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Abstract 5

Topic models have been widely used for learning the latent explainable representation of 6

documents, but most of the existing approaches discover topics in a flat structure. In this 7

study, we propose an effective hierarchical neural topic model with strong interpretabil- 8

ity. Unlike the previous neural topic models, we explicitly model the dependency between 9

layers of a network, and then combine latent variables of different layers to reconstruct 10

documents. Utilizing this network structure, our model can extract a tree-shaped topic hier- 11

archy with low redundancy and good explainability by exploiting dependency matrices. 12

Furthermore, we introduce manifold regularization into the proposed method to improve 13

the robustness of topic modeling. Experiments on real-world datasets validate that our 14

model outperforms other topic models in several widely used metrics with much fewer 15

computation costs. 16

Keywords Neural topic modeling · Hierarchical structure · Tree network · 17

Manifold regularization 18

1 Introduction 19

As one of the most successful and prevalent language models, topic modeling can learn

Q1

20

the latent explainable representation of documents automatically. Traditional topic models 21

often utilize directed probability graph to describe their generative processes. However, as 22

the expressiveness and structure of generative processes grows, the deviation of parame- 23

ters tends to be tough and complicated, which also hinders the model’s efficiency when 24

it is trained on a large scale dataset [17]. Recently, many studies focus on utilizing neu- 25

ral networks [20, 28] to extract the topic information, and these neural topic models can 26

easily scale to a larger amount of training data than classical probabilistic models like the 27
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Figure 1 Topics inferred by our model from the 20NEWS dataset [20]. We present five most representative
words for each topic and manually label these topics

latent Dirichlet allocation (LDA) [4] and its extensions. But most of the current neural topic28

models are flat models, which means the extracted topics are at the same level. This is a29

significant limitation because in many domains, topics can be naturally organized into hier-30

archies, where the root of each hierarchy represents the most general topic, and the topics31

become more specific toward the leaf nodes. For instance, when we want to post a review32

of a laptop, we may first determine its overall topic/aspect using words such as “cost perfor-33

mance” and “quality”. Then, we select the “appearance”, “hardware”, and other sub-topics34

to write the review in detail.35

In probabilistic topic models, a hierarchical topic structure has been proven as useful for36

many tasks, including text categorization, text summarization, and aspect extraction [3, 12,37

18, 22], because such a model can provide much explainable information with desirable38

granularity. Furthermore, explicitly modeling the hierarchical patterns allows us to learn39

more interpretable topics and clearly show the main topics of a corpus in a hierarchical40

structure, rather than the traditional word cloud. An example of topic hierarchy is shown in41

Figure 1. Such a hierarchy can be used to sharpen a user’s understanding of the text content.42

Although several probabilistic topic models have been proposed to extract the hierarchi-43

cal topic structure of a corpus [3, 12], the Markov chain Monte Carlo (MCMC) method [25]44

they employed for inference is quite time-consuming and is impractical to train for a large-45

scale dataset. Recently, TSNTM [11] is developed to model the topic hierarchy based on the46

neural variational inference (NVI) framework with good scalability, but the topic hierarchy47

extracted by TSNTM is not reasonable enough because the DRNN it applied is unsuitable48

to discover hierarchical semantics.49

In this paper, we also focus on grouping documents into reasonable hierarchies based50

on NVI. With the rapid development of neural networks, it is possible to employ multi-51

level latent variables and obtain a hierarchical model. But few methods explicitly model52

the dependency among different layers and get interpretable hierarchical latent variables,53

e.g., topics, which is largely due to the weak interpretability of neural networks. Latent54

variables inside the network can hardly be displayed explicitly, so modeling the hierarchy55

of them is very difficult. To address this issue, we propose a novel NVI based method56

called hierarchical neural topic model (HNTM)1 for hierarchical topic modeling with a57

pyramid-shaped structure. The model can also extract a tree-shaped structure by adding two58

constraints.59

1The code of our model is available in public at: https://github.com/hostnlp/HNTM.

https://github.com/hostnlp/HNTM
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To enhance the robustness of our HNTM, we also incorporate a manifold regularization 60

term to the NVI framework. Generally, manifold learning assumes that the points connected 61

to each other should be as close as possible after dimensionality reduction. As a result, we 62

introduce Laplacian Eigenmap [1] as a regularization term to make the related documents as 63

similar as possible in the topic distribution at the document level. To summarize, our main 64

contributions are as follows: 65

– We propose HNTM, a novel NVI based model for hierarchical topic modeling, which 66

outperforms the existing models in several widely adopted metrics with much fewer 67

computation costs. 68

– We introduce the manifold regularization into the NVI framework with the aim of mak- 69

ing nearby document pairs have similar latent topic representations, which reduces the 70

impact of noisy words and enhances the robustness of HNTM. 71

The rest of this paper is organized as follows. In Section 2, we introduce related work 72

about hierarchical topic models and neural topic models. In Section 3, we present our 73

model, introduce the network structure, and describe the regularization terms. In Section 4, 74

we present empirical results and compare HNTM with baseline methods. In Section 5, we 75

conclude the paper with discussions and future directions. 76

2 Related work 77

After proposing the classical LDA model [4], Blei et al. [3] extended it to a hierarchical 78

version called HLDA by introducing a nested Chinese restaurant process (nCRP). Given a 79

certain depth, HLDA constructs a topic tree through Gibbs sampling. However, each doc- 80

