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Abstract: The multifractal properties of six acknowledged agro-meteorological parameters, such as
reference evapotranspiration (ET0), wind speed (U), incoming solar radiation (SR), air temperature
(T), air pressure (P), and relative air humidity (RH) of five stations in California, USA were examined.
The investigation of multifractality of datasets from stations with differing terrain conditions using
the Multifractal Detrended Fluctuation Analysis (MFDFA) showed the existence of a long-term
persistence and multifractality irrespective of the location. The scaling exponents of SR and T time
series are found to be higher for stations with higher altitudes. Subsequently, this study proposed
using the novel multifractal cross correlation (MFCCA) method to examine the multiscale-multifractal
correlations properties between ET0 and other investigated variables. The MFCCA could successfully
capture the scale dependent association of different variables and the dynamics in the nature of their
associations from weekly to inter-annual time scales. The multifractal exponents of P and U are
consistently lower than the exponents of ET0, irrespective of station location. This study found that
joint scaling exponent was nearly the average of scaling exponents of individual series in different
pairs of variables. Additionally, the α-values of joint multifractal spectrum were lower than the α

values of both of the individual spectra, validating two universal properties in the MFCCA studies
for agro-meteorological time series. The temporal evolution of cross-correlation determined by the
MFCCA successfully captured the dynamics in the nature of associations in the P-ET0 link.

Keywords: reference evapotranspiration; agro-meteorological; multifractal; scaling; cross-correlations;
persistence

1. Introduction

Characterization of agro-meteorological time series is a major concern for irrigation and water
resource planners. Agro-meteorological time series often possess non-linear, non-stationary and
complex temporal scaling characteristics [1], which make the accurate prediction of their course
difficult. Any improved understanding on the fluctuations and scaling characteristics of such time
series may enhance the modeling efforts aimed at a fuller understanding of their structures. Many
of agro-meteorological time series possesses multiple time scales ranging from sub-daily to yearly,
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in which the turbulence induces stochastic fluctuations at smaller scales, whereas the complex nonlinear
interactions between variables induce fluctuations at larger scales. The atmospheric turbulence plays a
key role in the scaling behavior of the agro-meteorological time series. The atmospheric turbulence in
the inertial range can be statistically described by scale invariant processes, due to the fundamental
symmetries of the Navier-Stokes equations [2]. The scale invariant processes do not have any
characteristic scale over the scaling range, the energy fluxes may be conserved from a large to a
small-scale and the interactions occur mainly between neighboring scales. This can lead to a cascade
process, which is generally described as eddies breaking up into smaller sub-eddies, each of which
receives a part of the flux of its parent body [3]. Fractals, a term coined by Benoit Mandelbrot, can be
considered as a rough or fragmented geometric shape that can be subdivided in parts, each of which is
(at least approximately) a reduced-size copy of the whole [4]. Many of the complex agro-meteorological
time series often exhibit self-similarity or self-affinity and scale invariance over certain range of time
scales which are typical characteristics of fractals. Thus the analogy of such signals with the stochastic
cascade models in fully developed turbulence can lead to fractal behavior in them. To illustrate the
above stated cascade phenomenon of flux transfer, the classical Kolmogorov and Corrsin-Obukhov
scaling laws were proposed [5–8] which later on routed the determination fractal behavior of time series.
But in many of the atmospheric variables, the scale by scale flux transfer need not be homogenous,
instead it may be intermittent [9,10]. To address such issues the alternate scaling cascade models
were proposed [11–13]. In short, such turbulence models were adapted to reproduce scale invariance
properties through the use of fractal geometry and more on theoretical foundations of this issue can be
found in literature [14–16].

The detailed conceptual framework on fractal behavior of time series was provided by
Mandelbrot [4] and later on different methods were proposed to determine the fractal characteristics of
the time series. The long-range dependency is closely related to the scaling property and fractality of
the time series, as was noticed by Hurst [17], one of the earlier contributors in this field. The fractal
property of the time-series is strongly associated with its persistence as the fractal dimension (D) and
Hurst exponent (H) can be related to each other as D = 2–H [18]. A value of H between 0.5 and 1
indicates a series as long-term power law correlated and that between 0 and 0.5 indicates that the series
is short term correlated. There are numerous methods to determine the fractal dimension or Hurst
exponent of the time series including the classical Structure Function Analysis, Rescaled Range (R/S)
method and Fourier spectrum [19,20]. However, later on it was found that a single fractal dimension
was not sufficient to describe the whole phenomenon and many sophisticated models were proposed
based on multifractal formalism since 1980 [21–26]. Hence, based on multifractal theory also Hurst
exponent can be evaluated and the value of scaling exponent for the second order statistical moment is
widely recognized as similar to the classical Hurst exponent by many researchers [27].

Multifractal Detrended Fluctuation analysis (MFDFA) propounded by Kantelhardt et al. [24], is one
of the most popular approaches for the multifractal characterization of time series. The method was
extensively applied for different hydrological like streamflow [28–31], meteorological time series such
as rainfall, drought index, temperature, solar radiation and relative air humidity [32–43]. Even though
some alternative methods like joint-multifractal analysis was proposed recently for the multifractal
characterization of reference evapotranspiration (ET0) time series [35], no comprehensive study of
global recognition was reported for the characterization of ET0 time series employing MFDFA and its
extended cross correlation variants. One of the essential components for irrigation water management
is the evapotranspiration (ET). ET is the simultaneous process of transfer of water to the atmosphere
by transpiration and evaporation in a soil–plant system and its quantification is to be preceded by the
estimation of reference evapotranspiration. ET0 has been defined as the rate of evapotranspiration
from an extensive grassed area of 8–15 cm tall, uniform, actively growing, completely shading the
ground and with adequate water [44]. Later on, Allen et al. [45] elaborated on the concept of ET0,
by referring it to an ideal 12 cm high crop with a fixed surface resistance of 70 SD−1 and an albedo of 0.23.
Different meteorological variables influence the estimation of ET0 and they were considered as potential
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inputs for modeling of ET0 [46]. Numerous modeling practices ranging from conventional statistical
approaches to hybrid decomposition algorithms and data driven techniques were proposed to model
ET0 [47–51]. The complex structure of ET0 and other agro-meteorological variables makes the accurate
modelling a challenging task. Therefore, any efforts for exploring alternative modeling practices
which can contribute towards improving the accuracy in predictions of such variables are appreciable.
Fractal or multifractal modeling is another promising approach which can be adopted for modeling
complex systems, for which the characterization of such time series is an essential prerequisite to
proceed with such modeling practices. Understanding the inherent features of different time-series and
their lagged influence have vital role in the accuracy of modeling ET0 and other time series following
different alternative approaches. Fractal signatures are such features which can disseminate proper
knowledge on the predictability and complexity of the time-series, which may eventually help in
accurate modeling of agro-meteorological time series. Multifractal modeling is one potential alternative
modeling approach and proper understanding of the persistence and multifractal properties is to be
determined a priori before proceeding with such modeling. Moreover, the multifractal properties of
time series may distinctly differ depending on terrain conditions. Understanding such differences in
multifractal properties from stations of diverse terrain conditions may provide necessary scientific
insights to find the reason behind such variability.

