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ABSTRACT 
Odours caused by intensive piggery operations have become a major environmental 

issue in the piggery industry in Australia. Effluent ponds are the major source of odours 

in typical piggeries. It is assumed that the odour emissions from ponds are mainly driven 

by pond loading rate. However, there are few data to corroborate this concept.  

 
 Allied to this is the need for a convenient and low cost method of odour 

measurement, which can be used as an alternative method for current olfactometry. The 

present odour measurement methods using olfactometry is time-consuming, expensive 

and often impractical because of its fundamental problem of using subjective human 

panels. 

 
In addition, one of the major problems in odour measurement lies in the air sampling 

method. Wind tunnels have been accepted as a preferred method for the sampling of 

odour from area sources. However, current wind tunnels do not consider meteorological 

factors, which directly affect the odour emission rates.  

 
A machine-based odour quantification method and a novel wind tunnel were 

developed and evaluated in this Ph D study. These methods were then used in a 

demonstration trial to investigate the effects of pond loading rate on odour emissions.  

 
The AromaScan A32S electronic nose, and an artificial neural network were used to 

develop the machine based odour quantification method. The sensor data analysed by the 

AromaScan were used to train an ANN, to correlate the responses to the actual odour 

concentration provided by a human olfactometry panel. Preprocessing techniques and 

different network architectures were evaluated through network simulation to find an 

optimal artificial neural network model. The simulation results showed that the two-layer 

back-propagation neural network can be trained to predict piggery odour concentrations 

correctly with a low mean squared error. The trained ANN was able to predict the odour 

concentration of nine unknown air samples with a value for the coefficient of correlation, 

r2 of 0.59.  

 
A novel wind tunnel was developed for odour sampling. The USQ wind tunnel was 

designed to have a capability to control wind speed and airflow rate. The tunnel was 
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evaluated in terms of the aerodynamics of the airflow inside the tunnel, and the gas 

recovery efficiency rate, in order to further improve the performance of the wind tunnel 

 
The USQ wind tunnel showed that sample recovery efficiencies ranging from 61.7 to 

106.8%, while the average result from the entire trial was 81.1%. The optimal sample 

recovery efficiency of the tunnel was observed to be 88.9% from statistical analysis. 

Consequently, it can be suggested that the tunnel will give estimates of the odour 

emission rate with significant level of precision. However, the tunnel needs to be 

calibrated to compensate for the error caused by different airflow rates and odour 

emission rates. In addition, the installation of a perforated baffle upstream of the 

sampling section was suggested to improve its performance.   

 
To investigate the relationship between the pond loading rate and odour emission rate, 

replicable experimental studies were conducted using a novel experimental facility and 

the machine based odour quantification method. The experimental facility consisted of 

reactor vessels to simulate the operation of effluent ponds and the USQ wind tunnel for 

odour sampling.  

 
A strong relationship between organic loading rate (OLR) and physical and chemical 

parameters was observed except pH and NH3-N. The pH was not affected by OLR due to 

the buffering capacity of piggery effluent. EC and COD were suggested as indicators to 

estimate the operating condition of the piggery effluent ponds because the regression 

results show that these two parameters can be predicted accurately by OLR. The time 

averaged odour emission rates from the reactor vessels showed a strong relationship with 

OLR. Consequently, it can be concluded that heavily loaded effluent ponds would 

produce more odours.  

 
The effect of hydraulic retention time (HRT) was examined. The HRT was increased 

from 30 days to 60 days, resulting in a significant decrease in odour emission rates from 

the reactor vessels. This decrease ranged from 59.1% to 54.9%, with an average of 57.1%. 

Therefore, it can be concluded that the increasing HRT will decrease the odour emission 

rate. 

 
 This trial confirmed the value of the project methodology in obtaining unambiguous 

data on odour emission processes. However, more data are required for a wider range of 

OLR, HRT and other pertained variables before a usable model can be formulated. 
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Ai inlet area of the wind tunnel, m2 

Ao outlet area of the wind tunnel, m2 

As surface area covered by the tunnel, m2 

At cross sectional area of the tunnel, m2 

C odour concentration, OU/m3 

Ci measured odour emission rate, OU/m2s 

Cm measured average concentration in the measurement section, kg/m3 

Co concentration of odorant at the detection threshold 

Cs odour concentration in the bag, OU/m3 

Cz measured odour concentration at the selected sampling location 

C  mean odour concentration, OU/m3 

c′  fluctuating components of odour concentration, OU/m3 

D duct diameter, m 

e vector of network errors 

EVOLP effective or useful liquid volume of pond 

Fg 
vertical flux of odour that is transferred by turbulence from the surface to the 

atmosphere, OU/m2 

v′  fluctuating components of wind speed, m/s 

HRTT theoretical mean hydraulic retention time, days 

I odour intensity (perceived strength), dimensionless 

J 
Jacobian matrix that contains first derivatives of the network errors with 

respect to the weights and biases turbulence intensity; is the  

k temperature factor according to piggery location, g/m³day 

Kg turbulent diffusivities for odour, m2/s 

Km turbulent diffusivities for momentum, m2/s 

kw Weber-Fechner constant 

LP pond life, year 
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CV  mean component of horizontal flux of odour, OU/m2s 

iC  mean odour concentration averaged over the inlet area, OU/m3 

oC  mean odour concentration averaged over the outlet area, OU/m3 

C  mean odour concentration, OU/m3 

sQ  mean volume airflow rate through the tunnel, m3/s 

Q  mean volumetric airflow rate through the tunnel, m3/s 

EQ  average flowrate of the piggery effluent entering the pond 

0,RQ  volume airflow rate at standard conditions (0 °C and 101.3kPa), m3/s 

n number of areas 

OER odour emission rate, OU/m2s 

OER1 odour emission rate corresponding to wind speed 1m/s, OU/m2s 

OER2 odour emission rate corresponding to actual ground level wind speed, OU/m2s 

OERA actual odour emission rate measured by olfactometry, OU/ m2s 

OERa calculated odour emission rate, OU/ m2s 

OERP predicted odour emission rate by the AromaScan, OU/m2s 

OERV odour emission rate corresponding to wind speed V, OU/m2s 

p absolute pressure inside the vent, kPa 

Ps absolute pressure in the tunnel, kPa 

Q flow rate through the wind tunnel, m3/s 

Qm volume flow rate measured inside the vent, m3/s 

Re Reynolds number 

SAR sludge accumulation rate in pond, m3/kg 

t air temperature inside the vent, ◦C 

TSL total solid loading rate, kg/year 

V0.125 wind speeds (m/s) at 0.125m heights 

V1 wind speed inside wind tunnel for sample collection 

V10 wind speeds (m/s) at 10m heights 

V2 actual ground level wind speed 

Vi wind speed in area i (m/s) 

AVOL  active volume of effluent pond, m3 

VOLO volume of effluent pond for odour control, m3 
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VOLP total liquid volume of pond 

sVOL  sludge volume in effluent pond, m3 

Vref wind speed at the wind measurement height Zref, m/s 

VSO standard VS loading rate for odour control, 61 g VS/m³day 

LVS  volatile solid loading rate, g/day 

Vt wind speed inside the tunnel, m/s 

Vz wind speed at height Z above the ground, m/s 

V
(

 
wind speed at a height of 1m based on 1m/s at half tunnel height based on 

Urwin Rural coefficients for the stability classes 

V  mean horizontal wind speed, m/s 

V  bulk wind speed in the duct of the wind tunnel, m/s 

z height above the surface, m 

ZITE panellists’ individual threshold estimate 

α recovery rate of the sampling system 

ρa air bulk density, kg/m3 

τ0 momentum flux or shear stress, kg/ms2 

υ dynamic viscosity of the air, kg/ms 

Φexp CO emission rate emitted from the ground of testing section, kg/m2s 

Φi odour mass flux through the inlet area, OU/m2s 

Φo odour mass flux through the outlet area, OU/m2s 

Ψz non dimensional coefficient at the sampling height 
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CHAPTER 1 

INTRODUCTION 

 

 

 

 

 

 

1.1 Background 

The pork industry in Australia is important to the nation’s economic well 

being, producing $855 million per year in farm revenue that contributes to the 

vitality of rural communities. It has played an important role in the agricultural 

export market through the export of $195 million of pig meat to about 47 

countries in 2001 (APL, 2002).  

 

In the meantime, odours, in particular those caused by intensive piggery units, 

have become a major environmental issue at Australian piggeries. Regulatory 

authorities wish to ensure that neighbours do not experience odour nuisance. 

Nuisance occurs when the frequency, intensity, duration and offensiveness of the 

odours cause unreasonable interference with a neighbour’s lifestyle. 

 

Often regulatory authorities require the use of air dispersion modelling to 

prove that odour nuisance will not occur too often. Alternatively, regulatory 

authorities use standard guidelines to determine allowable separation distances. 

These guidelines for planning and licensing are aimed at maintaining adequate 

buffer zones between piggery operations and residents. However, the nature of 

pig production has changed and these guidelines and regulations are outdated and 

they are no longer applicable to present pig production practices (Watts, 1999b). 
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Other environmental impacts of pig production have also become a major 

consideration. Nutrient recycling and disposal, ammonia emissions, greenhouse 

gas emissions and odours are now significant issues that concern the sustainability 

of the industry. 

 

In the piggery industry, odour emissions from effluent treatment ponds are 

identified as the main cause of the nuisance to neighbours. Effluent ponds are the 

major source of odours in typical Australian piggeries, contributing about 75% of 

all odour emissions (Smith et al, 1999). In order to solve this problem, the first 

step is to accurately quantify the emission rates of odour from effluent ponds. 

Current methods for estimating odour nuisance use standard emission rates that 

do not take into account the effect of loading rates and effluent characteristics. 

Consequently, there is considerable difference between the estimated and 

measured values. 

 

Appropriately designed and well-managed ponds are observed to produce a 

lower odour than overloaded and undersized ponds, but there are few data to 

corroborate this observation.  A more complete data set of gross odour emission 

rates and effluent characteristics is required from a range of piggery effluent 

treatment ponds. Such data will assist in the planning of new and expanding 

piggery developments. Also required are easy-to-measure indicators of pond 

conditions and the likelihood of odour emissions.  Allied to this is the need for a 

convenient and low cost method of odour measurement, which is able to be used 

as an alternative method for current olfactometry. 

 

As the human nose has been the only satisfactory device for odour 

measurement, olfactometry, in which a human odour panel evaluates the odours, 

has been accepted as the most precise odour measurement technique for odour 

quantification. Human assessment, however, can be time-consuming and 

expensive. In addition, odour samples may degrade rapidly with time so human 

panels have to perform evaluations shortly after sample collection for accurate 
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assessment. Since piggery odour research is being conducted all around the nation 

on a 24-hour basis, odour testing with human panels is often impractical. 

Therefore, a rapid, accurate, cost-effective technique to measure and evaluate 

odour emissions is vitally important to the piggery industry. 
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1.2 Research development 

Initial proposals for this dissertation concerned research into the development 

of a model to describe the relationship between pond loading or condition and 

odour emission rate so as to enable the quantitative prediction of odour emission 

and dispersion from effluent ponds.  It was expected that this model would be 

used for the sizing of ponds for odour control (Sohn, 2001). This need had been 

identified from the comprehensive literature review as a key issue in the 

sustainability of the piggery industry. It was believed that the development of 

appropriate odour minimisation strategies for effluent ponds through an odour 

prediction model would assure the further development of intensive piggery units.  

 

However, it soon became apparent that this was not the true state of affairs. A 

number of problems were encountered which altered the focus of the research 

work. It became apparent that before the issue of odour modelling could be 

addressed it would be necessary to develop a range of more appropriate odour 

sampling and quantification techniques. 

 

  While there existed a number of air sampling methods used for odour 

research, it was found that none of these sampling methods truly addressed the 

effect of meteorological factors such as wind speed on odour emissions. As will 

be discussed in later section of this dissertation, the odour emission rate from the 

effluent pond is known to depend on volatile organic loading rate, the 

characteristics of the effluent (volatile solids, pH, and temperature) and 

meteorological factors. It was also found that despite various air sampling 

methods currently used, these methods do not offer the reliable and confident data 

set required for regulatory or practical implementation of the odour assessment 

work.  

 

Furthermore, there was the urgent need for a convenient and low cost method 

of odour measurement that is able to be used as an alternative method to current 
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olfactometry. Thus, the decision was made to shift the focus of the research to 

develop a novel odour measurement and sampling methodology and to evaluate it 

through a series of experiments using effluent pond simulating reactor vessels.  



Chapter 1. INTRODUCTION 

Ph. D dissertation 
  Page 6 

 

1.3 Overview of research 

1.3.1 Hypothesis of research  

The hypothesis underlying this Ph. D study is outlined as: 

“It is possible to develop novel odour measurement methodologies 

involving wind tunnels and electronic nose technology. The relationship 

between pond loading condition and odour emission rate enables the 

quantitative prediction of odour emission. Such a model can be used for 

sizing ponds for odour control.”  

 

 

1.3.2 Key issues identified for investigation 

In addressing the effects of pond loading rate on odour emissions in the 

piggery industry, three key areas of odour measurement technology have been 

identified and addressed in this dissertation. These are: 

o Development and experimental verification of a novel wind tunnel for 

odour sampling; 

o Application of the electronic nose and artificial neural network for odour 

quantification; and 

o Investigation of the effects of pond loading rate on odour emissions.  

 

 

 

Development and experimental verification of a novel wind tunnel for odour 

sampling 

One of the major challenges in quantifying odours in intensive piggery 

operations lies in the air sampling method. To develop an appropriate air 

sampling method, it is necessary to consider meteorological factors because they 

directly affect the odour emission rate. 
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There are two different methods for collecting air samples from point or area 

odour sources: 

o Flux hoods; and  

o Wind tunnels.  

 

However, the flux hood is not considered an accurate method for measuring 

odour emission (Smith & Dalton, 1999a; Smith & Watts, 1994a). Therefore, the 

wind tunnel was adopted for this research.   

 

The flux hood (isolation chamber) is not designed to take into account 

convective mass transfer caused by air movement above an emitting surface.  The 

aerodynamics of the device does not guarantee the repeatability and 

reproducibility of the emission rates measured.  Generally, the flux hood records 

much lower emission rates than the results from wind tunnel techniques and 

indirect estimation using mathematical modelling (Smith & Dalton, 1999a).  

 

Smith and Watts (1994a) indicated several factors affecting the rate of 

emissions as sampled by a flux hood:  

o The pressure inside the chamber (which should be identical to that 

outside); 

o The relatively small area of emitting surface enclosed by the hood; 

o The suppression of the turbulent transport mechanism which under 

ambient conditions transports the emissions away from the emitting 

surface; and 

o Imperfect mixing of the emissions and the sweep air. 

 

Wind tunnels are portable, open-bottomed enclosures that are placed over the 

emitting surface. Ambient or filtered air is drawn or blown through the tunnel to 

mix with and transport the emissions away from the emitting surface. This 

simulates the convective mixing and transport process present above the emitting 

surface (Watts, 1999a). 
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Wind tunnels have been accepted as an accurate method for the sampling of 

odour. However, there is no standard for their design. Variations in tunnel 

geometry include differences in the material used in the construction of the tunnel, 

the length/width ratio, the surface area sampled and the height. Consequently 

there are substantial effects on the aerodynamics over the emitting surface. A 

further complication is the variation in wind speed from one device to another 

(Smith & Watts, 1994a).  

 

The development of a novel wind tunnel, which has capabilities to control the 

meteorological factor such as air flow rate, is essential for the accurate odour 

measurement because the wind tunnel allows for the emission of odours and other 

volatiles under an atmospheric transport system similar to ambient conditions. 

 

 

Application of the electronic nose and artificial neural network for odour 

quantification 

An accurate, rapid and cost effective technique for odour measurement is 

required. At present, olfactometry in which human panels are employed as the 

odour sensor, has been regarded as the industry standard method. However, 

olfactometry has a considerable disadvantage in terms of cost and labour 

requirements (Nimmermark, 2001). In addition, olfactometry is often thought to 

be an unreliable measurement technique because of its dependence on subjective 

human responses. Recent developments in the electronic nose technology and 

artificial neural networks provide an opportunity to extend the scope of odour 

measurement. 

 

Since the raw data from the electronic noses is a fingerprint for each specific 

gas or odour, pattern recognition techniques can be used to analyse the raw 

response generated by the sensors. A variety of pattern recognition techniques 

have been utilised such as graphical analyses, multivariate analyses and artificial 
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neural network analyses. Although graphical and multivariate analyses are an 

effective means of comparing samples and of reducing the high dimensionality in 

multivariate problems, they may not always be suitable methods for the analysis 

of piggery odours. This is because of noise in the sensor responses caused by the 

complex odour background. 

 

An artificial neural network (ANN) is able to provide a better alternative to 

traditional statistical methods because of its computational efficiency and 

generalization ability. It has proved more adaptable to events occurring in real 

analytical situations because it is much more resistant to random error, and drift in 

sensor signal magnitudes. 

 

 

Investigation of the effects of pond loading rate on odour emissions  

Appropriately designed and well-managed ponds produce less odour than 

overloaded and undersized ponds, but there are few data to corroborate this. A 

more complete data set of gross odour emission rates and effluent characteristics 

is required for a range of piggery effluent treatment ponds to assist in the planning 

process of new and expanding piggery developments. Also required are easy-to-

measure indicators of pond condition and the likelihood of odour emissions.  

 

In order to address this issue, it is proposed that the development of a novel 

experimental facility consisting of reactor vessels to simulate the operation of 

effluent ponds and a wind tunnel for emissions sampling. Allied to this, there is 

the need to apply a convenient and low cost method of odour measurement, using 

the electronic nose. By replicable experimental studies using this facility, the 

relationship between the pond loading rate and odour emission rate can be 

developed and easy-to-measure indicators of pond condition identified. 
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1.3.3 Specific objectives of research 

Within the broad aim of this project and the key issues outlined above, the 

following specific objectives have been identified for this dissertation: 

o To examine the current status of research concerned with the odour 

emission processes at piggery industries focused on the emission of odours 

from effluent ponds; 

o To design and construct a novel wind tunnel for odour sampling method; 

o To evaluate the air sampling and wind simulation performance of the wind 

tunnel through gas recovery rate calibration trials and wind profile 

experiments; 

o To develop an odour quantification technique using an electronic nose and 

artificial neural network so as to get an accurate, rapid and cost effective 

technique for odour measurement;  

o To perform experiments to quantify the effect of pond loading rate on 

odour emission rates using the pond simulating reactor vessels and the 

wind tunnel; and 

o To investigate the relationship between pond condition and odour 

emission rate.  
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1.4 Structure of the dissertation 

This dissertation consists of ten chapters addressing the nature of odour, odour 

measurement methods, the electronic nose, the wind tunnel and the process 

experiments on pond effluent. The first five chapters provide the background to 

the research.  

 

Chapter 2 presents an overview of odour science. It shows the distinction 

between odour and specific gases. It assesses the scientific aspects of odours and 

provides the basis for further discussion in later chapters of the dissertation.  

 

Chapter 3 discusses the detailed issues of odour sampling methodology. It 

focuses on odour sampling from area sources to provide fundamentals for the 

development of a novel wind tunnel. A discussion of wind tunnel theory is 

provided at the end of this Chapter.  

 

 Chapter 4 reviews the currently available odour measurement methods. The 

methods using gas chromatography and olfactometry are briefly discussed. It then 

addresses machine-based odour measurement methods using electronic nose 

technologies. More detailed topics such as sensor selection, pattern recognition 

analysis, and application of electronic nose to intensive livestock operations up to 

this point, are also presented.     

 

Chapter 5 addresses the subject of piggery pond odour emissions. It includes 

factors affecting pond odour emissions, easy-to-measure indicators for monitoring 

pond condition, and pond odour emission data from Australia and other countries.  

 

Chapter 6 shifts focus to the first major issue identified for this work, namely 

the development of an odour quantification technique using an electronic nose 

and artificial neural network. After reviewing the AromaScan A32S system, an 
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electronic nose, this chapter discusses artificial neural network technology, which 

is used as the interface for the sensor data from the AromaScan. 

 

Chapter 7 presents the experimental evaluation of the odour quantification 

technique using the electronic nose and artificial neural network. The sensor data 

of the AromaScan was used to train an artificial neural network, and to correlate 

the responses to the actual odour concentration provided by olfactometry.  

 

Chapter 8 addresses the second major issue, odour sampling using a novel 

wind tunnel. This chapter firstly presents the design and development of the USQ 

wind tunnel. It then addresses the experimental evaluation of the tunnel. The 

results of wind profiles, turbulence intensity profiles, and gas recovery efficiency 

rate are discussed to verify the air sampling performance of the tunnel.  

 

Chapter 9 presents the third major issue, which is the practical application of 

the developed odour quantification and sampling methodologies to investigate the 

practical issues in piggery effluent ponds. The pond simulating reactor vessels are 

suggested for the experiments to investigate the effects of pond loading rate on 

odour emission rates. The results of replicable experiments to quantify effects of 

pond loading rates on offensive odour emission are discussed in the end of this 

Chapter.   

 

Chapter 10 draws together the results of the previous chapters, presenting a 

summary of key findings and conclusions. A number of key areas are also 

presented for further research and development in ongoing programs. 
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CHAPTER 2  

ODOUR 

 

 

 

 

 

 

2.1 Introduction 

Recent studies have suggested that the odours emitted from intensive piggery 

operations may well have adverse health effects (Schiffman et al., 2000). Odour 

appears to play a significant role in the recognition of and concern over symptoms 

in neighbours of hazardous waste sites (Shusterman, 1992; Shusterman et al., 

1999). It has been reported that indicators of altered mood, assessed using 

validated scales, are significantly worse in subjects who live in the vicinity of 

intensive piggery operations compared with control subjects (ISU Odor Group, 

2002; Schiffman, 1995).  

 

With regard to the effect of odours on workers in piggeries, Donham et al. 

(1977) first reported that workers in piggery confinement facilities described 

significantly more respiratory symptoms than unexposed workers (ISU Odor 

Group, 2002). Studies describing the adverse respiratory effects on piggery 

workers have been published in the United States, Sweden, Canada, the 

Netherlands and Denmark (Reynolds, 1996). Results of these studies concur that 

approximately 50 percent of these workers experience one or more of the 

following health outcomes: bronchitis, toxic organic dust syndrome (TODS), 

hyper-reactive airway disease, chronic mucous membrane irritation, occupational 

asthma and hydrogen sulfide intoxication (Reynolds, 1996; Chapin et al., 1998). 
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In addition to this, odours not only affect human health but also influence 

local economies, property values and community dynamics. Property values have 

been shown to be adversely affected due to the release of offensive odours from 

intensive piggery operations. A study assessing house sales surrounding eight 

large hog operations in Michigan, USA revealed that house values decreased by 

43 cents for each additional pig within a 5 mile radius of the house (Abeles-

Allison & Conner, 1990). These results also indicated that the magnitude of 

adverse effects on property values can vary with respect to both the size of a 

nearby piggery operation and the distance between the facility and a private 

residence (Palmquist, 1997). 

