Note:  Pair-wise tests significant at p< 0.05 
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Appendix D: Total species richness and functional group richness Analysis of Variance 

 
Table D1.1. Summary table of ANOVAs for mean species richness and mean functional group species richness for each treatment. ANOVA significant at 

p<0.05. Values in parentheses are standard error. 

 
Response 
Variable 

Reserve  Remnant Regrowth >40y Regrowth 30-40y Regrowth 20-30y Regrowth <20y Homogeneity F-score (df1; 
df2) 

p-value 

Species 
Richness 

28.5
bc

 (1.0) 29.6
c
 (1.4) 24.0

abc
 (1.8) 24.3

abc
 (1.8) 20.3

a
 (2.0) 21.0

ab
 (1.6) Y 0.466 4.730 (5; 32) 0.002 

Tree Species 
Richness 

2.5
b
 (0.5) 1.8

ab
 (0.2) 1.9

ab
 (0.3) 2.0

ab
 (0.2) 1.4

ab
 (0.2) 1.2

b
 (0.2) Y 0.673 2.721 (5; 32) 0.037 

Shrub Species 
Richness 

5.3
b
 (1.5) 4.3

b
 (0.4) 4.3

b
 (0.8) 3.6

b
 (0.7) 3.7

b
 (0.8) 1.0

a
 (0.8) Y 0.374 4.092 (5; 32) 0.006 

Groundcover 
Species 
Richness 

20.8
b
 (1.1) 23.4

ab
 (1.5) 17.7

ab
 (1.8) 18.7

ab 
(1.3) 15.0

a
 (1.1) 18.8

ab
 (1.5) Y 0.415 3.744 (5; 32) 0.009 

Graminoid 
Species 
Richness 

9.3
ab

 (1.1) 9.0
ab

 (0.7) 7.4
ab

 (1.0) 7.6
ab

 (0.8) 6.2
a
 (0.9) 10.0

b
 (0.7) Y 0.775 2.833 (5; 32) 0.032 

Herb & Forb 
Species 
Richness 

11.5 (0.7) 14.4 (1.8) 10.3 (1.5) 11.3 (0.8) 8.7 (0.4) 8.8 (1.3) Y 0.085 1.898 (5; 32) 0.122 

Native Species 
Richness 

26.5
b
 (1.3) 27.4

b
 (1.1) 21.9

ab 
(1.6) 21.6

ab 
(2.1) 18.0

a
 (1.8) 17.8

a
 (1.5) Y 0.273 5.441 (5; 32) 0.001 

Introduced 
Species 
Richness 

2.0 (0.4) 2.3 (0.6) 2.1 (0.3) 2.7 (0.4) 2.3 (0.4) 3.2 (0.6) N 0.012 0.732 (5; 32) 0.605 

Perennial 
Species 
Richness 

18.5
ab

 (0.9) 20.8
a
 (1.2) 16.6

ab 
(1.7) 15.7

ab
 (1.6) 13.7

b
 (1.1) 13.8

b
 (1.5) Y 0.240 3.185 (5; 32) 0.019 

Annual Species 
Richness 

2.3
ab

 (0.9) 2.6
ab

 (0.4) 1.1
a
 (0.3) 3.0

ab
 (0.7) 1.3

a
 (0.4) 4.8

b 
(0.7) Y 0.477 3.640 (5; 32) 0.010 
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Appendix E: Site stand structure data 

 
Table E1.1. Summary table of stand structure (Cover %) and Leaf Littler Biomass data for each site. 

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Treatment R>40 R>40 REF R30-40 REM REM REM REM REF REF REM R20-30 REM REM REF REM R<20 R<20 R<20 