The determination of fractal behavior basically involves the determination of whether the
fluctuations of the time series decrease with the increase in scale, following a power law relationship
with an exponent such as F(s)~sH, or not. In that case, the data is said to be scaling in that range i.e.,
there exists a certain degree of statistical scale-invariance. Persistence can be defined as the existence
of some statistical dependence among successive values of the same variable, or among successive
occurrences of a given event [52]. The fractal theory quantifies the diminishing nature of correlations
(dependence), the autocorrelation function declines as a power-law. Thus, the persistence properties
of hydro-meteorological signals can give useful insights into the autocorrelation structure of the
time-series [53], which in turn may help in predictor selection in time-series approach for modeling of
the agro-meteorological variables.

An appropriate selection of the predictor variables is an important step for the reliable prediction
of ET0 using statistical or data-driven methods. The variables like solar radiation, temperature,
wind speed, relative air humidity, etc., were reported to be appropriate inputs for the prediction of
ET0 [46]. All these time series possess multiscaling behavior and advanced multiscale spectral analysis
procedures, such as Wavelet transform or Hilbert Huang Transform (HHT) are helpful for investigating
the mutual association between these variables [54]. The determination of Pearson correlation is the
typical procedure in the estimation of possible dependency between the two candidate variables even
in such multiscale approaches. However, some studies reported that Pearson correlation estimation
may not be robust and can be misleading if outliers are present, as in the real-world data characterized
by a high degree of non-linearity and non-stationarity [55]. In this context, estimating the scale
dependent link in a multifractal perspective may give a realistic estimate for such studies. Podobnik
and Stanley [56] proposed the detrended cross-correlation analysis (DCCA), to investigate power-law
cross correlations between two candidate non-stationarity time series in a multifractal framework.
Multifractal extension of DCCA (namely MFDCCA) and its variant namely Multifractal Detrending
Moving Average Cross Correlation Analysis (MFXDMA) was also proposed by researchers [57,58].
Later on Oświecimka et al. [59] propounded a more generalized version of cross correlation analysis
namely Multifractal Cross Correlation Analysis (MFCCA) which can also incorporate the sign of
fluctuation function to their generalized moments [60,61]. DCCA and the above stated variants
were used successfully for investigating the power law cross-correlations between different pairs of
hydrological and meteorological datasets [62–69]. It is expected that understanding the scale dependent
relationship between the predictor variables will eventually help for developing hybrid decomposition
models for prediction of complex time series dataset [50]. Also such multiscale investigation may help
in providing insights to the physical processes and the role of different meteorological variables behind
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ET0. In this context, the determination of correlation between different causal meteorological variables
with ET0 is of great significance in agro-meteorological modeling. However, such associations were
never investigated in the past in a multiscale-multifractal perspective.

Therefore, the specific objectives of this work include: (i) to investigate the multifractal properties
of ET0 and meteorological variables like wind speed, air pressure, solar radiation, air temperature,
relative air humidity at five stations located at distinctly different terrain conditions in California, USA;
(ii) to investigate the power law correlations of different meteorological variables with ET0 using the
novel MFCCA approach. The next section presents the theoretical details of MFDFA and MFCCA
methods. The details of data used in the study are presented in the section thereafter. Subsequently,
results of MF analysis and MFCC are presented along with relevant discussions. The major conclusions
drawn from the study are presented in the last section.

2. Materials and Methods

In this study, firstly MFDFA method is applied to examine the multifractality of different
agro-meteorological time series of California. Subsequently, MFCCA method is used to investigate
the mutual association of different contributory meteorological variables with ET0. As the nonlinear
properties (i.e., the long-term volatility correlations and the width of the multifractal spectrum)
are strongly affected by the periodicities in agro-meteorological time series, the periodic seasonal
trends in all the studied time series have to be filtered out. To remove them, the Seasonal and
Trend decomposition using Loess (STL) method developed by Cleveland et al. [70] was used before
performing the MFDFA and MFCCA analyzes.

2.1. MFDFA Method

The different steps of MFDFA are:

(1) Determine the accumulated deviation of the time series signal X (x1, x2 . . . xL) from its mean (so
called ‘profile’) as:

P(i) =
i∑

k=1

[xk − x] (1)

where i = 1, 2,..., L, with mean x and length L.
(2) Identify different independent sub-series of different lengths (called scale s) both in forward and

backward directions.
(3) Fit polynomial to each sub-series and find the difference between original sub-series and its fitted

polynomial as:

f 2(s, υ) =
1
s

s∑
i=1

{
P[(υ− 1)s + i] − yυ(i)

}2

for υ = 1, 2, . . . , N (2)

and:

f 2(s, υ) =
1
s

s∑
i=1

{
P[L− (υ−N)s + i] − yυ(i)

}2

for υ = N + 1, . . . , 2N. (3)

Here yυ(i) is the polynomial used for fitting in fragment υ.
(4) Determine the fluctuation function (FF) for different combination of scale s and statistical moment

order q, based on step 3:

FFq(s) =

 1
2N

2N∑
υ=1

[
f 2(s, υ)

]q/2


1/q

(4)

(5) Develop the log-log plot of fluctuation function FFq(s) vs. scale s. The slope of logarithmic plot
of FF versus s is called generalized Hurst exponent (GHE) h(q) for different moment order q.
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The non-linear behavior of the plot between h(q) and q indicates the multifractality of the time
series. For monofractal time series h(q) is independent of q. Multifractal behavior (a significant
dependence of h(q) on q) will manifest itself only if small and large fluctuations scale differently
in the time series. For positive values of q, h(q) describes the scaling behavior of the segments
with large fluctuations, whereas for negative values of q, the scaling behavior of the segments
with small fluctuations is described. While the precision of h(q) estimation depends mostly on the
length of the time series, for large negative values of q (very small fluctuations) the precision of
measurement is also starting to play a role. A detailed analysis on the precision of h(q) estimation
for the MFDFA method was performed by López and Contreras [71]. The GHE value for q = 2 is
considered to be equivalent to the classical Hurst exponent (H) [27,28]. From h(q) other useful
exponents like mass exponent τ(q) or singularity exponent f (α) can be derived as follows:

τ(q) = qh(q) − 1 (5)

α =
dτ(q)

dq
(6)

f (α) = qα− τ(q) (7)

The plot of f (α) vs. α is called as singularity spectrum, which will be inverted parabolic in
shape with apex at unity for multifractal series. The base width of the spectrum (w = αmax − αmin) is
an indicative of the strength of the multifractality in such a way that larger width indicates higher
multifractal strength and vice versa. The symmetry of the spectrum (symmetric, left or right-skewed)
indicates the dominancy for high (or low) fluctuations. It is quantified by a parameter called asymmetry
index (AI), computed based on the width of right and left wings of the parabola as:

AI =
∆αle f t − ∆αright

∆αle f t + ∆αright
(8)

with ∆αleft = α0 − αmin and ∆αright = αmax − α0, respectively. If AI is zero, the spectrum is symmetric,
positive values indicates a right skewed and negative values indicates a left-skewed spectrum. Negative
values of AI suggest the existence of complex structures at the level of large fluctuation amplitudes in
the respective series; they also suggest that the time series are characterized by a multifractal structure,
which is insensitive to local fluctuations with small amplitudes. This means that a low weight can
be attributed to low fractal exponents, which in turn suggests the frequent occurrence of extreme
events [72]. The value of α at q = 0 (indicated as α0 and called as Holder exponent) infers the complexity
of the time series. The mathematical expressions for the computation of multifractal properties and the
guidelines for selection of algorithm specific control parameters such as polynomial order, range of
moment order, scaling range (smin − smax) etc. can be can be found in literature [73].