 

As a first step to solve these significant odour issues, this chapter aims to 

provide a source of fundamental information on odour issues, focused on the 

piggery industry. The following topics are discussed in this chapter: 

o Distinction between odours and gases: the difference between the two 

terms, odours and gases, their definition and role in air quality issues;  

o Odour science: the various attributes used to characterise odours, and their 

interactions to be perceived as our sense of smell; the definitions of odour 

concentration and intensity and their relationship; odour nuisance 

generating mechanisms; and 

o Odours in the piggery industry: odour creation mechanisms in piggery 

operations, odour sources including piggery housing, waste storage and 

treatment processes, land application, and carcass disposal.  
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2.2 Distinction between odours and gases 

It is important to recognise the distinction between odours and specific gases 

because they not only are measured and regulated separately, but also have 

different effects on human and environmental health. Although many people refer 

to odours and gases interchangeably, there is a difference between these two 

terms. Moreover, there is no known correlation between odour and the specific 

gases emitted from piggery operations. The term ‘odour’ refers to the complex 

mixture of gases, vapours and dust that result from the anaerobic decomposition 

of piggery manure (Chapin et al., 1998). 

 

There are 168 odourous compounds that have been identified in piggery waste 

(Veenhuizen, 1996). All of these compounds are metabolic end products of 

anaerobic bacteria. These substances include fatty acids, organic acids, alcohols, 

aldehydes, carbonyls, sulphides, esters, mercaptans, amines and nitrogenous 

compounds, which often contribute far more offensive odours than ammonia or 

hydrogen sulphide (Swine Odor Task Force, 1995). Four methylphenol, also 

called paracresol, is a predominant metabolite which gives piggery slurry its 

characteristic creosote or disinfectant type odour (Yokoyama, 1994). 

 

Odourous compounds from piggery manure are often divided into 4 chemical 

classes (Mackie, 1994): 

1. Volatile fatty acids (including acetic acid, isobutyric, 2-methylbutyric, 

isovaleric, valeric, caproic, and capric acids); 

2. Indoles and phenols (including indole, skatole, cresol, and 4-ethylphenol); 

3. Ammonia and volatile amines (including putrescine, cadaverine, and 

aliphatic amines such as methylamine and ethylamine); 

4. Volatile sulphur-containing compounds (e.g., sulphide, methyl- and ethyl-

mercaptans). 

 

Many of these odorous compounds are carried by piggery dust and other 

airborne particulates, including pig dander, bedding dust and manure dust, which 
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also contribute to an odour plume. In addition, these particles are capable of 

carrying bacteria and other microorganisms that may originate in an intensive 

piggery. Thus, piggery odours are quite complex, making it difficult to determine 

the specific substances that are contributing to the offensive smell. On the other 

hand, the term ‘gases’ refers solely to the specific gaseous compounds that are 

emitted from piggery operations. Some of these gases may be constituents of an 

odour plume; however, unlike odours, these compounds are neither combinations 

of compounds nor carriers of microorganisms and other particulates. Contrary to 

odours, many gases are also odourless and tasteless, making them seem benign 

since they are difficult to detect with the human nose (Chapin et al., 1998). 

 

Furthermore, it is also necessary to describe the differences between the actual 

odour intensity of specific gases and their respective gas concentrations. Odour 

intensity is a measure of gas detection by the human nose, while gas concentration 

measurements denote the actual concentration of the gas in the atmosphere 

(Schmidt & Jacobson, 1995). The relationship between these two parameters 

varies among different gases. For instance, odour intensity and concentrations of 

ammonia are positively correlated, yet do not follow a 1:1 correlation ratio. Thus, 

reductions in gas concentrations do not translate into the same reductions in odour 

intensity (Chapin et al., 1998).  
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2.3 Odour science 

The effects of odour are directly related to the subjective response of the 

individual exposed and their tolerance to the presence of a particular odour. When 

odour exceeds the annoyance tolerance of an exposed population, nuisance occurs. 

The annoyance reaction of a person whose nose senses an unpleasant odour is 

determined by non-sensory variables such as personality traits, attitude to the 

source, and environmental circumstance. To completely describe an odour, four 

different dimensions to the sensory perception of odorants are often considered  

(NZWWA, 2000): 

o Detectability: The odour detection threshold refers to the minimum 

concentration of an odorous substance that can produce an odour sensation 

in 50% of a panel of observers. It is important to note that these values are 

not fixed physiological facts or physical constants, but statistically 

represent the best estimate value from a group of individual responses. 

o Concentration: The concentration of odour emissions is described using 

odour units (OU/m3), i.e., the number of times the odorous air must be 

diluted with odour-free air until the concentration of the odorous substance 

reaches the detection threshold. ‘Concentration’ refers to the perceived 

strength of the odour sensation. The concentration is normally expressed 

as odour units per cubic metre (OU/m3) of the original odorous sample. 

o Quality: Odour quality is a qualitative measure, not quantitative. It 

describes the general character of the odour, or what the substance smells 

like. Odour quality is highly dependent on receptors and sensory neurons 

in the nasal cavity and the brain. The specific details of how the brain 

determines odour quality are complex and yet to be fully understood. 

o Hedonic Tone: Like odour quality, the hedonic tone is a qualitative 

judgment of the pleasantness or offensiveness of the odour. For example, 

odours from perfumes and flowers are generally considered to be pleasant, 

whereas the odours from sewers and tanning factories are considered 

offensive.  
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Odour complaints occur when individuals consider the odour to be 

unacceptable and are sufficiently annoyed by the odour to take action. The New 

Zealand Ministry for the Environment (1995) suggests five factors that influence 

odour complaints: 

o Frequency of the odour occurrence; 

o Intensity of the odour; 

o Duration of the exposure to the odour; 

o Offensiveness of the odour; and 

o Location of the odour. 

 

Frequency, intensity, duration and location are quantifiable and may be used 

for a regulatory purpose. However, odour offensiveness is subjective and difficult 

to quantify (WA DEP, 2002).  

 

  

2.3.1 Odour concentration 

There are as yet no instrument-based methods that can measure an odour 

response in the same way as the human nose except in some trials at the level of 

laboratory research. Therefore, dynamic olfactometry is typically used as the basis 

of odour management. Dynamic olfactometry is the measurement of odour by 

presenting a sample of odourous air to a panel of people at a range of dilutions 

and seeking responses from the panellists on whether they can detect the odour. 

The correlations between the known dilution ratios and the panellists’ responses 

are then used to calculate the number of dilutions of the original sample required 

to achieve the odour detection threshold (WA DEP, 2002).  

 

Odour concentration measured by olfactometry is expressed as odour units 

per cubic meter (OU/m3). Odour units were defined as the volume of diluent 

required to dilute a unit volume of odour until the detection threshold of the odour 

is obtained (Schmidt, 2002). Alternatively, odour units per cubic meter are 

defined as the concentration of odour in one cubic meter of air at the panel 
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detection threshold of the odour (NCMAWM, 2001; CEN, 1999). In the field of 

air pollution control, the pollutant concentration is commonly expressed as mass 

per unit volume (g/m3). Therefore, the unit OU/m3 seems logical to use for 

expressing odour concentration, but OU is not a mass measurement (Zhang et al., 

2002). 

 

The European standard (CEN, 1999) defines a European Reference Odour 

Mass (EROM), which is equivalent to 123 µg n-butanol evaporated into 1 m3 of 

neutral gas air. This leads to a definition of the European odour unit, denoted as 

OUE by some researchers, which is the amount of odorant that, when evaporated 

into 1 m3 of gas air at standard conditions, elicits a physiological response from a 

panel (detection threshold) equivalent to that of one EROM. Therefore, the odour 

concentration is expressed as OUE/m3, or simply OU/m3. 

 

However, it is important to note that the different methods of dynamic 

olfactometry provide different results for the odour concentration in odour 

assessment studies. It is vital that any use of published odour concentrations 

should be thoroughly checked for the method used and appropriate adjustment 

factors, prior to use in current assessments (WA DEP, 2002). For instance, the 

Dutch NVN 2820 method gives an odour concentration of approximately twice as 

many odour units as when the Victorian EPA B2 method is performed at the 

Victorian EPA laboratories (Bardsley & Demetriou, 1997) 

 

 

2.3.2 Odour intensity 

Odour intensity is another measure of the strength of an odour (Zhang et al., 

2002). However, unlike odour concentration, it is a measure of the human 

response to an undiluted odour (Hamilton & Arogo, 1999). A common way of 

measuring odour intensity is to compare the intensity of an odour to the intensities 

of different but known concentrations of a reference odorant. It is recommended 
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that successive concentrations of the reference odorant are greater than the 

preceding levels by a step factor of two (ASTM, 1999). 

 

Odour intensity is obtained when a match is found between the intensity of 

the odour and the intensity of one of the concentrations of the reference odorant. 

It is often difficult to match the intensity of an odour to the intensity of only one 

concentration of the reference odorant. In such cases, the odour intensity is 

considered as the intensity corresponding to the geometric mean of adjoining 

concentrations of the reference odorant (ASTM, 1999). In addition to this, there is 

no reported matching of odour intensity between the odours in piggeries and n-

butanol gas which is used for olfactometry analysis as a reference gas. The two 

odours are quite different from each other (Zhang et al., 2002). 

 

In odour intensity measurement, it is usually accepted that a ‘distinct’ odour 

may just be able to be recognised (i.e. has an odour concentration equivalent to its 

recognition threshold). An odour described as “distinct” under highly controlled 

laboratory conditions is likely to be harder to detect in the environment (WA 

DEP, 2002). 

 

At present, various methodologies for odour intensity measurement are used. 

They are summarised in following sections.  

 

 

The German standard VDI 3882 Part 1: Olfactometry determination of odour 

intensity 

The German standard VDI 3882 provides qualitative descriptions of odour 

intensity with a numerical scale that may be used in back-calculating the 

corresponding odour concentration. These descriptions are shown in Table 2.1 

(VDI, 1992). Like odour threshold determination, assessment of odour intensity is 

undertaken in the laboratory by odour panels and dynamic olfactometry 

equipment. Panel members are presented with odour at concentrations greater 
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than the odour threshold (by definition 1 OU/m3) and asked to rate the odour 

strength on the scale in Table 2.1 (WA DEP, 2002).   

 

Table 2.1 Odour intensity categories. 
 

Odour strength Intensity level 

Extremely strong 6 

Very strong 5 

Strong 4 

Distinct 3 

Weak 2 

Very weak 1 

Not perceptible 0 
 

 

 

Odour intensity referencing scale (OIRS) 

A common OIRS uses n-butanol as a standard reference odorant (Kephart & 

Mikesell, 2000; Schmidt, 2002; ASTM, 1999). ASTM (1999) describes two 

standard procedures for measuring odour intensity using n-butanol references. 

These include the "dynamic-scale" and "static-scale" methods. 

 

In the dynamic-scale, an olfactometer, also referred to as n-butanol 

olfactometer (NCMAWM, 2001; Watts, 2000), may be used to obtain different 

concentrations of n-butanol by passing a diluent across the surface of a glass 

container of liquefied pure (99 + mol%) n-butanol (ASTM, 1999). Panellists 

compare the intensity of odours to different intensities of n-butanol presented 

using the olfactometer. With each presentation, the panellists decide if the 

intensity of the odour is less, similar or greater than the intensity of the diluted n-

butanol sample (NCMAWM, 2001; Watts, 2000; ASTM, 1999). 
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In the static scale, different n-butanol concentrations are obtained by mixing 

liquefied pure (99+ mol%) n-butanol with distilled, odourless water. The different 

n-butanol mixtures are stored in glass containers and presented to panellists. 

Panellists shake the glass containers before sniffing the n-butanol vapour in the 

container headspace. Reference is made to the concentration of n-butanol in water 

(BIW) (NCMAWM, 2001; ASTM, 1999) or, n-butanol in air (BIA) (St. Croix 

Sensory, 2000). The concentration of the vapour in the headspace is less than the 

BIW by a factor of ten (St. Croix Sensory, 2000). 

 

 

Category estimation technique 

In this technique, human assessors estimate the intensity of an odour by 

ranking it according to their perception of its strength. Odour intensity is then 

determined from the geometric mean of the different levels (intervals) of the 

category scales as perceived by each panellist. The following is an example of the 

category intensity scale (NCMAWM, 2001; St. Croix Sensory, 2000; Misselbrook 

et al., 1993): 

o No odour 

o Very faint odour 

o Faint odour 

o Distinct odour 

o Strong odour 

o Very strong odour 

o Extremely strong odour 

 

 

2.3.3 Relationship between odour concentration and odour intensity 

Odour intensity is a useful dimension to quantify because some odours are 

perceived as being stronger than others. In other words, all odours will be just 

detectable at a concentration of 1 OU/m3, however, at twice the concentration, or 

2 OU/m3, some odours may be perceived as very weak while others may be 
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perceived as distinct. At ten times the concentration, or 10 OU/m3, one odour may 

be perceived as distinct while another odour at 10 OU/m3 concentration may be 

very strong. This means that defining an odour criterion based on odour 

concentration, as has historically been done for the purposes of managing odour 

impact on the community, will result in different perceived odour strengths. The 

only time this will not occur is when the odour criterion is equal to the detection 

threshold (i.e. 1 odour unit), which effectively becomes a “no impact” criterion 

(WA DEP, 2002). 

 

Once the odour intensity and concentration data are available, the Weber-

Fechner law (Eqn 2.1) is useful to develop the mathematical relationship between 

intensity and concentration. This relationship may then be solved for the odorant 

concentration, which corresponds to an appropriate criterion (WA DEP, 2002). 

 

( ) ConstC/ClogkI ow +=         (2.1) 

where, I is the Intensity (perceived strength), dimensionless; kw  is the Weber-

Fechner constant; C is the concentration of odorant; Co is the concentration of 

odorant at the detection threshold (by definition  equals 1 when using odour units) 

and Const is a constant which relates to the use of mean intensity levels. This 

constant is calculated from the line of best fit for each odorant. 

 

 

2.3.4 Odour nuisance  

The mechanism that leads from an emission of odorants to the atmosphere to 

actual odour nuisance is quite complex. It involves the following main factors 

(Power & Stafford, 2001): 

o The characteristics of the odour that is released (detectability, intensity, 

hedonic tone, annoyance potential); 

o Variable dilution in the atmosphere through turbulent dispersion 

(turbulence or stability of the boundary layer, wind direction, wind speed, 

etc.); 
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o Exposure of the receptors in the population (location of residence, 

movement of people, time spent outdoors, etc.); 

o Characteristics of emission of the odour (farm activities, industrial 

activities, etc); 

o Context of perception (i.e. other odours, background of odours, activity 

and state of mind within the perception context); 

o Receptor characteristics (exposure history, association with risks, activity 

during exposure episodes, psychological factors such as coping behaviour, 

perceived health and perceived threats to health). 

 

The factors that play a role are more diverse and mutually interactive. This 

process can be summarised as: odour generation → emission → dispersion → 

detection → appraisal → annoyance → nuisance. Hence, the following 

conceptual model from odour generation to reception for piggery industry is 

suggested (modified from Power & Stafford, 2001; Smith, 1995). The model is 

presented in Fig 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2. ODOUR 

Ph. D dissertation 
  Page 25 

 

 

Ration type
Manure depth
Moisture content
Volatile solids
Temperature & pH

Odour
generation

Annoyance

Emission

Dispersion

Appraisal

Detection

Wind speed
Surface roughness
Atmospheric stability
Management
Surface moisture content

Wind speed and direction
Atmospheric stability
Surface roughness
Topography
Mixing height

Av eraging period
Fluctuations
Background odours
Odorant mixture
Indiv idual threshold

Background odours
Lifestyle expectations
Social background
Non-odour concerns

Receptor characteristics
Perception of indiv idual health

Receptor characteristics
Economic relation to source
Other ambient stressors

Nuisance

 
 

 
 

Fig 2.1 The conceptional model of odour nuisance generating mechanism in 

piggery industry (modified from Power & Stafford, 2001; Smith, 1995) 
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2.4 Odours in the piggery industry 

 
2.4.1 Odour generation  

Odours from piggeries are generally the by-products of the anaerobic 

breakdown of organic matter, the exception being volatilisation of ammonia. The 

organic matter being decomposed is primarily manure (urine and faeces) but can 

also include spilt feed, afterbirth, carcasses and any other organic matter on-site 

(FSA Environmental, 2000). 

 

Anaerobic breakdown occurs when organic matter is combined with water in 

the absence of oxygen. It is a two-stage process. The first acid-forming stage 

converts complex carbohydrates to simpler organic acids like volatile fatty acids 

(VFA). In the second stage, these acids are converted to methane and carbon 

dioxide. The offensive odours associated with the anaerobic breakdown are the 

VFA and associated minor, yet offensive, by-products. These gases are most often 

released when anaerobic breakdown is incomplete and second stage (methane 

formation) does not occur or is incomplete. The most offensive compounds are 

nitrogen and sulphur based (FSA Environmental, 2000). The major substrates and 

products from anaerobic biological reactions are depicted in Fig 2.2. 
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Fig 2.2 Model for the biotransformation of piggery manure (reproduced  from 

Zahn et al., 2000) 

 

 
2.4.2 Odour sources  

Odour can be generated at various sites around a piggery. These include 

piggery sheds, waste storage and treatment processes, land applications, and 

carcass disposal areas.  

 

Piggery shed 

In comparison to traditional piggery sheds on smaller scale farms, piggery 

sheds used in intensive piggery operations are more enclosed and tightly 

constructed. These sheds also house a higher density of animals.  

 

There are two main sources of odours within these sheds: the actual pigs, and 

the manure and urine, which are excreted at two to four times the daily rate of a 
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70-kilogram man. In the tight confines of these sheds, pigs become soiled with 

manure, urine and feed dust and their body heat radiate the odour of the 

culmination of these substances (Chapin et al., 1998). In most large-scale 

facilities, the manure and urine that do not collect on the pig pass through slatted 

floors into a holding area beneath the shed, where they remain until the next 

removal occurs. These holding areas often generate a large portion of the odours 

associated with housing facilities, especially when ventilation devices are utilised, 

pumping the odorous by-products of decomposition outdoors. In addition, when 

dust from dander, feed and manure is neglected, nearly every surface of the 

facility, including coating walls and ventilation systems, releases odours. Odours 

are emitted from piggery sheds in a concentrated dose (Swine Odor Task Force, 

1995). 

 

Odour emission rates from piggery sheds are dependent on a number of 

factors, such as the type of operation (gestation, nursery, finishing, etc.), 

management practice, manure handling and storage, and ventilation (Zhang et al., 

2002). Several studies have also suggested that odour emission rates from animal 

facilities vary over the course of the day, and over the year (Zhu, 2000; 

Schauberger et al., 1999). As well, indoor and outdoor temperatures seem to play 

a role in odour emission (Heber, 2002). Generally, the operation type, manure 

storage method and ventilation are considered the most influential factors 

concerning odour emission. As a result, most researchers have grouped odour 

emission rates according to these characteristics, while primarily grouping results 

by the shed type (Zhang et al., 2002).  

 

 

Waste storage and treatment processes 

In most cases, piggery wastes are washed, pumped or scraped from beneath 

housing structures and stored in outdoor effluent ponds. During the start-up phase 

of a new pond, several offensive odours are produced until decomposition 

processes reach an equilibrium status. Mature, well-managed ponds are capable of 
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releasing minimal odours; however, if a mature pond is mismanaged, with 

excessive amounts of new raw waste being added too rapidly, a relatively severe 

odour problem may develop (Chapin et al., 1998; Swine Odor Task Force, 1995). 

 

 

Land application 

Due to the rich nutrients present in piggery excreta, manure wastes are often 

utilised as fertilisers for pastures, crops and woodlands. In this process, liquid 

manure is drawn from the surface of ponds and distributed across the area of 

destination. This process is often performed during the summer months with heat 

and humidity promoting the release of odorous compounds (Chapin et al., 1998). 

Liquid manure drawn from the surface of ponds generally does not create a severe 

odour problem when used for land application. However, if the deeper anaerobic 

sludge of effluent ponds is spread across land, highly volatile compounds rapidly 

rise into the air, creating offensive odours for downwind receptors. In addition, 

the odour problem associated with land application is oftentimes aggravated when 

the application process is poorly managed. For example, even if surface pond 

manure is spread across land, the odour can become severe if too much manure is 

spread on one occasion (Chapin et al., 1998; Swine Odor Task Force, 1995). 

 

 

Carcass disposal areas  

Due to disease, crowding, and other mass production techniques utilised by 

intensive piggery operations, thousands of pigs die each month before they are 

finished and ready for slaughter. It makes the problem of carcass disposal. For 

example, a farrow-to-finish operation supporting 1000 sows produces nearly 

18200 kilograms of dead swine each year (Chapin et al., 1998). Pig carcasses are 

disposed of in the following ways: landfills, mass on-farm burial sites, 

incineration or rendering for future use (Swine Odor Task Force, 1995). 

Decomposing carcasses have possibilities to emit strong offensive odours in the 

storage and transport processes that precede these disposal methods. Furthermore, 
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the risk of disease transmission is inherent if pigs that died from infections are not 

disposed of properly (Chapin et al., 1998).  

 

While reports have been made that inadequate incineration or other improper 

mortality disposal may cause ‘bad’ or ‘unpleasant’ odours, no quantifiable data 

has been given (AAFRD, 2002). Little scientific research was found with regard 

to odour concentrations or emissions from carcass disposal sites. The reasons 

behind this can be explained in a number of ways. Generally, it is required that 

carcasses be properly disposed of within 24-72 hours (Fulhage, 1994; MBAH, 

1996). This does not commonly provide enough time for a carcass to decay 

significantly and produce offensive odours. Secondly, carcasses are rarely 

generated in significant quantities and thus are easily dealt with. Thirdly, unlike 

manure, carcasses are dealt with well within farm property boundaries (Zhang et 

al., 2002). 
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2.5 Chapter summary 

In this chapter, foundational information on odour issues in the piggery 

industry have been investigated in detail. It firstly covers the distinction between 

odours and gas. The general odour science and odour emitting sources in piggery 

industry are also discussed.  

 

Although it is often seen that many people refer to odours and gases 

interchangeably, there is a difference between these two terms. There is no known 

correlation between odour and the specific gases emitted from piggery operations. 

Odours are the mixture of odorous materials including gases, piggery dust and 

other airborne particulates. In addition, these particles are capable of carrying 

bacteria and other microorganisms. On the other hand, the gases refers solely to 

the specific gaseous compounds that are emitted from piggery operations 

 

Odour concentration and odour intensity are used to measure of the strength 

of an odour. The nuisance leading mechanism of odour is presented. It can be 

summarised as: odour generation → emission → dispersion → detection → 

appraisal → annoyance → nuisance.  