ument in HLDA is generated by the topics along a single path of the tree, so the ancestor 81

topic and its offspring topic generate the document together, making the hierarchical rela- 82

tion unclear. To overcome the weakness of single path sampling, Kim et al. [12] proposed a 83

recurrent CRP (rCRP), which enables a document to have a distribution over the entire topic 84

tree with unbounded depth and width. Experiments indicated that rCRP achieved remark- 85

able performance in hierarchical topic modeling. However, the aforementioned sampling 86

based methods suffer from the limitation of data scalability. 87

Mimno et al. [22] used a directed acyclic graph (DAG) structure and proposed the hier- 88

archical pachinko allocation model (hPAM). The model includes a root topic, in addition to 89

several super-topics and sub-topics. The root topic and other topics are connected to lower- 90

level topics by multinomial distributions. A document can be generated by every topic in 91

the DAG. Liu et al. [18] proposed the hierarchical latent tree analysis (HLTA), which iter- 92

atively employed the Bridged-Islands algorithm to cluster words and topics. However, the 93

model failed to deal with polysemous words, which is one of the major contributions of 94

topic modeling over text. 95

With the popularity of neural networks, many researchers aimed at addressing the draw- 96

backs of traditional topic models by NVI. Miao et al. [21] assumed that topic distributions 97

in documents can be represented by hidden variables sampled from multiple Gaussian dis- 98

tributions, and they used the variational lower bound as the objective function of their 99

proposed model named NVDM. Since NVDM did not explicitly model the word distribu- 100

tions, Miao et al. [20] extended it to several models including GSM which conforms to the 101

assumption of topic models with multinomial distributions over both topics and words. Sri- 102

vastava and Sutton [28] employed the Gaussian distribution to approximate the Dirichlet 103
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distribution, which further improved the variational auto-encoder and LDA accordingly.104

Based on the Wasserstein autoencoders framework, Nan et al. [24] proposed the WLDA,105

which applied a suitable kernel in minimizing the Maximum Mean Discrepancy to per-106

form distribution mapping. Burkhardt et al. [5] used the Dirichlet distribution as a prior and107

meanwhile decoupled sparsity and smoothness. Wu et al. [29] utilized Negative-Binomial108

process and Gamma Negative-Binomial process to improve the sparsity of topic distribu-109

tions. For short texts, Wu et al. [30] proposed a new topic distribution quantization approach110

in the auto-encoder framework to generate peakier distributions, as well as a negative sam-111

pling decoder to avoid generating repetitive topics. Unfortunately, these neural topic models112

can not model the topic hierarchy.113

A few researches concentrated on modeling the hierarchical structure among latent vari-114

ables based on NVI. Goyal et al. [9] combined nCRP with variational auto-encoder to enable115

infinite flexibility of the latent representation. Their approach was applied in video represen-116

tation learning and the joint training limited the efficiency. Isonuma et al. [11] incorporated117

a doubly-recurrent neural network (DRNN) into NVI and proposed a tree-structured neural118

topic model (TSNTM). The model greatly improved the computational efficiency compared119

with hLDA. However, the adopted DRNN was only used to generate topic representations,120

rather than taking document representations as input. Such an issue makes TSNTM fail to121

extract a reasonable topic hierarchy. Moreover, the topic hierarchy constructed by DRNN122

needs to be updated frequently via a heuristic method. This motivates us to propose HNTM,123

which extracts a explainable topic hierarchy via a feedforward decoder automatically with124

much fewer computation costs. Notice that the recent work of Chen et al. [7] also employs125

NVI with a feedforward decoder to extract the topic hierarchy, but the proposed nTSNTM126

is quite different from our HNTM. First, nTSNTM was a non-parametric model that used a127

stick-breaking process as prior, while HNTM adopts Gaussian distribution as prior. Second,128

nTSNTM used a softmax function with low temperature to ensure a tree-shaped structure,129

but it did not consider the balance of the topic tree. For HNTM, two regularization terms and130

manifold learning are applied to guarantee a balanced topic tree. To the best of our knowl-131

edge, this is the first study on tackling the issue of imbalance by introducing the manifold132

regularization into NVI based hierarchical topic modeling.133

3 Hierarchical neural topic model134

In this section, we first introduce the modeling of topic hierarchy based on the NVI135

framework and then describe the details of our HNTM.136

3.1 Topic hierarchy137

Previous hierarchical topic models mainly take a tree-shaped structure, but they have a dif-138

ference in how to generate a document from the hierarchical topics. Figure 2 shows the139

tree structure of different models and topic distributions of a simulated document. Partic-140

ularly, HLDA considers that a document is generated by topics of only one path, which141

violates the multi-topic assumption of topic models (i.e., a document may span several top-142

ics). Considering this issue, rCRP generates a document by all topics in the tree. We follow143

rCRP to develop a tree structure that a document is generated by all layers of the topic tree144

cooperatively.145

Based on the framework of NVI, we reconstruct the input document by multiple layers146

of latent variables. Layers are connected with dependency matrices D, where Dl means the147
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Figure 2 Tree structures and topic distributions of a simulated document for our HNTM and other models.
Each node represents a topic with its own word distribution except for the root node in HNTM. Red node
means that the topic is activated in the current document and the size of nodes represents the proportion

dependency matrix between layers l and l + 1. To estimate Dl (i.e., the dependency strength 148

between the super-topics at level l and the sub-topics at level l+1), we introduce super-topic 149

vectors pl and sub-topic vectors bl , as follows: 150

Dl,k = sof tmax(pl ∗ bT
l,k). (1)