2.2. MFCCA Method

The different steps of MFCCA computational procedure can be described as follows:

(1) For two time series xi and yi (I = 1, 2, . . . , N), determine the profiles as:

Px( j) =
j∑

i=1

[xi − x] (9)

and:

Py( j) =
j∑

i=1

[yi − y] (10)
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where j = 1, 2, . . . , N and x and y are the mean of the two time series xi and yi.
(2) Divide each profile Px(j) and Py(j) into Ns non-overlapping segments both in progressive and

retrograde directions, to avoid any omission of time series data from the head or tail end of
the series.

(3) For each 2Ns segments, compute local trend of both “profiles” Px(j) and Py(j) by fitting polynomials
pX,υ

m(j) and pY,υ
m(j) of appropriate order m. The subtraction of the fitted polynomial from the

original segment gives the covariance as given below:

ϕXY
2(υ, s) =

1
s

s∑
k=i

{
[Px((υ− 1)s + k) − pX,υ

m(k)] ×
[
Py((υ− 1)s + k) − pY,υ

m(k)
]}

(11)

where s is the length of υ segment.
(4) Calculate detrended covariance by summation over all segments:

Fq
XY(s) =

1
2Ns

2Ns−1∑
υ=0

sign
[
ϕXY

2(υ, s)
]∣∣∣ϕXY

2(υ, s)
∣∣∣q/2

(12)

(5) Check if Fq
XY(s) behaves as a power-law function of s (the scaling behavior), where s is the

segmental sample size: {
Fq

XY(s)
}1/q = FXY(s) ∼ sλXY(q). (13)

The scaling exponent λXY(q) is similar to the generalized Hurst exponent h(q) in MFDFA and it can
be obtained by observing the slope of log-log plot of F(s) versus s by ordinary least squares. The ratio
between the detrended covariance function Fq

XY(s) obtained from MFCCA and the detrended variance
functions Fq

X(s) and Fq
Y(s) obtained from MFDFA defines the detrended cross correlation ρXY(s) as:

ρXY(s) =
FXY(s)√

FX(s)FY(s)
(14)

Theoretically, the value of ρXY(s) ranges between −1 ≤ ρXY(s) ≤ 1. The MFCCA analysis facilitate
the estimation of scale dependent correlation between two candidate time series, which can provide
better insight into the physical association between the variables.

2.3. Study Area and Data

The multifractal characteristics of time series changes with latitude, altitude and distance from the
coast [74]. Therefore, it is better to consider datasets from different terrain conditions and elevations.
Considering this, the daily data of five automated weather stations of California, USA, namely Dagget
(latitude 34.52◦ N, longitude 116.47◦ W), Bakersfield (35.26◦ N, 119.03◦ W), Santa Maria (34.96◦ N,
120.42◦ W), Los Angeles (34.02◦ N, 118.29◦ W), and San Diego (36.78◦ N, 119.72◦ W), operated by
the United States Environmental Protection Agency (US EPA), were used in the study. The State of
California extends along the shore of the Pacific Ocean between latitudes 32.5 and 42◦ N. Its more
than 2100 km of coastline constitutes nearly three-fourths of the Pacific coastline of the conterminous
United States. Los Angeles lies in a basin in Southern California adjacent to the Pacific Ocean and
the city is the largest one in California. The average elevation of the city is only about 30 m above
m.s.l. Los Angeles is a hot-summer Mediterranean climate as per Köppen Climate Classification (KCC)
system [75], with hot, dry summers, and cooler wetter winters with lesser precipitation than typical
Mediterranean climate. All the stations considered are located at radial distances within 180–250 km
from the city of Los Angeles. Dagget city is located at north-east of Los Angeles by 200 km at the interior
part of Southern California with no oceanic proximity. According to the KCC, Daggett has a semi-arid
climate. There is very little rainfall year-round and diurnal temperature variation is high. In the winter,
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nights are often very cold while days are mildly cool. Meanwhile, summer nights are mildly warm
while days can be extremely hot. The major land resource areas of the Daggett are Sonoran Basin
and Range (Arizona, California, and Nevada, western range and irrigated region). The evaporation
losses in Daggett site are moderately high due to the high temperature. The Bakersfield station is
180 km to the north of Los Angeles, situated in the center of Kern County, located in the extreme
southern end of the Great San Joaquin Valley, and is partially surrounded by a horseshoe-shaped rim
of mountains. The climate in Bakersfield has a hot desert type climate with very hot, dry summers,
and winters that consist of mild days with chilly/cold nights. San Diego, with approximate height of
4 m above m.s.l., is located about 200 km to the south of Los Angeles on the coast of Pacific ocean.
The basic climate is typical Mediterranean as per KCC with hot, sunny, and dry summers, and cooler,
wetter winters. However, the city is much more arid, and winters are still dry on comparing with
most other zones with this type of climate. The wet winter season of San Diego is influenced by the El
Nino Southern Oscillation (ENSO) and it receives more winter storms with warmer and more humid
conditions. During the La Nina phase, San Diego becomes drier with cooler and less humid conditions.
Santa Maria is located in the central coast of California in the northern Santa Barbara county. It is
approximately over 240 km north west of Los Angeles. The region experiences a cool Mediterranean
climate (KCC typical of coastal areas of California north of Point Conception). The climate is mostly
sunny, refreshed by the ocean breeze. The attitudes of these stations are 586, 151, 77, 30 and 4 m from
the mean sea level, respectively. This helped to capture the differences in multifractal behavior with
the altitudinal differences. Long daily records of air temperature (T), solar radiation (SR), wind speed
(U), air pressure (P), relative air humidity (RH), and reference evapotranspiration (ET0) of 1961–1990
period are used for multifractal analysis. FAO−56 Penman–Monteith equation was used by United
States Environmental Protection Agency for the estimation of ET0. The map showing locations of
different stations is provided in Figure 1.
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Figure 1. Map showing the locations of five meteorological stations in California, USA.