 

Odour can be generated at various sites around a piggery. These include 

piggery sheds, waste storage and treatment processes, land applications, and 

carcass disposal areas. Among these sources, piggery sheds and effluent ponds are 

indicated as major odour sources. In piggery sheds, the operation type, manure 

storage method and ventilation are considered the most influential factors 

concerning odour emission. With regarding to the effluent ponds, it is known that 

mature, well-managed ponds are capable of releasing minimal odours. However, 

if a mature pond is mismanaged, with excessive amounts of new raw waste being 

added too rapidly, a severe odour problem will develop.  
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CHAPTER 3 

ODOUR SAMPLING 

 
 

 

 

 

3.1 Introduction 

The odour emission rate (OER) has units of ‘odour unit per unit area per time’ 

(e.g. OU/m2s or OU/m2hr). It is used to quantify the rate of odour discharge from 

odour sources. The measurement of the odour emission rate involves the sampling 

of odorous air from the source, the laboratory analysis of that air sample, i.e. 

odour measurement, and calculation of the emission rate (Freeman et al., 2000). 

The procedures for sampling and analysis of the odorous air sample are quite 

separate activities, each with their own issues and problems. Therefore, these 

topics are addressed separately in Chapters 3 and 4, respectively.  

 

Unless appropriate odour sampling and measurement techniques are followed, 

errors are incurred in the process of measuring an OER. It may be accumulated so 

that the final calculated emission rate carries a large uncertainty. The most likely 

sources of error include (Freeman et al., 2000): 

o Contamination of air samples by the sampling equipment used; 

o Instability of odour concentration in the air sample; 

o Erroneous measurement of air flow rates in stacks and sampling hoods; 

o Additional problems with area source sampling relating to whether the 

type of sample hood used reflects actual ambient emission conditions; and 

o Uncertainties in odour concentration determined by olfactometry 

procedure. 
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For the reasons mentioned above, the potential for these errors to have 

occurred should be considered in any odour study. Furthermore, it is required to 

develop a robust, reliable and appropriate odour sampling technique.   

 

In this chapter, firstly, an overview of odour sampling is presented. Odour 

sampling methods are then described in detail. It is then focused on the odour 

sampling from an area source without mass outward flows. Finally, the theoretical 

background of wind tunnel method is addressed.    
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3.2 Overview of odour sampling 

 

3.2.1 Considerations required for odour sampling 

It is important that the equipment used to collect an odour sample does not 

contaminate the sample or cause minimal changes to the odour in the sample. 

Therefore, specialised equipment and materials are required. Samples are 

collected into special purpose plastic bags made of TedlarTM, nalophane or 

polytetrafluoroethylene (PTFE) to minimise adsorption of the odour onto the bag 

surface (Freeman et al., 2000). However, significant background odour emission 

from TedlarTM bags have been reported by a number of laboratories (CASANZ, 

1998).  

 

The plastic bags used to collect the samples have to be filled only once 

because some types of odour or very strong odours might be able to adsorb to 

material surfaces in either the sampling equipment or the olfactometer even with 

the precautions for use of specialised equipment and materials. These odours can 

then contaminate other odour samples passing through the same equipment. 

Therefore, operators should be alert to the potential contamination problem, and 

carry out routine and frequent equipment calibration and quality control testing. 

Further problems can occur if the original sample is influenced by condensation, 

chemical reaction, sample instability, or particles which contribute to or absorb 

the odour.  

 

 

3.2.2 Definition of source type 

Odorous emissions may arise from a number of different sources within an 

industrial process or livestock operation. These are listed below, along with their 

basic information requirements. 
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o Point source: Discharges from a small opening such as a stack (chimneys) 

or vent. For piggery operation units, point sources could be stacks or 

mechanically-ventilated fan outlets.  

o Area sources: A source with a large surface area such as a landfill surface, 

a pile of solid material, or a liquid surface. Typical examples of area 

sources include effluent ponds and areas of exposed, disturbed soil. For 

such sources, the basic information required includes its location, height 

above ground level, surface area, dimensions and a brief description of the 

nature of the source. If an estimate of the emissions is to made, more 

detailed information will probably be required. For example, for a piggery 

effluent pond, data on the organic loading rates discharged from sheds and 

chemical constituent of the effluents would be required to enable an 

estimation of the potential odour emission rate (Woodward-Clyde Ltd., 

2002). 

o Volume sources: A bulky, diffuse source. Typical examples of volume 

sources include fugitive emissions from buildings or a bag-house which 

discharges via louvered vents rather than a stack.  

o Line source: A long, narrow source such as a roadway or roofline vent 

along a long, narrow building.  

 

A typical area source, a piggery effluent pond, is presented in Fig 3.1. It 

shows the odour sampling work using the wind tunnel, which is placed over the 

effluent pond.  
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Fig 3.1 Sampling odours from an effluent pond, an area source 

 

 

3.2.3 Odour sampling at area source  

Sampling of odours from area sources is more complicated than for point 

sources due to the diffuse nature of the emissions and, in many cases, the sheer 

size of the odour source (Woodward-Clyde Ltd., 2002). A number of sampling 

methodologies including the static flux hood and the wind tunnel, have been 

developed for odour testing of area sources. These methodologies can be 

classified into two different methods according to the presence of outward flows 

on emission sources or not.  

 

 

3.2.3.1 Sampling from an area source without outward flows 

For passively venting area sources such as a piggery effluent pond, sampling 

may be carried out using use of some form of sampling chamber such as a wind 

tunnel. These devices are used to create a specific cross-flow velocity across the 
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emission surface enclosed by the sampling chamber section of the wind tunnel, 

which may be chosen to correspond to a typical ground level wind speed. The air 

sample is drawn from the outlet of the wind tunnel using an air sampling pump. 

The emission rate can be calculated by the equation (modified from Jiang & 

Kaye, 2001): 

 

A
QCOER =                   (3.1) 

where, OER is odour emission rate, OU/m2s; Q is flow rate through the wind 

tunnel, m3/s; C is odour concentration, OU/m3; and A is area covered by the wind 

tunnel, m2. 

 

Most of the wind tunnels have an internal sweep velocity of 1.0 - 3.0 m/s. 

Hence, OER data needs to be corrected to a surface wind speed that is compatible 

with actual surface wind speeds. The reason of this correction is that the surface 

wind speed, which prevails under the worst case meteorological condition, tends 

to give rise to odour complaints.  

 

A standardised surface wind speed of 0.05 m/s is often used. This value 

corresponds approximately to the wind speed at a height of 100mm above the 

surface (one half of sampling hood height) for a recorded wind speed of 0.5 m/s. 

This correction is made using the following equation (Freeman et al., 2000):  

 
5.0

1

2
12 V

VOEROER 







=                (3.2) 

where, OER1 is odour emission rate measured using the wind tunnel, OU/m2s; 

OER2 is odour emission rate corresponding to actual ground level wind speed, 

OU/m2s; V1 is wind speed inside wind tunnel for sample collection; and V2 is 

actual ground level wind speed. 
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This relationship between emission rates and wind speeds is derived from 

boundary layer theory and has been verified experimentally (Schulz et al., 1995a). 

This formula can also be used to calculate OER values at other wind speeds, 

which can then be used in a dispersion model to simulate changes in OER with 

changing wind speed (Freeman et al., 2000).  

 

Bouwmeester & Vlek (1981) determined the appropriate tunnel wind speed by 

determining a relationship between bulk wind speed in the tunnel, Vt, and wind 

speed at 8 m above a rice paddy, V8, using surface shear stress theory. The 

relationship for their wind tunnel was:  

 
5.1

8 53.0 tVV =                  (3.3) 

 

From the experiments on odour emission from spread pig slurry, Pain et al. 

(1987) suggested a relationship of the following form:  

 
2.1

1V VOEROER =                 (3.4) 

 

where, OERV is the odour emission rate corresponding to wind speed V, OU/m2s: 

OER1 is the odour emission rate corresponding to wind speed of  1 m/s, OU/m2s. 

 

For wind speeds less than 1 m/s, the exponent on the velocity term in Eqn 

(3.4) would be 0.4. Jiang & Kaye (1996) suggested 0.5 for the exponent of the 

velocity term in Eqn (3.4) for their portable wind tunnel.    

 

On-site meteorological wind sensors are usually affixed to a 10 m mast. 

Consequently, the ground level wind speeds at half wind tunnel height (0.125 m) 

may be calculated from the 10 m height wind speeds using the following equation 

(modified from Jiang & Kaye, 2001):  
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n

10125.0 10
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

=                (3.5) 

where, V0.125, V10 = wind speeds (m/s) at 0.125 m and 10 m heights, respectively. 

 

The wind profile exponent, n is assigned on the basis of the Pasquill stability 

class. In a recent Australian study (Kaye & Jiang, 2000), median values for each 

of the 6 Ausplume default wind categories together with the exponent for the 

corresponding stability classes were used, such that for each area1 emission 

source a 6×6 matrix of emission rates was generated (36 values for each area1 

source). Irwin Urban exponents of 0.15, 0.15, 0.2. 0.25. 0.4. and 0.6 were used 

respectively for stability classes A, B, C, D, E, and F (Jiang & Kaye, 2001).  

 

 

3.2.3.2 Sampling from an area source with outward flow 

With regard to sources where there is a measurable outward flow, such as a 

biofilter or mechanically-ventilated compost windrow, flow rates should be 

measured using an anemometer at a number of points across the surface to 

determine whether the flow is even (Woodward-Clyde Ltd., 2002). 

 

 Based on the results of this preliminary assessment, the size of the source 

and the expected degree of uniformity of the emission rate over the surface area, 

the emission source should be divided into a number of sub-areas with an 

appropriate grid size. Then, the concentration should be measured in the sub-areas 

using the wind tunnel, with a cross-flow wind speed corresponding to the outward 

flow measured previously. This enables sampling to occur without restricting or 

artificially enhancing the outward flow. The emission rate is then calculated using 

equation 3.6 (Woodward-Clyde Ltd., 2002): 
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n
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ii∑

=                 (3.6) 

where, OER is odour emission rate, OU/m2s; Ci is measured odour emission rate, 

OU/m2s; Vi is wind speed in area i (m/s); and n is number of areas.   

 

For the samples from sources where temperature and pressures are 

significantly different from ambient conditions, the gas flow rate is calculated and 

adjusted to NTP (Normal Temperature and Pressure i.e., 20◦C and 101.3 kPa) 

conditions using the following equation (Jiang & Kaye, 2001): 

 

( )
( ) 3.101

p
t273

20273QQ m +
+

=               (3.7) 

where, Q is the volume flow rate at NTP conditions, m3/s; Qm is the volume flow 

rate measured inside the vent, m3/s; t is air temperature inside the vent, ◦C; and p 

is the absolute pressure inside the vent, kPa.  
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3.3 Odour sampling methods 

 

3.3.1 Overview 

Methods currently used for sampling odours from area sources include (EPA 

NSW, 2001): 

o Static (isolation) flux hood; 

o Wind tunnel; 

o Equipment enclosure (‘tent’); and 

o Witch's hat. 

 

Table 3.1 is an attempt to classify the appropriateness of area source sampling 

methods according to source type. The classification process considered practical 

sampling issues and the methods likely to best estimate the actual odour source 

emission rate. It is important to note that (CASANZ, 1998): 

o No one method is currently considered universally applicable; and  

o The information contained in Table 3.1 is a first attempt at categorising 

area source sampling methods. 

 

Through the extensive research about odour sampling issues in Australian 

intensive livestock operations (Smith & Hancock, 1992; Smith, 1993; Smith & 

Watts, 1994a & 1994b; Smith, 1995; Smith & Kelly, 1996; Bliss et al., 1995; 

Jiang et al., 1995b), the following sampling techniques are revealed to be 

available for piggery effluent ponds or piggery waste spreading areas (Watts, 

1999a). They include:  

o Physical surface sampling methods (static flux hoods and wind tunnels) 

o Downwind sampling methods (the TPS method and the STINK method) 
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Table 3.1 

Diffuse source sampling methods, according to source type  

(from EPA NSW, 2001) 

 Diffuse source sampling method 
 
Source type 

Back 
calculation Wind tunnel Flux 

Hood Tent Witch’s 
hat 

Waste water treatment sources 
Aerated × √ × × √ 
Still × √ √ × √ 
Inlet works × √ √ √ × 
Anaerobic pond  √ √ √ × × 
Trickling filter (top)* × × √ √ × 
Other sources 
Cattle feed lot √ × × × × 
Compost wind rows (static) × √ √ × √ 
Compost wind rows (aerated) × × × × √ 
Soil bed filters/Biofilters × × × √ √ 
Landfills √ × √ TBD TBD 
√  applicable sampling method for this source type 
×  sampling method not applicable for this source type 
TBD  applicability to be determined 
*   trickling filter base vents should be sampled concurrently as point sources. 
 

 

3.3.2 Isolation flux hood 

The isolation flux hood (chamber) method was developed by the USEPA in 

1983 (Klenbusch, 1986). The emission assessment using the isolation flux hood in 

the dairy industry is illustrated in Fig 3.2 (Schmidt, 2001). The flux hood system 

has been used for nitrous oxide emissions from farmland (Denmead, 1979), 

measurement of gaseous emission rate from land surface (Klenbusch, 1986) and 

sampling emissions from hazardous waste dumps (Clark et al., 1988).  

 

The flux hood is a sealed chamber open at the base. It is placed on the odour 

emitting surface for the purpose of sampling the emissions. During operation, 

clean dry air is forced under pressure into the hood. This air is mixed with the 

emitted odours by the physical layout of the hood. The sample is drawn from the 
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chamber, when required, at a slow rate (Watts, 1999a). The critical design 

parameters are the mixing characteristics of the chemicals and the selection of the 

carrier gas (Gholson et al., 1991).  

 

The design of static flux hoods is based on the two-film model that is 

frequently used to explain the experimental phenomenon of the volatilisation of 

organic compounds from water in the laboratory. For gas-phase-controlled VOC 

emissions, the volatilisation process will be influenced by wind-induced gas-

phase turbulence. Static techniques do not simulate wind turbulence (UNSW, 

2003). The US EPA evaluation study for the flux hood did not consider gas-phase 

controlled processes (Gholson et al., 1989). 

 

There are number of factors which may limit the application of the flux hood 

in the determination of odour emission rates. Denmead (1979) demonstrated the 

dependence of the measured emission rate on the pressure deficit (or surplus) in 

the chamber. A deficit of 0.01 m head resulted in a twelve fold increase in the 

emission rate. Furthermore, several other uncertainties have been reported 

(UNSW, 2003): 

  

o It was reported by the original authors that complete mixing only occurred 

at a zone of 2 - 9.5 cm above the air and water interface (Gholson et al., 

1989). This stratification is dependent on the temperature of the carrier gas, 

surface temperature and ambient air temperature. The variations in the 

stratification layer thickness under different sampling conditions could 

significantly affect the repeatability and reproducibility of the testing 

results; 

o The selection of the sweep air (carrier gas) rate has been found not to be 

fully satisfactory (Reihart et al., 1992). By increasing the sweep air rate it 

was found that the chemical concentration inside the isolation chamber did 

not alter (Hwang, 1985); and  
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o The measured emission rates depend largely on the configuration of the 

enclosure and operating procedures (Reihart et al., 1992). It has also been 

shown that the isolation chamber could not easily be used for aerated 

liquid surfaces (Gholson et al., 1989).  

 

Smith & Watts (1994) indicated several factors affecting the rate of emissions 

as sampled by a flux hood: 

o The pressure inside the chamber relative to that outside; 

o The relatively small area of emitting surface enclosed by the hood; 

o The suppression of the turbulent transport mechanism which under 

ambient conditions transports the emissions away from the emitting 

surface; and 

o Imperfect mixing of the emissions and the sweep air. 

 

Generally, the flux hood records much lower emission rates than the results 

from wind tunnel techniques and indirect estimation using mathematical 

modelling (Smith & Dalton, 1999a). Under field conditions, measured odour 

emission rates between the isolation flux hood and the wind tunnel have been 

observed to differ by up to 300 times in some cases (Jiang & Kaye, 1996).  

 

In summary, the isolation flux hood method is not recommend for odour 

sampling purposes especially for area sources (Watts, 1999a; Sohn, 2000; Jiang & 

Kaye, 2001) because it is not designed to take into account convective mass 

transfer caused by air movement above an emitting surface. As well the 

aerodynamics of the device does not guarantee the repeatability and 

reproducibility of the emission rates measured.  
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Fig 3. 2 The emission assessment using the isolation flux hood in dairy industry  

(reproduced from http://www.ceschmidt.com) 

 

 

3.3.3 Wind tunnel 

Wind tunnels are portable, open-bottomed enclosures that are placed over the 

emitting surface. Ambient or filtered air is drawn or blown through the tunnel to 

mix with and transport the emissions away from the emitting surface. This 

simulates the convective mixing and transport process present above the emitting 

surface (Watts, 1999a). 

 

Wind tunnels have been used for estimating ammonia emissions from dairy 

cow collecting yards (Misselbrook et al., 1998) and arable land (Loubet et al., 

1999b); estimating odour emissions from piggeries (Smith & Dalton, 1999a), 

from feedlots (Smith & Watts, 1994b; Watts et al., 1994) and poultry manure 

(Jiang & Sands, 2000).  
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Wind tunnels have been accepted as an accurate method for the sampling of 

odour. However, there is no standard for their design. Variations in tunnel 

geometry include differences in the material used in the construction of the tunnel, 

the length/width ratio, the surface area sampled and the height. Consequently 

there are substantial effects on the aerodynamics over the emitting surface. A 

further complication is the variation in wind speed from one device to another 

(Smith & Watts, 1994a). Table 3.2 gives the dimensions of various wind tunnels 

reported in the literature. 

 

There are several different wind tunnel designs in Australia. The Intensive 

Livestock Systems Unit (ILSU) in Queensland Department of Primary 

Industry/National Centre for Engineering in Agriculture (NCEA) odour research 

group in University of Southern Queensland has developed and validated several 

wind tunnels. Fig 3.3 and Fig 3.4 illustrate the wind tunnel designs used by the 

ILSU/NCEA research group. The detailed design specifications of the wind 

tunnel techniques are addressed in Chapter 8.   

 

Smith & Watts (1994a) reviewed the design and operation of different wind 

tunnels. The influence of tunnel wind speed was emphasised and a relationship 

between odour emission rate and tunnel wind speed was proposed. Smith & Watts 

(1994b) compared odour emission rates measured from cattle feedlot pens using 

two different-sized wind tunnels. Emission rates were strongly correlated with 

wind tunnel size. The large wind tunnel gave emission rates consistently lower 

than those did in the small tunnel by a factor of about 0.8. It was suggested that 

the different wind velocity profiles in the tunnels might be a reason for the 

difference (Watts, 1999a). 

 

An isometric drawing and the dimensions of the wind tunnel system 

developed at the University of New South Wales (UNSW) are shown in Fig 3.5.  

It was used to measure odour and VOCs emission rates from area sources. The 

system comprises several parts: extension inlet duct, connection duct, expansion 
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section, main section, contraction section and mixing chamber. The cylindrical 

floats are used where the odour source is a liquid surface but removed in the cases 

of solid sources such as broiler litter.  The extension inlet duct can be separated 

from the connection duct to enable cleaning and transport of the hood (Jiang & 

Kaye, 2001). 

 

It is almost impossible for natural ground-level wind conditions to be 

duplicated inside a small wind tunnel. Therefore, the wind tunnel is designed to 

create an environment where the boundary layer is well developed and convective 

mass transfer occurs. The aerodynamic performance of the wind tunnel is 

considered a critical parameter (Jiang & Kaye, 2001).   

 

In summary, the wind tunnel technique is accepted as the more appropriate 

method for the determination of odour and VOCs emissions from area sources as 

compared with the isolation flux hood because it is able to simulate ambient wind 

condition.   
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Table 3.2 

Specifications of various wind tunnels (modified from Watts, 1999a) 

Type/Material L/W 
ratio 

Area 
sampled 

(m2) 

Height 
(m) 

Wind 
speed 
(m/s) 

Source 

Semi-cylindrical 
Transparent polycarbonate 4 1 0.45 0.04 - 3.77 

Mean: 1.33 Lockyer, 1984 

Semi-cylindrical 
Transparent polycarbonate 4 1 0.45 1.0 Pain et al., 1987 

Lindvall box 
Stainless steel 4 0.32 0.25 0.3 Freeman, 1992 

Lindvall et al., 1974 

Rectangular 1.7 2.05 0.87  Homans, 1987 

Rectangular 0.6 0.1 0.2  Homans, 1987 

Rectangular Perspex 4 0.5 0.2 0.66 Watts et al., 1994 

Rectangular 
Stainless steel 0.6 0.6 0.125 0.2 - 0.4 Schulz & Lim, 1993 

Rectangular 
Stainless steel 4 0.25 0.2 0.2 - 2.0 Smith & Watts, 1994b 

Semi-cylindrical 
Stainless steel 4 1.0 0.45 0.2 - 2.0 Smith & Watts, 1994b 

Rectangular 4 0.25 0.2 0.6 - 0.7 Casey et al., 1997 

Rectangular 
Stainless steel 2 0.32 0.25  Jiang, 1999 

Rectangular 
Stainless steel  0.76 0.15 1.1 Heber, 2002 
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Fig 3.3   Wind tunnel design used by ILSU/NCEA 

 

 
 

Fig 3.4 Modular designed wind tunnel with variable speed fan developed at USQ 
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Fig 3.5 An isometric drawing of the UNSW odour wind tunnel  

(reproduced from Jiang & Kaye, 2001) 

 

 

3.3.4 Downwind sampling methods 

The estimation of emission rates from measurements of concentration taken 

downwind of the source is a proven approach for which several methods are 

available (Smith & Watts, 1994a). The preferred method involves the 

measurement of complete wind speed and concentration profiles at the downwind 

points. However, this is impractical for odour work because of the cost and 

difficulty in obtaining a sufficient number of odour concentration measurements 

(Watts, 1999a). This has resulted in the development of simplified methods 

(Wilson et al., 1981; Smith, 1995), which require the simultaneous measurement 

of concentration and wind speed at only one height in the profile. 

 

The STINK model was developed by Smith (1995). It employs the Gaussian 

dispersion model of Smith (1993) to calculate a non-dimensional concentration 

Ψ(z) at selected receptor locations downwind of the source. Modelling with the 

STINK model involves taking a number of samples downwind of a source and 

back calculating an emission rate from the source using the odour concentration 

from the downwind sample. 
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The inputs to the STINK model are (Galvin et al., 2002): 

o Pond width (X) 

o Pond length (Y) 

o Wind direction 

o Longitudinal and latitudinal distance to the receptor from the centre of the 

pond (X and Y) 

o Averaging time (hours) 

o Roughness height 

o Monin-Obukhov lengths for stability classes 

o Height for calculation of concentration profile (height at which sample 

was taken) 

 

The model output provides a table of non-dimensional coefficients for 

increasing sampling heights for different stability classes. A non-dimensional 

coefficient was then selected according to the stability class at time of sampling 

and the height at which the sample was taken. The emission rate was then 

calculated using following equation.  