In the above, Dl,k , which represents the dependency vector of sub-topic k, approximates 151

a discrete one-hot vector after using the softmax function. The super-topic vectors pl ∈ 152

R
Kl∗H , and the sub-topic vectors bl ∈ R

Kl+1∗H , where H is the length of each topic vector, 153

Kl and Kl+1 represent the numbers of topics at level l and level l + 1 . To construct a 154

pyramid-shaped topic tree, the topic number Kl is incremental from level 1 to level L. 155

3.2 Network structure 156

As in probabilistic topic models, we use the latent variables θd and zn to capture the topic 157

proportion of document d and the topic assignment for the observed word wn, respectively. 158

To learn the hierarchical structure, sub-topics are generated using multinomial distributions 159

through dependency matrices D. The topic distribution of level L can be generated by: 160

θd,L ∼ G(μ0, σ
2
0 ), (2)

where G(μ0, σ
2
0 ) is composed of a multi-layer perceptron (MLP) θL = f (x) conditioned 161

on an isotropic Gaussian x ∼ N(μ0, σ
2
0 ), and L is the number of topic levels. Given θd,l 162

which represents the topic distribution of document d at level l, the topic distribution at the 163

upper level l − 1 can be inferred by: 164

θd,l−1 = Dl−1θd,l (l = 2...L). (3)

Then the generative process of each word is described as follows: 165

zl,n ∼ Multi(θd,l) (l = 1...L), (4)
166

t ∼ Multi(cd), (5) 167
wn ∼ Multi(βt,zt,n ), (6)

where zl,n and wl,n represent the topic assignment and word assignment of token n in docu- 168

ment d generated by level l. βt,zt,n is the word distribution of topic zt,n at level t . cd,l denotes 169

the reconstruction weight of level l. Finally, the marginal likelihood of document d is: 170

p(d|μ0, σ0, β) =
∫

θd,1

p(θd,1|μ0, σ
2
0 )

∏
n

∑
l

cd,l

∑
zl,n

p(wn|βl,zl,n
)p(zl,n|θd,l)dθd,1, (7)

where θl can be calculated by Equation (2). 171
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Following [20], we construct an inference network q(θ |μ(d), σ (d)) to approximate172

the posterior p(θ |d), and employ the reparameterization trick [13] for parameter update.173

Figure 3 shows the network structure of our HNTM. To explicitly model the word dis-174

tribution of each topic, topic-word matrices β are constructed as similar to dependency175

matrices D.176

We introduce topic vectors tl ∈ R
Kl∗H for each level and word vectors v ∈ R

V ∗H , and177

generate the topic distributions over words at level l by:178

βl,k = sof tmax(v ∗ tl,k
T ). (8)

Given such word distributions and a sampled θ̂l , layer l reconstructs document d by:179

p(wn|βl, θ̂l) =
∑
zn

[p(wn|βl,zn)p(zn|θ̂l )] = θ̂l ∗ βl . (9)

In fact, some documents may focus on general topics, which means topics from the180

high level are more often used, while some documents talk about more specific topics.181

Considering this, our model learns the weight c of topic levels from the original document,182

which will affect the reconstruction process. Finally, the variational lower-bound is defined183

as:184

Ld = Eq(θ |d)

[∑
n

log

([∑
l

clp(wn|βl, θl)

)]]
− DKL [q(θ |d)||p(θ)] . (10)

Level weight c can be obtained from a latent document embedding with a fully connected185

layer and softmax function. With the help of c, our model allocates the words of a document186

to different topic levels flexibly. Topics at higher levels learn more general words, while187

topics at lower levels learn more specific words.188

3.3 Generating a tree-shaped structure189

By training the dependency matrices between different layers, we can learn the latent rela-190

tions of topics. The topic relations constitute a DAG, where the directed edges in the191

graph point from the ancestor topics to the sub-topics. Every two adjacent layers are fully192

MLP x = μ + ε · σ

ε  ~ N(0, I 2)

f(x)

c

log σ
N(μ0, σ0

2)

DL-1

d

μ
θL-1

θ1

d

…DL-2 D1

θLx

Figure 3 Network structure of an L-level HNTM
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connected, which means a sub-topic may belong to several super-topics. To make the hier- 193

archical affiliation obvious, we tend to organize topics to a tree structure. In this way, we 194

can clearly know which sub-topics are included in a field. 195

A straightforward method is to constrain the dependency matrices so that the topic 196

hierarchy can approximate a tree structure. We apply a negative L2 normalization to the 197

dependency matrices D as follows: 198

RV = −
L−1∑

l

∑
i,j

Dl,i,j
2, (11)

where Dl,i,j represents the probability that the i-th sub-topic at level l+1 belongs to the 199

j -th super-topic at level l. The negative L2 normalization constrains the row vectors in 200

each matrix to be discrete because the softmax function forces the vector sum up to 1, 201

while traditional positive L2 normalization forces the row vectors to be smooth. With such 202

a constraint, every topic under level 1 belongs to only one parent topic, while parent topics 203

can own several child topics. 204

However, a major problem of only using the above constraint term to generate a tree- 205

shaped structure is that the model may learn very few super-topics from the bottom topics 206

at level L, because most sub-topics are gathered under one super-topic. To avoid this issue, 207

we further introduce a regularization term to adjust the number of children for each parent 208

topic as follows: 209

RN =
L−1∑

l

∑
j

(∑
i

Dl,i,j

)2

. (12)