Trees > 30m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Trees 20 - 
30m 

0 0 0 0 0 0 0 6 2 0 0 0 11 5 4 0 0 0 0 

Trees 10 - 
20m 

23 12 38 0 11 19 14 37 38 13 8 2 25 34 30 8 0 0 0 

Trees < 10m 27 35 20 55 30 23 40 12 18 23 32 48 13 12 22 44 35 37 20 

Shrubs > 2m 6 0 5 2 5 7 11 2 10 7 2 3 9 10 9 0 0 0 0 

Shrubs < 2m 5 8 16 5 13 12 13 7 13 13 7 0 9 7 11 4 0 0 2 

Graminoids 6 5 22 14 15 23 18 15 12 15 25 17 10 12 18 15 40 18 60 

Herbs / 
Forbs 

1 2 2 2 6 9 6 4 6 5 11 4 3 3 5 3 6 6 5 

Logs > 
20cm 

4 0 4 7 4 6 8 2 8 8 0 0 7 0 5 3 0 0 0 

Logs 10 - 
20cm 

6 2 12 7 8 13 10 6 13 15 4 5 10 10 8 9 7 3 4 

Coarse Litter 12.5 6 10 28 20 17 25 13 24 20 13 20 19 18 23 24 23 18 7 

Fine Litter 50 52 45 37 40 48 53 38 60 40 48 28 50 35 42 57 20 26 15 

Rock 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cryptogams 2 0 2 2 1 1 1 2 2 1 2 0 2 1 1 0 0 0 0 

Bare Ground 15 34 14 20 7 3 3 10 3 1 9 14 7 18 10 7 16 30 15 

Biomass 
(g/m

2
) 

1392 1011 546 726 628 893 949 660 952 628 862 275 937 797 657 633 230 252 196 
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Site 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

Treatment R20-30 R20-30 R30-40 R<20 R30-40 R>40 R20-30 R30-40 R30-40 R<20 R>40 R>40 R20-30 R>40 R20-30 R30-40 R20-30 R>40 R30-40 

Trees > 30m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Trees 20 - 
30m 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Trees 10 - 
20m 

0 5 8 0 5 9 7 2 0 0 9 4 0 9 0 4 0 0 0 

Trees < 10m 46 38 30 32 29 22 32 30 50 43 32 32 38 34 60 34 67 38 53 

Shrubs > 2m 0 0 2 0 2 12 0 0 0 0 0 7 0 3 0 0 0 0 0 

Shrubs < 2m 3 2 6 6 8 15 8 7 0 7 11 3 9 10 2 5 5 4 4 

Graminoids 18 14 38 24 17 17 12 30 7 27 7 16 19 13 7 16 12 28 10 

Herbs / 
Forbs 

2 5 4 5 4 5 3 6 3 4 3 4 3 4 2 3 3 6 5 

Logs > 20cm 0 0 2 0 0 3 3 0 2 0 2 5 0 0 0 0 0 0 0 

Logs 10 - 
20cm 

3 4 3 18 2 8 5 3 5 7 6 12 4 3 0 4 5 2 0 

Coarse Litter 15 10 15 24 20 17 23 12 17 19 18 20 15 17 17 18 18 10 19 

Fine Litter 37 20 35 21 32 29 38 28 30 25 30 53 47 47 43 65 70 55 65 

Rock 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cryptogams 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Bare Ground 25 45 12 30 18 13 12 28 35 17 39 7 15 20 45 12 7 8 6 

Biomass 
(g/m

2
) 

560 397 631 171 529 684 840 658 387 299 922 647 411 521 311 405 829 984 1053 
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Appendix F: Stand structure ANOSIM 

 

Stand Structure ANOSIM Results 

 

Global Test 

Sample Statistic (Global R) = 0.362 

Significance Level of Sample Statistic = 0.1% (p=0.001) 

Number of Permutations = 999 (Random sample from a large number) 

Number of Permuted Statistics greater than or equal to Global R = 0 

 

Table F1.1. Summary table of ANOSIM Pair-wise Tests for stand structure of treatments. 