 

z

z
a

VCOER
Ψ

(

=                   (3.8) 

where, OERa is a calculated emission rate; Cz is the measured odour concentration 

at the selected sampling location; V
(

is a wind speed at a height of 1m based on 

1m/s at half tunnel height based on Urwin Rural coefficients for the stability 

classes; and Ψz is the non dimensional coefficient at the sampling height.  

 

The value for V
(

was calculated according to the power law using Irwin Rural 

coefficients. Equation 3.9 shows the equation used to calculate the wind speed. 

This equation is essentially the same at equation 3.3.  
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=                 (3.9) 

where, Vz is a wind speed at height Z above the ground, m/s; Vref is a wind speed 

at the wind measurement height Zref, m/s; and a is a wind profile exponent which 

in a function of stability.   

 

The important advantages of this model are that (Watts, 1999a): 

o It is applicable to sources which may be of irregular shape, of limited 

lateral extent and with the wind orientation other than perpendicular to 

edges of the source; and 

o Any reasonable location can be used for the measurements providing the 

location, the size of the source and the wind direction are known. 

 

It should also be noted that the emission rate calculated by this method is a 

spatially averaged rate for the odour source. 

 

The TPS method of Wilson et al. (1981) requires a circular odour emission 

source. It is applicable for some research situations but is generally not applicable 

to practical applications. 
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3.4 Theory of wind tunnel techniques 

 

3.4.1 Principle of wind tunnels 

The basic principle of the wind tunnel technique is to assess the difference 

between the input and the output odour concentration in the wind tunnel. The 

boundaries for calculating this mass balance are the experimental area covered by 

wind tunnel, the dimensions of emission chamber of wind tunnel, and the inlet 

and the outlet cross-sections of the tunnel. Using these boundaries, the mass 

conservation of the odour emission can then be expressed as (modified from 

Loubet et al., 1999a): 

 

expexpiioo AAA ΦΦΦ +=               (3.10) 

where, Ao is the outlet area of the wind tunnel, m2; Φo is the odour mass flux 

through the outlet area, kg/m2s; Ai is the inlet area of the wind tunnel, m2; Φi is 

the odour mass flux through the inlet area, kg/m2s; Aexp is the experimental area 

covered by the wind tunnel, m2; Φexp is the odour mass flux emitted from the 

odour source, kg/m2s.  

 

The contribution of the odour emission from experimental area to air bulk 

density ρa in kg/m3 is negligible because of its low concentration. And then, the 

fluxes can be expressed as a function of the wind speed V in m/s and non-

dimensional concentration C in m3/m3: 

 
0

exp
exp

iA

a dACV
A 








⋅=Φ ∫

ρ
               (3.11) 

 

where, ρa is air bulk density, kg/m3;  CV is the mean component of horizontal 

flux of odour, kg/m2s.  

 

In addition, the symbol [ ]0i−  is used for [ ] [ ]i0
0
i xxx −= .  
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In a turbulent flow, both V and C are random variables, and they can be 

separated into ensemble mean and fluctuating components: 'xXx += , where x is 

a given value at a given time and x′ its deviation from the average X over the time 

interval ∆t. Applying that to V and C gives (modified from Loubet et al., 1999a): 

 
0

exp
exp

iss

a dAcvdACV
A 








⋅′′+⋅=Φ ∫∫

ρ
           (3.12) 

where, V  is mean horizontal wind speed, m/s; C  is mean odour concentration, 

m3/m3; v′ is the fluctuating component of wind speed, m/s; c′ is the fluctuating 

component of odour concentration, m3/m3. 

 

Their average over the time step ∆t is zero (Loubet et al., 1999a). '' cv is the 

turbulent component of the horizontal flux. Considering the field application, a 

more simplified equation is needed particularly requiring some simplification of 

turbulent component, '' cv . If it is assumed that the airflow in the wind tunnel is 

completely mixed, the odour emission flux can be determined from the following 

relation.  

 

[ ]io
exp

aexp CC
A
Q

−= ρΦ               (3.13) 

 where, Q is mean volumetric flow, m3/s; oC is the mean odour concentration 

averaged over the outlet area, m3/m3; iC is the mean odour concentration 

averaged over the inlet area, m3/m3. 

 

When odour sampling is done using wind tunnel techniques, iC is assumed to 

be zero because most of wind tunnels use activated carbon filter to introduce 

odour-free air into its emission testing chamber. Hence, a simple continuity 

equation applies to odour concentration averaged over the outlet area of the tunnel. 
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Φexp converted to odour emission rate, OER (modified from Smith & Watts, 

1994a): 

 

o

exp
to A

A
VCOER =                   (3.14) 

where, OER is odour emission rate, kg/m2s; Vt is the bulk wind speed in the 

tunnel, m/s. 

 

However, one should be careful in applying this continuity equation because it 

assumes complete mixing between the emissions and the airflow in the tunnel.   

 

The selection of the appropriate wind speed to use in wind tunnels needs 

consideration (Smith & Watts, 1994a). Pain et al. (1988) indicated that higher 

wind speeds increase the rate of odour emission shortly after slurry application. 

This increase appeared to be due to the greater volume of air drawn through the 

tunnel at the higher speeds rather than due to higher threshold values (i.e., odour 

concentrations).   

 

3.4.2 Boundary layer effect  

3.4.2.1 Mass transfer in the boundary layer 

The boundary layer properties are directly related to characteristics of the 

surface (Oke, 1987). The transfer of gas, momentum and heat between a surface 

and the airflow depends mainly on the dynamic structure of the flow in the 

boundary layer (Loubet et al., 1999b). This transfer relies heavily on the 

distribution of the effluvium sources on the surface and the source characteristics. 

For the majority of sources, the odour strength depends on the concentration 

gradient and diffusion properties of the odour. 

 

Over natural flat surfaces, the lowest part of the boundary layer displays some 

special properties. This layer is known as the surface boundary layer or constant 

flux layer. This causes variability in the dynamic structure of the boundary layer 
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and consequently affects the diffusion rate. The diffusion rate is a function of 

wind speed, the roughness height and the latent and sensible heat fluxes. A model 

that has been proposed to describe a stationary boundary layer is a first order 

model. This model is depicted by equation 3.15 and 3.16 (Loubet et al., 1999b).  

 

z
VKm δ
δρτ −=0                    (3.15) 

z
CKF gg δ
δρ−=                   (3.16) 

where, τ0 is momentum flux or shear stress, kg/ms2; Fg is the vertical flux of 

odour that is transferred by turbulence from the surface to the atmosphere, kg/m2;  

Km is the turbulent diffusivity for momentum, m2/s; Kg is the turbulent diffusivity 

for odour, m2/s; V is mean wind speed, m/s; C is mean odour concentration, 

m3/m3; z is the height above the surface, m. 

 

Generally for a flat surface within the surface boundary layer, the turbulence 

intensity reaches a maximum near the surface and then decreases with height 

(Loubet et al., 1999b). 

 

3.4.2.2 Mass transfer in wind tunnels 

Boundary layers are very different in enforced and restricted conditions such 

as the wind tunnel environment due to the size of limiting structures. The 

turbulent structures are restrained by the pipe-like enclosure. Hence, the structure 

of the boundary layer may be affected by the flow rate. In non-circular sections of 

wind tunnels the flows will not have axial or plane symmetry. This could cause 

flows orthogonal to the mean wind direction. These flows are due to transverse 

gradients in shear stress along the sides of the tunnel (Loubet et al., 1999b). These 

effects can be expected in an enclosed environment, such as in a wind tunnel. 

When the flow enters the tunnel, the flow characteristics change. Profiles will 

vary with distance from the inlet since they depend on surface geometry and the 

imposed flow rate (Baldo, 2000). 
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3.5 Chapter summary 

In this chapter, odour sampling methods are addressed. The odour emission 

rates are used to quantify the rate of odour discharge from odour sources. 

Therefore, appropriate odour sampling methods are required to measure OER 

without errors. Specialised equipment and materials for the collection of an odour 

sample are required. These materials must have characteristics which do not 

contaminate the sample or cause any changes to the odour in the sample. It is also 

required to choose proper sampling methods depending on the odour source.  

 

Through the extensive research about odour sampling issues in Australian 

intensive livestock operations, the flux hood and the wind tunnel are revealed to 

be available odour sampling methods for piggery effluent ponds, the target of this 

research work. It is revealed that the TPS downwind sampling method is 

applicable for some research situations but is generally not applicable to practical 

applications.   

 

However, the isolation flux hood method is not recommended for odour 

sampling by many researchers because it is not designed to take into account 

convective mass transfer caused by air movement above an emitting surface. 

Additionally, the aerodynamics of the device do not guarantee the repeatability 

and reproducibility of the emission rates measured.  

 

The wind tunnel method is accepted as more appropriate for the determination 

of odour and VOCs emissions from area sources than the isolation flux hood 

because it is able to simulate ambient wind condition.  

 

Finally, the theoretical background of the wind tunnel method is addressed. It 

has been noted that the basic objective of the tunnel is to assess the difference 

between the input and the output of odour concentration. A series of mathematical 

equations has then been discussed to explain the influence of turbulent airflow 

and to show the effects of the boundary layer.   
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CHAPTER 4 

ODOUR MEASUREMENT  

 

 

 

 

4.1 Introduction 

With regarding to the measurement of odour, there are two basic approaches: 

analytical techniques including off-line chemical analysis and direct reading 

instrumental analysis, and sensory techniques utilising human response.  

 

Analytical techniques (Powell, 2002) 

o Off-line chemical analysis: indirect assessment involving the collection of 

a sample, which is able to give the concentration of the various chemical 

compounds present in odour samples. This includes substance-specific wet 

chemistry, gas chromatography (GC) and gas chromatography coupled 

with mass spectrometry (GC-MS) methods. 

o Direct reading instrumental analysis: provides information on the 

concentration of specific chemical species or their concentrations relative 

to each other. This includes several portable analysers (including portable 

GC-MS, flame ionisation detectors (FID), gold leaf analysers and paper 

tape monitors) and the electronic nose. 

 

Sensory techniques  

o Sensory assessment: gives an assessment of the physiological response to 

a particular mixture like strength, quality, character and provides 

information on the likely population response. This is obtained by 

exposing trained individuals to samples of the odorous air, either in the 

laboratory or in the field. The methods include olfactometry and 

simplified olfactometric screening like the simple sniff test 
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In odour measurement, chemical analysis is not regarded as a practical method 

because there are several difficulties with the method (NZWWA, 2000): 

o Odorous air can consist of many odorous compounds. This fact presents a 

major challenge to the accurate measurement of odour due to the difficulty 

in identifying all compounds, and the synergistic relationship that may 

exist between the various compounds. 

o The nuisance impact of an odorous compound is often perceived at 

extremely low concentrations, making instrumental analysis difficult. 

 

In addition, as there are a number of different techniques in use for odour 

analysis, the selection of a particular method for a specific situation has to be 

considered depending on (Powell, 2002): 

o The purpose of the odour measurement; 

o The frequency of monitoring (once-off, periodic, continuous, etc.); 

o The location at which the odour is sampled; 

o Whether a point source or area (surface) source; 

o Source geometry (point or area); and 

o The nature and complexity of the emission: a single compound or a 

complex mixture. 

 

Furthermore, various odour measurement techniques have their advantages 

and disadvantages with respect to the accuracy of estimation of odour 

concentration. They have some differences in cost, detection limits and 

complexity. Table 4.1 presents the comparison of the characteristics of the 

various odour measurement techniques.  

 

In this chapter, the gas chromatography, one of the popular methods of 

chemical analysis, is briefly described. Olfactometry, the sensory evaluation 

method and the electronic nose are then discussed in detail.   
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Table 4.1 

Characteristics of the odour measurement techniques considered  

(reproduced from Powell, 2002) 

 Subjective 
Observations 

Specific 
Chemical tests GC-MS Olfactometry Electronic Nose 

Application 
Simplified 
olfactometry – 
sniff Test 

Source sampling Source sampling/ 
Ambient 
 

Source 
sampling 

Source sampling/ 
Ambient 
 

Analysis 

Identifying the 
presence of 
odour, 
offensiveness 
or identification 
of source. 

Limited to 
specific 
compounds 
 

Limited to organic 
compounds 

Fully 
representative 

Fully 
representative but 
appropriate 
sensors must be 
selected for 
application 

Sampling 
methodology 

 
 

Testing 
protocol 
required for 
repeatability 

Direct sampling, 
e.g. colorimetric 
tubes or 
instrumental. 
Indirect, e.g. 
collection of  
sample and lab 
analysis 

Various 
techniques but will 
require pre-
concentration for 
ambient air 
samples 

Bag sampling Direct sampling 
(but portability is 
limited) 
 

Limit of 
detection 

Typically good, 
but can vary 
depending on  
environment 
and 
compounds 
involved 

Depending on 
test – generally 
greater than 0.1 
ppm 

Ca. 1.5 ug/m3 Ca. 50 dilutions Not applicable, but 
detects 
differences, not 
absolute 
concentrations 

Uncertainty 
High, improved 
by use of 
standardised 
protocol 

+/- 5 to 20 % +/- 10 %2 +/- 40 %1 Not known 

Ease of data 
interpretation 

Reasonable, if 
protocol is 
followed 

Depends on the 
technique, e.g. 
colorimetric tube 
results easy to 
interpret 

Often poor Good Good 

Relative unit 
cost 

Low Low to 
moderate. 
Depends on 
specific tests. 
Sample 
collection costs 
may be 
moderate to high 

Moderate/high. 
Sample collection 
costs may be 
moderate to high 
 

Moderate/high  
Sample 
collection costs 
may be 
moderate to 
high 

Moderate/high 

1. Value given in “Odour control a concise guide” for duplicate samples collected and 

analysed. 

2. Typical uncertainty value for thermal desorption and GC-MS analysis. 
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4.2 Gas chromatography  

Gas chromatography (GC) is a widely used analytical technique for 

separating the components of an odorous air sample for identification and 

quantification. Generally, GC using standards of known substances, or gas 

chromatography coupled with mass spectrometry (GC-MS) when the composition 

of a gas sample is unknown, is an accurate and very sensitive method of chemical 

analysis of the nature of the gas (down to 0.1 ppb levels) (NZWWA, 2000). 

 

The basic steps for gas chromatography are (Powell, 2002): 

o Sampling: which may involve pre-concentration of a gaseous sample onto 

a solid adsorbent or absorption in a reagent; 

o Thermal desorption or solvent extraction; 

o Separation of the components by passing through a GC column; and 

o Detection and identification. 

 

In the situation where the odour sample has an unknown composition, a GC-

MS has more practical usefulness. Identification of the resulting mass 

spectrographic pattern is made with reference to a computer based spectrum 

library, although identification of compounds with similar structures and/or 

masses can be difficult. 

 

The application of GC and GC-MS to odour measurement can be summarised 

as follows (Powell, 2002):  

o Provides reasonable quantitative analysis for a broad range of aliphatic, 

aromatic, alcohols and ketones; 

o Provides semi-quantitative analysis for certain organic sulphides; 

o Does not detect inorganic species, e.g. ammonia, hydrogen sulphide; and  

o Poor response to highly reactive species, e.g. amine and certain organic 

sulphides. 
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GC and GC-MS only give an indication of the nature and concentration of 

chemical compounds in the sample, not their contributions to the overall odour of 

the mixture. Furthermore, odorous compounds often create nuisance at very low 

concentrations, while non-odorous components of the air sample may be present 

at much higher concentrations, making interpretation of the chromatogram 

difficult. A sample may result in literally hundreds of peaks, with only a fraction 

of them formed by odorous substances. Odour threshold concentrations for most 

of them are not yet available (NZWWA, 2000). 

 

Powell (2002) summarised the disadvantages of GC and GC-MS in odour 

measurement as follow: 

o Direct calibration for analysing odours is difficult because the composition 

mixture will often be unknown;  

o The concentration in ambient air of individual compounds may be below 

or close to the lower limit of detection; and  

o Longer term samples will average out any peaks, although this may be of 

secondary importance in source/compound identification. 

 



Chapter 4. ODOUR MEASUREMENT 

Ph. D dissertation 
  Page 63 

4.3 Olfactometry 

 

4.3.1 Overview 

Olfactometry uses the human nose as the sensor of odours. The human nose 

can detect thousands of odorous compounds and identify at the parts per billion 

level of concentration (Jones et al., 1994). Gas chromatography is not able to 

detect many of these compounds at this level (Mackay-Sim, 1992). Compared 

with other odour measurement methods, olfactometry has number of advantages 

(Powell, 2002) in that it: 

o Provides the only reliable method of accurately quantifying the odour 

strength for a complex mixture of compounds, especially where 

identification is difficult and composition variable;  

o Provides a measure of the total strength of odour which may be under 

estimated if just a single component compound is measured using by 

instrumental method like GC; 

o Provides the sensory impact of a mixture of odorants and non-odorants 

which is rarely predicted from a knowledge of its component parts; and 

o Provides a direct link between a particular odour and the human response 

to it. This is particularly important when considering annoyance issues.  

 

However, the human nose as a sensor of olfactometry has several 

characteristics which affect the design and the performance of olfactometers 

including (Jones et al., 1994): 

o It has a very short averaging time; 

o It responds to peaks of odour concentration rather than the average; 

o The sensitivity varies enormously between individuals; 

o Many factors affect the sensitivity to odours, for example, colds and 

illness can seriously decrease sensitivity; 

o Sensitivity to an odour decreases rapidly during prolonged exposure, so 

the nose tends to adapt to a constant odour and can no longer detect its 

presence; and  
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o Humans are much better at making relative rather than absolute judgments 

about odours. 

 

Therefore, these characteristics have to be considered in the design and 

methodology development of olfactometry. For instance, the testing environment 

should be kept odour free to avoid adaptation and desensitisation and a panel of 

people must be used to account for the variability between individuals.  

 

The first olfactometer that used the principle of diluting odorous air with non-

odorous air was built in the last decade of the 19th century. From the mid 70s, 

olfactometry has been used for the purpose of measuring environmental odours 

while it remained an academic pursuit with physiologists and psychologists for 

nearly a century (NZWWA, 2000).   

 

A variety of olfactometry techniques have been used (Jones et al., 1994). 

They include the syringe dilution method, the Scentometer, the butanol 

olfactometer, and various dynamic olfactometers  (Sweeten, 1988). Dynamic-

dilution olfactometry is now widely accepted as the standard and is used in most 

research and regulatory institutions in Europe and Australia (Mannebeck & 

Mannebeck, 2001; Hartung et al., 2001; Dravnieks et al., 1978). Therefore, 

dynamic-dilution olfactometry and its standardising process protocol are 

presented in section 4.3. The ILSU/NCEA olfactometer, which is used for this 

dissertation, is discussed in section 4.3.7.        

 

 

4.3.2 Dynamic olfactometry 

A dynamic olfactometer is a device that uses a dynamic odour dilution 

system. An odorous air stream is continuously diluted with an odour-free air 

stream using various flow meters and gauges. The diluted odorous air is presented 

to a number of panellists. The operator presents a series of different odour/odour-
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free air dilutions to the panellists who are situated in an odour-free environment 

(Watts, 1999a).  

 

Odour concentration is determined by finding the dilutions-to-threshold. This 

is defined as the dilution of the original odour sample at which half the panel can 

just detect the odour (the other half cannot detect the odour). The dilutions-to-

threshold is found by presenting the panel with a series of dilutions of the sample. 

These dilutions should cover the range from where none of the panel detects the 

odour to where all panellists detect the odour. This procedure allows 

determination of the perception curve (DNI, 1990), that is, the relationship 

between dilution and the percentage of the panel that correctly detects the odour.  

 

There are two methods for conducting dynamic dilution olfactometry; the 

Yes/No and Forced Choice methods.  

  

Yes/no response 

In this method each panellist has one sniffing port. When a test is run they 

must sniff the port and indicate if they can smell an odour. When they can smell 

an odour, the panellist press a button. This technique is the simplest to implement 

as only one sniffing port and one response button are needed per panellist. This 

method was common in the early 1990’s but is now being replaced by the more 

sensitive forced choice response method.  

 

Forced choice response 

The forced choice technique differs from the simple yes/no technique. Each 

panellist has two or three sniffing ports. At any one time, one port will contain the 

diluted odour sample while the other(s) has clean air. The port containing the 

odour is randomly changed after each presentation. Panellists have no prior 

knowledge about which port. They are forced to guess if they cannot detect an 

odour from either port. 
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When indicating their choice of port, the panellists also indicate if they were 

‘guessing’ ‘uncertain’ or ‘certain’ about their choice. From these responses, it is 

possible to arrive at two endpoints. The first is where the panellist is constantly 

correct in their choice of port without reference to guessing or certainty. This is 

often reported as simply the detection threshold and is given the units OUd/m3. 

The second is where the panellist is constantly correct in their choice of port, but 

is also certain about the choice. This is often reported as the certainty threshold 

and can be given the units OUc/m3. Since the use of the certainty threshold is 

becoming standard practice, the subscript is usually dropped so the units are 

OU/m3. In theory, odour concentrations calculated using certainty thresholds are 

one half to one third of that calculated using detection thresholds, although in 

practice this ratio can be much greater (NZWWA, 2000). 

 

Dynamic olfactometry (in one form or another) is now the regulatory 

standard for odour measurement in Australia, New Zealand and Europe. The 

method is gaining popularity in the USA. It is currently the only method suitable 

for measuring odour concentrations to determine odour emission rates. It is also 

the only odour measurement method, accepted by regulatory authorities in 

Australia (Watts, 1999a). However, it is costly and time consuming and this is a 

significant disadvantage for some types of odour studies. 

 

Dynamic olfactometry has been changing over the past twenty years. The 

areas in which dynamic olfactometers vary include (Watts, 1999a): 

o Number of panellists (3 to 8); 

o Method (yes/no → forced-choice); 

o Odour dilution presentation series (ascending, random); 

o Presentation flow rate (8 - 20 L per minute per panelist); 

o Sniffing port design (mask diameters from 3 to 15 cm); 

o Number of sniffing ports (1, 2 or 3); 

o Dilution ranges (upper and lower limits); 

o Dilution system performance monitoring; 
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o Calculation methods; 

o Detection method (guessing, certainty, recognition); and 

o Panellist selection (none, butanol screening, vanillin / methyl salicylate 

screening, hydrogen sulphide screening, subjective screening). 

 

As a result of these differences, olfactometer performance has varied 

considerably between and within laboratories.  

 

Many laboratories now use butanol to screen and validate the sensitivity of 

human panels. In this case, it is assumed that panellist’s sensitivity to various 

odours is similar to their response to butanol. This may not be the case. 

Furthermore, the sensitivity of different dynamic olfactometers has varied by at 

least a factor of 10 depending on their design and operation. A factor of 40 has 

been suggested in other literature. Klarenbeek & van Harreveld (1995) suggested 

a factor of 15 for their olfactometer. Schulz et al. (1995) stated that after the 

introduction of screening in 1992, observed group butanol thresholds dropped 

from around 100 ppb to 12-14 ppb. It has since been found that variability within 

laboratories is of a similar magnitude. In present, inter-laboratory testing 

programs have been initiated and standards developed to reduce variability. 

