
Applied Soft Computing Journal 159 (2024) 111672

A
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

End-to-end learning of adaptive coded modulation schemes for resilient
wireless communications
Christopher P. Davey a,∗, Ismail Shakeel a,b, Ravinesh C. Deo a,∗, Ekta Sharma a,
Sancho Salcedo-Sanz c, Jeffrey Soar d

a School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, 4300, Queensland, Australia
b Spectrum Warfare Branch, Information Sciences Division, Defence Science and Technology Group (DSTG), Edinburgh, 5111, SA, Australia
c Department of Signal Processing and Communications, Universidad de Alcalá, Alcalá de Henares, 28805, Spain
d School of Business, University of Southern Queensland, Springfield, 4300, Queensland, Australia

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O

Keywords:
Wireless communications
Adaptation
Coding design
Deep learning
Multi-task learning

A B S T R A C T

Adaptive modulation and coding schemes play a crucial role in ensuring robust data transfer in wireless
communications, especially when faced with changes or interference in the transmission channel. These
schemes involve the use of variable coding rates, which can be achieved normally through code puncturing
or shortening, and have been adopted in 4G and 5G communication standards. In recent works, auto-encoders
for wireless communications have demonstrated the ability to learn short code representations that achieve
gains over conventional codes. Such a methodology is attractive as it can learn optimal representations under
a variety of channel conditions. However, due to its structure the auto-encoder does not currently support
multiple code rates with a single model. This article draws upon the discipline of multi-task learning, as
it applies to deep learning and therefore devises a branching architecture for the auto-encoder and custom
training algorithm in training transmitter and receiver for adaptive modulation and coding. In this article
we aim to demonstrate improvements in Block Error Rate over conventional methods in the Additive White
Gaussian Noise channel, and to analyse the performance of the model under Rayleigh fading channels without
retraining the auto-encoder on the new channel. This article demonstrates a novel approach towards training

∗ Corresponding authors.
E-mail addresses: christopher.davey@usq.edu.au (C.P. Davey), ravinesh.deo@usq.edu.au (R.C. Deo).
vailable online 26 April 2024
568-4946/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.asoc.2024.111672
Received 4 April 2023; Received in revised form 14 November 2023; Accepted 15 April 2024

https://www.elsevier.com/locate/asoc
https://www.elsevier.com/locate/asoc
mailto:christopher.davey@usq.edu.au
mailto:ravinesh.deo@usq.edu.au
https://doi.org/10.1016/j.asoc.2024.111672
https://doi.org/10.1016/j.asoc.2024.111672
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2024.111672&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Applied Soft Computing 159 (2024) 111672C.P. Davey et al.

𝑡
‘
t
a
m
t

p
c
t
a
o
a
r
t
u
u
t
i
H
n

p
o
n
m

auto-encoder models to jointly learn adaptive modulation and coding schemes framed as a multi-task learning
problem. The research outcomes extend end-to-end learning approaches to the design of adaptive wireless
communications systems.
1. Introduction

Adaptive modulation and coding (AMC) methods can enable wire-
less communication systems to optimise the transmission of data over
a channel with varying operating conditions, message sizes, and data
transfer rates. This involves adjusting the modulation scheme and error
correction coding rate in real-time based on the channel conditions.
AMC algorithms are designed to monitor the channel conditions in
real-time and dynamically select a suitable modulation and coding
scheme that provides the best trade-off between data rate and error
protection for the given channel conditions. The selection of the best
modulation and coding scheme is normally made by a look-up table
or an algorithm that maps the channel conditions to a particular
modulation and coding scheme with respect to transmit power, ex-
pected channel use and error rate [1]. The modulator/demodulator
and encoder/decoder algorithms for each modulation and code are
normally designed and implemented separately on the communication
platform [2]. This paper focuses on using machine learning techniques
to generate multiple coded modulation schemes from a unified model
architecture for channel adaptation.

In communications systems, the primary goal is to transmit a mes-
sage through a communication channel to a receiver and then recon-
struct the original message without error at the receiver. Distortions
that are introduced by the channel are the primary obstacle to an error
free recovery of the transmitted message.

Fig. 1 illustrates a simple wireless communications system, which
is the focus of our article. In such a system, a message 𝑀 , defined
in bits, is formatted and communicated by a transmitter over the air
(the channel) to be recovered and interpreted at the receiver. In order
to be transmitted, messages may be coded for error correction and
modulated for transmission over the channel. The modulation process
converts a bit sequence into a waveform where each discrete point
(symbol) in the waveform is represented as a series of complex symbols
𝑥(𝑡) ∈ C, having both in-phase and quadrature (IQ) components, where

indicates the discrete time step for the symbol. We use the term
‘symbol’’ after modulation because a single symbol can refer to more
han 1 bit of the original message. The number of bits mapped to

symbol is referred to as the order of the modulation. However, a
odulation is not necessarily sufficient to allow the receiver to recover

he message without error.
The subject of this research is coding, which is an essential com-

onent of any communication system that enables error detection and
orrection at the receiver end. A variety of techniques are available
o code a particular message, and these include linear block codes
nd convolutional codes. The resulting code words are longer than the
riginal message block, and the ratio between the original message
t length 𝐾 and the resulting 𝑁 bit code word is known as the code
ate 𝐾∕𝑁 . For smaller code rates, one requires more symbols to be
ransmitted across the channel. The ability to perform error correction
sing a coded message can achieve significant improvements over
ncoded messages (a coding gain) but this comes with a trade-off in
erms of the number of usages required to transmit the message, or
n other words, the amount of power required to send the message.
owever, the ability to receive a message without error reduces the
eed for re-transmissions.

As illustrated in Fig. 1, the coding and modulation are an integral
art of the system. Therefore in this article, we focus on the learning
f the coding and modulation process that assumes a perfect synchro-
isation of the transmitted signal with the receiver. The coding and
2

odulation stages in the wireless communications system are typically
designed in isolation of each other, and often, they do not account for
the distortions introduced by different types of channels. This method
of system design is referred to as the block design, where components
are individually optimised and do not consider interactions between
components or the channel distortion [3].

The ability to automatically learn each of the stages within a
wireless communications system presents an advantage over the block
design approach, since each of the stages can be optimised jointly with
respect to a given channel condition and hardware imperfection. As
such, learning how to transmit and receive coded information over
the wireless channel has recently attracted significant attention in the
field of wireless communications. Deep learning (DL) methods, and in
particular the AE architecture have been demonstrated to jointly opti-
mise both transmitter and receiver with respect to an assumed channel
model [2]. Such a joint approach, learns coding and modulation in an
end-to-end manner by gradual optimisation of the model parameters to
minimise the error produced in symbol-wise classification of individual
messages [2].

In end-to-end learning, a transmitter acts as an encoder network to
encode a message, while the receiver acts as the decoder network to
retrieve the original message [2]. The channel is represented either as
an instantaneous function which adds perturbations to the output of
the transmitter [2], may be learnt through adversarial techniques [4] or
reinforcement learning (RL) is applied without assuming a channel [5].
The design of the AE for wireless communications in [2], does not
support learning more than one code rate, in that approach support for
multiple code rates requires separate networks. Therefore the subject
of this research article investigates how to parameterise and alter the
structure of a single AE for wireless communications to enable support
for multiple code rates.

Multi-task learning (MTL) in DL research is concerned with the
challenge of training a single network architecture to concurrently
perform different but related tasks, which may also have a dependency
relation between them [6]. Approaches to MTL consider the architec-
ture design, model regularisation and training methods [6]. There is a
relationship between negative transfer in MTL and catastrophic forget-
ting which occurs in sequential learning [7,8]. Negative transfer occurs
when certain tasks negatively impact the ability to learn other tasks
when learnt concurrently [6]. Hence regularisation techniques acting to
minimise negative transfer during training are a key concern of MTL.
This is realised through the design of the network architecture (hard
sharing) as well as through weight regularisation and loss functions
(soft sharing) [6]. In this article we approach AMC from the perspective
of MTL and apply both hard sharing in the AE network design as well
as soft sharing in the approach to regularisation during the training
procedure. We demonstrate that a multi-branching variant of the AE
is better suited to learning AMC in comparison to a single path AE
network. The model is trained by iterating between end-to-end and
receiver only training, and we apply a weight averaging regularisation
technique [9] to improve the error rates for each of the resulting code
rates.

The main contributions of this paper are:

• To change the structure of the AE for wireless communications to
enable learning multiple code rates with a single neural network
architecture. A shared path with branching output heads are
activated based on a selected code rate parameter to support
end-to-end learning for AMC.

• To frame the end-to-end learning of AMC for wireless communi-
cations as a multi-task learning problem.

• Propose a training procedure which iterates between end-to-end
training and receiver training, producing lower error rates than

single step training.

Applied Soft Computing 159 (2024) 111672C.P. Davey et al.
Fig. 1. A simplified schematic of a typical wireless communication system. In the transmitter, a binary message of 𝐾 information bits is coded as 𝑁 bits for error correction
during the Encode stage. The Modulation stage converts the bits into discrete complex symbols using amplitude, phase or frequency to differentiate bits. On the receiver side, the
demodulator converts the received modulation symbols to the original code word of length 𝑁 and the decoding block converts from the code back to the original 𝐾 information
bits of the message.
• To show that the proposed method achieves results closely match-
ing and improving upon performance of maximum likelihood
decoding (MLD) with conventional codes over several code rates
and channels.