The measured daily climatic data for these stations were downloaded from the US EPA web
server [76]. The respective time series are plotted in Figure 2. The quality control is a major prerequisite
for using meteorological information, so it is highly necessary to ensure that the record structure of the
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data is correct and complete before proceeding with modeling of any time series and there are definite
procedures to perform the quality control of the datasets [77–79].Atmosphere 2020, 11, x FOR PEER REVIEW 
 8 of 24 
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Figure 2. Time series plots of agro-meteorological datasets of different stations in California: (a) Dagget;
(b) Bakersfield; (c) Santa Maria; (d) Los Angeles; (e) San Diego.

However, in this case, the network is highly sophisticated and data was published by USEPA
after rigorous quality examinations and used widely by other researchers [48,80]. However, along with
the visual examination the data was checked for their continuity and also the chances of outliers
was examined. No such anomalous observations and their replacement were needed and separate
homogeneity analysis was not warranted in this case. The basic statistical parameters of the different
datasets are provided in Table 1.
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Table 1. Statistical properties of the agro-meteorological datasets of California.

Station Variable Maximum Minimum Mean Standard Deviation

Dagget

ET0 (mm) 18 0.2 6.42 3.37
T (◦C) 37.2 −5.3 19.72 8.47

U (m/s) 15.973 0.174 5.04 2.22
SR (Wm−2) 1576.2 102 993.9 359.5

RH (%) 100 7 30.20 14.29
P (kPa) 96.7 92.7 94.66 0.48

Bakersfield

ET0 (mm) 13 0.2 4.68 2.78
T (◦C) 37 −2.8 18.58 8.04

U (m/s) 14.564 0 3.49 1.32
SR (Wm−2) 1521.3 129.6 895.3 400.7

RH (%) 100 12 48.10 18.56
P (kPa) 101.7 97.7 99.83 0.50

Santa Maria

ET0 (mm) 10.6 0.3 3.21 1.22
T (◦C) 33.3 5.7 16.72 3.36

U (m/s) 12.719 1.257 3.77 1.00
SR (Wm−2) 1492.7 49.6 850.7 327.4

RH (%) 100 7 65.22 16.07
P (kPa) 103 99.1 101.19 0.37

Los
Angeles

ET0 (mm) 9 0.5 3.03 1.21
T (◦C) 26.7 0.5 13.35 2.80

U (m/s) 12.53 0.453 4.07 1.31
SR (Wm−2) 1527.7 157.2 889.6 346.7

RH (%) 98 16 65.34 13.78
P (kPa) 102.5 98.6 100.80 0.38

San Diego

ET0 (mm) 9.4 0.5 3.31 1.18
T (◦C) 32.2 6.7 17.55 3.43

U (m/s) 10.897 0.697 3.55 0.99
SR (Wm−2) 1488.5 156.8 864.5 314.1

RH (%) 100 10 63.99 14.02
P (kPa) 103.1 99.5 101.46 0.35

3. Results and Discussion

3.1. MFDFA of Agro-Meteorological Time Series

The multifractality of the five contributing time series (T, U, SR, RH, P) and ET0 time series of all
the five stations were examined using MFDFA method. The minimum and maximum scale ranges can
be fixed appropriately by following the guidelines stated in literature [72,73]. The minimum scale smin
greater than (m + 2), where ‘m’ is the polynomial order, is a widely accepted thumb rule. The maximum
scale smax is suggested to be chosen as up to L/10 [27]. Here, a rigorous trial and error exercise is made
in the selection of the scale range considering the physics of the problem. The fluctuation functions
are developed by considering the statistical moment orders from −4 to 4 are fixed and the first order
polynomial (m = 1) was chosen for invoking MFDFA [41]. The fitting is considered to be acceptable on
getting an R2

≥ 0.98 [81]. Thus a scaling range of [8:600] days was found to be appropriate to capture
the scaling behavior, which corresponds from weekly to inter-annual period.

Different graphical representations such as GHE plot, mass exponent plot, multifractal spectrum
were developed for all the six time series of each station and they are presented Figure 3. From these
plots, the important multifractal parameters (H, W, AI, ∆h(q), ∆f(α) and α0) were estimated and the
values were provided in Table 2.
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Figure 3. Fluctuation function plots of different agro-meteorological time series of different stations for
q = 2. (a) reference evapotranspiration; (b) temperature; (c) wind speed; (d) solar radiation; (e) relative
air humidity; and (f) air pressure.

Table 2. Multifractal parameters of agro-meteorological datasets of California.

Variable
Multifractal Properties

H W AI ∆f(α) ∆h(q) α0

Dagget

ET0 0.758 0.458 0.362 0.370 0.240 0.804
T 0.851 0.270 0.596 0.344 0.133 0.867
U 0.616 0.383 0.454 0.371 0.212 0.655
SR 0.687 0.551 0.260 0.232 0.313 0.747
RH 0.814 0.472 0.308 0.271 0.264 0.864
P 0.578 0.348 0.320 0.223 0.199 0.619

Bakersfield

ET0 0.810 0.279 0.529 0.307 0.147 0.831
T 0.748 0.325 0.403 0.275 0.173 0.778
U 0.710 0.246 0.300 0.109 0.120 0.728
SR 0.701 0.523 0.377 0.385 0.293 0.755
RH 0.820 0.269 0.527 0.305 0.138 0.840
P 0.634 0.309 0.210 0.132 0.172 0.672

Santa Maria

ET0 0.742 0.207 0.411 0.176 0.105 0.759
T 0.843 0.381 0.390 0.292 0.218 0.885
U 0.626 0.464 0.522 0.460 0.260 0.665
SR 0.652 0.421 0.405 0.350 0.224 0.690
RH 0.706 0.477 0.373 0.336 0.286 0.765
P 0.648 0.413 0.286 0.268 0.220 0.693
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Table 2. Cont.

Variable
Multifractal Properties

H W AI ∆f(α) ∆h(q) α0

Los Angeles

ET0 0.685 0.380 0.245 0.196 0.198 0.724
T 0.812 0.501 0.185 0.162 0.289 0.876
U 0.735 0.239 0.381 0.203 0.148 0.772
SR 0.644 0.417 0.528 0.471 0.229 0.682
RH 0.674 0.611 0.378 0.419 0.389 0.760
P 0.636 0.337 0.209 0.138 0.182 0.673

San Diego

ET0 0.678 0.336 0.128 0.070 0.172 0.712
T 0.826 0.426 0.121 0.078 0.247 0.883
U 0.685 0.205 0.111 0.047 0.109 0.709
SR 0.616 0.441 0.510 0.498 0.235 0.655
RH 0.684 0.497 0.247 0.212 0.321 0.763
P 0.642 0.338 0.213 0.145 0.179 0.678

H, W, AI, ∆f (α), ∆h(q), α0 are dimensionless.