Note that
∑

i

∑
j Dl,i,j = Kl+1, so reducing RN can adjust the total amount of sub- 210

topics for each super-topic. The above two terms work together to generate an effective and 211

balanced topic tree. 212

3.4 Manifold regularization 213

Although HNTM with RV and RN can learn effective hierarchical relations between topics, 214

they do not consider the impact of noisy words (i.e. non-topic words). In order to enhance 215

the robustness of our model, we introduce Laplacian Eigenmap as a regularization term 216

into our loss function with the aim of making the related texts as similar as possible in the 217

topic distribution at the document level, and reducing the impact of noisy words. Laplacian 218

Eigenmap is one of the famous methods in manifold learning for dimensionality reduction 219

[1], which operates on a manifold, aiming to construct a representation for data sampled 220

from a low dimensional manifold embedded in a higher dimensional space. Generally, man- 221

ifold learning assumes that the learned representation should be smooth, which means that 222

the points connected to each other should be as close as possible after dimensionality reduc- 223

tion. As an effective regularization term, manifold learning has been widely used in various 224

algorithms, such as semi-supervised models [2, 10] and the Dirichlet Multinomial Mixture 225

model [15]. 226

Suppose that each document d in the corpus is regarded as a node in the graph, and for 227

every two documents di, dj ∈ B, the adjacency matrix between documents di and dj is 228

defined as follows: 229

Wi,j =
{

1, if di ∈ Δ(dj ) or dj ∈ Δ(di);
0, otherwise.

(13)
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In the above, B denotes a Batch in the neural network, and Δ(d) denotes the document230

set of the R nearest neighbors of document d. Particularly, we employ the cosine distance of231

bag of words to measure the similarity of two documents to obtain the R nearest neighbors.232

The manifold regularization term is defined by:233

RM =
D∑

i,j=1

K∑
k=1

Wi,j |θi,k − θj,k|, (14)

where D is the number of documents in B, K is the number of topics, θi,k and θj,k are the234

kth items in the topic distributions of documents di and dj , respectively.235

3.5 Loss function236

Considering all regularization terms discussed above, the loss function of the model is237

defined as:238

L = Ld + λV RV + λNRN + λMRM, (15)

where λV , λN , and λM are the weights of RV , RN , and RM with respect to Ld , respectively.239

By incorporating these three regularization terms, our proposed model can extract an effec-240

tive hierarchical tree structure of latent topics. In the following, we denote HNTM with RV241

as HNTM-RV , HNTM with RV and RN as HNTM-RV +RN , HNTM with RM as HNTM-242

RM , HNTM with RV , RN and RM as HNTM-all. Since RN is used to alleviate the issue of243

only using RV as the constraint, we do not consider HNTM with RN alone and other model244

variants for simplicity.245

3.6 Computational complexity246

For the feedforward propagation in our HNTM, the computational complexity is:247

O
(

nt

(
V H + (r − 1)H 2 + HKL +

L−1∑
l=1

Kl ∗ Kl+1 +
L∑

l=1

KlV

))
, (16)

where n is the number of training samples, t is the number of epochs, V is the vocabulary248

size, r is the number of fully connected layers in the encoder, H is the hidden size, Kl is the249

number of topics at level l, and L is the depth of the topic hierarchy. Note that V is much250

larger than H , r , and Kl generally, so the computational complexity will be:251

O
(

nt

(
V (H +

L∑
l=1

Kl)

))
. (17)

The computational complexity of back propagation in our HNTM is exactly the same.252

Though the complexity is similar to that of TSNTM [11], our HNTM does not need another253

heuristic process to update the topic hierarchy in the training process of TSNTM, which254

will influence the training speed greatly.255

4 Empirical results256

In this section, we first describe the datasets and the experimental settings. Then, we evalu-257

ate the effectiveness of our method on the topic interpretability, hierarchical properties, data258

scalability, and the quality of topic words.259
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4.1 Datasets 260

We conduct experiments on three widely used benchmark datasets: 20NEWS [21], Reuters 261

[29], and Wikitext-103 [19]. For 20NEWS, we use the same version as Miao et al. 262

[21] which consists of 18,845 news articles under 20 categories. The news articles 263

are divided into 11,314 training documents and 7,531 testing documents. The Reuters 264

dataset contains 7,769 training documents and 3,019 testing documents. The Wikitext-103 265

[19] dataset is extracted from Wikipedia. It contains 28,472 training documents and 60 266

testing documents. Furthermore, the Wikitext-103 dataset has 20,000 words in the vocab- 267

ulary to preserve enough information. Following Wu et al. [29], the first two datasets 268

both have vocabularies with 2,000 most frequent words after stemming and stop words 269

filtering. 270

4.2 Experimental setup 271

For hierarchical topic models, we use rCRP [12], HLDA [3], TSNTM [11], and nTSNTM 272

[7] as our baselines. The other two models, i.e., hPAM [22] and HLTA [18], are not adopted 273

for the following reasons. First, hPAM assumes that the hierarchy contains a root topic, 274

super-topics, and sub-topics. The fixed depth setting limits the model’s flexibility. Second, 275

HLTA actually is more like a word clustering model, because it assumes that each word 276

only belongs to one topic and fails to deal with polysemous words. For completeness, we 277

also compare our model with several popular NVI-based flat topic models, including GSM 278