 
 
4.3.3 Olfactometry standards 

To improve the repeatability and reproducibility of odour measurements 

using olfactometry, a series of standards have been suggested and evaluated. 

These are: 

o Queensland Department of Environment method 6; 

o EPA (Victoria) method; 

o Dutch draft standard – NVN 2820; 

o German standard – VDI 3881; 

o European standard – CEN/TC264/WG2/prEN 13725; 

o USA standard ASTM E679-91; and 

o Australian standard – AS/NZS 4323.3:2001. 



Chapter 4. ODOUR MEASUREMENT 

Ph. D dissertation 
  Page 68 

 

However, some standards are only included for historical importance. In this 

research, the Australian standard (AS/NZS 4323.3:2001) is applied to calibrate 

and to operate the DPI/NCEA olfactometry. It is discussed in following 

paragraph.  

 

 

AS/NZS 4323.3:2001- Determination of odour concentration by dynamic olfactometry 

Standards Australia published an Australian/New Zealand standard 

“Stationary source emissions - Determination of odour concentration by dynamic 

olfactometry” in 12 September, 2001. The Standard was prepared by the Joint 

Standards Australia/Standards New Zealand Committee EV-007 “Methods for 

examination of air” and subcommittees/working groups, EV-007-03 (odour 

measurement) and EV-007-03-01 (odour measurement test method). The standard 

is based on a CEN (Comite Europeen de Normalisation) pre-draft of the same title 

(CEN, 1999) with minimal changes for Australian conditions. It includes 

screening of panellists and allows both yes/no and forced-choice olfactometers. 

Before publishing the AS/NZS 4323.3:2001, there was a draft Australian standard 

“Air Quality - Determination of odour concentration by dynamic olfactometry”, 

code DR 99306 dated July, 1999. 

 

There are some differences between standards that prohibit the direct use of 

data from other olfactometry testing performed under the different design and 

operating standards. Hence, data conversion between standards becomes an 

important issue.    

 

McGinley & Mann (1998) presented a comparison between the European and 

US standards. They concluded that the major differences are the odour 

presentation parameters (volumetric flow rate, face velocity), panel selection, and 

differences in instrument calibration. The US standards do not require instrument 

calibration (Watts, 1999a). 
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One other difference between standards is the recent change from accepting 

guessing responses to only accepting certainty responses from panellists. The 

consequences of this change are not clear. For a given panel, the change from 

guessing to certainty responses should result in numerical values for odour 

concentration. However, the European and Australian standards require screening 

of panellists so that they have a 20-80 ppb butanol threshold. If the screening is 

done using certainty responses, then more sensitive panellists would be needed 

but the resulting panel butanol threshold should still be typically about 50 ppb 

(Watts, 1999a). 

 

Jiang (1997) reported data where his laboratory had calculated data using 

guessing and certainty criteria. He reported that “for a given sample, the values of 

the two thresholds may differ by a factor typically from 1.5 to 10 depending on 

the instrument, the number of sniffing ports and the number of panellists. There is 

no reliable correlation between these thresholds”. Consultants have found it 

necessary to use NVN 2820 data in odour assessments based on the CEN/TC264 

standard. It is generally agreed that the conversion factor should lie in the range of 

2 to 5 with 4 commonly used. That is, NVN 2820 data is divided by 4 to convert 

to CEN/TC 264. This conversion is not scientifically validated and should be used 

with caution. 

 

 

4.3.4 Major factors that influence the outcome of olfactometry 

It is difficult for olfactometry to have defined accuracy, repeatability and 

reproducibility. Many factors have been discussed that were considered important 

to the quality and outcome of odour measurements for olfactometry testing. The 

major elements that can be distinguished are (NZWWA, 2000): 

o The sample bag and its materials: The sampling bag can cause substantial 

effects by adsorption or transport of substance through the polymer film 

used to make sampling bag. Therefore, only impervious materials such as 
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Teflon®, TedlarTM, stainless steel and glass can be used in odour sampling 

processes; 

o Sniffing port of an olfactometer: A certain way of getting the diluted 

sample into the nose of the panellist is asked. Different types of cups and 

masks are used. The flow rate of the sample presented through the port is 

also important; 

o Panellists: As the sensor for the olfactometry measurement, the role of 

panellist’s nose is critical; 

o Odour analysis laboratory: This provides the environment for the 

measurement, hence, it must provide odour-free conditions; and 

o Data processing method: The calculation method obviously influences the 

outcome. 

 

4.3.5 Olfactometry in ILSU/NCEA odour research group 

The ILSU/NCEA olfactometer was built under the following design 

specifications, which were based on the recommendation of the Dutch standard 

(DNI, 1990) for olfactometry equipment and methodology. 

o A forced choice response system with three ports per panellist; 

o Eight panellists sniffing concurrently; 

o A flow rate of 20 L/min from each port; 

o Dilution ratios up to 32000; 

o An automated panellist response system; and 

o An on-line computer for data analysis. 

 

To get a mobile capability, the olfactometer is housed in an air-conditioned 

caravan with an exhaust system (Jones et al., 1994). Fig 4.1 and Fig 4.2 show the 

olfactometer caravan and the human panellists, respectively. 
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Fig 4.1 The olfactometer caravan 

 

This system dilutes the odour sample over the required range, provides each 

panellist with three air streams (one odorous and two odour-free) of the same flow 

rate, and randomly switches the port containing the diluted odorous air flow. The 

odour-free air is supplied by an air compressor regulated to 600 kPa. The total 

flow rate into the olfactometer is about 500L/min. A bank of rotameters with a 

collective flow range of 0.05 to 100L/min registers the odorous air. A three-way 

valve allows the operator to select either the odour sample or odour-free air for 

flushing (Jones et al., 1994). Fig 4.3 is a schematic diagram of the dilution system. 

 

The distribution system uses a combination of custom-made distribution 

manifolds and three-way valves. Each manifold splits a flow into four equal flows. 

There are 6 manifolds and 24 three-way valves, one at each sniffing port. 

Stainless steel and Teflon pipes and fittings were used in all areas where there is 

contact with the undiluted odour sample. The need to test the olfactometer/panel 

combination regularly against reference gas (butanol) is necessary to ensure 
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standardisation and repeatability of the olfactometer results. To allow this, 

cylinders of 40 and 50 ppm butanol are permanently connected to the dilution 

system. This allows butanol thresholds to be determined regularly and without the 

need to fill sample bags (Jones et al., 1994). 

 

 
 

Fig 4.2 Human panellist workstation in the mobile olfactometer 

 

 

The communication, data collection and analysis system provides panellists 

with a simple method of showing which port they believe contains the odour. It 

also allows the olfactometer operator to signal to the panellists the start and finish 

of a test. It has the following components (Jones et al., 1994): 

o Nine press button switches per panellist by which the panellist nominates 

the port containing the odour, identification of the panellist, and 

offensiveness responses are also transmitted via these switches; 

o Three LEDs per panellist to show that a response has been recorded by a 

panellist; these are driven by a latch-transistor combination; 



Chapter 4. ODOUR MEASUREMENT 

Ph. D dissertation 
  Page 73 

o Three coloured flashing LEDs per panellist to allow the operator to signal 

‘rest’, ‘ready’, and ‘sniff’;  

o Data latches for each button that catch the momentary switch press and 

remain set until cleared;  

o A multiplexing system that allows the data latches for each panellist to be 

read in sequence through a computer link; and 

o A personal computer, linked to the communication system through the 

parallel printer port, by which the operator logs the panel responses and 

calculates the detection thresholds (concentrations). 

 

 

 

 
 

Fig 4.3 Schematic representation of the dilution system in the ILSU/NCEA 

Olfactometer (reproduced from Jones et al., 1994) 
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4.4 Electronic nose 

 

4.4.1 Overview 

An electronic nose is an instrument consisting of a gas sampling apparatus 

and an array of gas sensors interfaced to a personal computer. The unique 

distinguishing feature of the electronic nose technology is the ability of its sensor 

array to respond differently to various odours. Each odour in the set may contain 

hundreds or thousands of different VOCs. Classical analytical methods using GC-

MS try to identify the individual compounds in an odour and, it is an almost 

formidable task. On the other hand, the electronic nose examines a changing 

pattern of sensor(s) response across its sensor array to differentiate odours 

(Schiffman et al., 1997). 

 

In 1982, the concept of an electronic nose system was proposed at the 

University of Warwick, UK (Persaud & Dodd, 1982). At the beginning of the 

1990s, the term ‘artificial’ or ‘electronic nose’ appeared, and several commercial 

instruments became available. More extended research began and its applications 

to various industrial fields have been tested (Schaller et al., 1998). 

 

Bartlett et al. (1993) defined the electronic nose as ‘an instrument, which 

comprises an array of electronic chemical sensors with partial specificity and an 

appropriate pattern-recognition system, capable of recognising simple or complex 

odours’. This seems very far from the human nose. However, the common aspect 

with the human odour-sensing organ is its function. Like the mammalian nose, it 

detects gases by means of sensors which send signals to a recognition organ, that 

is to the brain or to a computer (Schaller et al., 1998). The operating principle, the 

number of sensors as well as the sensitivity and selectivity are, however, very 

different (Bartlett et al., 1997). This is why some scientists prefer to call this 

instrument by other names, for example, ‘flavour sensor’, ‘aroma sensor’ (Mielle, 

1996), ‘odour-sensing system’ (Gardner et al., 1993) or ‘multi-sensor array 

technology’ (Shiers, 1995). 
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With regard to the application of the electronic nose in environmental 

monitoring, it has a number of limitations. However, development work is on-

going and it is possible that new environmental odour applications for this 

technology will emerge. Currently, some potential applications are (Powell, 

2000): 

o Process control; 

o Stack monitoring for odorants; 

o Effluent streams monitoring; and 

o Boundary monitoring/in-community monitoring.  

 

In section 4.4, sensor array technology, data processing techniques including 

Pattern Recognition analysis and currently available commercial electronic nose 

systems will be discussed. In addition, current research work related to the 

application of the electronic nose to odour monitoring in intensive livestock 

operations will be discussed. 

 

 

4.4.2 Sensor technology 

An electronic nose system largely depends on an array of chemical, organic 

and optical sensors which collect chemical data from the odorous air at the 

headspace of a sample. When appropriate chemical sensors are exposed to a 

sample, each sensor produces a characteristic response dependent upon the 

chemical interactions between the sample and the sensor. The data collected from 

the sensor array for a particular sample can be interpreted as a pattern of 

responses, or fingerprint of that sample. When patterns for different samples are 

compared, differences in the patterns can be correlated with differences in 

perceived sample odour. Samples with similar odours generally give rise to 

similar patterns, and samples with different odours show differences in their 

patterns. Using automated pattern recognition algorithms, patterns of different 

samples can be compared. And then, a library of patterns can be stored in a 
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computer database, such that data from test samples may be compared to the 

library, and classification of test samples be made.   

 

The ideal sensors for an electronic nose should fulfil the following criteria 

(Gardner, 1994; Lantto et al., 1988; Bott et al., 1984; Shaver, 1967): 

o High sensitivity towards chemical compounds, that is, similar to that of 

the human nose (down to 10–12 g/mL); 

o Low sensitivity towards humidity and temperature; 

o High stability; 

o High reproducibility and reliability; 

o Short reaction and recovery time; 

o Robust, durable and easy calibration; 

o Easily processable data output; and 

o Small dimensions. 

 

A variety of different sensor technologies are used in sensor array systems 

(Persaud & Travers, 1997). Some of the most common are metal oxide sensors 

(MOS), conducting polymers (CP), bulk acoustic wave (BAW), surface acoustic 

wave sensors (SAW) and metal oxide semiconductor field effect transistor 

(MOSFET). Their schematic diagrams are depicted in Fig 4.4.  

 

Such sensors can be divided into two main classes: hot (MOS, MOSFET) 

and cold (CP, SAW, BAW). The former operate at high temperatures and are 

considered to be less sensitive to moisture with less carry-over from one 

measurement to another (Nanto et al., 1986). 
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Fig 4.4 Schematic diagrams of 5 different kinds of sensors (MOS: metal oxide 

semiconductor; CP: conducting polymer; BAW: bulk acoustic wave; SAW: 

surface acoustic wave; MOSFET: metal oxide semiconductor field effect 

transistor) (reproduced from Nanto et al., 2003). 

 

The use of an array of non-specific sensors allows for responses from many 

thousands of chemical species, due to the broad selectivity of the different sensor 

surfaces (Persaud et al., 1996b). The relative responses between the sensors can 

be used to produce a unique odour profile that is analogous to the human olfactory 

system (Gardner & Bartlett, 1994). Fig 4.5 shows examples of the odour patterns 

from a piggery and its surrounding area.  They were collected from a consulting 

work during this Ph. D. study. 
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Odour pattern from effluent pond
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Odour pattern from vermitech compost shed
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Odour pattern from abattoir
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Odour pattern from traffic road 1, 2km d/w
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Odour pattern from traffic road 2, 2km d/w
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Odour pattern from the outside of Motel 1
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Odour pattern from the outside of motel 2
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Fig 4.5 AromaScan A32S odour patterns from a piggery and its surrounding area 
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The most common types of sensors and measurement principles are 

summarised in Table 4.2.  

 

 

Table 4.2 

Most common types of sensors and measurement principles 

(modified from Fenner & Stuetz, 1999) 

Sensor Types Mode of Action Comments 
Conducting polymers In the presence of a gas species a 

change in voltage across polymers 
such as polyaniline, polypyrrole and 
polythiopenc can be measured. 

o Selectivity is achieved by controlling 
surface functional groups or by 
varying anion chemistry during growth  

o Reproducibility good 
o Return to baseline resistances in 

short times 

Metal oxides Metal oxide sensor passes an 
electrical current causing oxidation 
of gas molecules via electron 
transfer from the gas to the metal 
oxide leading to a change of 
resistance. 

o Less selective than other sensor 
types 

o Can be subject to poisoning  
o Response can be affected by 

presence of solvents 

Quartz crystal 
microbalances 

Measure change in frequency of 
oscillation of a quartz crystal when 
a gaseous species is adsorbed. 

o Problems of reproducibility in 
commercial production of sensors 

 

Surface acoustic wave 
sensors 

Similar to quartz crystal 
microbalances but operate at much 
higher frequencies. 

o Can achieve good sensitivity 
o Problems of reproducibility in sensor 

production 

Fiber optic sensors Use fluorescence measurements 
from photodeposited 
polymer/fluorescent dyes on 
bundles of fibre optics.  

o Provide large quantities of data 
o Recently available in commercial 

instruments.  

 
 

Although various kinds of gas, chemical, and optical sensors available, the 

organic conducting polymer sensors are discussed in this dissertation in detail 

because the electronic nose, Aromascan A32S, used in this research employs 

conducting polymer sensors.  
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Organic Conducting Polymer Sensors (CPs) 

The sensors made from CPs exhibit a change in conductance when they are 

exposed to reducible or oxidisable gases. CPs show reversible changes in 

conductivity when chemical substances (e.g. methanol, ethanol, and ethyl acetate) 

adsorb and desorb from the polymer. The mechanism by which the conductivity is 

changed by this adsorption is not clear at present (Nanto & Stetter, 2003). 

 

There are a large number of different electronically conducting polymers. 

Polypyrrole was first prepared electrochemically in 1968 and has been most 

extensively studied so far (Dalli’Olio et al., 1968). Electroconducting conjugated 

polymers (ECP) can exhibit intrinsic electronic conductivity. Their structure 

contains a one-dimensional organic backbone with alternating single and double 

bonds, which enables a super-orbital to be formed for electronic conduction. The 

most commonly applied polymers for gas-sensing applications have been 

polypyrrole, polyaniline, polythiophene, and polyacetylene, which are based on 

pyrrole, aniline or thiophene monomers (Bidan, 1992). Because of their properties 

they have remarkable transduction matrices that are sensitive to gases and 

vapours. Therefore, they result in a straightforward conductance change via the 

modulation of their doping level.  

 

The early studies of the gas-sensing application of CPs concentrated on the 

response to reactive gases such as ammonia and hydrogen sulfide (Miasik et al., 

1986; Gustafsson & Lundstrom, 1987). It was reported that gas sensors using 

polypyrrole films exhibit a high sensitivity for ammonia (Gustafsson et al., 1989). 

It was also revealed that gas sensors using CPs such as polypyrrole respond to a 

wide range of organic vapours such as methanol (Batlett et al., 1989a; Batlett et 

al., 1989b; Batlett et al., 1989c). 

 

More recently, studies have been carried out on preparation of thin-film CPs 

for gas sensing applications (Miasik et al., 1986; Gardner & Bartlett, 1991). Thin 

films of heteroaromatic monomers such as pyrroles, thiophenes, indoles, and 
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furans were grown electrochemically on interdigitated electrodes to produce gas-

sensitive chemoresistors (Miasik et al., 1986). 

 

Sensor arrays using CPs respond to a wide range of polar molecules at 

temperatures as low as room temperature. Recent reports suggest that a high 

sensitivity down to 0.1 ppm is possible (Nanto & Stetter, 2003). This result 

indicates that CPs are potentially useful materials for applications in odour 

sensing and e-nose applications. 

 

The use of organic CPs as odour sensor materials is very attractive for the 

following reasons: 

o A wide range of materials can be prepared simply; 

o They are relatively low cost materials; 

o They have a high sensitivity to many kinds of organic vapours; 

o Gas sensors using organic CPs operate at low temperatures. 

 

Another way to use CPs is to make non-conducting materials, e.g. silicone 

(Maclay et al., 1991) and polystyrene (Stetter et al., 1984), conductive by 

inclusion of carbon-black metal powder. These sensors are used in e-noses and 

can exhibit high sensitivity (Burl et al., 2001). Comparison between the properties 

of the CPs odour sensor and the MOS odour sensor is shown in Table 4.3. 
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Table 4.3 

Comparison of the properties of the conducting polymer odour sensor and 

the metal oxide odour sensor (thick film and thin-film types)  

(reproduced from Nanto & Stetter, 2003) 

Properties Conducting polymer SnO2 (thick film) SnO2 (thin film) 

Key Measurand Conductance Conductance Conductance 
Fabrication Electrochemical growth, 

plasma CVD 
Paste Sputtering, Sol-gel 

Choice of materials Wide Limited Limited 
Operating Temperature 10 – 110oC 250 - 600oC 250 - 600oC 

Molecular Receptive Range Wide range Combustible vapours Combustible vapours 
Detection Range Less than 20ppm 10 – 1,000 ppm 1 – 100 ppm 
Response Time 60s 20s 20s 

Size Less than 1mm2 1*3 mm Less than 1mm2 
Power Consumption Less than 10mW 800mW 80mW 

Integrated array Yes No Yes 
Stability Moderate Relatively poor Poor 

Interferences Acidic gases, water SO2, Cl2, H2O SO2, Cl2, H2O 

 

 

 

4.4.3 Electronic nose methodology development 

The purpose of method development is to produce a series of operating 

conditions for an analysis involving both the instrument and the procedure. It is 

able to work consistently and give reliable results. The end result of a method 

development procedure becomes often a standard operating procedure (SOP), 

which defines exactly how an analysis should be performed. There are five 

important stages in method development: 

o Optimisation of sample preparation 

o Selection of sensors 

o Optimisation of data acquisition 

o Choice of data analysis 

o Method validation 
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Optimisation of sample preparation 

The procedure for developing a method starts by preparing the sample for 

analysis. The preparation method should involve the smallest amount of 

interference with the sample as possible. This will reduce the amount of other 

variables/contaminants to be introduced to the sample. Care must be taken to 

handle the sample in a consistent way before analysis and to avoid contact with 

any containers or surfaces that could contaminate the product so changing odour 

characteristics.   

 

Selection of sensors 

It is important to select the most suitable sensors for a sample to be analysed 

by an electronic nose at an early stage. Most electronic nose manufacturers 

provide a table of specificity of sensors to chemical species. It can be used to 

select the most appropriate sensors.  

 

Optimisation of data acquisition 

The initial objective of the method development program is to obtain a 

method that gives reproducible results. This is necessary as this technology is a 

comparative technique, therefore good reproducibility ensures that results can be 

reliably compared over a period of time and ensures that discrimination is 

statistically significant. 

 

In order to obtain a reproducible method, it is necessary to consider the 

variables that are present within the sample acquisition process. Some of the 

variables can be controlled directly by the operator, for example:  

o Temperature; 

o Sample type; 

o Sensor choice; 

o Purge, equilibration and analysis times; 

o Relative humidity of purge gases; 

o Data manipulation techniques; and 
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o Sample preparation techniques. 

 

Some of the variables are difficult to control precisely. The most difficult type 

of variable is one that may represent both a test-to-test variation that should be 

controlled and a real difference between samples, for instance, relative humidity. 

 

Choice of data analysis 

As the data from an electronic nose is complex and multivariate, there are 

many analysis options available. Further discussion about this subject is presented 

in section 4.4.4. 

 

Method validation  

The final, and perhaps the most important step in method development is 

validation. The one stage in validation that should always be performed with the 

electronic nose is method robustness testing. In this procedure, a number of 

experiments are performed to establish the effect on the results from changing 

method variables at a number of different levels. This will provide essential data 

for SOPs.  

 

Fig 4.6 shows a development of SOPs for the AromaScan A32S.  
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Fig 4.6 Standard operating procedure sequence (SOPs) for the AromaScan, an 

electronic nose (modified from AromaScan, plc., 1996) 
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4.4.4 Pattern recognition analysis 

Most of the electronic nose system is developed as a match-model for the 

natural nose comprising the various stages between a volatile odorant and its 

recognition, namely: interaction, signal generation, processing, and identification, 

as outlined by the parallel between biological and artificial noses in Fig. 4.7 

(Hines et al., 2003). In this system, the pattern recognition acts as a signal 

processing unit like the brain in the biological olfactory system. Therefore, the 

interpretation of data obtained from sensor arrays of an electronic nose relies on 

the use and performance of the pattern recognition engine.  

 

Output from sensor arrays can be displayed using a variety of relatively 

simple graphical formats that allow comparisons between samples or averaged 

data over a number of analyses (Hodgins, 1995). However, to cope with a large 

number of samples and number of variables, pattern recognition is mainly 

employed to process the sensor array data (Stuetz & Fenner, 2001). Currently 

available techniques can be classified into several categories: 

o Graphical analyses; 

o Multivariate analyses; 

o Supervised/unsupervised analysis; 

o Linear/non-linear; and 

o Artificial neural network. 
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Fig 4.7 Basic diagram showing the analogy between biological and artificial 

noses (reproduced from Hines et al., 2003) 

 

 

Graphical analysis 

Graphical analysis is the simplest form of data treatment that may be used 

with an electronic nose. It covers profile, bar chart and polar/offset polar plots. 