The value of Hurst exponent is well above 0.5 for all the time series considered in this study,
which indicates strong long-term persistence of the datasets. Also, all the 30 time series considered in
the study exhibited multifractal behavior. The temperature time series of all the stations consistently
displayed high value of H (>0.75) irrespective of the location and altitude, whereas the value of H of
air pressure is relatively less (0.58 to 0.64) and that of wind speed are moderate (varying in the ranges
0.61–0.73 and 0.62–0.7 respectively). Higher persistence is noted in the ET0 and T series indicating
higher predictability in all the stations, which is quite anticipated. From the time series of U of different
stations the complexity it is well evident indicating lesser predictability of the wind speed and air
pressure series. The persistence and hence the predictability of RH is less (H ranges between 0.68 and
0.71) at the three low altitude stations. The positive value of asymmetry parameter of different time
series indicates fairly strong weighted fractal exponents that are typical in fine structured series. It is
also noted that in general, the persistence of SR time series increases with increase in altitude of the
stations 0.6 for San Diego to 0.70 for Bakersfield station, which is quite anticipated because of high
reception of SR at higher altitudes. The highly complex wind speed series of SM possesses also the
high degree of multifractality. The ∆h(q) values show similar trend as that of spectral width indicating
the extend of strength of multifractality. The difference between maximum and minimum values of
singularity ∆f(α) provides an estimate of the spread in changes in fractal patterns, which denotes
the frequency ratio of the largest to the smallest fluctuations. A positive ∆f(α) means that the largest
fluctuations are more frequent than smallest fluctuations and vice versa. The value of α0 is indicating
the complexity of the time series, and delivers valuable information about the structure of the studied
process, with a high value indicating that it is less correlated and possesses fine structure. From Table 2,
it is noted that there exists a strong association between α0 and value of H. On considering the values
of these exponents of different stations, the correlation values are found to be 0.966, 0.912, 0.986, 0.99,
0.966 and 0.992 respectively for ET0, T, U, SR, RH and P time series, indicating a strong association
between the two exponents in all the time series. This is strongly in agreement with the observation
reported by Burgeano et al. [34] for daily temperature series of Catalonia, Spain.

From the non-linear behavior of GHE plots of different time series of different variables (Figure 4),
the multifractality of the variables can be confirmed. The scaling exponents of the two high altitude
stations such as Dagget and Bakersfield are consistently higher than that of other stations for all
moment orders for ET0 and SR time series, whereas a contrasting behavior is noted for the air pressure
series. For RH series also, this behavior is noted for most of the moment orders, while there is no
consistent pattern for the U time series. In general, the GHE plots of San Diego, Los Angeles and Santa
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Maria are quite similar, while that of Dagget and Bakersfield are alike. The wind speed time series are
highly irregular and accordingly, the multifractal exponents display distinctly different pattern when
compared with the rest of the variables. The GHE plots of pressure of time series from all stations
except Dagget are similar in magnitude and its multifractal spectra are more symmetrical for all cases.Atmosphere 2020, 11, x FOR PEER REVIEW 
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Figure 4. Multifractal plots of different agro-meteorological time series: (a) reference evapotranspiration;
(b) temperature; (c) wind speed; (d) solar radiation; (e) relative air humidity; and (f) air pressure.
The upper panels show the GHE plots, middle panels show the mass exponent plots and lower panels
show the multifractal spectra.

The behavior in GHE is also reflected in the spectra of different time series, while there is no major
differences exist in mass exponents of this variable between time series from different stations. Further,
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the Fourier spectrum of different agro-meteorological time series are developed and the results of
Dagget station are presented in Figure 5. The spectral density plots for different variables for remaining
stations are provided in the Supplementary Materials, Figures S1–S4.

Atmosphere 2020, 11, x FOR PEER REVIEW 
 13 of 24 

 

The behavior in GHE is also reflected in the spectra of different time series, while there is no 
major differences exist in mass exponents of this variable between time series from different stations. 
Further, the Fourier spectrum of different agro-meteorological time series are developed and the 
results of Dagget station are presented in Figure 5. The spectral density plots for different variables 
for remaining stations are provided in the Supplementary Materials, Figures S1–S4. 

 
Figure 5. Fourier spectrum of different agro-meteorological time series of Dagget station. (a) reference 
evapotranspiration; (b) temperature; (c) wind speed; (d) solar radiation; (e) relative air humidity; and 
(f) air pressure. 

Fourier spectral analysis estimates clearly detected the scaling from few days to inter-seasonal 
time scales of up to five months in different time series. The scale break was noted only in the air 
pressure time series of different time series. One of the scale range is only within a short period of 
few days within a month, such time scales are not directly captured in MFDFA, as smin is fixed at 
weekly scale of 8 days considering the stability. The Hurst exponent estimate from weekly to inter 
seasonal range showed a larger persistence in temperature and relative humidity; medium 
persistence (0.7–0.8) in ET0 and air pressure, and low persistence in wind speed time series. 

Origin of Multifractality 

Investigating the origin for multifractality is an important step in multifractal analysis of time-
series. In general, multifractality may result from: (i) long-term temporal correlations and (ii) the 
broadness of probability density function (PDF). The ‘shuffling’ procedure and the use of surrogate 
data are two commonly followed methods for the detection of the source of multifractal behaviour 
of time-series [82]. The shuffling operation removes any temporal correlations in the time-series, by 
preserving the probability distribution. The use of a surrogate time-series (generated from the 
original one) may help to estimate the effect of broadness of PDF. In the first step of shuffling 
procedure, firstly (m, n) pairs of random integer numbers which satisfies (m, n) < = N, were generated, 
in which N is the length of the time-series, subsequently the order of entries were interchanged. The 
process was repeated for large number of times (20N) to ensure that the ordering of entries in the 
time-series was fully shuffled such that the long or short-term memories were completely destroyed 
[83]. The shuffling was repeated with ten different initial random realizations to avoid systematic 
errors in the random number generators. The randomization of the phases of the data in the Fourier 
space may help in generating the surrogate series [84]. In this study, the most popular Iterative 
Amplitude Adjusted Fourier Transform (IAAFT) propounded by Schreiber and Schmitz [85] was 
used for generating surrogate series. The IAAFT method involves the following steps (modified from 
[86]): (i) arrange the time-series in ranked order and determining the amplitudes; (ii) determine the 
Fourier transform of initial surrogate (which is a random shuffle of the time-series) and replacing the 

10− 5 10− 4 10− 3 10− 2 10− 1 100

Frequency (day− 1)

10− 6

10− 4

10− 5 10− 4 10− 3 10− 2 10− 1 100

Frequency (day− 1)

10− 6

10− 4

10− 2

10− 5 10− 4 10− 3 10− 2 10− 1 100

Frequency (day− 1)

100

102

104

106

10− 5 10− 4 10− 3 10− 2 10− 1 100

Frequency (day− 1)

10− 2

100

102

104

106

10− 5 10− 4 10− 3 10− 2 10− 1 100

Frequency (day− 1)

10− 5

100

105

10− 5 10− 4 10− 3 10− 2 10− 1 100

Frequency (day− 1)

10− 6

10− 4

(b) Temperature

H=0.78

(c) Wind speed

(f) Air pressure(e) Relative humidity

H=0.73

H=0.82

H=0.70

H=0.71

(a) Reference Evapotranspiration

(d) Solar radiation

H=0.68

Figure 5. Fourier spectrum of different agro-meteorological time series of Dagget station. (a) reference
evapotranspiration; (b) temperature; (c) wind speed; (d) solar radiation; (e) relative air humidity;
and (f) air pressure.