 
Pair-wise 
Groups 

R Statistic p-value Possible 
Permutations 

Actual 
Permutations 

Number ≥ 
Observed 

REF, REM -0.110 0.752 495 495 372 

REF, R>40 0.426 0.015 330 330 5 

REF, R30-40 0.780 0.003 330 330 1 

REF, R20-30 0.852 0.003 330 330 1 

REF, R<20 1.000 0.029 35 35 1 

REM, R>40 0.169 0.064 6435 999 63 

REM, R30-40 0.462 0.002 6435 999 1 

REM, R20-30 0.547 0.002 6435 999 1 

REM, R<20 0.803 0.002 495 495 1 

R>40, R30-40 0.095 0.207 1716 999 206 

R>40, R20-30 0.192 0.051 1716 999 40 

R>40, R<20 0.574 0.003 330 330 1 

R30-40, R20-30 -0.13 0.933 1716 999 932 

R30-40, R<20 0.108 0.194 330 330 64 

R20-30, R<20 0.212 0.112 330 330 37 

Note:  Pair-wise tests significant at p< 0.05 
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Appendix G: Strata Cover Analysis of Variance 

 
Table G1.1. ANOVA Summary table for stand strata classes showing mean Foliage Projective Cover (SE) for each treatment type.  ANOVA significant at 

p<0.05.  Values in parentheses are standard errors. 

 

Stratum Reserve 
Remnant 

Remnant Regrowth >40y Regrowth 30-40y Regrowth 20-30y Regrowth <20y Homogeneity F-Score (df1; 
df2) 

P-Value 

Trees 10-20m 29.7
b
 (1.4) 19.5

b
 (4.0) 9.4

ab
 (2.7) 2.7

a
 (1.2) 2.0

a
 (1.1) NA N 0.007 15.486 <0.001 

Trees <10m 20.8
c
 (1.1) 25.8

bc
 (4.5) 31.4

abc
 (2.0) 40.1

ab
 (4.5) 47.0

a
 (4.8) 33.4

abc
 (3.8) N 0.009 5.049 0.002 

Shrubs >2m 7.8
c
 (1.1) 5.6

bc
 (1.5) 4.0

abc
 (1.7) 0.9

ab
 (0.4) 0.4

a
 (0.4) NA N 0.000 7.657 <0.001 

Shrubs <2m 13.3
c
 (1.0) 9.0

bc
 (1.2) 8.0

abc
 (1.6) 5.0

ab
 (1.0) 4.1

ab
 (1.3) 3.0

a
 (1.5) Y 0.345 6.513 <0.001 

Graminoids 16.8
ab

 (2.1) 16.6
ab

 (1.8) 13.1
a
 (3.1) 18.9

ab
 (4.2) 14.1

a
 (1.6) 33.8

b
 (7.5) Y 0.135 3.036 0.024 

Herbs / Forbs 4.5 (0.9) 5.6 (1.1) 3.6 (0.7) 3.9 (0.5) 3.1 (0.4) 5.2 (0.4) Y 0.147 1.736 0.155 

Logs >20cm 6.3
b
 (1.0) 3.8

ab
 (1.1) 2.0

ab
 (0.8) 1.6

a
 (1.0) 0.4

a
 (0.4) NA N 0.002 5.489 0.001 

Logs 10-20cm 12.0
b
 (1.5) 8.8

ab
 (1.0) 5.6

ab
 (1.4) 3.4

a
 (0.8) 3.7

a
 (0.7) 7.8

ab
 (2.7) Y 0.594 4.359 0.004 

Coarse Leaf 
Litter 

19.3 (3.2) 18.6 (1.6) 14.4 (1.9) 18.4 (1.9) 16.9 (1.6) 18.2 (3.0) Y 0.922 0.779 0.572 

Fine Leaf Litter 46.8
b
 (4.5) 46.1

b
 (2.7) 45.1

b
 (4.2) 41.7

ab
 (6.1) 40.4

ab
 (6.0) 21.4

a
 (2.0) Y 0.106 2.987 0.025 

Bare Ground 7.0
b
 (3.0) 8.0

b
 (1.7) 19.4

b
 (4.7) 18.7

b
 (3.8) 23.3

ab
 (6.0) 21.6

a
 (3.4) Y 0.116 4.436 0.004 

Biomass 695.9
bc

 (88.7) 794.9
bc

 (48.2) 880.1
c
 (110.5) 626.9

bc
 (85.7) 517.4

ab
 (88.6) 229.6

a
 (22.3) Y 0.107 13.263 <0.001 
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Appendix H: Site spatial and patch data 
Table H1.1. Summary table of patch and spatial data for each site. 