The response from the sensors is displayed in a variety of graphical formats that 

allows comparison between different samples or averaged data of a number of 

analyses. However, when several references are used, analysis becomes more 

complicated and an alternative approach, i.e., pattern recognition techniques may 

be necessary (Hines et al., 2003). 

 

Multivariate analysis 

Multivariate data analysis involves data reduction, it reduces high 

dimensionality in a multivariate problem where variables are partly correlated (e.g. 

sensors with overlapping sensitivities), allowing the information to be displayed 

in a smaller dimension (typically two or three) (Gardner & Bartlett, 1992; 

Fukunaga et al., 1995) 
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Supervised/unsupervised 

In a supervised learning pattern recognition technique, known odours are 

systematically introduced to an electronic nose system which then classifies them 

according to known descriptors or classes held in a knowledge base. Then, in a 

second stage for identification, an unknown odour is tested against the knowledge 

base, now containing the learnt relationship, and then the class membership is 

predicted. Unknown odour vectors are analysed using relationships found a priori 

from a set of known odour vectors used in an initial calibration, learning, or 

training stage. The idea of testing a method using unclassified response vectors is 

well established and is often referred to as cross-validation (Hines et al., 2003). 

 

For unsupervised learning, pattern recognition methods learn to separate the 

different classes from the response vectors routinely, discriminating between 

unknown odour vectors without being presented with the corresponding 

descriptors. These methods are closer to the way that the human olfactory system 

works using intuitive associations with no, or little, prior knowledge (Hines et al., 

2003).  

 

Linear/non-linear 

In the linear pattern recognition methods, a model is simply calculated using 

linear combinations of input data. However, most sensors have a non-linear 

response versus odour concentration. The linear pattern recognition techniques 

work well if a low concentration of odours ensures an approximately linear 

response. In addition, the use of pre-processing algorithms including averaging, 

linearisation or normalisation, can improve the performance of linear pattern 

recognition techniques (Gardner & Bartlett, 1992; Göpel, 1995). 

 

When high concentrations of odours are measured, a non-linear pattern 

recognition technique, such as an artificial neural network (ANN) or radial basis 

function (RBF), would be more appropriate (Schaller et al., 1998). Non-linear 
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models usually need more parameters, since some of them are used to describe the 

shape of the non-linearity (more input data than linear models). The main 

advantage of such a method is flexibility, i.e. the ability to adjust to more complex 

data variations. However, caution is necessary when choosing model flexibility; 

this can be achieved by selecting the number of parameters. If too many 

parameters are taken into account, the calculated model will be over-flexible, 

fitting to all relevant data variations and unwanted sensor noise. The best method 

to avoid an over-fitted model is to use training data to build a non-linear model, 

and validation data to test this model (cross-validation) (Holmberg, 1997). 

 

Artificial neural network 

A neural network consists of a set of interconnected processing algorithms 

functioning in parallel (Schaller et al., 1998). On a very simplified and abstract 

level, an ANN is based on the cognitive process of the human brain. 

Mathematical functions, or neurones, link together to build a network which 

mimics the human nervous system (Persaud & Pelosi, 1992). A weight is 

randomly assigned to each neurone and then adjusted by means of an iterative or 

‘learning’ process, for example, error back-propagation, until the desired outputs 

are obtained. The resultant set of weights and functions is then saved as a ‘neural 

network’. 

  

ANN is a supervised method and so needs a minimum of known data to 

correctly train the system. If the number of available data is not sufficient an 

erratic result will be obtained (Hodgins, 1997). Unlike other pattern recognition 

methods, a neural network is a dynamic, self-adapting system that can modify its 

response to external forces using previous experience, offering a more flexible 

and, due to the parallelism, faster method of analysis. In addition, it may more 

closely mimic mammalian neurone processing of odour stimuli (Persaud & Pelosi, 

1992; Newman, 1991). A well trained ANN is very efficient in comparing 

unknown samples to a number of known references (Hodgins, 1997). ANN is 
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used as a main pattern recognition engine for this research work. More detailed 

discussion is presented in chapter 6. 

 

The problem of pattern analysis of e-nose data is closely linked to the 

multivariate analysis of data sets. Fig 4.8 summarises the main multivariate data 

processing techniques, or pattern recognition algorithms, that have been employed 

in the field of an electronic nose. The classification scheme is made on three 

levels: a first distinction is made between statistical and biological approaches, 

then between quantitative and qualitative pattern analysis algorithms, and finally 

between supervised and unsupervised techniques (Hines et al., 2003) 
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Fig 4.8 Classification scheme of pattern recognition techniques applied to 

electronic nose data 
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4.4.5 Commercial electronic nose 

The first electronic nose, the Artificial olfaction, was introduced by the 

Warwick olfaction research group in 1982 (Persaud & Dodd, 1982). However, the 

expression electronic nose appeared for the first time in 1988. And then, intensive 

research was undertaken in order to find new and more diverse sensors as well as 

to improve the pattern recognition engines. Currently, a range of bench-top and 

handheld style electronic noses is available from a number of commercial 

manufacturers (Nimmermark, 2001; Vanneste & Geise, 2003; Stuetz & Fenner, 

2001). It is summarised in Table 4.4.  

 

Table 4.4 

Electronic nose manufacturers, models and sensor cores 

Company Sensor core System 

Agilent Technologies MS 4440 

Alpha M.O.S., France 
MOS, CP, SAW 
MS and MS-EN 

electronic tongue 

Fox 2000,3000,4000,5000, Centauri 
Alpha Kronos & Prometheus 

Astree 

Applied Sensor 
 

MOSFET, MOS, QCM 
4 x MOS, 8 x QCM 

QCM 

3320, 3310 
VOCseries (Handheld) 
VOCcheck (Handheld 

Bloodhound Sensors, UK CP Bloodhound  BH114 
Cyrano sciences Inc., USA CP (composite) Cyanose 320 (Handheld) 

Daimler Chrysler Aerospace QCM, SAW. MOS SAM system 
Electronic Sensor Technology SAW ZNose 

Element MOS FreshSense 
Environics Industry IMCELL MGD-1 

Forschungsrentrum Karlslvhe MOS, SAW Sagas 
HKR Sensorsysteme, Germany QCM, MS QMB6/HS40XL 
Lennartz Electronic, Germany QCM. MOS, electrochemical MosesII 

Marconi Applied Technologies, UK CP. MOS, QCM e-Nose 5000 
Microsensor Systems SAW ProSat 

Osmetech CP OMA and core sensor module 
AromaScan A32S 

Quartz Technology QCM QTS-1 
SMart Nose, Switzerland MS Smart Nose-300 

WMA Airsense Analysentechnik, 
Germany MOS PEN 

o CP: conducting polymer; IMCELL: ion-mobility; MOS: metal oxide semiconductor; 
MOSFET: metal oxide semiconductor field effect transistor; MS: mass spectrometry-based; 
QCM: quam crystal microbalance; SAW: surface acoustic wave 
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Most commercial systems have precise temperature control of the sample 

delivery system and sensor chamber because the variables are known to affect 

sensor responses. They require a host computer for instrument control, data 

analysis and manufacturers offer specific software for data acquisition and display 

and have direct links to spreadsheet packages (such as Microsoft Excel) and 

statistical packages (such as UNISTAT or STATISTICA) to enable more detailed 

further data analysis. Furthermore, they have modular plug-in devices, which 

makes the instruments very flexible (Mills et al., 1996). Several systems are also 

able to incorporate a number of different sensor types (i.e. MOS and CPs) in the 

same device (Gardner & Bartlett, 1999). 

 

The Aromascan A32S, an example of a commercial sensor array system is 

shown in Fig 4.9. 

 
Fig 4.9  The Aromascan A32S, one of the commercial sensor array system 

 

 

 

With regarding to the future prospects of an electronic nose, they have not 

reached their full potential. In the near future, electronic noses are likely to be 

classified into three application groups (Stuetz & Fenner, 2001): 
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o Complex laboratory-based electronic nose; 

o On-line monitoring systems; and 

o Portable devices for field measurements. 

 

The future electronic nose will be able to provide high sensitivity and 

reliability over a wide range of QA/QC applications and to play a part in effective 

product development by allowing rapid, accurate odour or aroma assessment of 

production line samples (Gibson et al., 2000). 

 

Recent developments of electronic nose systems include on-line systems for 

process monitoring and portable devices for environmental monitoring. These 

application specific instruments could be used for a wide range of tasks, which 

may include continuous on-line monitoring of odour abatement units and field 

odour intensity measurements (Stuetz & Fenner, 2001).  

 

In addition to the development of application specific instruments, new sensor 

techniques are being incorporated into sensor array systems. These include the use 

of mass spectrometry and solid-state spectrometry, which involves bypassing the 

traditional sample preparation stages and introducing whole samples into the mass 

spectrometer or the solid-state sensor to give a mass spectrometry fingerprint or a 

spectroscopic trace (Gibson et al., 2000). Alternatively, new sensor types are 

being developed that have either a very low response to water vapour or are 

sensors that are described as water-insensitive chemoresistors (Gibson et al., 

2000). 

 

For the current commercial electronic noses, traditional pattern recognition 

techniques using classical algorithms such as principal component analysis, 

multiple discriminant analysis are usually integrated. However, for the more 

challenging task such as predictive classification of unknown odour samples 

without reference gases or known odour profiles, more sophisticated pre-

processing and data analysis protocols are required. Therefore, specially designed 
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adaptive ANN and fuzzy logic algorithms are being developed for these 

challenging tasks (Stuetz & Fenner, 2001).  

 

 

4.4.6  Application of electronic nose to intensive livestock operations 

Most studies of odours from intensive livestock operations until now have 

used olfactometry to measure concentration, intensity and offensiveness. However, 

there are several disadvantages including expense of operation and difficulty of 

collecting representative samples (Hamilton & Arogo, 1999). 

 

GC-MS gives information of the concentration of a lot of volatile compounds 

presented in odorous air samples. O'Neill & Phillips (1992) listed 168 compounds 

from the analysis of the odorous air in and around animal housing. However, the 

concentration of different odorous compounds in intensive livestock operations is 

unknown because many compounds are present at very low concentrations and 

the concentration of each component is continuously changed. Work has been 

performed to correlate odour to concentrations of the single component such as 

ammonia and hydrogen sulphide. However, no such correlation seems to exist 

(MPCA, 1999). 

 

Until recently, the assessment of environmental odours by electronic nose 

systems has been based on the use of prototype or commercial laboratory-based 

instruments. The assessment work has focused on several subjects including 

(Stuetz & Fenner, 2001):  

o Comparing the sensor responses for different sample types; and 

o Correlating the sensor responses to known parameters such as threshold 

odour concentrations (using olfactometry), specific analytical components 

(using GC-MS) or surrogates for odour strength (using H2S and NH3 

measurements). 
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Different techniques for measuring odours from livestock wastes were 

evaluated by Hobbs et al. (1995). Techniques using an electronic nose, a 

photoionization detector (PID), olfactometry and GC-MS were compared. The 

electronic nose contained 20 polypyrrole sensors of five types. It was shown that 

the electronic nose could discriminate between the different odours from livestock 

wastes (pig and chicken slurry). However, this early instrument was reported to 

have a low sensitivity compared with olfactometry measurements. 

 

Persaud et al. (1996) found a signal proportional to the concentration of 

volatile compounds when using conducting polymer odour sensors and artificial 

pig slurry. The response was reproducible for 3 months. It was concluded that the 

involved chemicals did not damage the sensors.  

 

An electronic nose, AromaScan, was compared to a human panel in a study of 

odours emanating from acetic acid and synthetic pig slurry (Classen et al., 1997). 

The synthetic pig slurry consist of acetic acid, propanoic acid, 2-methyl propanoic 

acid, butanoic acid, 3-methylbutanoic acid, pentanoic acid, phenol, 4-

methylphenol, indole, and 3-methylindole. Regarding the experiment of acetic 

acid, the detection thresholds for the human and the electronic nose were 

approximately the same. In the experiment with the synthetic slurry, the human 

panel determined odour thresholds but the sensor array of the electronic nose was 

not able to select a detection boundary. Modifications of the data processing 

methods were made with somewhat better, but still poor results in detection and 

classification. Therefore, improvements in experimental set-up were 

recommended. 

 

Misselbrook et al. (1997) measured odour concentrations following 

application of slurry to grassland by two types of electronic noses (the Aromascan 

and the Odourmapper developed at the University of Manchester) and by dynamic 

dilution olfactometry. The sensors in the electronic noses were made from 

conducting polymers. The Aromascan contained 32 polypyrrole sensors and the 
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Odourmapper contained 20 polyindole sensors. In the measurements the 

electronic noses responded to odour concentrations of 50 OU/m3. This result 

suggested a potential ability of electronic nose in a range of agricultural 

applications. A single line was fitted for each electronic nose expressing the 

relationship to odour concentration (with a variance of 59-62%). A probable 

factor decreasing the variance is a variation of gas mixture of the volatile organic 

compounds of the different samples. Variations were also suggested to depend on 

the environment (background odours).  

 

Byun et al. (1997) examined different methods to reduce complex 

multidimensional data in order to present it in a form easily interpreted by the user. 

Several pattern recognition techniques were evaluated including linear methods 

(Karhunen-Loeve expansion), non-linear methods (Sammon’s mapping) and 

neural networks (Kohonen’s map). The combined pattern recognition technique 

using both principal component analysis and Sammon’s mapping was revealed to 

be the best method visualizing multidimensional data. It also resulted in rapid 

clustering without assumptions of cluster overlapping. Differences between 

odours emanating from slurry from pigs fed with two different diets were easy 

visualized. 

 

Rieß et al. (2000) measured odours in livestock buildings with an electronic 

nose and by olfactometry. The electronic nose contained totally 18 sensors in 

three chambers with 6 metal oxide sensors in each chamber. The distinction 

between different cattle stables was investigated by samples taken in a beef bull 

and a dairy cattle stable. The electronic nose found a distinction between the two 

stables although the samples seemed very similar to the human nose. Four weeks 

later, new samples were collected in the beef bull stable. The new samples were 

observed to differ from the original samples. Altered feed, increased animal 

weight and meteorological fluctuations were suggested to be the reasons. 

Artificial neural network showed a recognition rate of 95% while other methods 

showed poorer results. 
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After reviewing the available literature, Nimmermark (2001) drew several 

conclusions about the use of an electronic nose for the detection of odour from 

animal production facilities, as follows:   

o Odour concentrations of 40 OU/m3 or higher can be registered making 

practical use possible; 

o An electronic nose can be calibrated to recognise a specific odour from 

animals. For environmental studies this capability sometimes seems too 

good, grouping odours similar to human noses in different categories; 

o A relation between the response of an electronic nose and the odour 

concentration can be derived for odours from the same place during a 

specific time; and 

o Response of an electronic nose to similar odours from different places or 

from different time periods seem to differ which result in problems when 

predicting odour concentration. This inconvenience may be a result of 

different gas mixtures. 

 

In addition, some researchers have made an attempt to correlate the results of 

an electronic nose with other instruments. Qu et al. (2000, 2002) developed an 

measuring odour concentration with a commercial electronic nose. Adaptive 

Logic Network (ALN) was used to develop a function to convert the measurement 

of an electronic nose into odour concentration. Odour samples were collected 

from four piggeries. It was reported that trained ALNs can measure odour 

concentrations with about 20% mean error.  
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4.5 Chapter summary 

In this chapter, odour measurement methods were investigated in detail. Gas 

chromatography is a widely used analytical technique for separating the 

components of an odorous air sample for identification and quantification. 

However, GC and GC-MS only give an indication of the nature and concentration 

of chemical compounds in the sample, not their contributions to the overall odour 

of the mixture. Therefore, GC and GC-MS are not regarded as an odour 

measurement method for this research work because the odours emitted from 

piggery effluent pond are comprised of hundreds of odorous compounds.  

 

Olfactometry, which uses the human nose as the sensor of odours, is the only 

reliable method of accurately quantifying the odour strength for a complex 

mixture of compounds. Dynamic-dilution olfactometry technique is now widely 

accepted as the standard and used in most research and regulatory institutions in 

Europe and Australia. In this research work, The ILSU/NCEA olfactometry is 

used to measure odours. However, olfactometry has disadvantages in terms of 

cost and time taken for analysis because it uses the human nose as a sensor.  

 

An electronic nose is an instrument consisting of a gas sampling apparatus 

and an array of gas sensors interfaced to a personal computer. As most of the 

electronic nose system is developed as a match-model for the natural nose, 

sensors and pattern recognition are an important part of the electronic nose. 

Through the literature review, it is concluded that an electronic nose can be 

calibrated to recognise a specific odour from intensive livestock operations. 

However, much work needs to be done before it can be considered a reliable 

method for quantifying the concentration of an odour.  

 

A variety of different sensor technologies are used in electronic nose sensor 

array systems. Some of the most common are metal oxide sensors (MOS), 

conducting polymers (CP), bulk acoustic wave (BAW), surface acoustic wave 

sensors (SAW) and metal oxide semiconductor field effect transistor (MOSFET). 
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pattern recognition acts as a signal processing unit like the brain in the 

biological olfactory system. Thus, the interpretation of data obtained from sensor 

arrays of an electronic nose relies on the use and performance of the pattern 

recognition engine. A neural network is a dynamic, self-adapting system that can 

modify its response to external forces using previous experience, offering a more 

flexible and, due to the parallelism, faster method of analysis. In addition, it may 

more closely mimic mammalian neurone processing of odour stimuli. Therefore, 

ANN is adopted as the main pattern recognition engine for this research. The 

development and evaluation of the ANN are presented in Chapters 6 and 7, 

respectively.  
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CHAPTER 5 

ODOUR EMISSIONS FROM PIGGERY EFFLUENT 

PONDS 

 

 

 

 

 

5.1 Introduction 

Effluent ponds are widely used for the treatment of wastes from intensive 

livestock operations because of their low construction cost, convenience of 

maintenance and labour savings. More than 75 % of the piggery operations in the 

United States store and process waste anaerobically and 70 % of their dairy 

production systems have installed liquid manure treatment systems (Hussey et al., 

1999; Fisher, 1989). This level of use may be understood in that anaerobic ponds 

are the most trouble free, low maintenance systems available for piggery effluent 

treatment. Effluent ponds are also widely accepted as the principle animal waste 

treatment system especially in piggery operations in Australia (Smith et al, 1999).   

 

A recognised drawback with effluent ponds is the production of offensive 

odours, even when managed at an optimum level. The effluent ponds are the 

major source of odour in typical Australian piggeries contributing about 75 % of 

all odour emissions (Smith et al, 1999; Jiang & Sands, 1998). 

 

 Measurements of odour associated with four dairy farms in Texas, USA 

(Koelsch, 1994) indicated the effluent ponds as the main sources of odour.  He 

indicated that the highest odour intensity in these farms resulted from the primary 

anaerobic ponds.  The ammonia emission rates from effluent ponds are also much 

higher than from other production facilities. For example, ammonia emission rates 
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measured from a variety of animal feeding operations are summarised in Table 

5.1.  As a result of problems associated with odour control, odour from the ponds 

has become a limiting factor for future growth of intensive livestock operations.   

 

 

Table 5.1 

Ammonia emission rates from various animal feeding operations (Arogo et 

al., 2001) 

Situation Rate Unit 

Pigs 0.2-5.0 

Dairy cattle 0.12-1.48 

Beef cattle 0.28-0.74 
Building 

Poultry 0.5-10 

g NH3-N/h-AU* 

Effluent ponds 0.25-156 
Storage/treatment 

Storage Tanks 3-90 
kg NH3-N/ha-day 

Surface spread 14-83 

Band spread 6-47 Land application 

Injected manure 0-7 

Percent (%) 

* AU (1AU=500kg live weight) 

 

 

 To enable the quantitative prediction of odour emission and dispersion from 

effluent ponds, it is necessary to describe the relationship between pond working 

condition and odour emission rates. It can then be used for sizing of ponds for 

odour control. These issues are discussed in Chapter 9.  

 

This chapter is aimed primarily at establishing the context for the 

quantification of the effects of pond loading rates on odour emissions.  
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 The types of ponds and the factors thought to affect odour emissions are 

reviewed, with a specific focus on the organic loading rate (OLR). Possible 

indicators for monitoring pond conditions are discussed. Finally, the available 

data on piggery pond odour emissions are reviewed. 
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5.2 Review of effluent ponds   

Typically, the wastes from piggery operations are flushed from underfloor-

concrete channels into the effluent ponds. The effluent ponds are used in this 

system to promote digestion and stabilisation of the manure solids through 

microbiological activity (Merkel, 1981). There can be up to three ponds in such 

systems plus an additional wet-weather pond. It is common to use recycled 

effluent from the last pond as flushing water in the piggery (Watts, 1999).  

 

According to the mode of biodegradation (aerobic or anaerobic), the presence 

or absence of aeration equipment and other design features, ponds are classified 

as (Martin, 1991; Robertson, 1977):  

o aerobic (bacteria require oxygen for digestion); 

o anaerobic (bacteria function in the absence of oxygen); and 

o facultative (a combination of aerobic and anaerobic). 

 

 

5.2.1 Aerobic ponds 

Aerobic systems produce minimal odour (Martin, 1991) and hence have a 

distinct advantage over anaerobic systems with regard to odour issues. The 

aerobic pond system is based on an abundant supply of oxygen to the 

decomposition process. Generally, these systems entail shallow depth ponds (< 

0.5 m) and are operated with predominant aerobic layers in warmer climates.  

This system is not feasible in cold climates (< - 4 ºC) where the waste liquid can 

freeze throughout the full depth of the pond during the winter months. Settled 

sludge should be removed frequently (once in about 2 to 4 years) to reduce the 

incidence of anaerobic conditions forming in the bottom layers of the pond. These 

ponds are not common because they require a greater area than the other types 

and it is not always practicable to maintain dissolved oxygen (DO) at the required 

levels throughout the year. This system also involves a greater cost in the 

installation of facilities for aeration and agitation.  
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5.2.2 Anaerobic ponds 

Most of the ponds in use on livestock operations today are anaerobic ponds. 

Anaerobic pond systems treat more organic matter per volume than aerobic 

systems and produce less inert sludge due to their low biomass synthesis. 

Anaerobic ponds contain anaerobic bacteria that thrive and grow without free 

oxygen. They are generally deep with a small surface area relative to the organic 

loading rate.  

 

Anaerobic bacteria are very efficient and effective at decomposing most 

kinds of organic matter. On the other hand, these anaerobic bacteria frequently 

give off large quantities of unpleasant odour (Kolesch, 1994; Sivers & Iannotti, 

1981). The intensity of the odour resulting from anaerobic digestion can, however, 

be reduced significantly if anaerobic pond systems are managed properly 

(Koelsch, 1994). 

 

The design criteria for anaerobic ponds is based on an empirical loading rate 

such as the volatile solids loading rate (VSLR) in kilograms of volatile solids 

(VS) per unit volume per day and detention times (Merkel, 1981).  It has been 

noted that as the loading rate (VSLR) increases, the likelihood of objectionable 

odour also increases.   