Fourier spectral analysis estimates clearly detected the scaling from few days to inter-seasonal
time scales of up to five months in different time series. The scale break was noted only in the air
pressure time series of different time series. One of the scale range is only within a short period of few
days within a month, such time scales are not directly captured in MFDFA, as smin is fixed at weekly
scale of 8 days considering the stability. The Hurst exponent estimate from weekly to inter seasonal
range showed a larger persistence in temperature and relative humidity; medium persistence (0.7–0.8)
in ET0 and air pressure, and low persistence in wind speed time series.

Origin of Multifractality

Investigating the origin for multifractality is an important step in multifractal analysis of time-series.
In general, multifractality may result from: (i) long-term temporal correlations and (ii) the broadness
of probability density function (PDF). The ‘shuffling’ procedure and the use of surrogate data are two
commonly followed methods for the detection of the source of multifractal behaviour of time-series [82].
The shuffling operation removes any temporal correlations in the time-series, by preserving the
probability distribution. The use of a surrogate time-series (generated from the original one) may help
to estimate the effect of broadness of PDF. In the first step of shuffling procedure, firstly (m, n) pairs of
random integer numbers which satisfies (m, n) < = N, were generated, in which N is the length of the
time-series, subsequently the order of entries were interchanged. The process was repeated for large
number of times (20N) to ensure that the ordering of entries in the time-series was fully shuffled such
that the long or short-term memories were completely destroyed [83]. The shuffling was repeated with
ten different initial random realizations to avoid systematic errors in the random number generators.
The randomization of the phases of the data in the Fourier space may help in generating the surrogate
series [84]. In this study, the most popular Iterative Amplitude Adjusted Fourier Transform (IAAFT)
propounded by Schreiber and Schmitz [85] was used for generating surrogate series. The IAAFT
method involves the following steps (modified from [86]): (i) arrange the time-series in ranked order
and determining the amplitudes; (ii) determine the Fourier transform of initial surrogate (which is
a random shuffle of the time-series) and replacing the resulting amplitudes by retaining the phases;
(iii) find the inverse Fourier transform and rank them; (iv) replace the amplitudes with the value
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from the original data with the same position in the ranked list. Hence, the IAAFT algorithm has the
advantage over standard phase randomization that the values for the original data are also preserved.
The method was also implemented with different initial random seeds. If the multifractality results
from temporal correlations, the GHE values of shuffled data for different moment orders are expected
to get converged to 0.5. If broadness of PDF is the reason for multifractality, GHE values of surrogate
series will be independent of q [82]. If both factors are responsible for multifractal behavior, both the
shuffled and surrogated series will show lower multifractal properties than the original series. The GHE
plots of original, shuffled and surrogate series can be compared for getting preliminary information on
the cause of multifractality.

The GHE plots were prepared for original, shuffled and surrogate series of all the six variables of
all the five stations are estimated. The typical plots of Dagget station are given in Figure 6, whereas
plots for remaining stations are included in the Supplementary Materials, Figures S5–S8. From Figure 6
it is noticed that, in general, for all variables the GHE plots of shuffled and surrogate series fall below
the GHE plot of original series. This indicates the chances that multifractality can be due to both
broadness of PDF and temporal correlations. This is clearly evident in ET0 series for all the moment
orders, which was also noted the high altitude Bakersfield station (Figure S5 in the Supplementary
Materials). The shuffling procedure brought down the GHE values around 0.5 in different time-series of
all the stations. There exists only marginal difference between GHE plots of the original and surrogate
temperature time series. In the time series of T and P of Los Angeles station and the SR time series of
San Diego station, the GHE plots of both surrogate and shuffled series falls well below the GHE plot of
original time series. It indicates a chance that the multifractality of these time series could be both due
to broadness of PDF and correlation properties. Owing to the highly complex behavior of U of Santa
Maria the GHE plot of its surrogate falls above the plot of original time series, but on shuffling the
values of exponents gets diminished and centered around 0.5.
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Figure 6. GHE plots of original, shuffled and surrogate series of different agro-meteorological variables
of Dagget station: (a) reference evapotranspiration; (b) temperature; (c) wind speed; (d) solar radiation;
(e) relative humidity; and (f) air pressure.

In none of the cases a perfect q-independency of surrogates are noted, but in all cases the GHE
values of different moment order dropped down centering about 0.5. Hence it can be concluded that
multifractality of different agro-metrological time series are dominantly due to temporal correlations.
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3.2. MFCCA of Meteorological Variables with ET0

Multifractal cross correlation analysis was used to investigate the multiscale cross correlation of
different meteorological variables. The scaling exponents were computed for individual time series
(with themselves) and the joint scaling exponents were determined for each pair-wise combination
with ET0. It is to be noted that in this study results of MFCCA are retrieved for the moment order q = 2
for interpretations and the cross-correlations were determined for different time scales to investigate
the change in magnitude and sign [65,66]. Here also a polynomial order m = 1 and a scaling range of
[8:600] are chosen for the analysis. Different analysis are performed for q = −4 to 4 to avoid possible
elevation bias in the results [60,61]. As the seasonal (90 days) and annual (365 days) time scales
are more important for practical applications, these two correlations (seasonal ρXY(90) and annual
ρXY(365)) are calculated separately to investigate the change in magnitude and sign along with the
overall Pearson correlation (ρo). The graphical representations such as GHE plot, multifractal spectra
and cross correlation plots for each link of different stations were prepared. We presented the plots for
Dagget and San Diego (highest and lowest altitude stations) as representatives in the Figures 7 and 8,
whereas MFCCA plots for other stations are presented in the Supplementary Materials, Figures S9–S11.
Detailed examination of different graphical representations of multifractal exponents is made to get an
insight into the spatial diversity associations of different variables with ET0 in a multifractal perspective.

The different GHE plots show that the multifractal exponents of air temperature are higher
and that of air pressure are lower than the exponents of ET0 irrespective of the station location.
Also, the exponents of RH and SR maintain a consistent pattern with respect to the exponents of
ET0, for most of the moment orders. In the case of RH time series, the multifractal exponents are
less than that of ET0 for all the moment orders more than unity for the three low altitude stations.
The multifracral exponents of wind speed are quite similar to that of ET0 for the dataset of LA station,
whereas the exponents of U are consistently lower than that of ET0 for the datasets of remaining stations.
The similarity in the multifractal exponents of individual time series is reflected in the multifractal
spectra also, i.e., if the GHE values, are closer the spectra will be closer and gets dispersed if the
GHE plots are distinctly different. But as a universal property, it is noted that the joint multifractal
spectra comprise least α values in comparison with the α values of individual spectra. The pattern
of correlation plots is strikingly similar in the SR-ET0 link irrespective of the latitude, altitude and
location of the station for a time scale up to ~4 months.