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

pH 6.0 6.4 6.7 6.7 6.2 6.8 7.0 8.0 7.3 7.2 6.6 7.6 7.6 6.9 6.7 7.3 7.4 7.4 7.9 

Nitrogen 
(mg/kg) 

9.0 13.0 5.0 2.0 5.0 5.0 4.0 6.0 3.0 9.0 6.0 12.0 5.0 3.0 5.0 8.0 7.0 8.0 8.0 

Phosphorus 
(mg/kg) 

6.0 8.0 2.0 2.0 9.0 9.0 4.0 3.0 4.0 6.0 15.0 12.0 3.0 3.0 7.0 5.0 8.0 9.0 3.0 

Potassium 
(mg/kg) 

285.0 375.0 214.0 115.0 298.0 424.0 334.0 368.0 311.0 260.0 270.0 234.0 329.0 367.0 356.0 471.0 315.0 386.0 318.0 

Magnesium 
(mg/kg) 

534.0 630.0 413.0 270.0 631.0 690.0 736 666 357 711 549 697 867 1220 1080 1010 711 684 994 

Sodium (mg/kg) 45.0 185.0 124.0 39.0 110.0 190.0 117.0 50.0 57.0 135.0 126.0 200.0 380.0 519.0 326.0 310.0 147.0 277.0 335.0 

Organic Carbon 
(%) 

1.8 1.4 1.5 1.2 2.0 1.9 1.6 0.9 1.9 1.5 1.4 0.8 1.5 1.4 1.6 1.7 1.4 1.3 1.1 

Cation 
Exchange 
(meq/100g) 

19.2 19.6 14.4 12.1 19.9 27.9 31.1 40.7 16.6 16.9 19.4 35.7 27 27.1 24.3 33.9 23.8 25.2 31.3 

Grazing 
Intensity 

0 1 0 1 1 0 0 0 0 0 1 0 0 1 0 0 2 3 2 

Gilgai (score) 1 1 0 0 0 1 1 1 2 1 0 0 2 1 2 2 1 1 1 

Stem Density 
(/200m

2
) 

55 52 23 76 45 61 86 35 68 55 68 145 40 43 67 74 179 195 84 

SiteArea (ha) 39 21 14 280 25 22 16 43 3853 97 155 28 20 25 17 31 26 41 35 

Perimeter:Area 14.9 14.2 18.4 4.8 14.1 15.7 18.7 18.6 3.1 6.5 7.6 17.8 11.1 9.4 17.9 32.5 16.6 11.6 17.7 

Grazing (ha) 469 704 560 240 866 1035 1085 912 119 649 1015 912 1082 1093 1110 783 1111 1074 1031 

Forestry (ha) 0 373 550 867 0 0 0 0 0 462 0 0 0 0 0 0 0 36 73 

Cropping (ha) 642 35 0 0 203 74 24 200 0 0 94 146 27 17 0 328 0 0 7 

Water (ha) 0 0 0 3 5 0 0 0 0 0 0 45 0 0 0 0 0 0 0 

National Parks 
(ha) 

0 0 0 0 0 0 0 0 992 0 0 0 0 0 0 0. 0 0 0 

Regrowth (ha) 88 31 6 280 28 0 6 0 0 0 6 34 13 0 0 78 141 91 222 

Remnant (ha) 0 332 50 1 54 76 105 51 4011 139 3 17 33 57 26 66 0 1 11 

Distant to 
Remnant (km) 

3.7 0.5 1.0 3.7 0.9 1.6 2.7 3.6 3.1 1.6 2.4 4.1 1.9 1.9 3.3 1.4 6.1 4.1 2.9 
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Site 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

pH 6.6 6.8 6.2 5.9 6.7 7.5 7.9 6.7 7.8 8.4 6.6 7.0 8.0 8.3 7.7 8.6 7.6 6.8 7.3 

Nitrogen 
(mg/kg) 

3.0 3.0 3.0 15.0 5.0 8.0 3.0 6.0 5.0 5.0 3.0 4.0 2.0 2.0 2.0 1.0 3.0 5.0 3.0 

Phosphorus 
(mg/kg) 