 

Advantages of anaerobic ponds include (MWPS, 1985): 

o labour economics though the ability to handle wastes hydraulically 

through the use of flushing systems, sewer lines and pumps; 

o high degree of stabilisation that results in reduced odour during land 

application of processed waste;  

o high reduction of nitrogen that minimises the land area required for 

effluent disposal; and 

o provision of long-term storage at low cost. 
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Disadvantages of anaerobic ponds include (Pfost & Fulhage, 1993): 

o public perception that a pond is an “open container of manure”; 

o undesirable odour that may be produced as a result of seasonal changes 

due to “turnover” and spring start-up; and  

o limited nitrogen availability if treated effluent is used as a fertiliser. 

 

 

5.2.3 Facultative ponds 

A facultative pond is a hybrid system that has both aerobic and anaerobic 

features. The surface layer of the pond has an organic loading rate low enough to 

allow dissolved oxygen to be present and hence be aerobic. This results in 

clarification of this surface layer and keeps odour release to a minimum. The 

bottom layer of the pond has minimal exchange of oxygen and hence an anaerobic 

zone exists at the base of the pond for the digestion of organic sediments.  The 

intermediate zone favours the growth of facultative bacteria which are capable of 

operating, growing and thriving in either aerobic or anaerobic conditions as the 

pond characteristics change. Typically, facultative ponds generate less odour than 

anaerobic ponds (Tyson, 1998). 
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5.3 Factors affecting odour emissions from effluent ponds 

Biodegradation processes in ponds depend primarily on the aerobic or 

anaerobic microbial activity. Odour is largely a result of this microbial activity. 

Due to the biological nature of the process, a large number of factors affect odour 

emission from effluent ponds.  The main factors include: 

o loading rate; 

o temperature;  

o start-up conditions; 

o pH; and  

o purple sulphur bacteria. 

 

 

5.3.1 Loading rate 

The loading rate of an effluent pond system is expressed as the mass of 

volatile solids per cubic meters of pond volume added per day. It has a major 

impact on the amount of odour that is generated from the system. Several field 

studies have shown a clear relationship between loading rate and odour emissions. 

Chastain & Henry (1999) indicated that at high loading rates (i.e. 480 g 

VS/m3day), significant odour will be produced near the pond 80 % of the time. If 

the loading rate is reduced to 30 g VS/m3day, the odour will be insignificant. This 

suggests that one way to control odour is to use a very small loading rate. 

However, a pond size based on a loading rate of 30 g VS/m3day will be very large 

and expensive to build. The maximum recommended loading rate of 80 g 

VS/m3day will have an odour near the pond 33 % of the time. In South Carolina 

in the United States, the recommended loading rate to minimize odour is 60 g 

VS/m3day with an odour frequency of 20 %.  

 

Humenik et al. (1981) reported an 80 % frequency of odour for field pilot 

ponds with a volume of 0.6 m3/45 kg hog and 60 to 20 % frequencies at 2.3 and 

4.6 m3/45 kg.  At 9.2 m3/45 kg, there was little odour. Volatile solids loading rates 
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at these volumetric allowances were 380, 96, 48 and 24 g VS/m3day, respectively. 

The authors concluded that the 20 % frequency detection of odour was acceptable 

(Loading Rate Value (LRV): 48 g VS/m3day). However, the loading values 

suggested by this study are significantly lower than the actual operating 

conditions and lower than loading rates recommended for design of anaerobic 

ponds (DPI-Tasmania, 1996; Clyde, 1985; ASAE, 1984; USDA-SCS, 1983; 

MWPS, 1983). 

 

If solids or sludge are allowed to build up in the pond, the treatment volume 

will be greatly reduced.  The decreased treatment capacity has the same effect as 

an increase in loading rate with a resultant increase in odour frequency. The 

amount of storage volume provided depends upon the expected life of the pond or 

the frequency with which the sludge will be pumped from the pond (Barth et al., 

1978). Using field studies and results from other investigators, they reported 

average sludge accumulation rates in animal waste ponds to be approximately 8.8 

m3 per year for a 590 kg dairy cow; 0.37 m3 for a 61 kg finishing hog; and 0.02 

m3 for a 2 kg laying hen. 

 

Biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and 

volatile solid concentration (VS) are also used as indicators of loading rate in 

effluent ponds.  

 

 

5.3.2 Temperature  

Biological activity is regulated by temperature and will be slower during 

periods of low temperature.  At temperatures below 4 °C, biological activity 

largely ceases and as a result, manure decomposition ceases.  In climates where 

the average winter temperature is below 4 °C, very little odour is produced during 

the winter due to the cessation of microbial activity.  In the spring of the year as 

the temperature of the pond water begins to rise (i.e. > 4 °C), acid forming 

bacteria become active and produce the compounds that feed methane forming 
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bacteria. Unfortunately, a delay in the decomposition process occurs where 

mesophilic methane forming bacteria do not become fully active until 

temperatures reach 15 °C (Pain & Hepherd, 1985). This delay combined with the 

fact that manure is continuously fed into the pond or storage during the winter 

results in an overloading of the pond system that leads to sub-optimal conditions 

and an attendant increase in odour. 

 

Where surface water temperatures fall below 3 °C, both Spring and Autumn 

turnover can occur. Turnover can be defined as a convective vertical mass 

movement of liquid in the pond. At 3 °C, when the pond surface cools to this 

temperature, the density of water is at a maximum and pond surface water sinks 

and bottom water rises.  The mixing action created during the turnover period can 

cause odorous material from the bottom to temporarily rise to the surface and 

increase odour. Generally, anaerobic ponds and manure storages are relatively 

shallow hence the turnover period and period of odour release lasts only a few 

days. One way of decreasing the duration of the turnover period, and the 

associated odour, is to mechanically agitate the pond or storage basin. This will 

increase the intensity of the odour for a short period of time, but the duration of 

the odour will be greatly reduced (Schmidt, 1998). 

 

 

5.3.3 Start-up condition 

A new pond should be filled to 50 percent of its permanent volume with 

liquid before manure loading begins. Start-up during warm weather and seeding 

with bottom sludge from a working pond will speed establishment of a stable 

bacterial population. Manure should be added to anaerobic ponds in a regular 

stream without ‘shock’ loadings, which can cause sharp increases in odour 

production and wide fluctuations in nutrient content. Liquid levels should not be 

allowed to fall below the design treatment level, so that adequate pond volume is 

maintained for optimum bacterial digestion (NCSU, 1998). 
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5.3.4 pH  

An anaerobic pond that is operating properly will have a pH ranging from 7 

to 8 (Tchobanoglus & Burton, 1991). When the anaerobic pond is operated 

properly, the biochemical reactions will maintain the pH in the proper range. If 

imbalance develops, the acid forming bacteria exceed the methane formers 

causing a build-up of volatile acids in the pond. If this continues, the buffer 

capacity is exceeded causing the pH to drop below 6.0. Under this condition, the 

anaerobic ponds start to produce odour.  

 

pH has a strong interaction with the concentration of volatile organic acids. 

The lowest pH values occur when the volatile organic acids are at the maximum 

concentration. The pH in new ponds without adequate dilution water or in 

overloaded ponds can be reduced to 6.5 or less (acidic), thereby causing odour 

problems. This condition can be temporarily corrected by evenly distributing 

agricultural lime (preferable hydrated) on the liquid surface.  

 

 

5.3.5 Purple sulphur bacteria 

Many ponds exhibit a purple colour in the liquid, caused by naturally 

occurring purple sulphur bacteria. These are phototropic organisms that oxidise 

sulphide under anaerobic conditions. When these organisms are dominant, pond 

odour, ammonium nitrogen and soluble phosphorous are reduced.  The purple 

colour is a good indicator of a pond working at its optimum (NCSU, 1998). 

 

To encourage desirable purple sulfur bacteria, the first factor is proper pond 

size in terms of the amount of manure produced. Ponds with small permanent 

pools often tend to produce odour because they are too small to adequately handle 

wastewater. Ponds with a large permanent pool have less odour problems. 

However, lower loading rates may not support the opportunity for ponds to turn 

purple. Consequently, a moderately loaded pond could yield high purple sulfur 
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bacterial populations. In terms of the rapid growth of the bacteria, seeding ponds 

with purple sulfur bacteria may be another option. This would entail hauling a 

charge of wastewater from a purple pond to a non-purple pond. Early summer 

would be the best time to do this. However, there is concern regarding possible 

disease if the pond’s top water is recycled to the piggery shed (Alberts, 2000). 

 

Work by van Lotringen & Gerrish (1978) indicates that purple sulfur bacteria 

can be promoted successfully in an anaerobic pond by proper management 

techniques. Their suggestions include; 

o loading of an anaerobic pond should be done on a regular and frequent 

basis, preferably twice a day to reduce shock loads which upset the 

microbial balance. Under no conditions should be an entire pit be emptied 

into a pond. Continuous loading is preferable if possible;  

o loading rates should be 0.062 m3/kg of animal weight; and  

o provide a sludge storage volume to accommodate a 3-year sludge 

accumulation. 
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5.4 Indicators for monitoring pond condition 

There are several indicators that can be used to monitor pond conditions. 

Although the interactions between these indicators and the anaerobic process are 

not fully revealed now, they have potential as easy-to-measure indicators to 

monitor and evaluate pond conditions in terms of odour.   

 

5.4.1 pH 

The pH values have a strong interaction with the operational status of an 

anaerobic pond. Since the anaerobic decomposition process is the main process in 

the pond, the activity of methanogenic bacteria controls the overall performance 

in the pond. Although gas production takes place between a pH of 6.6 and 7.6, the 

optimum pH range for methane production of methanogenic bacteria is between 

7.0 and 7.2. When the pH drops below 6.6, methane bacteria are significantly 

inhibited (Merkel, 1981). Therefore, the continuous monitoring of pH values can 

be an effective tool to monitor the pond conditions. If the pH is lower than certain 

value, for example 6.6, the system could alert the operator that the pond is 

malfunctioning and there is the possibility of offensive odour.  

 

 

5.4.2 Electrical conductivity 

The build-up of salts is toxic to bacterial organisms and inhibits pond 

performance.  Work done by Georgacakis & Sivers (1979) showed an excellent 

correlation between electrical conductivity and gas production. They showed that 

low level salt concentration can stimulate bacterial activity with peak stimulation 

occurring at an electrical conductivity (EC) of 6.5 dSm-1. Electrical conductivities 

between 10 and 13 dSm-1 cause a large reduction in anaerobic digestion 

efficiency; higher EC levels rapidly increase toxicity resulting in a 90 % 

inhibition at levels of 33 dSm-1. Therefore, regular use of a conductivity meter 

may be a useful management tool for judging the possibility of odour production.  
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5.4.3 Ammonia nitrogen 

In an anaerobic system, ammonia exists in equilibrium as an ammonium ion 

or as dissolved ammonia gas. Un-ionised ammonia is quite toxic to methanogenic 

bacteria. A rapid increase in pH shifts the equilibrium, placing more free 

ammonia in solution, which is toxic to the methane bacteria.  There are few data 

about ammonia toxicity. Ammonia is inhibitory to methanogenic bacteria at a 

level of 1500 to 3000 mg/L. However, free ammonia in concentrations greater 

than 150 mg/L cause anaerobic units to stop functioning (Bhattacharya & Parkin, 

1988)  

 

 

5.4.4 Carbon/nitrogen (C/N) ratio 

The nutrients required for anaerobic digestion are carbon, nitrogen, hydrogen, 

and phosphorus. The more important nutrients among this group are carbon and 

nitrogen. For best results, the carbon:nitrogen ratio of the substrate should always 

be within the range of 18:1 to 20:1 (Alken-Murray, 2004). If the C/N ratio is too 

high, the process is limited by nitrogen availability; if it is too low, ammonia may 

exist in quantities large enough to inhibit bacterial activity (Merkel, 1981).  Hence, 

this ratio can be an indicator of the performance of anaerobic pond.  
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5.5 Piggery pond odour emission data 

Schulz & Lim (1993) derived pond emission rates using a wind tunnel 

floating on the pond surfaces. Emission rates from anaerobic ponds ranged from 

18.9 – 38 OU/m2s. However, it was impossible to assign emission rates to specific 

pond conditions because of the poor pond descriptions provided. Though the 

results were obtained using sound sample handling and storage procedures, the 

olfactometry data cannot be compared to current methods because they were not 

obtained by a standard method using butanol thresholds (Watts, 1999a). The data 

acquired by Schulz & Lim is reproduced in Table 5.2.  

 

Table 5.2 

Piggery pond odour emission rates (reproduced from Schulz & Lim, 1993) 

Odour source  Odour emission rates 
(OU/m2s) 

Anaerobic pond  38.0 ± 5.7 
Aerobic pond  21.7 ± 2.6 
Facultative pond 29.3 ± 4.9 
Anaerobic treated effluent pond (no scum) 18.9 ± 1.9 
Anaerobic treated effluent pond (with scum) 25.7 ± 3.3 
Aerobic treated effluent pond (no scum) 14.9 ± 2.8 
Aerobic treated effluent pond (with scum) 21.3 ± 3.4 
Facultative treated effluent pond (no scum) 19.0 ± 1.9 
Anaerobic treated effluent pond (with scum) 23.8 ± 3.3 
  

 

Smith et al. (1999) measured odour emission rates from piggery ponds in 

Queensland, Australia using both wind tunnel and back-calculation methods. The 

emission rates from primary anaerobic ponds were 20 – 40 OU/m2s. The odour 

emission rate data from secondary facultative ponds were typically less than 10 

OU/m2s. Olfactometry analysis was carried out to the NVN 2820 method with 

butanol thresholds recorded. From this research, the ‘standard’ odour emission 

rates were derived to develop the separation guidelines for piggeries in 
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Queensland, Australia. They were averaged from the results of Smith et al. (1999) 

as 30 OU/m2s for primary (anaerobic) ponds and 5 OU/m2s for secondary 

(facultative) ponds.  

 

Although the documentation is not clear, it is understood that the work of 

Schulz & Lim (1993) and Smith et al. (1999) was conducted on what could be 

described as heavily-loaded ponds. Characteristics of this type of pond include 

(FSA environmental, 2001): 

o Organic loading rate greater than recommended by the Rational Design 

Method; 

o Dark colour; 

o Dark, floating scum; 

o Upsurging of sludge from the pond bed on large odour ‘bubbles’; 

o Non-uniform bubbling across the surface; and 

o Acrid or sour character to the odour. 

 

Fig 5.1 shows a heavily-loaded anaerobic pond with upsurging of sludge.  

 

 
 

Fig 5.1 Heavily-loaded anaerobic pond with upsurging of sludge 
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Heber (2002) measured odour emission rates from the piggery effluent ponds 

of a 6000 head pig grow-finish facility to evaluate the effect of pond aeration on 

odour emissions. Odours were sampled from the pond surface using a buoyant 

convective flux chamber with a wind speed of 1.1 m/s. The odour emissions rates 

ranged from 1.48 to 2.05 OU/m2s and averaged 1.67 OU/m2s. The aerated pond 

emitted 82 % less odour than similar unaerated ponds with only half the 

volumetric loading rate.  

 

Lim et al. (2004) reported odour emission measurements from two anaerobic 

ponds with different loading rates. Samples were collected using a buoyant wind 

tunnel (Lim et al., 2003). Odour samples were analysed using an AC’SCENT 

olfactometer using methods compatible with the 1999 CEN TC264 Olfactometry 

Standard. Pond liquid effluent was analysed for pH, total solids (TS), volatile 

solids (VS), chemical oxygen demand (COD), total kjeldahl nitrogen (TKN), 

ammonium nitrogen (NH4
+-N) and phosphorous (P). Pond A was estimated to 

have a typical loading rate equating to 62.5 g VS/m³day. Pond B was estimated to 

have a light loading rate equating to 22.4 g VS/m³day. The mean odour emission 

rate from pond A was 6.2 OU/m²s and from pond B was 2.9 OU/m²s. The results 

indicated generally higher emissions from pond A. In terms of the effluent 

characteristics, pond A had higher concentrations of TS, TKN, NH4
+-N and P, but 

lower VS (FSA environmental, 2001). 

 

The conclusion of Smith et al. (1999) and Schulz & Lim (1993) that odour 

emissions from a heavily-loaded anaerobic pond are much higher than lightly-

loaded facultative ponds is supported by the research done by Heber et al., (2002) 

and Lim et al., (2003, 2004).   
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5.6 Chapter summary 

As noted in the introduction, the aim of this chapter was to establish the 

context to quantify effects of pond loading rates on odour emissions.  

 

Effluent ponds are widely used in piggery and dairy husbandry for the 

treatment of wastes because of their low construction cost, convenience of 

maintenance and labour savings. However, a recognized drawback with effluent 

ponds is the production of offensive odour, even when managed at an optimum 

level. The effluent ponds are the major source of odour in typical Australian 

piggeries contributing about 75 % of all odour emissions.  

 

Ponds are classified as aerobic, anaerobic and facultative depending on the 

biodegradation (aerobic or anaerobic), the presence or absence of aeration 

equipment and other design features. In piggery operations, most of the ponds are 

anaerobic because anaerobic pond systems treat more organic matter per volume 

than aerobic systems and produce less inert sludge due to their low biomass 

synthesis. However, anaerobic ponds frequently give off large quantities of 

unpleasant odour than aerobic and facultative ponds.  

 

Although there is a large number of factors affecting odour emission from 

effluent ponds, it is concluded that organic loading rate has a major impact on the 

amount of odour that is generated from ponds. Smith et al. (1999) and Schulz & 

Lim (1993) showed that odour emissions from a heavily-loaded anaerobic pond 

are much higher than lightly-loaded facultative ponds. This was supported by 

Heber et al., (2002) and Lim et al., (2003, 2004). In addition, pH, EC, NH3-N and 

C/N ratio are suggested as potential, easy-to-measure indicators to monitor and 

evaluate pond condition in terms of odour.  
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CHAPTER 6 

APPLICATION OF THE ELECTRONIC NOSE FOR 

ODOUR QUANTIFICATION 

 

 

 

 

 

6.1 Introduction 

The intensive livestock operations developed to meet the needs of modern 

society have raised serious environmental issues regarding waste management, 

water quality and odour. Odours associated with livestock operations arise from a 

mixture of urine, fresh and de-composting manure, and spilled feed. In piggery 

operations, odours are emitted from confinement buildings via the ventilation air, 

waste storage and handling systems including effluent ponds, and the field 

application of liquid waste (Schiffman et al., 1997). Although there is limited 

evidence that serious risks to physical health occur downwind of livestock 

confinement facilities, some research suggests that odour-causing substances can 

cause health effects such as eye, nose and throat irritation, headache and 

drowsiness, and possibly aggravate allergies, asthma and bronchitis (Swine Odor 

Task Force, 1998).  

 

A confident, rapid, and cost-effective technique for odour measurement is 

required to develop a piggery odour control program as well as to evaluate the 

effectiveness of the methods for reducing odour. At present, olfactometry in 

which human panels are employed as the odour sensor, has been regarded as the 

industry standard method. However, olfactometry has a considerable disadvantage 

in terms of cost and labour requirements (Nimmermark, 2001). In addition, 

olfactometry is often thought to be an unreliable measurement technique because 

of its dependence on subjective human responses. Recent developments in the 
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electronic nose technology and artificial neural networks (ANN) provide an 

opportunity to extend the scope of odour measurement. 

 

Electronic nose systems have been used for a broad range of applications, 

including: quality control of raw and manufactured products (Lacey & Osborn, 

1998); process, freshness and maturity monitoring (Han et al., 2001; Shindo et al., 

2001); shelf-life investigations (Ko et al., 2000); discrimination of the origin for 

agricultural products (Noh & Ko, 1997; Noh et al., 1998); classification of scents 

and perfumes; microbial pathogen detection (Pometto III & Moizuddin, 1998); air 

quality in indoor environments (Schreiber & Fitzner, 1999) and in piggery 

facilities (Gralapp et al., 2000); water and wastewater quality control (Stuetz, 

2001); and agricultural malodour measurement (Persaud et al., 1996b) and 

monitoring (Persaud et al., 1996a).  

 

As sensor technology plays a crucial role in the performance of an electronic 

nose, various kinds of gas sensors have been investigated. However, four 

technologies are mainly used in commercialised electronic nose sensors: metal 

oxide semiconductors (MOS); metal oxide semiconductor field effect transistors 

(MOSFET); conducting organic polymers (CP); piezoelectric crystals (bulk 

acoustic wave = BAW) (Schaller et al., 1998). The ‘zNose’ using acoustic wave 

resonator sensor technology is a more recent development (Staples, 2000). 

 

Since the raw data from the electronic nose is a ‘fingerprint’ for each specific 

gas or odour, pattern recognition techniques can be used to analyse the raw 

response generated by the sensors. A variety of pattern recognition techniques 

have been utilised such as graphical analyses (bar chart, profile, polar and offset 

polar plots), multivariate analyses (principal component analysis, canonical 

discriminant analysis, feature weighting and cluster analysis) and network 

analyses (artificial neural network and radial basis function). However the choice 

of method depends on the available data and the type of result that is required 

(Schaller et al., 1998). Although graphical and multivariate analyses are an 
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effective means of comparing samples and of reducing the high dimensionality in 

multivariate problems, they may be not always be suitable methods for the 

analysis of piggery odours. This is because of noise in the sensor responses 

caused by the complex odour background.  

 

An ANN is able to provide a better alternative to traditional statistical 

methods because of its computational efficiency and generalisation ability. Unlike 

other pattern recognition methods, an ANN inspired by biological nervous 

systems is a dynamic, self-adapting system that can modify its response to 

external forces using previous experience, offering a more flexible and, due to the 

parallelism, faster method of analysis (Chelani et al., 2002). In addition, it may 

more closely mimic mammalian neuron processing of odour stimuli (Schaller et 

al., 1998). It has proved more adaptable to events occurring in real analytical 

situations because it is much more resistant to random error, and drift in sensor 

signal magnitudes. 

 

ANNs have been applied to predict SO2 concentration in Delhi (Chelani et al., 

2002), to process the signal from odour sensor arrays for near-real-time odour 

identification (Roppel et al., 1998), with electronic nose data to predict the shelf-

life of soymilk (Ko et al., 2000), to mimic animal odour space and olfactory 

processing (Hopfield, 1999) and to quantify piggery odour using electronic nose 

data (Hanumantharaya et al., 1999). Hanumantharaya developed a feed-forward 

back propagation ANN model as an interface for the output of the Aromascan 

electronic nose, to correspond to the result of a human olfactory panel. The 

simulation result of the study showed that the neural network model could be 

trained with the response of the AromaScan to obtain a low mean squared error 

value of 0.0015 and 0.01. However, the ANN model required about 100,000 

training epochs and 30 minutes of training time to reach that mean square error. 