The remainder of this article is structured in the following manner:
Section 2 provides an overview of the research into end-to-end learning
for wireless communications as well as describing multi-task learning
and adaptive modulation and coding. Section 3 describes the multi-rate
AE, the method of regularisation and its custom training procedure.
Section 4 reports on the BER and BLER of the model under several
channel environments. Section 5 describes the limitations of the model
and discusses the generalisation capability. The article concludes in
Section 6 where the summary of findings is given and further directions
for research are proposed.

2. Background and related work

The use of AE neural networks for learning an end-to-end wire-
less communications system was first proposed in [2]. An AE was
demonstrated to learn optimal short codes for the AWGN channel.
The AE model architecture as described by the article is illustrated
in Fig. 2. The model consists of symbol-wise encoding for 2𝐾 possible
messages, a transmitter containing multiple dense blocks (layers) and
an energy normalisation constraint, transmitter output IQ symbols for
a code size 𝑁 , an assumed channel function, and a receiver (also
containing multiple dense blocks) whose task is to predict the received
message index [2]. In a typical AE the middle layers are applied
to find a compressed set of features for the input, whereas in the
wireless communications design, the middle layers typically represent
the output of the transmitter, which are influenced by the distortion
provided by the channel function. By applying DL to the design of
wireless communications systems the article introduced the potential
use of generalised hardware platforms such as graphical processing
units (GPUs), and enabled the opportunity for optimisation against
complex channels without requiring an analytic mathematical model
for the channel [2]. The article demonstrated that an AE with a code
3

rate of 𝐾∕𝑁 = 4∕7 could achieve equal performance to MLD decoding
for the Hamming(7,4) code and that an AE trained on an interference
channel could achieve lower error rate than a quadrature amplitude
modulation (QAM) time sharing modulation scheme for equivalent
code sizes [2]. However, the design of the classifier architecture is
limited to a fixed number of message bits 𝐾 and a fixed code size 𝑁 ,
and is constrained to the domain of short length burst transmissions.
Such codes are beneficial for use in energy constrained communications
such as in the internet of things (IoT). The AE model as presented
in [2] serves as the canonical model for DL end-to-end communications
systems under simplified constraints. Related work stemming from this
initial research extends the AE architecture and examines applications
to end-to-end learning, over-the-air learning, and the use of custom
training algorithms.

A key assumption of the AE model as described in [2] requires
that a differentiable channel function for a given channel is predefined
to permit back-propagation between the transmitter and receiver. An
alternate approach is to train a generative adversarial network (GAN)
using observed perturbations from the true channel, thereby removing
the assumption of a predetermined channel. The approach described
in [4], applies this technique to approximate an unknown channel
function and provides a fully differentiable channel model for training
of the AE. The architecture is trained and evaluated on several channels
including the AWGN, Rayleigh Fading and Frequency Selective multi-
path channels. Under the AWGN and Rayleigh fading channels, the
AE-GAN model is compared with the end-to-end AE from [2], as well
as conventional coding methods, demonstrating the effectiveness of the
GAN in approximating the channel during training [4]. Each compo-
nent (transmitter, channel GAN and receiver) is trained in succession
using an iterative algorithm, where components not participating in
each training cycle had their weights frozen [4]. The architecture
assumed a constant size of 𝐾 message bits for the AE input and output,
and while it was able to approximate bit-wise output leveraging Con-
volutional Neural Network (CNN) layers to support differing message
lengths, it did not address the effect of altering the code size 𝑁 and
was not designed to produce multiple code rates without retraining.

Applied Soft Computing 159 (2024) 111672C.P. Davey et al.
Fig. 2. The neural network architecture of the end-to-end AE for wireless communications described in [2]. The architecture of transmitter and receiver each consist of multiple
dense layers or blocks, and the transmitter includes an energy normalisation layer. The model is defined for a predefined number of message bits 𝐾 and a single code rate 𝑁 ,
as well as an assumed channel function ℎ(𝑧). The transmitter learns to encode message 𝑀 from one of 2𝐾 messages into IQ symbols which are sent over the assumed channel
function and the receiver learns to estimate the probability of the message 𝑀 given the received output of the channel 𝑟.
Another method for addressing the channel assumption was pro-
posed by leveraging an iterative training algorithm based on RL in [5,
10]. The training algorithm first trains the receiver by back-propagation
and in the second step applies the receiver loss to an approximation of
the gradient to perform back-propagation at the transmitter [5]. The
advantage of this method is that it is agnostic to the true channel,
although does require reliable feedback of losses from the receiver,
and applied an equalisation method from [2] in order to train against
the Rayleigh Block Fading (RBF) channel [5]. This latter point indi-
cates the dependency of DL methods on the perturbations that are
applied to their training data, in wireless communications systems,
these perturbations result from the channel environment. In [10] the
RBF channel is evaluated with and without equalisation, indicating
a slight difference in performance between the approaches. Changes
made to the channel, outside of that applied during training, will have
a negative impact on the performance of the model, hence further
investigation of approaches to regularisation for end-to-end training
are required for adaptability to changing channel conditions. While
the research focus for AE in wireless communications has addressed
the assumed channel function, we propose that adaptability can be
achieved by also considering an AMC scheme.

One approach to address adaptation, post training, is to deploy
and retrain the receiver independently of the transmitter on the true
channel, also referred to as tuning or transfer learning. This technique
is described in [3] where an iterative approach is applied to train the
AE end-to-end and secondly to fine-tune the receiver. The method is
demonstrated on a software defined radio (SDR) implementation during
an over the air (OTA) training phase [3]. OTA training allows a more
realistic channel environment as opposed to end-to-end training, and
requires additional stages to support synchronisation such as filtering,
timing, phase, and carrier frequency offset corrections [3]. Two sep-
arate sub-networks were incorporated prior to the receiver/decoder
model to correct for timing and phase offsets as well as learning new
features to assist in decoding [3]. While the trained system did not
perform as well as the comparative communications system, the work
demonstrates that receiver tuning OTA has the potential to improve
the adaptation of the overall system post end-to-end training and em-
phasises the mismatch between the analytic and actual channel models.
This is further evidence of the sensitivity of DL models to perturbations
4

during training. While we do not investigate an OTA implementation,
we do investigate the performance of an end-to-end AE on several
channels without retraining or tuning, and propose that an architecture
capable of generating AMC schemes is advantageous in environments
for which it was not initially trained.

Extensions of the AE architecture have been made to incorporate
concatenated coding techniques for reliable communications in [11]
where the AE learns the inner code and the outer code is implemented
with a low density parity check (LDPC) code. Such an outer code is
capable of variable code rates, independent of the AE model. In this
method, the AE performs bit-wise encoding and decoding as opposed
to the classification of a symbol-wise output in [2]. The role of the
receiver is to estimate the log-likelihood ratio for each bit and is
trained in a manner equivalent to maximising the achievable rate of the
communications system [11]. Both the encoder and decoder are param-
eterised by the signal to noise ratio (SNR) and it is shown that learnt
constellations are correlated with the given SNR [11]. The association
of constellation and SNR enables a form of adaptive coding which does
not vary the code length, but may rearrange the constellation points
instead. In our approach we instead modify the AE model architecture
to allow parameterisation for a code index which permits the model to
learn a mapping between the code index parameter and a variable code
length, thereby achieving AMC by varying code rates.

Given an assumed channel, and a measure of the communication
error rate, it is possible to iteratively search for an optimal code rate.
A technique for this type of search is presented in [12]. The main
contribution of the article is first to address the issue of overfitting in
the end-to-end AE and propose an additional regularisation term that
maximises the mutual information between the transmitter symbols
and the output of an assumed channel function [12]. This regularisation
term is applied to the loss term of the AE and is approximated by
training a separate neural network. The search algorithm, described
as capacity driven AE, iterates over multiple SNR and trains AEs at
incremental code rates 𝐾∕𝑁 until improvement in the mutual infor-
mation over previous AE falls below a given threshold [12]. However,
long training durations, and the limitations around sampling for large
message bit lengths are a disadvantage for AE. An exhaustive search is
feasible for short messages, but less feasible as 𝐾 increases. The ability
to design a single network architecture that can support multiple code

Applied Soft Computing 159 (2024) 111672C.P. Davey et al.

s
n
e
t
r
s
f
u
b
p
n
f
n

t
t
d
f
c
o
a
p
i
r
o
b
a

a
a
r
p
c
h
d
u
o
l

t
d
t

rates could reduce the overall duration of such a search algorithm. To
make these changes to the AE architecture, we propose framing the task
of training multiple code rates as a MTL problem.

MTL seeks to regularise a network to perform several related but dis-
tinct tasks through the network architecture (hard sharing) or through
regularisation methods constraining weights in matching layers (soft
sharing) [6]. The simplest hard sharing approach uses a common single
path with multiple outputs to demonstrate that the relatedness between
tasks benefits network regularisation through the transfer of inductive
bias between those tasks [13]. This type of architecture also has the
advantage of limiting the number of parameters required by multiple
networks, since a common path is shared between separate branches
rather than requiring an individual network for each task [13]. Training
of such architectures is performed while learning multiple tasks simul-
taneously, whereas in our approach we train successively for single
tasks (code rates) using a common architecture. However successive
training on different tasks is well known to suffer from catastrophic
forgetting [7] also termed negative transfer in the MTL literature [6].
The challenge of MTL for sequential learning is approached in [14]
which proposes a dynamic architecture comprising of shared and task
specific paths which is trained in a sequential manner. This approach
is demonstrated to reduce the negative transfer between tasks on the
shared path [14]. During training and inference the structure of the
network is altered dynamically and enables the execution of one task
at a time [14], in this manner the parameterisation of each task is
implicit to the current organisation of the network. In our approach
we define tasks as code rates and dynamically reconfigure the network
structure during training and inference while supplying a code index
parameter to indicate which code rate the transmitter should output.
To regularise the shared path between tasks we make use of a simple
weight averaging regularisation [9].