In general, it can be noted that the pattern of correlations in different linkages maintain a stable
pattern up to 4 months approximately and beyond annul scales, more irregularities are introduced in
the correlation behavior in the associations. The pattern of T-ET0 link is similar for the high altitude
stations, while a different pattern is noticed for low altitude stations. The correlation behavior mains a
definite and consistent pattern in the RH-ET0 link and SR-ET0 link at all the stations, at least up to
intra-seasonal scales. The behavior of U-ET0 link is also found to be similar at all the stations except
SM, where the association cannot be generalized because of highly complex behavior of the wind
speed time series (Figure S10 in the Supplementary Materials).
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Figure 7. GHE plots (upper panels), multifractal spectra (middle panels) and cross-correlation plots (lower panels) obtained by MFCCA of different links at Dagget
station: (a) T-ET0; (b) U-ET0; (c) SR-ET0; (d) RH-ET0; (e) P-ET0.
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Additionally, it was observed that air temperature and solar radiation are positively cross-correlated
with ET0, regardless of time scale and location, whereas relative humidity is negatively (anti)
cross-correlated with ET0. For air pressure situation is more complicated, as the character of cross
correlation with ET0 depends both on time scale and location. For the stations with the highest altitudes
(Dagget and Bakersfield) P-ET0 is negatively cross-correlated at most of the time scales, while for
stations closer to the coastline the sign of cross-correlation changes from positive to negative at larger
time scales beyond the intra-seasonal range. There exists a weak positive power law correlation in
the U-ET0 links of all the stations, except the two altitude stations of Los Angeles and San Diego.
In the U-ET0 linkages of these two stations, a transition in cross-correlation behavior from positive to
negative at larger time scales is noticed.

A more important point is that MFCCA could successfully capture such transitions in the nature of
power law cross correlation in different agro-meteorological linkages. Such scale specific transitions in
the nature of associations could also be explored using other potential methods like wavelet coherence
or Time Dependent Intrinsic Correlation [87,88]. One cannot ignore the influence of local climatological
drivers and interplay between different meteorological variables resulted in such dynamics in the
nature of association of different variables with ET0. The annual and seasonal power law correlations
along with the overall correlations in different linkages are presented in Table 3. The overall correlations
are consistently positive in the T-ET0 and SR-ET0 links, while it is strongly negative in RH-ET0 link,
irrespective of the location of the station. There exists a moderate positive correlation in the SR-ET0
link at all stations (0.48–0.74 at different locations), while in the U-ET0 link such correlation is noted
only at the two high altitude stations of Dagget and Bakersfield. In the P-ET0 and U-ET0 the overall
correlation is very weak, which could also be attributed to the alterations in the nature of correlations
with the time scale. i.e., in positive correlations in some of the time scales may get nullified by the
negative correlation in some other scale and vice versa. Table 3 shows that strength of the association
also could also be time scale dependent. In majority of the linkages, the annual correlations are
greater than seasonal correlations. But it is to be noted that, against the general notion of strong
associations at annual time scale, a stronger correlations can also be deciphered at seasonal time scales
in some cases (see, in the linkages of T and SR with ET0 of stations of Bakersfield and Santa Maria
stations). The spectral properties such as asymmetry and spectral width are also calculated for each
pair wise analysis of different stations, and all the results are summarized in Table 3. From Table 3, it is
noticed that the joint scaling exponent is nearly half of the scaling exponent of the individual series.
This is universal property in multifractal cross correlation studies [89], which is found to be valid in
different pairs of linkages in different stations of California. Apart from this, the joint multifractal
spectral width is found to be lower that of the width of individual spectra in all cases. This can be
considered as another universal property in multifractal cross correlation studies. Also, it is noted that
despite the similar character (positive or negative) of AI of individual spectra, the joint spectra may
be of opposing character. This preliminary study is performed to investigate the differences in the
multifractal properties and multifractal correlations considering stations primarily based on altitude of
the stations. The location of the different stations shows that the three low altitude stations are located
at the coastal belts of California. The oceanic proximity plays a dominant role in the climatology of
the country in general, and the stations in particular. The large scale atmospheric circulations from
oceans line El Nino and La Nina play a major role on the climatology in the stations like San Diego
in particular. Hence the role of these circulations on the multifractal properties of the time series
also cannot be ignored. Apart from the global parameters like terrestrial radiations and temperature,
the local factors like the latitude, topography and local processes, moisture, vegetation etc. along with
oceanic and atmospheric circulations may influence the multifractality of the rainfall series. However
it will be hard to find a universal pattern such as how the exponents change with latitude, altitude or
distance from the coast and attributing the physical reason for multifractality to single indicator may
not be justifiable.
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Table 3. MFCCA parameters of different agro-meteorological datasets of California, supplemented with Pearson correlation coefficient (ρo).

Link

MFCCA Parameters
Pearson Correlation Coefficient

Scaling Exponent Spectral Width Asymmetry Index Cross Correlation Coefficient

λXX λYY λXY WXX WYY WXY AIXX AIYY AIXY ρXY(90) ρXY(365) ρ

Dagget
T-ET0 0.896 0.778 0.837 0.300 0.426 0.218 −0.522 −0.325 −0.473 0.575 0.610 0.560
U-ET0 0.619 0.778 0.699 0.417 0.426 0.276 −0.452 −0.325 −0.454 0.256 0.416 0.465
SR-ET0 0.708 0.778 0.743 0.548 0.426 0.365 −0.348 −0.325 0.071 0.615 0.610 0.447
RH-ET0 0.868 0.778 0.823 0.482 0.426 0.273 −0.341 −0.325 −0.018 −0.652 −0.633 −0.508
P-ET0 0.619 0.778 0.699 0.413 0.426 0.139 −0.369 −0.325 −0.237 0.033 0.019 −0.169

Bakersfield
T-ET0 0.824 0.804 0.814 0.374 0.440 0.276 −0.379 −0.468 −0.138 0.707 0.585 0.617
U-ET0 0.690 0.805 0.748 0.369 0.515 0.351 −0.786 −0.468 0.068 0.136 0.310 0.402
SR-ET0 0.719 0.804 0.762 0.491 0.440 0.317 −0.396 −0.468 −0.019 0.668 0.684 0.571
RH-ET0 0.855 0.804 0.830 0.309 0.440 0.210 −0.445 −0.468 −0.287 −0.784 −0.706 −0.700
P-ET0 0.675 0.804 0.739 0.345 0.440 0.075 −0.220 −0.468 −0.745 −0.145 −0.113 −0.118

Santa Maria
T-ET0 0.881 0.748 0.815 0.351 0.281 0.249 −0.392 −0.463 −0.193 0.462 0.452 0.505
U-ET0 0.630 0.715 0.672 0.483 0.375 0.288 −0.450 −0.220 −0.325 0.084 0.163 0.159
SR-ET0 0.672 0.748 0.710 0.469 0.281 0.272 −0.432 −0.463 −0.354 0.742 0.627 0.679
RH-ET0 0.739 0.748 0.743 0.503 0.281 0.282 −0.381 −0.463 −0.432 −0.811 −0.822 −0.791
P-ET0 0.679 0.748 0.713 0.405 0.281 0.154 −0.180 −0.463 −0.315 0.087 0.088 0.081