[20], DVAE [5], NB-NTM & GNB-NTM [29]. 279

For the aforementioned baseline models, the publicly available codes of rCRP2, HLDA3, 280

TSNTM4, nTSNTM5, DVAE6, NB-NTM & GNB-NTM7 are directly used. As an extended 281

model of NVDM, the baseline of GSM is implemented by us based on the code of NVDM8. 282

For NVI based models, the number of hidden variables at each layer is set to 256 and we use 283

the single sample by following [20]. For other model parameters such as λV , λN , and λM , 284

grid search is carried out on the training set to determine their optimal values and achieve 285

the held-out performance. Training is stopped when the performance on the validation set 286

is not improved for 10 consecutive iterations. 287

We observe that hierarchical baselines can get relatively good performance when given 288

100 ∼ 150 topics for these three datasets. To generate a pyramid-shaped topic tree, we 289

develop a three-level structure for HNTM with 10 level-1 topics, 30 level-2 topics, and 290

90 level-3 topics. The number of topics for GSM is set to 130 for fair comparison. In 291

the training stage, we observe that KL-divergence quickly converges at the beginning, 292

resulting the problem of component collapsing [5]. To avoid such a problem, we first 293

give KL-divergence a small coefficient u, and increase the coefficient to 1 gradually by 294

u = u + 0.003 ∗ epochs. 295

2https://github.com/uilab-github/rCRP
3https://github.com/joewandy/hlda
4https://github.com/misonuma/tsntm
5https://github.com/hostnlp/nTSNTM
6https://github.com/sophieburkhardt/dirichlet-vae-topic-models
7https://github.com/mxiny/NB-NTM
8https://github.com/ysmiao/nvdm

https://github.com/uilab-github/rCRP
https://github.com/joewandy/hlda
https://github.com/misonuma/tsntm
https://github.com/hostnlp/nTSNTM
https://github.com/sophieburkhardt/dirichlet-vae-topic-models
https://github.com/mxiny/NB-NTM
https://github.com/ysmiao/nvdm
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4.3 Quantitative results296

Perplexity is a traditional metric used to evaluate the goodness-of-fit of a model. The297

perplexity of each model on a testing set D̃ is calculated by:298

Perplexity(D̃) = exp

(
−1

|D̃|
∑
d

1

Nd

log p(d)

)
, (18)

where log p(d) is the log-likelihood on document d , and Nd is the number of words in d .299

For all neural topic models, the variational lower bound, which is proven as the upper bound300

of perplexity [23], is used to calculate the perplexity by following [21].301

Several studies [6, 26] pointed that perplexity is not suitable for evaluating topic inter-302

pretability, and Lau et al. [14] showed that the normalized point-wise mutual information303

(NPMI), which evaluates the topic coherence, closely corresponds to the ranking of topic304

interpretability by human annotators. NPMI measures the relation between two words w1305

and w2 as follows [14]:306

NPMI (w1, w2) = log
P(w1, w2)

P (w1)P (w2)
/(− log P(w1, w2)). (19)

The higher the value of NPMI, the more explainable the topic is. Note that topic coher-307

ence can not reveal the quality of all extracted topics, because high redundancy is not308

conflict with high coherence. Thus, we further adopt topic uniqueness (TU) by following309

[24] to evaluate the redundancy of topics. The TU for topic k is310

T U(k) = 1

M

M∑
m=1

1

cnt (m, k)
, k = 1, ...,K, (20)

where cnt (m, k) is the total number of times the mth top word in topic k appears in the311

top M words across all topics, and K is the number of topics. The final TU is computed as312

T U = 1
K

∑K
k=1 T U(k). Topics with both high TU and high NPMI are considered as well313

extracted. For NPMI and TU, we compute the average of three scores based on 5, 10, and314

15 top words.

Q2

315

Table 1 shows the NPMI and TU of topics learned by each model respectively. All316

of our models except for HNTM-RV outperform the other four hierarchical baselines on317

NPMI, while achieve the second highest TU for each dataset. Without the help of RN ,318

the constraint term RV might cause the issue of imbalance, which has been discussed in319

Section 3.3, and HNTM-RV performs worse on Reuters. With a similar Gaussian soft-320

max framework, HNTM and its extensions perform better than GSM, which validates that321

hierarchical modeling can help extract more explainable topics with a low topic redundancy.322

Though it has been shown that perplexity is not a good metric for qualitative evaluation323

of topics [26], this metric can still reveal the fitting ability. According to Table 2, our models324

achieve competitive perplexity in comparison with other models except for rCRP. Previous325

studies [11, 28] also reported that sampling-based models always achieve lower perplexity326

when compared with NVI-based models.327

To evaluate the impact of manifold regularization on the proposed method, we present328

our models’ perplexity, NPMI and TU with different manifold regularization term coeffi-329

cients (i.e., λM = 0, 0.3, 1, and 3) in Figures 4 and 5. For Reuters and 20NEWS, HNTM-RM330

with λM = 0.3 and λM = 1 achieve better NPMI and TU scores than HNTM to a certain331

extent while HNTM-RM with λM = 3 performs worse than HNTM. This suggests that the332
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Table 1 NPMI and TU of different models, where the best results are bolded. For clarity, we present the
ranking of each method on these two metrics in parenthesis

Model 20NEWS Reuters Wikitext-103

NPMI TU NPMI TU NPMI TU

GSM 0.193 (13) 0.353 (11) 0.155 (13) 0.199 (13) 0.217 (8) 0.512 (12)