Adaptation for both modulation and coding has been demonstrated
to achieve more reliable communications under varying levels of in-
terference when compared to adaptation for modulation only [15].
AMC-enabled systems have also been shown to produce higher data
transfer rates over various communication environments [16,17]. AMC
is implemented by selecting a combination of modulation scheme and
error-correcting code to achieve a target BER under a given SNR
partition [16,18]. Different code sizes may be constructed from the
same family of codes so that the minimum distance of the code remains
constant over varying SNR and channel fading conditions [19]. Such
codes can be formed by shortening, that is reducing both information
and code word bits, or puncturing by removing some of the parity
check bits from each code word [20]. Cyclic codes are well suited to
shortening and puncturing since the original decoding procedure can
be applied to the resulting code [20]. This category of codes includes
the Hamming code [21], Bose–Chaudhuri–Hocquenghem (BCH) code
[21,22] and the quadratic residue code (QRC) [21]. Rather than short-
ening a family of codes, we augment the end-to-end AE for wireless
communications to jointly learn multiple code rates. The advantage of
jointly learning modulation and coding would enable AMC schemes to
be tuned specifically for target channel conditions.

3. Methodology

In our work we consider the AE architecture in [2] as the canonical
DL architecture for jointly learning modulation and coding in a wireless
communications system. However the structure of the canonical AE is
limited to a single message bit size 𝐾 and a single code size 𝑁 . In
this article we make several alterations to the original AE architecture
to support end-to-end learning for AMC with multiple code sizes 𝑁 .
We modify the network architecture so that it is able to learn several
predefined code sizes by adding branching outputs at the transmitter
and receiver. We also add a parameter to select the code size index
during training and inference in the transmitter. In the main path of
the network we include skip connections [23] between blocks of dense
5

a

units to enable a slightly larger network to aid in learning multiple code
sizes.

This section includes the details for the changes to the AE archi-
tecture (Section 3.1), the approach to training for the transmitter and
receiver models (Section 3.2) and the selected channel functions that
are applied during training and evaluation (Section 3.3).

3.1. Model architecture

The AE, described in [2], consists of a single path through the net-
work and a channel function implemented as an AWGN layer (Fig. 2).
Estimation is performed as a classification for the corresponding one-
hot encoded input message 𝑀 . One-hot encoding represents each bi-
nary message 𝑀 by defining an input vector of the same length as the
number of unique binary messages (in 2𝐾 messages). Each unique mes-
sage is represented as a 1 at its corresponding index in the input vector
(a value from 0 to 2𝐾 −1) with all other positions of the vector set to 0.
Symbol-wise classification is performed at the receiver by learning to
estimate the probability of a given message at the corresponding vector
index 𝑝(𝑀|𝑟(𝑡)) given a set of channel symbols (in-phase and quadrature
values) 𝑟(𝑡). The index with the highest probability is mapped from the
index to the estimated binary message 𝑀̂ = argmax 𝑝(𝑀|𝑟(𝑡)).

The branching structure of our proposed model is inspired by hard
haring in MTL. In the simplest form of hard sharing, a common
etwork path is followed by a set of branches that correspond to
ach distinct task [6]. The common path learns shared features for all
asks. In our architecture a task, corresponding to a network branch,
epresents a different code rate 𝐾∕𝑁 due to the change in the code
ize 𝑁 . The common path contains two dense blocks composed of a
eed-forward layer, batch-normalisation [24] and either rectified linear
nit (ReLU) [25] or Swish [26] activation functions. The two dense
locks feature residual connections to form skip blocks which assist in
reventing extremes in the gradient during back-propagation of deeper
etworks [23]. Although these networks are relatively shallow, we have
ound that the skip connections do improve the performance of the
etwork.

In the transmitter, the common path accepts a concatenation be-
ween the one-hot encoded message and an embedding representing
he code index. The code size index is provided to a discrete gate that
etermines which branch of the network architecture should receive
eatures from the common path during the forward pass. Each branch
ontains a feed-forward layer followed by a linear activation. The
utput of the transmitter consists of a feed-forward layer followed by
tanh activation and an energy normalisation layer that is applied

rior to the channel function. An overview of the transmitter model
s shown in Fig. 3. The architecture is parameterised by a set of code
ates 𝑖 ∈

{

11,… , 𝑖𝑛
}

that are used by the branch node to select which
f the output branches are active during training and inference. The
ranch node is indicated by the Discrete Gate in the transmitter, Fig. 3
nd the receiver, Fig. 4.

The architecture of the receiver is illustrated in Fig. 4 and follows
similar pattern to that of the transmitter. Instead of receiving an

dditional code size parameter during inference, the length of the
eceived channel symbols is stored at the input to the network. Zero
adding is applied to the received symbols up to the maximum allowed
ode size. The padding layer is followed by a series of skip blocks
aving the same structure as those in the transmitter, prior to the
iscrete gate. The Discrete Gate receives the stored length parameter and
ses this to determine which output branch (Dense Layer 𝑖) to activate
n the forward pass. Each output branch consists of a feed-forward
ayer and a soft-max activation layer.

The number of units in the input layers of the transmitter relate
o the 2𝐾 possible messages while for the receiver the input units
epend on the code size that is selected in the transmitter. To determine
he number of units for the shared path of each network, a stepwise

pproach was applied. Starting from the value of 𝐾 the number of units

Applied Soft Computing 159 (2024) 111672C.P. Davey et al.
Fig. 3. The transmitter contains a common path followed by a discrete gate which switches between the set of selected code sizes prior to merging and energy normalisation.
The transmitter sizes for N provide an example of how each branch represents a different code rate, and are an example of 4 bit model configuration.
Fig. 4. The receiver architecture follows a similar approach to the transmitter where the shared path is followed by a discrete gate and a separate classification layer corresponding
to each code size.
was gradually increased until an acceptable performance was achieved
during training. The list of layers and the number of units in each layer
of the transmitter network is shown in Table 1 and is shown for the
receiver network in Table 2.

Each branch in the transmitter and receiver represents a code of size
𝑁 . The code size parameter was supplied to the network as a choice
from a set of code sizes 𝑖 ∈ {𝑖𝑖,… , 𝑖𝑛}. Several variants of the network
architecture were trained to evaluate the effect of additional code sizes
(or increased number of tasks) on the overall performance of the model.
The branching transmitter and receiver networks were trained for three
6

message sizes, 𝐾 = 4 bits, 𝐾 = 7 bits and 𝐾 = 8 bits. For each case, the
network was trained to map 𝐾 information bits to multiple code sizes
of 𝑁 channel symbols for transmission. For the 𝐾 = 4 bit message size,
the code sizes included 𝑁 = 4, 8, 16 and 20, similarly for the 𝐾 = 7 bit
message size, code sizes 𝑁 = 11, 15, and 34 and finally for the 𝐾 = 8 bit
message configuration, code size 𝑁 = 6, 8, 17, 32 and 40 were selected.
The configurations for each model, message and code size are listed in
Table 3. The table also lists the total number of trainable parameters
in each neural network.

Applied Soft Computing 159 (2024) 111672C.P. Davey et al.

v
p
(
m
s
c
c
B

𝑓
l

c
w
n
o
t
f
g
a

w

3

v
T

Table 1
The number of units in each layer of the transmitter model. The list of choices for code size indices 𝑖 are provided as a parameter to
the architecture. During training and inference the one-hot encoded message and the selected code size index 𝑖 are provided as input to
the network.

Layer Units 𝐾 = 4 Units 𝐾 = 7 Units 𝐾 = 8 Group

Input 1 𝑀 = 2𝐾 units 16 128 256

Input layersInput 2 code size index 𝑖 1 1 1
Code index embedding 2𝐾 units 8 14 16
Concatenate 2𝐾 + 2𝐾 units 24 142 272

Dense layer 32 512 512

Skip block

Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 64 64 64
Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 32 512 512
Batch normalisation – – –
Activation (ReLU or Swish) – – –

Dense layer 32 512 512

Skip block

Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 64 64 64
Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 32 512 512
Batch normalisation – – –
Activation (ReLU or Swish) – – –

Gate layer – – –

Dense layer 𝑖 = 4, units = 8 𝑖 = 11, units = 22 𝑖 = 6, units = 12

Code size 𝑖 ∈
{

𝑖,… , 𝑖𝑛
}

branches
Dense layer 𝑖 = 8, units = 16 𝑖 = 15, units = 30 𝑖 = 8, units = 16
Dense layer 𝑖 = 16, units = 32 𝑖 = 34, units = 68 𝑖 = 17, units = 34
Dense layer 𝑖 = 20, units = 40 – 𝑖 = 32, units = 64
Dense layer – – 𝑖 = 40, units = 80

Linear activation – – –

Transmitter output for code size 𝑖
Reshape layer [2 × 𝑖] [2 × 𝑖] [2 × 𝑖]
Dense layer [2 × 𝑖] [2 × 𝑖] [2 × 𝑖]
Tanh activation – – –
Energy normalisation – – –
s
m
a
m
g
l
a
t
p
u
t
s
t
A
0

a
A
n
r
t
t
T
a
m
t
o
t
d
m
i

We compare the different model configurations against several con-
entional codes. The 𝐾 = 4 bit model is compared with the MLD
erformance of a system that uses uncoded binary phase shift keying
BPSK) modulation with extended Hamming (8,4) code. The 7 bit
odel is compared with three BCH coded systems, two of which use

hortened codes s-BCH(11,7) and s-BCH(34,7) derived from mother
odes BCH(15,11) and BCH(63,36) respectively, with the additional
ode being BCH(15,7). The K = 8 bit model is compared with uncoded
PSK and a QRC(17,8) code.