14.0 10.0 2.0 5.0 25.0 5.0 5.0 45.0 35.0 6.0 11.0 3.0 15.0 7.0 3.0 2.0 1.0 8.0 4.0 

Potassium 
(mg/kg) 

242.0 207.0 272.0 177.0 475.0 693.0 503.0 860.0 600.0 569.0 468.0 278.0 467.0 488.0 347.0 423.0 361.0 255.0 285.0 

Magnesium 
(mg/kg) 

596.0 699.0 203.0 853.0 446.0 573.0 771.0 801.0 573.0 801.0 606.0 583.0 618.0 836.0 798.0 930.0 441.0 440.0 761.0 

Sodium (mg/kg) 112.0 148.0 43.0 199.0 56.0 94.0 263.0 72.0 62.0 364.0 89.0 90.0 131.0 383.0 138.0 530.0 111.0 15.0 135.0 

Organic Carbon 
(%) 

1.3 1.6 1.5 1.5 2.2 1.7 1.3 1.7 1.2 1 2 0.9 1.3 1.3 1.1 1 1.7 1.7 1.3 

Cation 
Exchange 
(meq/100g) 

18.7 24.2 12.3 17.3 29.1 36.4 27.2 26.2 37.6 45 24.6 26 37.2 41.9 22.1 43.4 32.3 17.3 26.1 

Grazing 
Intensity 
(score) 

3 3 1 1 2 0 0 2 3 2 3 0 0 0 0 0 0 0 0 

Gilgai (score) 0 2 0 0 3 2 2 1 3 0 2 1 2 1 0 3 1 0 1 

Stem Density 
(/200m

2
) 

234 241 47 258 45 54 77 65 192 318 66 53 88 70 368 76 328 76 302 

SiteArea (ha) 11.9 12.6 73.7 112.2 36.2 34.0 18.0 13.0 11.4 38.8 32.7 14.3 17.7 23.1 11.6 21.5 22.7 13.5 23.6 

Perimeter:Area 19.7 18.7 7.1 10.1 14.1 11.2 13.4 14.6 23.6 11.6 9.0 19.0 12.8 29.4 13.4 11.9 17.6 22.0 21.0 

Grazing (ha) 650 482 492 522 837 830 301 1108 1033 802 519 682 885 561 784 1006 693 675 950 

Forestry (ha) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 205 26 0 

Cropping (ha) 459 627 617 586 264 280 803 0 77 304 589 424 167 83 311 107 207 405 162 

Water (ha) 0 0 0 1 0 0 0 1 0 0 1 0 15 0 0 0 5 5 0 

National Parks 
(ha) 

0 0 0 0 0 0 0 0 0 0 0 0 43 467 0 0 0 0 0 

Regrowth (ha) 66 218 198 231 149 54 66 45 30 89 145 21 53 51 8 21 23 36 29 

Remnant (ha) 0 12 17 13 20 82 87 46 160 4 0 30 47 3858 0 84 52 27 12 

Distant to 
Remnant (km) 

3.2 0.6 1.3 1.1 2.0 1.2 1.8 2.0 1.6 4.4 3.0 1.5 2.8 3.3 2.6 0.7 1.0 1.9 1.8 
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Appendix I: Krukall-Wallis correlations of site patch and 
spatial data  

 

Correlations between patch and spatial variables 
 

Numerous significant correlations were identified between the various spatial and 

patch factors assessed.  Remnant area inside the buffer zone (2km) was negatively 

correlated with spatial factors such as area of surrounding regrowth and distance to 

remnant patches, as well as in patch factors, grazing intensity and stem density.  

Patch geometry (P:A) was significantly correlated with site area, but also landscape 

grazing,  soil magnesium, cation exchange capacity and calcium.   

 

Soil chemistry measures were highly correlated with a number of spatial and patch 

variables.  Grazing in the surrounding landscape was positively correlated with all 

soil properties excluding nitrogen and organic carbon.  Increased surrounding 

forestry was also associated with decreased potassium, calcium and cation exchange 

capacity within the soil.  Soil pH was positively correlated with potassium, 

magnesium, sodium, calcium and cation exchange and negatively correlated with soil 

nitrogen and organic carbon (Table I1.1) 
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Table I1.1. Summary table of correlation analysis showing Pearson statistic (r) and significance. 
 