DVAE 0.263 (2) 0.404 (10) 0.357 (2) 0.413 (5) 0.423 (1) 0.584 (9)

NB-NTM 0.234 (8) 0.424 (8) 0.269 (3) 0.351 (8) 0.159 (13) 0.606 (7)

GNB-NTM 0.269 (1) 0.406 (9) 0.368 (1) 0.315 (9) 0.193 (11) 0.558 (10)

HLDA 0.210 (10) 0.497 (7) 0.207 (9) 0.366 (7) 0.180 (12) 0.586 (8)

rCRP 0.198 (12) 0.299 (13) 0.198 (10) 0.237 (12) 0.202 (10) 0.358 (13)

TSNTM 0.210 (10) 0.320 (12) 0.179 (11) 0.253 (11) 0.215 (9) 0.531 (11)

nTSNTM 0.227 (9) 0.705 (1) 0.229 (5) 0.524 (1) 0.237 (2) 0.670 (1)

HNTM 0.244 (5) 0.600 (5) 0.217 (8) 0.395 (6) 0.231 (6) 0.608 (4)

HNTM-RV 0.238 (7) 0.614 (3) 0.176 (12) 0.300 (10) 0.227 (7) 0.608 (4)

HNTM-RV +RN 0.245 (4) 0.605 (5) 0.228 (6) 0.420 (4) 0.235 (5) 0.610 (3)

HNTM-RM 0.243 (6) 0.616 (2) 0.223 (7) 0.446 (3) 0.237 (2) 0.612 (2)

HNTM+all 0.247 (3) 0.614 (3) 0.243 (4) 0.486 (2) 0.237 (2) 0.608 (4)

constraints of the characteristics of the data on the manifold can indeed improve the per- 333

formance of HNTM, but too strong constraints will also make the model hard to converge. 334

For Wikitext-103, the manifold regularization term has no obvious effect on the improve- 335

ment of HNTM. This might be due to the sparse connections caused by the large scale of 336

Wikitext-103. 337

Table 2 Perplexity of different models, where the best results are bolded and the ranking of each method is
presented in parenthesis for clarity

Model 20NEWS Reuters Wikitext-103

GSM 1080.2 (11) 270.8 (10) 1869.5 (2)

DVAE 5131.6 (12) 5296.4 (12) 3461.9 (12)

NB-NTM 811.3 (1) 209.4 (2) 2214.5 (8)

GNB-NTM 871.6 (3) 221.4 (7) 2382.2 (10)

rCRP 811.5 (2) 181.8 (1) 1722.3 (1)

TSNTM 973.2 (9) 248.3 (9) 2267.7 (9)

nTSNTM 1000.3 (10) 357.2 (11) 2525.2 (11)

HNTM 883.8 (5) 217.3 (6) 2122.9 (4)

HNTM-RV 890.2 (7) 223.3 (8) 2200.7 (7)

HNTM-RV +RN 898.1 (8) 212.8 (3) 2145.5 (6)

HNTM-RM 884.7 (6) 215.4 (5) 2133.4 (5)

HNTM-all 880.5 (4) 214.5 (4) 2114.6 (3)

For HLDA, note that the inference of held-out documents will change the structure of topic trees, which
involves another training process, thus we do not present its perplexity
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Figure 4 NPMI and TU for HNTM-all with various manifold regularization coefficients

4.4 Topical hierarchy analysis338

In this part, we adopt topic specialization as an indicator of topical hierarchy [12]. An impor-339

tant feature of the tree structure is that the topics close to the root are more general, while340

the topics close to the leaves are more specific. Following [12], we calculate the cosine341

similarity of the word distribution between the corpus topic and all topics at each level of342

the topic tree, and measure the specialization score by 1 − similarity. The corpus topic is343

defined as the word distribution of the entire corpus. A higher score indicates that the topic344

has drifted farther away from the entire corpus, which implies that the topic has become345

more specialized. Figure 6 presents the average topic specialization scores for each model.346

Though the scores of HLDA rise sharply, the topics are too general at level 1 and level 2,347

especially for 20NEWS. This is because the words of a document are divided into very few348
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Figure 5 Perplexity for HNTM-all with various manifold regularization coefficients

topics, and the general words are concentrated at shallower levels. We observe that TSNTM 349

achieves higher specialization scores at level 1 than deeper levels for all datasets, which 350

means the topics at level 1 are more specific than their offspring topics and it indicates a bad 351

topical hierarchy. nTSNTM obtains the highest specialization scores at every level for each 352

dataset, indicating a poor progressive semantic structure. Our proposed model performs the 353

best in topic specialization scores because it can learn general topics from the bottom topics 354

flexibly. 355

A problem of topic specialization score is that it can not reflect the relations between 356

parent topics and their children. In addition, since NPMI can only measure the relation 357

between words inside the topic, we thus compute the cross-level NPMI (CLNPMI) [7] to 358

measure the relation of top words between two connected topics by calculating the average 359

NPMI value of every two different words from an ancestor topic and its sub-topic. The 360

CLNPMI is defined by: 361

CLNPMI (Wp,Wc) = 1

N2

∑
wi∈Wp

∑
wj ∈Wc

[NPMI (wi,wj )
I(wi �= wj)