In both architectures, the gate function at layer 𝑙, 𝑓 (𝑙)
𝑔 is parame-

terised by the code rate index 𝑖 and input to the current layer ℎ(𝑙) =
(𝑙−1) (ℎ(𝑙−1)

)

which selects from a set of branches comprising the next
ayer 𝑓 (𝑙+1)

𝑖 ∈
{

𝑓 (𝑙+1)
0 , 𝑓 (𝑙+1)

1 ,… 𝑓 (𝑙+1)
𝑛

}

(Eq. (1)). In the transmitter, the

ode rate index is supplied as an explicit parameter to the network,
hereas in the receiver the code rate index is determined based on the
umber of symbols received from the channel. During the forward pass
nly one path through the branch is active (at the branch layer, the ac-
ive branch will be 𝑓 (𝑙+1)

𝑖). During back-propagation, no gradients exist
or the inactive branches, hence only the active branch receives the
radient update. Each of the respective shared paths in the transmitter
nd receiver, participate in back-propagation.

𝑓 (𝑙)
𝑔

(

𝑖, ℎ(𝑙)
)

= 𝑓 (𝑙+1)
𝑖

(

ℎ(𝑙)
)

,

here 𝑓 (𝑙+1)
𝑖 ∈

{

𝑓 (𝑙+1)
0 , 𝑓 (𝑙+1)

1 ,… 𝑓 (𝑙+1)
𝑛

} (1)

.2. Training algorithm

It is important to consider a suitable regularisation approach to pre-
ent negative impact on overall network performance between tasks.
his is achieved with two approaches, randomised sampling for code
7

ize during training, and weight regularisation. Training consists of
ini-batches (32 messages per batch) and code sizes are selected from
random uniform distribution each mini-batch. The update of each
odel is performed with back-propagation each mini-batch and the

radient is calculated for the selected code size. Over the course of
earning, the weights for each layer in the network are stored and are
veraged across mini-batches every ten iterations. This latter approach
o regularisation is based on the stochastic weight averaging (SWA)
erformed in [9], and in the results we have observed that training
sing SWA produces better performance as opposed to those networks
rained without SWA. SWA combined with a cyclical learning rate
chedule [27] is demonstrated in [9] to improve the generalisation of
he network. During training back-propagation is performed with the
dam optimiser [28] combined with the cyclical learning rate between
.0001 and 0.001.

In addition to the sampling scheme and SWA regularisation, an
lternating training algorithm is applied in four steps described in
lgorithm 1 and Fig. 5. These steps consist of: (1) train the end-to-end
etwork, (2) generate mini-batches using the transmitter, (3) train the
eceiver against a simulated channel and record the loss, and (4) update
he end-to-end network. In Step 1, back-propagation is run on the end-
o-end model which contains both the receiver and transmitter models.
his updates the weights in both the receiver and transmitter models,
nd the AWGN channel is simulated directly as part of the end-to-end
odel architecture. During Step 2, the transmitter is used to generate

he transmitter symbols and the channel is simulated independently
f both transmitter and receiver models. In Step 3, the receiver is
hen trained using the channel response as the receiver input, and
uring back-propagation the receiver loss is calculated against the true
essages. This allows the transmitter and receiver to be evaluated

ndependently and the resulting receiver loss is used to coordinate

Applied Soft Computing 159 (2024) 111672

8

C.P. Davey et al.

Algorithm 1 During training, the end-to-end model is trained iteratively with the receiver model.
Input: epochs ⊳ The number of training iterations.
Input: batchSize ⊳ The size of each training or validation batch.
Input: transmitModel ⊳ The transmitter model.
Input: receiveModel ⊳ The receiver model.
Input: endToEndModel ⊳ The end-to-end model containing transmitter, channel and receiver models.
Input: channel ⊳ The channel simulation function.
Input: snr ⊳ An initial SNR dB for perturbation of training data.
Input: codeSizeList ⊳ The set of allowed code lengths.
Output: endToEndModel ⊳ The end-to-end model updated after training.

𝑙𝑜𝑠𝑠 ← ∞
𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝐿𝑖𝑠𝑡 ← []

for 𝑖← 1, 𝑒𝑝𝑜𝑐ℎ𝑠 do
if Train with random SNR then

𝑠𝑛𝑟← Random-Uniform(0,9) ⊳ Use randomised SNR to perturb data for training.
end if
codeSize <- Random-Uniform(codeSizeList) ⊳ Randomly select the code size for the training batch.
Train-EndToEnd(𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, 𝑐𝑜𝑑𝑒𝑆𝑖𝑧𝑒, 𝑠𝑛𝑟, 𝑒𝑛𝑑𝑇 𝑜𝐸𝑛𝑑𝑀𝑜𝑑𝑒𝑙) ⊳ Fig. 5 (Step 1)
𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠← Transmit-Samples(𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, 𝑐𝑜𝑑𝑒𝑆𝑖𝑧𝑒, 𝑠𝑛𝑟, 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑀𝑜𝑑𝑒𝑙, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙) ⊳ Fig. 5 (Step 2)
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝐿𝑜𝑠𝑠← Train-Receiver(𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠, 𝑐𝑜𝑑𝑒𝑆𝑖𝑧𝑒, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑀𝑜𝑑𝑒𝑙) ⊳ Fig. 5 (Step 3)
if 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝐿𝑜𝑠𝑠 < 𝑙𝑜𝑠𝑠 then

𝑙𝑜𝑠𝑠 ← 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝐿𝑜𝑠𝑠
Save(𝑒𝑛𝑑𝑇 𝑜𝐸𝑛𝑑𝑀𝑜𝑑𝑒𝑙, 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑀𝑜𝑑𝑒𝑙, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑀𝑜𝑑𝑒𝑙) ⊳ Save models each time learning improves at the receiver.

end if
if 𝑖 mod 10 equals 0 then

𝑤 ← Average-Weights(𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝐿𝑖𝑠𝑡)
Set-Weights(𝑒𝑛𝑑𝑇 𝑜𝐸𝑛𝑑𝑀𝑜𝑑𝑒𝑙, 𝑤) ⊳ Apply weight averaging every 10 iterations.

else
𝑤 ← Get-Weights(𝑒𝑛𝑑𝑇 𝑜𝐸𝑛𝑑𝑀𝑜𝑑𝑒𝑙)
Append(𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝐿𝑖𝑠𝑡, 𝑤)

end if
Train-EndToEnd(𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, 𝑐𝑜𝑑𝑒𝑆𝑖𝑧𝑒, 𝑠𝑛𝑟, 𝑒𝑛𝑑𝑇 𝑜𝐸𝑛𝑑𝑀𝑜𝑑𝑒𝑙) ⊳ Fig. 5 (Step 4)

end for

return 𝑒𝑛𝑑𝑇 𝑜𝐸𝑛𝑑𝑀𝑜𝑑𝑒𝑙

Fig. 5. Custom training algorithm consisting of several stages interleaving training of receiver and end-to-end model.

Applied Soft Computing 159 (2024) 111672C.P. Davey et al.

a

Table 2
The number of units in each layer of the receiver model. The list of choices for code size indices 𝑖 are provided as a parameter to the architecture,
and selected at runtime based on the length of the received channel symbols.

Layer Units 𝐾 = 4 Units 𝐾 = 7 Units 𝐾 = 8 Group

Input 1 [2 × 𝑖] units [2 × 𝑖] [2 × 𝑖] [2 × 𝑖] Input from channel for code size 𝑖Flatten Layer 2𝑖 2𝑖 2𝑖

Dense layer 32 512 512

Skip block

Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 64 64 64
Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 32 512 512
Batch normalisation – – –
Activation (ReLU or Swish) – – –

Dense layer 32 512 512

Skip block

Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 64 64 64
Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 32 512 512
Batch normalisation – – –
Activation (ReLU or Swish) – – –

Gate layer – – –

Dense layer 2𝐾 units 16 128 256 Output 𝑖 ∈
{

𝑖,… , 𝑖𝑛
}

BranchesSoftmax activation – – –
Table 3
Multiple variations of the model are trained with separate configurations for message bits K and code size N. The total trainable parameters
for each neural network counts all weights, biases, and batch normalisation parameters. The final column lists the conventional codes included
in comparisons of BER and BLER selected channel conditions.

Configuration Model variant K N Transmitter
parameters

Receiver
parameters

Comparison codes

1 4 bit single model 4 𝑖 ∈ {4} 3831 4880 Uncoded BPSK

2 4 bit multi-rate model 4 𝑖 ∈ {4, 8, 16, 20} 14 471 13 888 Uncoded BPSK
extended
Hamming(8,4)

3 7 bit multi-rate model 7 𝑖 ∈ {11, 15, 34} 671 151 767 616 s-BCH(11,7)
BCH(15,7)
s-BCH(34,7)

4 8 bit multi-rate code 8 𝑖 ∈ {6, 8, 17, 32, 40} 649 125 1 101 696 Uncoded BPSK
QRC(17,8)
d
d
[
t
T
t
1

t

n

‖

c
o
S

intermittent checkpointing of both models. Finally, Step 4 updates the
end-to-end network after weight averaging before the next training
iteration.