Los Angeles
T-ET0 0.853 0.708 0.781 0.514 0.425 0.400 −0.116 −0.177 0.102 0.428 0.454 0.522
U-ET0 0.708 0.708 0.708 0.326 0.425 0.193 −0.158 −0.177 −0.219 0.057 −0.011 0.172
SR-ET0 0.676 0.708 0.692 0.400 0.425 0.266 −0.566 −0.177 −0.328 0.764 0.716 0.681
RH-ET0 0.712 0.708 0.710 0.604 0.425 0.456 −0.286 −0.177 −0.358 −0.863 −0.853 −0.848
P-ET0 0.659 0.708 0.684 0.407 0.425 0.255 −0.176 −0.177 −0.233 0.031 −0.003 0.060

San Diego
T-ET0 0.857 0.711 0.784 0.462 0.344 0.377 −0.049 0.003 0.289 0.385 0.397 0.460
U-ET0 0.681 0.711 0.696 0.268 0.344 0.135 −0.121 0.003 −0.147 −0.110 −0.013 −0.009
SR-ET0 0.662 0.711 0.686 0.437 0.344 0.263 −0.564 0.003 −0.326 0.807 0.745 0.738
RH-ET0 0.722 0.711 0.717 0.626 0.344 0.335 −0.337 0.003 −0.132 −0.798 −0.768 −0.768
P-ET0 0.668 0.711 0.689 0.410 0.344 0.181 −0.168 0.003 −0.285 0.037 −0.025 0.103

λ, W, AI, ρ are dimensionless. Indices XX denote the MFCCA properties of the candidate meteorological variable, YY denote properties of ET0, whereas XY denote the properties of
joint series.
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The multiscale power law correlations using MFCCA is first of this kind in agro-meteorological
studies. The analysis shows that MFCCA is a robust alternative to investigate the pair wise associations
of agro-meteorological datasets in different time scale. The study could successfully capture the
dynamics (i.e., the transitions from positive to negative or vice versa) of associations over the time scale.
Even though a preliminary investigation is made on differences in the multifractal properties based
on altitude and location of the stations, an in-depth investigation on local meteorological processes
will be complementary to this understanding in physical context. Also the uncertainty analysis in the
quantification of scaling exponents is yet another open research problem in the domain. Moreover,
stemming from this pre-requite analysis and parameters derived from it, the multifractal modeling of
different variables need to be performed and its potential applicability against the classical time series
or and data driven approaches are to be analyzed.

4. Conclusions

This study investigated the multifractality of six agro-meteorological variables from California,
USA using MFDFA. The analysis showed that all agro-meteorological time series possess strong long
term persistence and multifractality. The persistence of T, ET0 and SR are high at all stations, indicating
better predictability of these variables. The Hurst exponent (H) of air pressure and wind speed are
moderate (varying between 0.61 and 0.75), irrespective of the location or altitude, whereas the H-value
of SR and ET0 increases with increase in altitude of the station. MFCCA is found to be a robust method
for investigating the power law correlations in agro-meteorological datasets. MFCCA analysis showed
that for all the time series considered, the joint scaling exponent is roughly the average of individual
scaling exponents, validating the universal property of multifractal cross correlation studies for
agro-meteorological datasets. The multifractal exponents of air pressure and wind speed consistently
lower than the exponents of ET0, irrespective of station location. The α-values of joint multifractal
spectrum are lower than the α values of both of the individual spectra, indicating a universality in
the multifractal cross correlation studies. Additionally, MFCCA method allows assessing the impact
of time scale on cross-correlation strength. It successfully captured the dynamics in the nature of
associations of P and U time series with ET0 over the time scale. The pattern of correlation plots is
strikingly similar in the SR-ET0 link irrespective of the latitude, altitude and location of the station.
It was found that in general, the temporal evolution of cross-correlation display diversity in different
pair-wise associations involving ET0 for low altitude stations and high altitude stations. Multifractal
modeling of agro-meteorological datasets, uncertainty analysis of derived multifractal parameters and
in-depth investigation on local meteorological processes in conjunction with the MFCCA are some
possible avenues for future research.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/10/1116/s1,
Figure S1: Spectral density plots of different agro-meteorological time series of Bakersfield station: (a) reference
evapotranspiration; (b) temperature; (c) wind speed; (d) solar radiation; (e) relative air humidity; and (f) air
pressure, Figure S2: Spectral density plots of different agro-meteorological time series of Santa Maria station:
(a) reference evapotranspiration; (b) temperature; (c) wind speed; (d) solar radiation; (e) relative air humidity;
and (f) air pressure, Figure S3: Spectral density plots of different agro-meteorological time series of Los Angeles
station: (a) reference evapotranspiration; (b) temperature; (c) wind speed; (d) solar radiation; (e) relative air
humidity; and (f) air pressure, Figure S4: Spectral density plots of different agro-meteorological time series of
San Diego station: (a) reference evapotranspiration; (b) temperature; (c) wind speed; (d) solar radiation; (e)
relative air humidity; and (f) air pressure, Figure S5: GHE plots of original, shuffled and surrogate series of
different agro-meteorological variables of Bakersfield station: (a) reference evapotranspiration; (b) temperature;
(c) wind speed; (d) solar radiation; (e) relative air humidity; and (f) air pressure, Figure S6: GHE plots of original,
shuffled and surrogate series of different agro-meteorological variables of Santa Maria station: (a) reference
evapotranspiration; (b) temperature; (c) wind speed; (d) solar radiation; (e) relative air humidity; and (f) air
pressure, Figure S7: GHE plots of original, shuffled and surrogate series of different agro-meteorological variables
of Los Angeles station: (a) reference evapotranspiration; (b) temperature; (c) wind speed; (d) solar radiation;
(e) relative air humidity; and (f) air pressure, Figure S8: GHE plots of original, shuffled and surrogate series of
different agro-meteorological variables of San Diego station: (a) reference evapotranspiration; (b) temperature; (c)
wind speed; (d) solar radiation; (e) relative air humidity; and (f) air pressure, Figure S9: GHE plots (upper panels),
multifractal spectra (middle panels) and cross-correlation plots (lower panels) obtained by MFCCA of different
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links at Bakersfied station: (a) T-ET0; (b) U-ET0; (c) SR-ET0; (d) RH-ET0; (e) P-ET0, Figure S10: GHE plots (upper
panels), multifractal spectra (middle panels) and cross-correlation plots (lower panels) obtained by MFCCA of
different links at Santa Maria station: (a) T-ET0; (b) U-ET0; (c) SR-ET0; (d) RH-ET0; (e) P-ET0, Figure S11: GHE
plots (upper panels), multifractal spectra (middle panels) and cross-correlation plots (lower panels) obtained by
MFCCA of different links at Los Angeles station: (a) T-ET0; (b) U-ET0; (c) SR-ET0; (d) RH-ET0; (e) P-ET0.
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