I(wj ∈ Wp) + 1
], (21)

where Wp and Wc denote the top N words of a parent topic and one of its children. The 362

words that appear in both topics will bring a penalty to the value of CLNPMI. We also 363
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Figure 6 Topic specialization of different models at each level. Since the results of all our models are quite
similar, we here present the result of HNTM for simplicity

compute the averaged overlap rate (OR) [7] to measure the repetitions between parent topics364

and their children. OR is defined as:365

OR(Wp, Wc) = |Wp ∩ Wc|
N

. (22)

As shown in Table 3, although HLDA achieves the lowest OR scores, the poor CLNPMI366

indicates that the relation between parents topics and their children are not very close. rCRP367

seriously suffered from the high topic redundancy, since it achieves high OR scores and368

high TU scores as aforementioned. HNTM with all regularization terms (i.e., HNTM-all)369

achieves the best CLNPMI in all datasets, with relative low OR scores. The improvement370

from HNTM-RV and HNTM-RV +RN validates that the manifold regularization term can371

help extract the topic relations. In detail, Figure 7 explores the impact of different weights372

of manifold regularization on these two measurements. To validate the effect of RN , we373

display the distributions over different numbers of children for all parent topics in Figure 8.374

The results indicate that our model with RN has more proper distributions over numbers375

of children. Considering the poor results of HNTM-RV presented in previous tables, the376

Table 3 CLNPMI and OR of hierarchical topic models, in which, a higher CLNPMI and a lower OR indicate
better performance

Model 20NEWS Reuters Wikitext-103

CLNPMI OR CLNPMI OR CLNPMI OR

HLDA 0.084 (7) 0.020 (1) 0.065 (6) 0.034 (1) 0.083 (6) 0.045(1)

rCRP 0.114 (4) 0.317 (7) 0.079 (5) 0.528 (7) 0.107 (5) 0.436 (7)

TSNTM 0.115 (3) 0.289 (6) 0.081 (4) 0.181 (6) 0.083 (6) 0.132 (6)

nTSNTM 0.114 (4) 0.061 (4) 0.106 (3) 0.102 (3) 0.117 (2) 0.111 (5)

HNTM-RV 0.110 (6) 0.022 (2) 0.020 (7) 0.070 (2) 0.109 (4) 0.062 (2)

HNTM-RV +RN 0.124 (2) 0.054 (5) 0.110 (2) 0.102 (3) 0.115 (3) 0.082 (4)

HNTM-all 0.125 (1) 0.043 (3) 0.114 (1) 0.112 (5) 0.120 (1) 0.078 (3)

Since RV is necessary to generate a tree structure for HNTM, we mainly compare the performance of HNTM-
RV , HNTM-RV +RN , and HNTM-all with other tree-structured baselines. For clarity, the best results are
bolded and the ranking of each method is presented in parenthesis
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Figure 7 CLNPMI and OR for HNTM-all with various manifold regularization coefficients

regularization term RN could indeed help avoid the problem of failing to extract high level 377

topics. 378

We also demonstrate the discretization of the row vectors in dependency matrices D. As 379

shown in Figure 9, most of the maximum elements in the row vectors are larger than 0.95 380

with regularization term RV , which means these sub-topics largely belong to one super- 381

topic. In other words, this term makes sure that the hierarchical topic structure extracted by 382

our HNTM is a tree. 383

4.5 Data scalability 384

To evaluate the efficiency of our method, we randomly sample several numbers of docu- 385

ments (1,000, 2,000, 4,000, 8,000, 16,000, and all) from the training set of Wikitext-103. 386
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Figure 8 Distributions over the amounts of children for HNTM-RV and HNTM-RV +RN

Figure 10 shows the training time of all hierarchical topic models, in which, the experi-387

ments are conducted on an Intel Xeon Skylake 6146 CPU with 8 cores and an Nvidia Tesla388

P4 GPU. Sampling-based models are run on CPU, and NVI-based models are tested on389

GPU. HNTM shows an advantage in time cost when compared with all these baselines.390

Different from flat sampling-based topic models, HLDA and rCRP spend considerable391

computation time on path sampling, which is much more serious when dealing with a large-392

scaled dataset. Additionally, these two sampling-based models are serial, which means they393

Figure 9 Distributions over the value of the maximum elements in matrices D for HNTM and HNTM-RV
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Figure 10 Training time of different models on various numbers of documents. Since the time costs of all
our models are nearly the same, we here present the result of HNTM for simplicity

can only utilize one core of the CPU. TSNTM and nTSNTM respectively apply a doubly- 394

recurrent network and a stick-breaking prior, which largely slow down the speed of both 395

models. HNTM can be trained around 1.8 times faster than nTSNTM, 3.6 times faster 396

than TSNTM, 10.4 times faster than rCRP, and 74 times faster than HLDA with all 28,372 397

documents. 398

4.6 Evaluation on the topic words 399

Figures 11, 12, 13, 14, 15 show some representative military-related branches generated by 400

hierarchical topic models on Wikitext-103. Top 5 words are shown for each topic, and red 401

marked topics with italic words are irrelevant to military by manually checking. Topics are 402

truncated from level 1 to level 3. 403

The branches extracted by HLDA contain many irrelevant topics, while rCRP, TSNTM, 404

and HNTM-RV +RN produce relatively clean branches. Furthermore, rCRP mixes topics of 405