3.3. Channel functions

The assumed channel function that is applied during training of the
proposed model is the AWGN channel. Evaluation for the BER and BLER
is made on three channels, the AWGN and two variants of Rayleigh
fading differing in duration, the first applies fading to the entire block
(Block fading), and the second varies symbol to symbol (Bit fading).
When evaluation is carried out, the proposed models are not retrained
or tuned for the two additional fading channels.

In AWGN (Eq. (2)) additive Gaussian noise 𝑛(𝑡) is added to the
output of the transmitter 𝑧(𝑡), where 𝑡 is the discrete time step of the
transmitter output.

𝑟(𝑡) = 𝑧(𝑡) + 𝑛(𝑡) (2)

Eq. (3) shows the Rayleigh fading coefficient 𝑎(𝑡), at each discrete
time 𝑡, applied to the transmitted signal 𝑧(𝑡), prior to addition of
additive noise 𝑛(𝑡). The fading coefficient 𝑎(𝑡) = 1

√

2
|𝑎|𝑒𝑗𝜓 , is drawn from

a complex standard normal distribution 𝑎 ∼  (0, 1), and it’s argument
multiplied with the exponential waveform with phase parameter 𝜓 , we
ssume a constant phase 𝜓 = 0. The duration of the coefficient varies
9

p

under block or bit fading. In addition we assume no channel estimation
to reverse the effect of fading on the receiver.

𝑟(𝑡) = 𝑎(𝑡)𝑧(𝑡) + 𝑛(𝑡) (3)

The additive Gaussian noise 𝑛(𝑡) is drawn from the complex normal
istribution 𝑛(𝑡) ∼  (0, 𝜎2). The variance 𝜎2 is derived from the
esired SNR and the final output of the transmitter layer 𝑧(𝑡), having 𝑡 =
1⋯ 𝑇] discrete time steps. A desired level of noise is first supplied to
he channel simulation as the ratio of energy per bit to noise 𝐸𝑏∕𝑁0 dB.
o account for the selected code rate 𝑘∕𝑛, the 𝐸𝑏∕𝑁0 dB is converted
o the ratio of energy per symbol to noise 𝐸𝑠∕𝑁0 dB = 𝐸𝑏∕𝑁0 dB +
0𝑙𝑜𝑔10(𝑘∕𝑛). The components for 𝐸𝑠 and 𝑁0 are then estimated from
he transmitter symbols 𝑧(𝑡) where 𝐸𝑠 =

∑𝑇
𝑡=1 𝑧(𝑡)

2

𝑇 and 𝑁0 = 𝐸𝑠
𝐸𝑠∕𝑁0

. The

parameter 𝐸𝑠∕𝑁0 is also commonly referred to as SNR. The variance
is then estimated as 𝜎2 = 𝑁0∕2 and used to sample from the complex
ormal distribution.

The output at the transmitter is normalised by the energy constraint
𝑥‖22 ≤ 1 implemented in Eq. (4) where 𝑥(𝑡) ∈ C is the sequence of
omplex symbols output by the tanh activation layer and 𝑇 the number
f time steps in the sequence. During training it is possible to vary the
NR dB randomly or to train at a constant SNR dB. A fixed SNR of 6 dB

erformed best for the 4 bit message, however 7 bit and 8 bit messages

Applied Soft Computing 159 (2024) 111672C.P. Davey et al.

𝑧

4

m
t
a
r
p
p
o
s
s
A
i

F
c
r
b
(

Fig. 6. BER and BLER in AWGN of several training methods, training with a standard back-propagation algorithm and SWA weight averaging (MultiTxRx 1-Step SWA), multi-step
training without SWA (MultiTxRx NoSWA) and multi-step training with SWA and fixed SNR (MultiTxRx SWA Fixed SNR). Improvement in performance is indicated with the
addition of SWA as well as when training with the multi-step training procedure as opposed to the standard back-propagation.
were trained with random SNR between 0 − 9 dB.

(𝑡) =
𝑥(𝑡)

√

∑𝑇
𝑖=1 𝑥(𝑖)2∕𝑇

(4)

. Results

In this section we report the empirical evaluation for the proposed
odel at different code rates, listed in Table 3, for the AWGN and

he two fading channels. In each case we refer to the proposed model
s the MultiTxRx model to indicate a multi-branching transmitter and
eceiver. The first evaluation investigates the performance of the pro-
osed training algorithm. The second set of evaluations reports on the
erformance of different variations of the architecture. These two sets
f evaluations are used to examine the design choices for the model
tructure and training approach. After this we compare the set of code
ize configurations from Table 3 with the conventional codes in the
WGN channel, and evaluate performance without retraining or tuning

n the fading channels.
The performance of several training algorithms are evaluated in

ig. 6, with message size 𝐾 = 4 bits and code size 𝑁 = 4 (from
onfiguration 1, Table 3). Uncoded BPSK performance is included for
eference. The MultiTxRx 1-Step SWA model was trained using standard
ack-propagation and included weight averaging. MultiTxRx NoSWA
no weight averaging) and MultiTxRx SWA where trained with the

multi-step algorithm described in Fig. 5. The multi-step algorithm with
weight averaging (MultiTxRx SWA) produces lower BER and lower
BLER in comparison to standard back-propagation (MultiTxRx 1-Step
SWA). Training without weight averaging produces higher BER and
BLER.

Next, we compare the changes made to the AE architecture in Fig. 7
by training on multiple code sizes from configuration 2 in Table 3. The
different types of architecture shown in Fig. 7 include a Single Path AE,
Single Tx MultiRx, MultiTx SingleRx, MultiTxRx and MultiTxRx Residual.
The Single Path model consists of a single common path in the network.
The Single Tx MultiRx model applies a single path with a pooling layer
to realise multiple codes in the transmitter, and classifies multiple codes
using branching in the receiver. The structure is reversed in the MultiTx
SingleRx. When trained with multiple code sizes, MultiTxRx is similar
to the proposed architecture but does not feature skip connections
and the MultiTxRx residual is the proposed architecture, including skip
connections. The MultiTxRx Residual model performs better than the
other models and is close to the extended Hamming(8,4) BER. Both
versions of the MultiTxRx model exhibit similar BLER.
10
All code rates from configuration 2 in Table 3 are compared under
in the AWGN channel in Figs. 8 and 9 and in the Block Fading and Bit
Fading channels in Figs. 10 and 11 respectively. In the AWGN channel,
it is difficult to see the difference in performance between code rates
in relation to 𝐸𝑏∕𝑁0 (except for 𝐾 = 4, 𝑁 = 4). In contrast, Fig. 9
displays the BER and BLER related to the energy per symbol (𝐸𝑠∕𝑁0)
SNR dB. This example demonstrates that the smaller code rates can
achieve lower BER and BLER as the channel noise increases at the cost
of increased channel usage due to the increase in code size 𝑁 . The aim
of an AMC scheme is to maintain performance by trading off channel
use in varying SNR.

In the Block Fading channel (Fig. 10) we observe that the BER is
much higher than the uncoded BPSK while the BLER is much lower.
The BER is higher because symbol-wise classification does not perform
error correction of individual bits. An error on a code word may contain
more incorrect bits in a single forward pass estimation. However, this
approach achieves better BLER, as it can accurately classify, or map,
the entire code word for a corresponding message. In the Block Fading
channel, the entire code word is impacted by the channel fading. Bit-
interleaving techniques can be applied in this circumstance which can
produce an effect that is similar to a Bit Fading channel prior to
decoding. The difference between the code rates is most noticeable in
the Bit Fading channel (Fig. 11), performance improves as the code
rate decreases (at the expense of channel use). In this channel, the
𝐾 = 4, 𝑁 = 8 code is slightly better than the baseline extended
Hamming(8,4) code, as opposed to the AWGN channel. In the AWGN
channel, code rate 𝐾 = 4, 𝑁 = 8 is close to the baseline extended
Hamming(8,4) code, but differs slightly in higher SNR. The model is
not retrained on either of the fading channels and is able to perform
close to or better than the baseline.

Fig. 12 displays the performance of the 𝐾 = 7 bit message and
code rates from configuration 3 of Table 3 in the AWGN channel. The
figure shows slight gains for BLER over the shortened s-BCH(11,7)
and BCH(15,7) codes, and similar performance to the shortened s-
BCH(34,7) code. There is less difference in BER performance for these
codes. Under the Block Fading channel in Fig. 13 the BER is again
higher, but the BLER is lower in comparison to the reference codes.
In the Bit Fading channel, shown in Fig. 14, incremental gains are
achieved on all code rates in comparison to the BCH and shortened
codes (Fig. 14).

Configuration 4 from Table 3 for the 𝐾 = 8 bit message and selected
code sizes, is compared with the uncoded BPSK and the QRC code in
the AWGN (Fig. 15), Block Fading (Fig. 16) and Bit Fading (Fig. 17)

channels. In AWGN the BER produced by the model at the lower code

Applied Soft Computing 159 (2024) 111672

11

C.P. Davey et al.

Fig. 7. The multi-branching Tx Rx architecture is compared with four variants of the architecture, a non-branching single path architecture (Single Path), a single branch transmitter
with multi branch receiver (SingleTx MultiRx), the multi-branch transmitter and single receiver (MultiTx SingleRx) and multiple branching transmitter receiver with and without
residual connections (MultiTxRx Residual and MultiTxRx). The choice of network architecture influences performance for the multi-task estimation of multiple code rates.