 
 
 
 

Crop. Graz. Fore. Water 
Rem. 
2km 

Reg. 
2km 

Dist. to 
Rem. 

Site 
Area 

P:A 
Graz. 
Int. 

Gilgai 
Stem 
Dens. 

pH N OC P K Mg Na Ca 

Cropping -                    

Grazing 0.003 -                   

Forestry 
-
0.469

**
 

-0.182 -                  

Water 0.127 -0.005 0.103 -                 

Remnant 
2km 

-0.136 -0.186 0.030 -0.049 -                

Regrowth 
2km 

0.333
*
 -0.117 0.018 0.183 -0.420

**
 -               

Distance to 
Remnant 

-0.305 0.022 -0.136 0.082 -0.419
**
 0.080 -              

Site Area -0.305 
-
0.639

**
 

0.122 -0.034 0.173 -0.134 0.187 -             

P:A 0.244 0.334
*
 -0.139 -0.022 0.167 0.110 -0.042 -0.595

**
 -            

Grazing 
Intensity 

-0.036 0.102 -0.033 -0.140 -0.435
**
 0.489

**
 0.189 -0.094 -0.065 -           

Gilgai 0.014 0.052 -0.273 -0.257 0.337
*
 -0.029 -0.200 -0.079 0.106 0.070 -          

Stem 
Density 

0.202 0.064 -0.108 0.125 
-0.374 
* 0.329

*
 0.221 -0.121 0.146 0.334

*
 -0.145 -         

pH -0.004 0.170 -0.096 -0.011 0.248 -0.073 0.253 -0.128 0.227 -0.161 0.344
*
 0.242 -        

Nitrogen -0.117 0.224 0.162 0.037 -0.075 0.039 0.075 0.063 0.062 0.083 -0.208 -0.084 -0.343
*
 -       

OC -0.007 -0.177 -0.050 -0.059 0.111 -0.015 -0.271 0.158 -0.112 0.068 0.229 -0.282 
-
0.552

**
 

0.105 -      

P 0.066 0.266 -0.247 0.260 -0.042 0.160 0.089 -0.222 0.183 -0.120 0.213 0.211 -0.120 0.248 0.304 -     
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Crop. Graz. Fore. Water 
Rem. 
2km 

Reg. 
2km 

Dist. to 
Rem. 

Site 
Area 

P:A 
Graz. 
Int. 

Gilgai 
Stem 
Dens. 

pH N OC P K Mg Na Ca 

K 0.109 0.363
*
 

-
0.382

*
 

-0.185 0.296 -0.062 -0.037 -0.306 0.200 0.087 0.527
**
 -0.063 0.432

**
 

-
0.031 

0.141 0.424
**
 -    

Mg -0.017 0.547
**
 -0.308 -0.170 0.045 -0.206 0.052 -0.410

*
 0.332

*
 -0.019 0.227 0.167 0.336

*
 0.144 

-
0.221 

0.080 0.349
*
 -   

Na -0.113 0.353
*
 -0.126 -0.207 0.121 -0.110 -0.004 -0.206 0.108 0.489

**
 -0.037 0.142 0.404

*
 

-
0.026 

-
0.289 

-0.173 0.214 0.760
**
 -  

Ca 0.315 0.384
*
 

-
0.363

*
 

0.104 0.228 0.052 0.136 -0.317 0.421
**
 -0.035 0.460

**
 0.161 0.757

**
 

-
0.166 

-
0.278 

0.216 0.630
**
 0.312 0.242 - 

Cation 
Exchange 

0.258 0.501
**
 

-
0.404

*
 

0.034 0.235 -0.033 0.112 0.387
*
 0.437

**
 -0.037 0.480

**
 0.180 0.753

**
 

-
0.097 

-
0.299 

0.207 0.672
**
 

0.574 
** 

-
0.458

**
 

0.953
**
 

Note: 
*
 p<0.05, 

**
 p<0.001. 

 

 

 