“military”, “royalty”, and “religion” into a large topic, while TSNTM and HNTM-RV +RN 406

concentrate on “military”. Unfortunately, TSNTM also bring in some irrelevant topics. This 407

he said day american life

war american british men ship

war british font state army

colbert test island air ship

vietnamese vietnam diem south force

film game art work song

film festival game ha music
33 irrelevant topics

german war hitler state jew

soviet government party church state

government party state war woman

Figure 11 Topic branches extracted by hLDA on Wikitext-103
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king war army force government

lord peer house royal assent

aircraft air flight engine service
mission space apollo flight crew

aircraft engine tank production gun

soviet government war state military

byzantine al army roman emperor

king army persian battle war

german war hitler croatian serb

persian greek battle bc athenian

german hitler jew nazi war

king henry england century edward

al city emperor chinese china

church catholic cardinal king people

king queen prince duke royal

king bastille city war sicily

armenian king war keynes government

government war pedro army spanish

british india state war government

Figure 12 Topic branches extracted by rCRP on Wikitext-103

result validates that the single path assumption of HLDA may be inappropriate for modeling408

the topic hierarchy. In addition, rCRP gets few level-3 topics in the branches, because the409

probability of producing deeper topics decreases exponentially. Compared to HLDA and410

rCRP, the hierarchical relation of topic branches obtained by HNTM-RV +RN is clearer and411

the performance is remarkable. The level-1 topic consists of general words about “military”,412

which contains four level-2 topics including “government”, “battle”, “death”, and “colony”,413

each of which can be further divided into several level-3 topics. We also present the results414

of HNTM to verify the impact of these two regularization terms. Without the constraint of415

the tree structure, the topic hierarchy of HNTM is more like a DAG. Though we connect416

the topics by max-probability, the affiliation is still not obvious, resulting some irrelevant417

topics. With RV and RN together, our model can extract an effective and explainable topic418

tree. Since manifold regularization has little influence on topic words, we do not present the419

results of our models with RM .420

ship gun fleet inch mm german

government british country state national

state election party president governor

government soviet party state country

police german war government al said

air squadron no. aircraft force

airport flight airline aircraft air

ship crew vessel british captain

division force battalion army german

war force army military general

french british battle army force

court law state case right

japanese force aircraft carrier island

state united american navy war

12 irrelevant topics

Figure 13 Topic branch extracted by TSNTM on Wikitext-103
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day did following second took

war british world officer order

war army military force state

al persian arab muslim ibn

french polish poland russian france

family prince queen child son

king henry william edward england

spanish san la mexican puerto

soviet croatian serb croatia force

british american fort men indian

emperor byzantine roman empire greek

police said report people investigation

state governor election republican vote

london lord john england royal

australian australia sydney south melbourne

german germany nazi hitler jew

army battle regiment brigade division

army war officer military united

trial murder death prison body

government said international right group

campaign president presidential nixon reagan

campaign president presidential nixon reagan

team season game player point race lap stage driver second

test match run inning australia

club league match cup goal

game yard season league run

Figure 14 Topic branch extracted by HNTM on Wikitext-103

state did including war early

party government election political national

battle army war force campaign

army french battle troop men

jew croatian croatia german jewish

king henry edward england william

al greek byzantine empire roman

war officer army general military

fort british american men river

king prince ii duke catholic

university project research nuclear workgeorge died life family son

court law case act state

campaign election republican president state

state governor virginia kentucky republican

soviet german polish russian war

government military country south vietnam

colony governor john massachusetts england

Figure 15 Topic branch extracted by HNTM-RV +RN on Wikitext-103
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Although the hierarchical baselines can automatically adjust the number of topics, the421

effects are severely affected by multiple hyper-parameters, and the resulting hierarchy is422

not satisfactory. HNTM predetermines suitable numbers of nodes, and can adjust the gran-423

ularity of each layer according to a held-out document set, so as to obtain an effective topic424

hierarchy.425

5 Conclusion426

In this paper, we have proposed a hierarchical neural topic model named HNTM. The net-427

work structure of HNTM explicitly models the dependency of latent variables at different428

layers, and combines them to reconstruct the input. We further introduce manifold regu-429

larization into the proposed method to improve its robustness on noisy words. Extensive430

experiments validate that our network structure can extract a reasonable topic hierarchy431

with high topic interpretability and low topic redundancy. Compared with the existing NVI432

based nTSNTM, our HNTM has better data scalability because it can be trained in paral-433

lel completely. Particularly, HNTM can be trained 1.8 times faster than nTSNTM on the434

Wikitext-103 dataset. This makes our method possible to deal with the ever-increasing scale435

of data on the Internet. The multiple explainable latent variables with optional granular-436

ity extracted by our HNTM can be also used in many downstream tasks, like information437

retrieval and text summarization. Furthermore, our model is not limit to text. A suitable438

dataset might be a collection of images, a collection of DNA sequences or other collec-439

tions. Modeling hierarchical latent patterns with interpretability from these data is also440

meaningful.441

However, HNTM still has some limitations. For instance, the numbers of topics at each442

layer must be preset. Though other models [3, 7, 11, 12] can adjust the numbers of topics443

dynamically, they still have to preset the hyper-parameters which control the numbers of444

topics. A method for deciding the appropriate numbers of topics is very important. In addi-445

tion, this study only explores the Gaussian prior, while various priors have been proposed for446

neural topic modeling in recent years. It follows that adopting other priors deserves further447

research. With the rapid development of cloud storage e-commerce platforms [27], cloud448

computing [8, 31] and edge computing [16] services, we also plan to deploy our model449

efficiently by these platforms or services.450
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