Fig. 8. BER and BLER in AWGN for MultiTxRx model with K = 4 bits and N = [4, 8, 16, 20] compared with BPSK uncoded and extended Hamming(8,4) maximum likelihood
decoding (MLD).

Fig. 9. The coding gain for each respective code rate is visible when plotting the BER and BLER in AWGN over the energy per symbol (𝐸𝑠∕𝑁0) SNR dB. The advantage of learning
multiple codes enables operation under increased noise in the channel.

Applied Soft Computing 159 (2024) 111672

12

C.P. Davey et al.

Fig. 10. BER and BLER in the Block Fading channel for MultiTxRx model with K = 4 bits and N = [4, 8, 16, 20] compared with BPSK uncoded and extended Hamming(8,4)
maximum likelihood decoding (MLD). The proposed module was originally trained on the AWGN channel and is not trained for the Block Fading channel.

Fig. 11. BER and BLER in the bit fading channel for MultiTxRx model with K = 4 bits and N = [4, 8, 16, 20] compared with BPSK uncoded and extended Hamming(8,4) maximum
likelihood decoding (MLD). The proposed module was originally trained on the AWGN channel and is not trained for the bit fading channel.

Fig. 12. BER and BLER in the AWGN channel for MultiTxRx model with K = 7 bits and N = [11, 15, 34] compared with shortened BCH codes s-BCH(11,7), s-BCH(34,7) and
BCH code (15,7) maximum likelihood decoding (MLD), and trained with random SNR.

Applied Soft Computing 159 (2024) 111672C.P. Davey et al.

B

Fig. 13. BER and BLER in the Block Fading channel for MultiTxRx model with K = 7 bits and N = [11, 15, 34] compared with shortened BCH codes s-BCH(11,7), s-BCH(34,7)
and BCH code (15,7) maximum likelihood decoding (MLD). The proposed module was originally trained on the AWGN channel and is not trained for the Block Fading channel.
Fig. 14. BER and BLER in the bit fading channel for MultiTxRx model with K = 7 bits and N = [11, 15, 34] compared with shortened BCH codes s-BCH(11,7), s-BCH(34,7) and
CH code (15,7) maximum likelihood decoding (MLD). The proposed module was originally trained on the AWGN channel and is not trained for the bit fading channel.
Fig. 15. BER and BLER in the AWGN channel for MultiTxRx model with K = 8 bits and N = [6, 8, 17, 32, 40] compared with BPSK uncoded and Quadratic Residue Code (QRC)
K = 8, N = 17 maximum likelihood decoding (MLD), and trained with random SNR. The code (6,8) provides a higher channel usage than uncoded BPSK at 1.33 bits per channel
usage.
rates is similar to the baseline code QRC(17,8) and BLER is slightly
lower. The BER in the Block Fading channel, shown in Fig. 16, is
worse than the target baseline QRC code, however, as we have seen
in the other configurations, the BLER for the same code size and lower
code rates is slightly better than the reference code. In the Bit Fading
13
channel, both BER and BLER achieve equal or better performance than
the reference QRC(17,8) code. However, the BER for higher code rates
𝐾 = 8, 𝑁 = 8 and 𝐾 = 8, 𝑁 = 6 do not perform as well as the uncoded
BPSK in lower SNR, but do achieve gains for the BLER. This is also
apparent in the AWGN channel.

Applied Soft Computing 159 (2024) 111672C.P. Davey et al.

l
c
m
l
b
o
m

Fig. 16. BER and BLER in the Block Fading channel for MultiTxRx model with K = 8 bits and N = [6, 8, 17, 32, 40] compared with BPSK uncoded and Quadratic Residue Code
(QRC) K = 8, N = 17 maximum likelihood decoding (MLD). The proposed module was originally trained on the AWGN channel and is not trained for the Block Fading channel.
Fig. 17. BER and BLER in the bit fading channel for MultiTxRx model with K = 8 bits and N = [6, 8, 17, 32, 40] compared with BPSK uncoded and Quadratic Residue Code
(QRC) K = 8, N = 17 maximum likelihood decoding (MLD). The proposed module was originally trained on the AWGN channel and is not trained for the bit fading channel.
5. Discussion

Comparison of the proposed model with the selected codes s-
BCH(11,7), BCH(15,7), s-BCH(34,7) and QRC(17,8), demonstrated
lower BLER in each of the channels and notably under the Bit Fading
channel without retraining. While the BLER was close to the extended
Hamming(8,4) code in each of the channels. In both the AWGN and
Block Fading channels the BER was often poorer than the comparison
code. As noted this is due to the classification for an entire code word
rather than at the bit level and for the Block Fading channel, this
effect of fading can be mitigated through the use of bit interleaving.
However, the performance of a code is also dependent on the smallest
minimum distance between all code words. Since the transmitter learns
continuous codes, instead of binary codes, the minimum Euclidean
distance is more appropriate measure of distance for those codes.

Fig. 18 shows the Euclidean distances between each of the learnt
code words in the 𝐾 = 4, 𝑁 = 8 code. Ideally the transmitter should
earn a constellation related to the distance between messages. In some
ases, there is a larger distance between message code words with a
essage Hamming distance of 1, than those message code words with a

arger message Hamming distance. For example, the Euclidean distance
etween code words for messages 0000 and 0001, a Hamming distance
f 1, is larger than the Euclidean distance between code words for
14

essages 0000 and 0111 with a Hamming distance of 3. The confusion
matrix for the classifier is shown in Fig. 19, for messages 0000 and
0111 the percentage of incorrect classifications is approximately 3%,
slightly higher than the incorrect classification between 0000 and 0001.
The minimum Euclidean distance of the code does appear to be related
to the performance of the learnt code. For those codes which have
a lower BLER than the comparative code, the minimum Euclidean
distance and mean Euclidean distances are close to or exceed that of the
corresponding code. Table 4 lists the minimum, mean and variance of
the Euclidean distance 𝑑𝐸 calculated for the constellations of the learnt
and comparison codes.

The changes to the AE to support multiple code rates does require
an increase in the number of parameters overall within the neural
network. This is to support generalisation over multiple code rates.
However, the use of a common shared path for multiple codes does
reduce the total number of parameters required in comparison to
training separate models. The size of four single AE neural networks
are shown in Table 5. The proposed branching model requires less
parameters in a branching AE that can produce four different code rates
in comparison to four separate AE.

The proposed models produced gains in BLER in comparison to
the conventional codes under each of the channels. However it is not
clear whether to attribute this gain to the learnt code or the inference
supported by the AE. To investigate this, we developed a table based
transmitter and MLD receiver for the code rate 𝐾 = 7, 𝑁 = 15. Symbols

Applied Soft Computing 159 (2024) 111672C.P. Davey et al.
Table 4
Computed minimum, mean and variance of euclidean distances for learnt and BPSK modulated reference codes.

Code rate 𝑑𝐸𝑚𝑖𝑛 𝐸[𝑑𝐸] 𝑉 𝑎𝑟[𝑑𝐸] Reference code Code 𝑑𝐸𝑚𝑖𝑛 Code 𝐸[𝑑𝐸] Code 𝑉 𝑎𝑟[𝑑𝐸]

K = 4, N = 8 3.83 4.12 0.08 Ext Hamming(8,4) 4 4.11 0.17
K = 7, N = 11 3.67 4.69 0.2 s-BCH(11,7) 3.46 4.66 0.47
K = 7, N = 15 4.38 4.38 0.19 BCH(15,7) 4.47 5.46 0.44
K = 7, N = 34 6.91 8.3 0.29 s-BCH(34,7) 6.63 8.25 0.53
K = 8, N = 17 4.34 5.82 0.23 QRC(17,8) 4.9 5.8 0.47
Fig. 18. Euclidean distances between pairwise codewords for each input sequence,
learnt by the K = 4, N = 8 MultiTxRx auto-encoder.

Fig. 19. The confusion matrix for the K = 4, N = 8 code rate under the block fading
channel. Figures are relative to the predicted labels. While the classifier achieves a
high level of accuracy on the BLER, there is sufficient difference between messages to
cause high BER.

for corresponding 7 bit messages output by the MultiTxRx K = 7, N
= 15 model were stored in a lookup table and transmitted over a
AWGN channel. If the gain was solely due to the learnt receiver, we
15
Table 5
The number of parameters for combined separate code rate models versus the multi-task
shared path model. The shared path architecture provides less total parameters than
separate models for each code rate.

Model variant K N Parameters

K = 4 N = 4 bit model 4 𝑖 ∈ {4} 8711
K = 4 N = 8 bit model 4 𝑖 ∈ {8} 9951
K = 4 N = 16 bit model 4 𝑖 ∈ {16} 12 431
K = 4 N = 20 bit model 4 𝑖 ∈ {20} 13 671
Total 44 764

4 bit multi-rate model 4 𝑖 ∈ {4, 8, 16, 20} 28 359

expect the MLD receiver to exhibit higher BLER. The MLD receiver
performed nearest neighbour decoding for received channel values
against the table of modulated symbols. The performance of the MLD
receiver matched the performance of the proposed branching AE model
in the corresponding channel (Fig. 20). This indicates that the gains
observed are generated due to the learnt constellations resulting from
training. This approach demonstrates potential use of DL for wireless
communications as a method for code design which may be applied
independently of the trained model.

6. Conclusions and future work

In this article we have presented a branching AE architecture ca-
pable of automatically learning multiple code rates for AMC schemes.
The proposed branching architecture extends applications of the AE
architecture beyond the learning of a single code rate to the learning
of multiple code rates. The choice of assumed channel during training
is highly influential to the resulting performance of the AE in other
channels. As a result, the ability to train a receiver separately on
a real channel provides the ability to further optimise the system
performance after deployment. The proposed branching AE for multiple
code rates, is demonstrated to perform well under a variety of changing
channel conditions, achieving gains in BLER compared to the selected
conventional codes. By leveraging an AMC scheme the approach offers
the potential to mitigate the requirement of receiver tuning in AE
for wireless communications. However, there remains a number of
limitations for the practical application of the DL approach requiring
further investigation.

First, in this article we have assumed perfect synchronisation at
the receiver. While it is possible to apply conventional methods for
synchronisation with learnt modulation and coding schemes, it is de-
sirable that synchronisation be addressed as part of the end-to-end AE
architecture.

Second, classification based architectures not only do not scale to
higher message lengths, but cannot provide error correction functional-
ity. Hence work on bit-wise decoding for longer message lengths, either
as part of a concatenated code, or as a standalone network will be a
significant part of the practical application of such models, some of
this work has already been described in the related work section of
this paper.

Third, there has been work investigating the sensitivity of such
architectures to their training conditions and whether they are brittle
in terms of adversarial attacks. While we do not directly explore
this concern, there is a connection between network regularisation
and training methods required to mitigate adversarial attacks. In [29]

Applied Soft Computing 159 (2024) 111672C.P. Davey et al.
Fig. 20. BER and BLER in the AWGN channel of the learnt constellation for the (15,7) code produced by a table based transmitter and MLD receiver compared with the end-to-end
model and BCH(15,7) code.
conventional Hamming codes are shown to be more robust under
adversarial and jamming attacks than AEs. It is suggested in [30] that
adversarial examples are transferable across different models, thereby
enabling black-box attacks. This raises the importance for future inves-
tigation into regularisation methods for end-to-end learning in wireless
communications and evaluation under adversarial interference.

Fourth, as we have discussed, the Euclidean distances between
messages for neighbouring codes may be larger those several message
bits away. This negatively impacts the performance of the BER, as mis-
classification results in a higher number of incorrect bits. Future work
should investigate the ability of the transmitter to learn distance based
relationships between source messages. In addition, while we have
assumed no channel information at the receiver, it may be possible to
incorporate or learn such information to enhance receiver performance
in the end-to-end learning scenario.

The tuning of the receiver over varying channel conditions would
be time consuming in a deployed system and may lead to poor perfor-
mance on the original channel, for which it was first trained. Whether
it is practical to tune a receiver over the air, and how much training
is required, is a matter for consideration. A practical solution may
be to use a branching AE with multiple code rates under changing
conditions. This would permit operation whilst a separate model is
adapted in the background. The question of how to update such a model
while mitigating catastrophic forgetting in changing channel conditions
deserves further investigation.

Finally, the mapping between channel environment and choice of
code rate relies on measurements such as expected BER and BLER
over associated SNR. It is feasible to imagine the joint learning of
AMC and channel performance mapping, extending the work described
in [31,32]. More recent research in the industrial internet of things
(IIoT) consider wireless communications as part of a joint optimisation
objective in seeking to reduce energy consumption over the collective
sensor network [33,34]. A potential application would be to learn
energy efficient communication schemes for the IIoT setting, which are
adaptive to operational constraints in addition to channel conditions,
in an end-to-end manner.

The flexibility of the AE architecture provides competitive perfor-
mance not only in learning a single code rate, but also as we have
shown, in learning AMC schemes with varying error-rate performance
and spectral efficiencies. By framing the learning problem as MTL,
the proposed architecture enables the deployment of a single model,
instead of requiring multiple separate models for each code rate.
16
CRediT authorship contribution statement

Christopher P. Davey: Conceptualisation, Methodology, Imple-
mentation. Ismail Shakeel: Conceptualisation, Coordination, Edito-
rial. Ravinesh C. Deo: Coordination, Editorial. Ekta Sharma: Edi-
torial. Sancho Salcedo-Sanz: Coordination, Editorial. Jeffrey Soar:
Coordination, Editorial.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data used in this article is generated through simulation. The sim-
ulation process is described in the methodology section of the article,
alongside the energy constraints and channel distortions.

Acknowledgements

This research is supported by UniSQ-DSTG Postgraduate Research
Scholarship 2021–2024 on the ‘Design of Efficient Artificial Intelli-
gence Algorithms for Future Communication Systems’. It is funded by
the Department of Defence, Commonwealth of Australia under a DSP
Scholarship (Project-Based) Agreement 10254.

References

[1] G. Caire, K.R. Kumar, Information theoretic foundations of adaptive coded
modulation, Proc. IEEE 95 (12) (2007) 2274–2298.

[2] Timothy O’Shea, Jakob Hoydis, An introduction to deep learning for the physical
layer, IEEE Trans. Cogn. Commun. Netw. 3 (4) (2017) 563–575.

[3] S. Dörner, S. Cammerer, J. Hoydis, S. t. Brink, Deep learning based com-
munication over the air, IEEE J. Sel. Top. Sign. Proces. 12 (1) (2018)
132–143.

[4] Hao Ye, Le Liang, Geoffrey Ye Li, Biing-Hwang Juang, Deep learning-based
end-to-end wireless communication systems with conditional GANs as unknown
channels, IEEE Trans. Wirel. Commun. 19 (5) (2020) 3133–3143.

[5] F.A. Aoudia, J. Hoydis, End-to-end learning of communications systems without
a channel model, in: 2018 52nd Asilomar Conference on Signals, Systems, and
Computers, 2018, pp. 298–303.

[6] Michael Crawshaw, Multi-task learning with deep neural networks: A survey,
2020, arXiv preprint arXiv:2009.09796.

[7] Michael McCloskey, Neal J. Cohen, Catastrophic interference in connectionist
networks: The sequential learning problem, in: Psychology of Learning and
Motivation, Vol. 24, Elsevier, 1989, pp. 109–165.

http://refhub.elsevier.com/S1568-4946(24)00446-0/sb1
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb1
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb1
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb2
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb2
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb2
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb3
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb3
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb3
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb3
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb3
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb4
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb4
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb4
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb4
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb4
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb5
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb5
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb5
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb5
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb5
http://arxiv.org/abs/2009.09796
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb7
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb7
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb7
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb7
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb7

Applied Soft Computing 159 (2024) 111672C.P. Davey et al.
[8] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, Yoshua Bengio,
An empirical investigation of catastrophic forgetting in gradient-based neural
networks, 2013, arXiv preprint arXiv:1312.6211.

[9] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, Andrew Gor-
don Wilson, Averaging weights leads to wider optima and better generalization,
2018, arXiv preprint arXiv:1803.05407.

[10] Fayçal Ait Aoudia, Jakob Hoydis, Model-free training of end-to-end communica-
tion systems, IEEE J. Sel. Areas Commun. 37 (11) (2019) 2503–2516.

[11] S. Cammerer, F.A. Aoudia, S. Dörner, M. Stark, J. Hoydis, S. ten Brink, Trainable
communication systems: Concepts and prototype, IEEE Trans. Commun. 68 (9)
(2020) 5489–5503.

[12] N.A. Letizia, A.M. Tonello, Capacity-driven autoencoders for communications,
IEEE Open J. Commun. Soc. 2 (2021) 1366–1378.

[13] Rich Caruana, Multitask Learning (Ph.D. thesis), Carnegie Mellon University,
Pittsburgh, PA, 1998.

[14] Kevis-Kokitsi Maninis, Ilija Radosavovic, Iasonas Kokkinos, Attentive single-
tasking of multiple tasks, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 1851–1860.

[15] E. Armanious, D.D. Falconer, H. Yanikomeroglu, Adaptive modulation, adaptive
coding, and power control for fixed cellular broadband wireless systems: some
new insights, in: 2003 IEEE Wireless Communications and Networking, 2003,
WCNC 2003, Vol. 1, 2003, pp. 238–242, vol.1.

[16] Joseph Downey, Dale Mortensen, Michael Evans, Janette Briones, Nicholas Tollis,
Adaptive coding and modulation experiment using NASA’s space communication
and navigation testbed, in: 2016 Communications Satellite Systems Conference,
ICSSC, 2016.

[17] Intae Hwang, Taewon Jang, Mingoo Kang, Sangmin No, Jungyoung Son, Daesik
Hong, Changeon Kang, Performance analysis of adaptive modulation and coding
combined with transmit diversity in next generation mobile communication
systems, Future Gener. Comput. Syst. 20 (2) (2004) 189–196.

[18] D. Wu, S. Ci, Cross-layer design for combining adaptive modulation and coding
with hybrid ARQ to enhance spectral efficiency, in: 2006 3rd International
Conference on Broadband Communications, Networks and Systems, 2006, pp.
1–6.

[19] A.J. Goldsmith, S.G. Chua, Adaptive coded modulation for fading channels, IEEE
Trans. Commun. 46 (5) (1998) 595–602.

[20] Shu Lin, Juane Li, Fundamentals of Classical and Modern Error-
Correcting Codes, Cambridge University Press, Cambridge, 2021, URL
https://www.cambridge.org/core/books/fundamentals-of-classical-and-modern-
errorcorrecting-codes/19A81ED5D7E9C6A1EBB9657683B6E39C.

[21] Florence Jessie MacWilliams, Neil James Alexander Sloane, The Theory of
Error-Correcting Codes, vol. 16, Elsevier, 1977.

[22] Raj Chandra Bose, Dwijendra K. Ray-Chaudhuri, On a class of error correcting
binary group codes, Inf. Control 3 (1) (1960) 68–79.

[23] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
2016, pp. 770–778.

[24] Sergey Ioffe, Christian Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift, in: Francis Bach, David Blei (Eds.),
Proceedings of the 32nd International Conference on Machine Learning, in:
Proceedings of Machine Learning Research, vol. 37, PMLR, 2015, pp. 448–456,
URL https://proceedings.mlr.press/v37/ioffe15.html.

[25] Xavier Glorot, Antoine Bordes, Yoshua Bengio, Deep sparse rectifier neural
networks, in: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, JMLR Workshop and Conference Proceedings, 2011,
pp. 315–323.

[26] Prajit Ramachandran, Barret Zoph, Quoc V. Le, Searching for activation
functions, 2017, arXiv preprint arXiv:1710.05941.

[27] L.N. Smith, Cyclical learning rates for training neural networks, in: 2017 IEEE
Winter Conference on Applications of Computer Vision, WACV, 2017, pp.
464–472.

[28] Diederik P. Kingma, Jimmy Ba, Adam: A method for stochastic optimization,
2014, arXiv preprint arXiv:1412.6980.

[29] M. Sadeghi, E.G. Larsson, Physical adversarial attacks against end-to-end
autoencoder communication systems, IEEE Commun. Lett. 23 (5) (2019)
847–850.

[30] Shan Ai, Arthur Sandor Voundi Koe, Teng Huang, Adversarial perturbation in
remote sensing image recognition, Appl. Soft Comput. 105 (2021) 107252, URL
https://www.sciencedirect.com/science/article/pii/S1568494621001757.

[31] S. Kojima, K. Maruta, C.J. Ahn, Adaptive modulation and coding using neural
network based SNR estimation, IEEE Access 7 (2019) 183545–183553.

[32] P.V.R. Ferreira, R. Paffenroth, A.M. Wyglinski, T.M. Hackett, S.G. Bilen, R.C.
Reinhart, D.J. Mortensen, Reinforcement learning for satellite communications:
From LEO to deep space operations, IEEE Commun. Mag. 57 (5) (2019) 70–75.
17
[33] Sarogini Grace Pease, Russell Trueman, Callum Davies, Jude Grosberg, Kai Hin
Yau, Navjot Kaur, Paul Conway, Andrew West, An intelligent real-time cyber-
physical toolset for energy and process prediction and optimisation in the future
industrial internet of things, Future Gener. Comput. Syst. 79 (2018) 815–829,
URL https://www.sciencedirect.com/science/article/pii/S0167739X1630382X.

[34] Jiwei Huang, Han Gao, Shaohua Wan, Ying Chen, Aoi-aware energy con-
trol and computation offloading for industrial IoT, Future Gener. Comput.
Syst. 139 (2023) 29–37, URL https://www.sciencedirect.com/science/article/pii/
S0167739X22002916.

Christopher P. Davey has a Master of Information Technol-
ogy degree from the Queensland University of Technology
(QUT, Australia) in 2007 and completed a Master of
Science majoring in mathematics and statistics from The
University of Southern Queensland (UniSQ, Australia) in
2020. Chris has over a decade of professional experience
in software development and systems integration. He is
currently progressing work on a PhD program at UniSQ
with the focus of his research being on ‘‘Deep Learning
for Wireless Communications’’. He has worked on ‘‘Artificial
Intelligence for Decision-Making (AI4DM)’’ and ‘‘AI-enabled
communicating systems’’ research project funded by the
Australian Government’s Department of Defence.

Ismail Shakeel received a Ph.D. degree in Telecommuni-
cations in 2007 and a BEng (Hons) degree in Electronic
Engineering in 1997 from the University of South Australia.
He has completed two master’s degrees at the University of
Canterbury (NZ) and Monash University in 2001 and 2002
respectively. Ismail joined Defence Science and Technology
Group (DSTG) in 2011 and is currently with the Information
Sciences Division at DSTG. Ismail is also an Adjunct Profes-
sor at the University of Southern Queensland. Before joining
DSTG, he has worked in both academia and industry and
holds a patent and generated more than 40 technical reports
and publications in the field of telecommunications. Is-
mail’s current research interests include signal detection and
classification techniques, artificial intelligence-enabled wire-
less communication, interference-resistant signalling, chaotic
communication, and cooperative wireless communication.

Ravinesh C. Deo is a Highly Cited Author, 2021 Clarivate)
leads UniSQ’s Advanced Data Analytics Lab as Professor at
the University of Southern Queensland (UniSQ), Australia.
He is a Clarivate Highly Cited Researcher with publications
ranking in top 1% by citations for field and publication
year in the Web of Science citation index and is among
scientists and social scientists who have demonstrated sig-
nificant broad influence, reflected in the publication of
multiple papers frequently cited by their peers. He leads
cross-disciplinary research in deep learning and artificial
intelligence, supervising 20+ Ph.D./M.Sc. Degrees. He has
received Employee Excellence Awards, Elsevier Highly Cited
Paper Awards, and Publication Excellence and Teaching
Commendations. He has published more than 270 articles,
150 journals, and seven books with a cumulative citation
that exceeds 11,600.

Ekta Sharma holds a Ph.D. degree in Artificial Intelligence
from University of Southern Queensland, Australia. She
completed her M.Phil., M.Sc. (Operations Research), and
B.Sc. (Mathematical Sciences), from the University of Delhi,
India. She has over a decade of experience in both Academia
and Industry across varied roles from Area Manager to
Learning Advisor, Lecturer, and Researcher at Universi-
ties in Europe, India, and Australia. Her research work
has received funding from the Australian Government, the
Australian Defence Science and Technology Group, The Aus-
tralian Mathematical Sciences Institute, and the Australian
Tropical Agriculture Institute. She is working on varied
cross-disciplinary research projects in artificial intelligence
and Wireless Communications.

http://arxiv.org/abs/1312.6211
http://arxiv.org/abs/1803.05407
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb10
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb10
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb10
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb11
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb11
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb11
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb11
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb11
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb12
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb12
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb12
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb13
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb13
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb13
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb14
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb14
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb14
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb14
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb14
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb15
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb15
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb15
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb15
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb15
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb15
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb15
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb16
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb16
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb16
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb16
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb16
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb16
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb16
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb17
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb17
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb17
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb17
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb17
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb17
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb17
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb18
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb18
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb18
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb18
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb18
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb18
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb18
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb19
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb19
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb19
https://www.cambridge.org/core/books/fundamentals-of-classical-and-modern-errorcorrecting-codes/19A81ED5D7E9C6A1EBB9657683B6E39C
https://www.cambridge.org/core/books/fundamentals-of-classical-and-modern-errorcorrecting-codes/19A81ED5D7E9C6A1EBB9657683B6E39C
https://www.cambridge.org/core/books/fundamentals-of-classical-and-modern-errorcorrecting-codes/19A81ED5D7E9C6A1EBB9657683B6E39C
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb21
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb21
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb21
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb22
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb22
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb22
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb23
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb23
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb23
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb23
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb23
https://proceedings.mlr.press/v37/ioffe15.html
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb25
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb25
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb25
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb25
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb25
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb25
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb25
http://arxiv.org/abs/1710.05941
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb27
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb27
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb27
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb27
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb27
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb29
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb29
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb29
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb29
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb29
https://www.sciencedirect.com/science/article/pii/S1568494621001757
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb31
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb31
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb31
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb32
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb32
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb32
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb32
http://refhub.elsevier.com/S1568-4946(24)00446-0/sb32
https://www.sciencedirect.com/science/article/pii/S0167739X1630382X
https://www.sciencedirect.com/science/article/pii/S0167739X22002916
https://www.sciencedirect.com/science/article/pii/S0167739X22002916
https://www.sciencedirect.com/science/article/pii/S0167739X22002916

Applied Soft Computing 159 (2024) 111672C.P. Davey et al.
Sancho Salcedo-Sanz was born in Madrid, Spain, in 1974.
He received the B.S degree in Physics from Universidad
Complutense de Madrid, Spain, in 1998, the Ph.D. degree
in Telecommunications Engineering from the Universidad
Carlos III de Madrid, Spain, in 2002, and the Ph.D. degree in
Physics from Universidad Complutense de Madrid in 2019.
He spent one year in the School of Computer Science, The
University of Birmingham, U.K, as postdoctoral Research
Fellow. Currently, he is a Full Professor at the department
of Signal Processing and Communications, Universidad de
Alcalá, Spain. He has co-authored more than 240 inter-
national journal papers in the field of Machine Learning
and Soft-Computing and its applications. His current inter-
ests deal with Soft-computing techniques, hybrid algorithms
18
and neural networks in different problems of Science and
Technology.

Jeffrey Soar is Personal Chair in Human-Centered Tech-
nology at the School of Business, University of Southern
Queensland. His research is in AI, e-business, e-health,
technology and development, and social and organisational
change. He came to academic research from a long and
distinguished career in industry including as chief informa-
tion officer in government agencies in Australia and New
Zealand.

	End-to-end learning of adaptive coded modulation schemes for resilient wireless communications
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	METHODOLOGY
	Model Architecture
	Training Algorithm
	Channel Functions

	RESULTS
	DISCUSSION
	ConclusionS AND FUTURE WORK
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