This was not sufficiently fast for the model to be used for real or near-real time 

odour measurement and quantification. 
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Qu et al., (2000, 2002) developed a function to convert the measurements of a 

commercial electronic nose, the AromaScan A32S, into odour concentrations 

using the Adaptive Logic Network (ALN). Principle component analysis (PCA) 

was used to reduce the number of input variables in the data set from 34 to 3. It 

was reported that the trained ALN could measure odour concentrations with about 

20% mean error. However, the computation time of their ALN model was not 

reported. The software realisation of ANN demands a heavy process load to the 

CPU, because it is implemented in sequential form (inherent of the general 

purpose computer architecture where the program is running). This fact limits its 

use to off line applications or real time applications of very slow processes. 

Certain neural network adaptation algorithms (or training) require extremely high 

computation time when the dimension of the network to be adapted is relatively 

big. Although the trained network could be used in a fast way, the necessary time 

for its training is so high that it makes its use impractical. In addition, there were 

no attempts to improve generalisation to minimise over-fitting and under-fitting of 

the network in their work.  

 

   In this chapter, the context is established within which the instrumental 

odour quantification method developed for this research work has been 

undertaken. The AromaScan and ANN techniques are described in detail in this 

chapter. The specific features of the AromaScan A32S and the odour sampling 

protocol for this instrument are discussed. 

 

ANN techniques are outlined and network architectures are considered to 

determine the most appropriate network configuration for odour quantification 

work. Principal component analysis and network generalisation techniques, which 

have been applied in this research are presented.   
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6.2 The AromaScan  

 

6.2.1 Overview 

The AromaScan is an analytical instrument which can electronically sense 

odours and aromas. The AromaScan’s digital odour technology was first 

developed at the University of Manchester Institute of Science & Technology 

(AromaScan plc., 1996). The AromaScan mimics the three phases of the human 

olfactory system - detection, signal processing and recognition /interpretation. 

These three activities allow the human nose to detect, analyse and react to 

changes in the smell of its environment (AromaScan plc., 1996).  

 

In the human nose, detection is carried out by the olfactory epithelium in 

which approximately 50 million receptors (made up of at least 30 different types) 

are exposed to the external environment. Olfactory receptors have broad 

specificity across chemical species. The size, shape and distribution of polar 

groups determine the odour description and hence the response of the nose. 

 

The olfactory region in the nose carries out chemical analysis after which 

signals pass to the brain’s cerebral hemispheres, where odour recognition is 

combined with other sensory inputs. This data is then used to monitor and 

evaluate the environment and react to changes. The average human nose 

recognises some 2000 odours whereas an expert ‘Nose’ can be trained to 

differentiate up to 10000. The chemical structure of these odours is very diverse 

and ranges from small molecules such as ammonia to larger molecules such as 

androstenone (AromaScan plc., 1996). 

 

The sensors of the AromaScan emulate the olfactory receptors’ capacity in its 

discrimination of stereo-chemical and polar characteristics of volatile chemicals. 

The sensor array of the AromaScan has 32 polymer types, which detect a 

spectrum of compounds similar to that of the 30 receptor families in the human 

nose. Initial data processing, carried out in the human olfactory bulb, is performed 
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in the AromaScan by the processor which provides odour ‘fingerprints’ and 

aroma ‘maps’. Finally, ANN processing imitates the brain to provide pattern 

recognition off-line or real-time quality descriptive evaluation of odours 

(AromaScan plc., 1996). 

 

Therefore, the AromaScan is able to produce an effective ‘fingerprint’ to 

distinguish specific odours emanating from different sources. The typical sensor 

output pattern results from the AromaScan for piggery odour samples 1 and 2, 

water vapour and activated carbon filtered clean air are shown in Fig. 6.1. It is 

observed that the sensor output patterns produced from piggery odours 1 and 2 

have similar ‘fingerprints’. 
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Fig. 6.1 Typical sensor output pattern results from the Aromascan: ▼ piggery 

odour 1; ● piggery odour 2; □ water vapour; ∆ clean air 

 

 

6.2.2 Features of the AromaScan 

The detector unit of the AromaScan consists of an array of 32 electrically 

conducting organic polymer sensors. The polymers are based on heterocyclic 
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compounds such as aniline and pyrole and are usually the derivatives of 

polypyrole and polythiophene (AromaScan plc., 1996). The organic polymers are 

sensitive to the steric, ionic, hydrophobic and hydrophilic variations of a sample 

(AromaScan plc., 1996). When these sensors are exposed to the odour sample, 

there is a reversible change in the electrical resistance of the sensors due to the 

adsorption and desorption of the molecules in the sample. The change in the 

electrical resistance is measured relative to a predetermined zero reference 

baseline (AromaScan plc., 1996). 

 

Each of the 32 polymers exhibits a wide range of selectivity to different 

chemicals. Therefore, the AromaScan can detect and measure thousands of 

chemical substances. It takes only a few seconds for each sensor to react to a 

volatile chemical and come to a point of equilibrium which is a steady state 

between adsorption and desorption of the volatiles in the sample (AromaScan plc., 

1996). 
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Figure 6.2 Response of the AromaScan sensors. 

 

 

Fig 6.2 shows a typical response of the 32 sensors and the four stages: 

reference - sample – wash (purge) – reference during odour sampling. In the 

figure, the regions of greatest instability are those at the start and end of the 



Chapter 6. APPLICATION OF THE ELECTRONIC NOSE FOR ODOUR QUANTIFICATION 

Ph. D dissertation 
  Page 125 

 

sampling run (AromaScan plc., 1996). The responses of the sensors reach an 

equilibrium after the initial stages in the sampling. The third stage corresponds to 

the ‘wash phase’ in the sampling process. Wash phase is the process during which 

the sensor unit of the AromaScan is washed with water vapour to prevent cross-

contamination and sensor drift.    

 

 

6.2.3 Odour analysis using the Aromascan 

Temperature and humidity should be precisely controlled to produce 

consistent results because these variables can cause changes in the sensors’ 

response. This can be accomplished by adjusting the temperature and humidity of 

the reference air and by conditioning the sample.  

 

 

Conditioning the odour sample 

The sample should be conditioned by maintaining it in stable conditions of 

temperature and humidity before presenting it to the AromaScan. The sample 

should be analysed at the same temperature and humidity at which it is 

conditioned. For best results, reference air at the same temperature and humidity 

as that of the sample air should be used (AromaScan plc., 1996). 

 

The sensors of the AromaScan are highly sensitive to many polar compounds 

and hence to water. For any sample with high humidity content, its fingerprint 

will include the intensity due to the presence of water (AromaScan plc., 1996). It 

is necessary to maintain the humidity of the reference air at the same level as that 

of the sample because the sensors zero themselves during the calibration part of 

the data acquisition phase - before the actual data acquisition, the AromaScan 

calibrates itself and sets all the sensor readings to zero (AromaScan plc., 1996). 

This also reduces the effect of the humidity and increases that of the volatile 

chemicals in the headspace (AromaScan plc., 1996).  
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AromaScan analysis process 

There are 3 stages in the analysis (AromaScan plc., 1996): 

1. Reference: The conditions in the AromaScan should be stabilised before 

the sample is analysed. This is done by stabilising conditions in the 

reference line. More specifically, a dry sample should be referenced by 

dry air and a wet sample with wet air. This conditioning ensures that the 

sample is analysed under the conditions in which it is stored or under 

which it is collected and stored. As the humidity of the sample is quite 

important to the whole analysis, it is necessary to maintain the relative 

humidity of the reference air at a level of 10% RH below that of the 

sample (AromaScan plc., 1996). 

 

2. Sampling: This is the phase where the sample air from the headspace is 

drawn across the sensors and the resistances of the sensors change 

depending upon the adsorption and desorption of the volatiles from the 

sample (AromaScan plc., 1996). The percentage change in resistance of 

each of the 32 sensors is converted into a digital signal for further data 

processing using pattern recognition techniques or ANN.  

 

3. Wash: After sampling, a wash is done using water or a solution of 5% 2-

butanol in water, depending upon the sample type, to remove any traces of 

the sample inside the instrument and also to avoid cross-contamination for 

the subsequent samples used. 

 

The reference gas is generally produced by filtering and dehydrating ambient 

air to make dry air and bubbling the dry air through a bottle of water to generate 

high humidity air (AromaScan plc., 1996). By mixing the dry and high humidity 

air sources using solenoid valves and a valve controlling program, an odour free 

reference gas with the same level of humidity as that of the sample is obtained 

(AromaScan plc., 1996).  
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Fig 6.3 shows the block diagram of the AromaScan. The main components of 

the AromaScan instrument are the sensor array, the temperature control unit and 

the humidifier unit. 
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Fig 6.3 AromaScan block diagram (reproduced from AromaScan plc., 1996) 

 

 

6.2.4 Sampling time and humidity calibration 

When analysing odour samples using the AromaScan, it is important to 

develop an efficient and effective analysis method for each specific odour. The 

first step in developing an analysis method is to determine the sensor responses 

for a representative range of the samples intended for testing. To do this, it is 
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necessary to recognise that some volatile chemical compounds can take up to 10 

to 15 minutes to cause a sensor response. For example, this can be the case with 

low concentrations of amines, which are often found in piggery odours.  

 

Therefore, the process of determining the optimal sampling time is as follows: 

1. The sampling container with the air sample bag inside is connected to the 

sampling port of the A32S unit through a TeflonTM tube. The odour sample is 

then sampled directly at room temperature.  

2. Set the humidity of the ‘reference’ air stream. As the relative humidity of the 

reference air should be 10 % below that of the sample, the relative humidity of 

the reference air is set to this value. 

3. The sample is then analysed with the following A32S, the sampling station of 

AromaScan, valve sequence (The washing air was generated by passing dry 

air over a washing liquid agent of 5 % 2-butanol):  

o Reference:      15 seconds 

o Sample:   300  seconds 

o Wash:          30  seconds 

o Reference:  180  seconds 

4. Repeat steps 1 and 2 for 3 times in order to establish reliable sensor response.  

5. Apply the data reduction package in the AromaScan software to evaluate the 

sensor responses. The time taken to establish stable responses is determined. 

The example of sensor response is shown in Fig 6.4.  
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Time (seconds)  
Fig 6.4 Sensor response type A from the AromaScan A32S 

 

 

From Fig 6.4, it can be seen that the sensor response is relatively stable after 

about 200 seconds. Beyond this point it is simply increasing in intensity. Now 

consider a different sensor response depicted in Fig 6.5. 

 

 

Time (seconds)

 
Fig 6.5 Sensor response type B from AromaScan A32S 

 

 

From Fig 6.5, it can be seen that the response does not stabilise as quickly as 

that in Fig 6.4.  Between 195 seconds and 235 seconds, one of the sensors has not 

stabilised (the two highest intensity responses cross over). Beyond this point, the 

sensor response is stable. Therefore if these two examples were the extent of the 

sample variation, the analysis time would have to be long enough to take into 

account the longer response stabilisation time. Once this initial analysis time has 

been established, repeat analyses of each sample can be conducted. 
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As the humidity of the collected air samples varies widely and directly affects 

the change of the sensor response, it was important to measure the humidity of 

each sample collected, and to adjust the ‘reference’ gas humidity accordingly to 

provide a fixed difference between the two. Therefore, a simple protocol to set the 

range of humidity and temperature for each analysis was developed as follows:  

1. Connect the sampling container to the sampling port of the A32S analyser 

with the ‘reference’ gas set to a mid-range value (around 30 % RH as 

measured by the AromaScan A8S humidity generator). 

2. Then run the humidity test method with the following A32S valve 

sequence; 

o Reference:     15  seconds 

o Sample:    300  seconds 

o Wash:          30 seconds 

o Reference:  180  seconds 

3. The temperature and humidity reading on the A32S inline sensors are 

examined during the ‘sample’ sequence. For analysis of the air sample the 

‘reference’ air stream humidity is set at 10 % RH below that of the sample. 

This is determined using the humidity calibration chart that is included in 

the operation manual of the AromaScan. For example, if the sample has a 

humidity of 36.2 % RH at 26.64 oC, as measured by the inline sensors, 

therefore the ‘reference’ air stream should have a humidity of 16.64 % RH 

under the same temperature conditions. As the reference humidity is 

generated at 30 oC inside the A8S unit, the required humidity of 16.64 % 

RH must be translated to 30 oC, maintaining the same absolute water 

content. The humidity calibration chart give this as 21.47 % RH. It is 

important to note that the A32S inline humidity sensor will respond to 

other gases in addition to water vapour. There is therefore a small error in 

the humidity reading, but the sensor still offers a valuable guideline in 

setting the reference air stream humidity. 

4. Prior to analysis of the air sample, the reference gas should be set to 

21.47% RH as measured by the A8S humidity generator. 
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5. Test the air samples, a minimum of 5 times each, by the selected analysis 

method in order to acquire the repeat analyses required for the cluster 

analysis software. 

 

These data can then be processed in the data reduction software. Databases 

can be created from the beginning, the middle and the end of the sensor responses, 

and then these databases compared by both Sammon mapping and PCA analysis 

(Aromascan plc., 1996). By finding the portion of the response that gives the best 

discrimination, the analysis time may be modified again. For instance, if 

databases created from the end of the sensor response give the best sample 

discrimination, then the analysis time is unchanged. However, if the databases 

created from the middle of the sensor response indicate superior discrimination, 

then the analysis time can be reduced even further. 

 

The Sammon maps shown in Fig 6.6, 6.7, and 6.8, which were created from 

the start, middle and end of the sensor responses, showed the different data 

clustering depending on the portion of the sensor response. It was observed that 

the results collected at the ending range of sensor response show best clustering. 

The Euclidean distance can determine the level of clustering.   
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Fig 6.6 Data clustering at the starting range of sensor response 

 

 
 

 
Fig 6.7 Data clustering at the middle range of sensor response 

 
 
 

 
Fig 6.8 Data clustering at the ending range of sensor response 
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6.3 Artificial neural network 

 

6.3.1 Overview 

An ANN attempts to model the working of biological nervous systems. 

Although biological nervous systems are much more complicated, most of the 

theory of ANNs is based on studies of biological nervous systems. ANNs are also 

referred to as neural networks, connectionism, adaptive systems, adaptive 

networks, neurocomputers, and parallel distribution processors (Simpson, 1990).  

 

There are three important matters to consider when attempting to build an 

effective and efficient model to predict real odour concentration from electronic 

nose data with an ANN. 

 

The first issue is to reduce the dimensionality of the input vectors with 

suitable preprocessing algorithms such as scaling and PCA. The digital odour data 

from the AromaScan, the dimension of the input vector, used for this research 

work is too large to do effective training. In addition it may contain noise caused 

by background odour emissions.  

 

The second issue is to obtain a good generalisation with minimal computation 

time. In order to develop a real or near-real time practical odour measurement 

system, the ANN model must be able to predict odour concentration from 

electronic nose data, which is not in the training set, with minimal computation 

time or epochs. The number of epochs, which is defined as the presentation of the 

set of training (input and/or target) vectors to a network and the calculation of 

new weights and biases, is one way to show the computation time in an ANN.  
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To get a good generalisation, the ANN model is required to decrease errors 

caused by underfitting or overfitting. Although the best way to avoid overfitting is 

to use lots of training data, it is not always possible in practical situations. One 

method for improving network generalisation is to use a network large enough 

that is able to provide an adequate fit. However, it is difficult to know beforehand 

how large a network should be for a specific problem. Besides, a large network 

may be not an efficient model because it may need more computation time or 

epochs. This topic is addressed in more detail in section 6.3.5.   

 

The last issue is the network architecture including the number of neurons in 

the hidden layers because it is closely related to training error and the 

performance of an ANN.  

 

 

6.3.1.1 Definition 

In its simplest form, an artificial neural network can be considered to be a 

black box that receives some input and then, calculates an output by mapping the 

input to the output based on some underlying transformation process 

(Hanumantharaya, 2000). A black box model is shown in Fig 6. 9. 

 

 

 

ANN
Input Output

 
 

 

Fig 6.9 A neural network viewed as a “black box” which receives an input and 

outputs a result 
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Some of the definitions put forward for an artificial neural network are: 

1. According to Nigrin (1993), “A neural network is a circuit composed of a 

very large number of simple processing elements that are neurally based. 

Each element operates only on local information Furthermore each 

element operates asynchronously; thus there is no overall system clock.”  

 

2. According to Haykin (1994), “A neural network is a massively parallel 

distributed processor that has a natural propensity for storing experiential 

knowledge and making it available for use. It resembles the brain in two 

respects  

(a) Knowledge is acquired by the network through a learning process, 

(b) Interneuron connection strengths known as synaptic weights are 

used to store the knowledge.” 

 

3. According to Patterson (1996), “Artificial neural networks are networks of 

highly interconnected neural computing elements that have the ability to 

respond to input stimuli and to learn to adapt to the environment.”  

 

 

6.3.1.2 Features of artificial neural network 

The main features of an ANN can be described as follows: 

 

High degree of parallelism 

The processing elements, i.e., neurons, in an ANN function are independent of 

one another. Every neuron in a layer receives its own set of inputs and outputs 

which are results based on these inputs. The processing of these neurons is 

parallel in nature. Parallel processing is a very important feature of an ANN 

(Nelson & Illingworth, 1991). 
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Connectivity 

Information in an ANN is encoded in a parallel and a distributed framework 

(Patterson, 1996). Every neuron in a layer of an artificial neural network is 

connected to every other neuron in the next layer. Therefore, if a neuron or its 

connecting links are damaged, the network’s performance is not adversely 

affected because the information stored in the network is distributed over all the 

processing elements and no single neuron corresponds to a piece of data as the 

weights store the ‘knowledge’ of an ANN (Patterson, 1996; Picton, 1994; Haykin, 

1994). 

 

Input-Output Mapping 

An ANN performs a mapping from the input space onto the output space, 

given any input vector z of dimension m, the neural network transforms it into an 

output vector y of dimension n by learning the mapping function between the 

input vector and the output vector. The mapping can be either associative (when 

the mapping is onto an original pattern from a given noisy version of the original 

pattern) or heteroassociative (when the mapping is onto a different pattern from a 

given input pattern) (Haykin, 1994). 

 

Generalisation. 

The problem-solving nature in the case of ANN is in sequential steps of 

increasing detail or in other words, in ‘hierarchical steps’ with emphasis on the 

topological aspects of the problem rather than the logical relations between the 

components of the problem (Patterson, 1996). A highlight of this nature of 

problem solving is that the network is potentially capable of classification and 

generalisation (Patterson, 1996). Generalisation is a property of an ANN, i.e., the 

ability of the network to perform on data that the ANN has never seen before 

during the learning process.  
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6.3.1.3 Classification of artificial neural network 

ANNs can be grouped as follows (Hanumantharaya, 2000): 

1. Classification based on architecture. This classification is based on the 

number of hidden units or hidden layers in the ANN. 

2. Classification based on learning models. This classification is based on the 

method of learning, i.e., the learning process could be aided by an external 

“teacher” or the ANN learns by extracting features from the inputs. 

3. Classification based on learning algorithm. In this classification, ANNs 

are classified based on the learning algorithm employed to update the 

synaptic weights during the learning process. 

 

In general, three different classes of network architecture can further be 

classified as follows:  

1. Single layer feedforward neural networks have a single layer of 

computational neurons that process input signals in a forward direction, 

e.g. perceptron, adaline, and linear associative memory (Sarle, 1997; 

Haykin, 1994). 

2. Multilayer feedforward neural networks have two or more layers of 

neurons connected by synaptic weights with the signals propagated in a 

forward direction only. There are no lateral connections between the 

neurons in a layer, e.g. backpropagation neural networks, radial basis 

function neural networks, etc. (Smith, 2003). 

3. Recurrent neural networks have loops or feedback connections which 

propagate outputs of some neurons to the inputs of other or same neurons 

(self feedback connections). e.g. Hopfield nets, Boltzmann machines 

(Gurney, 2003). 
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6.3.2 Application of backpropagation network 

The architecture of the ANN chosen for this research work was a two-layer 

backpropagation network, with a tan-sigmoid transfer function in the hidden 

layers and a linear transfer function in the output layer. The training algorithm 

used to set the neural network weight matrix was the Levenberg-Marquardt 

algorithm. This training algorithm is regarded as one of the fastest methods for 

training moderate-sized (up to several hundred weights) backpropagation neural 

networks. It has also shown high performance in function approximation 

problems. This section outlines the backpropagation learning network, transfer 

function and training algorithms which are used in this research.  

 

6.3.2.1 Backpropagation learning rule 

The backpropagation learning rule was developed independently by several 

research groups around 1985 (Hanumantharaya, 2000). It was created by 

generalising the Widrow-Hoff learning rule to multilayer networks and nonlinear 

differentiable transfer functions. Input vectors and the corresponding target 

vectors are used to train a network until it can approximate a function, associate 

input vectors with specific output vectors, or classify input vectors. Networks 

with biases, a sigmoid layer, and a linear output layer are capable of 

approximating any function with a finite number of discontinuities (Sarle, 2001). 

 

Standard backpropagation networks have a gradient descent algorithm, as 

does the Widrow-Hoff learning rule, in which the network weights are moved 

along the negative of the gradient of the performance function. The term 

‘backpropagation’ refers to the manner in which the gradient is computed for 

nonlinear multilayer networks (Sarle, 2001). 

 

The backpropagation learning rule is an optimisation technique based on 

gradient descent, which adjusts the weights in order to reduce the system error or 

optimise any cost function based on the system error. Therefore, properly trained 

backpropagation networks tend to give reasonable answers when presented with 
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inputs that they have never seen. Typically, a new input leads to an output similar 

to the correct output for input vectors used in training that are similar to the new 

input being presented. This generalization property makes it possible to train a 

network on a representative set of input and target pairs and get good results 

without training the network on all possible input and output pairs.  

 

 

6.3.2.2 Activation functions (tan-sigmoid and linear transfer function)  

Most units in neural networks transform their net input by using a scalar-to-

scalar function called an ‘activation function’, yielding a value called the unit's 

‘activation’. 

 

Activation functions for the hidden units are needed to introduce nonlinearity 

into the network. Without nonlinearity, hidden units would not make nets more 

powerful than just plain perceptrons. The reason is that a linear function of linear 

functions is again a linear function. However, it is the nonlinearity (i.e. the 

capability to represent nonlinear functions) that makes multilayer networks so 

powerful. Almost any nonlinear function does the job, except for polynomials 

(Sarle, 2001). 

 

For backpropagation, the activation function must be differentiable, and it 

helps if the function is bounded; the sigmoidal functions such as logistic, tanh and 

the Gaussian function are the most common choices. Functions such as tanh or 

arctan that produce both positive and negative values tend to yield faster training 

than functions that produce only positive values such as logistic, because of better 

numerical conditioning.  

 

For hidden units, sigmoid activation functions are usually preferable to 

threshold activation functions. Networks with threshold units are difficult to train 

because the error function is a stepwise constant, hence the gradient either does 

not exist or is zero, making it impossible to use backpropagation or more efficient 
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gradient-based training methods. With sigmoid units, a small change in the 

weights will usually produce a change in the outputs, which makes it possible to 

tell whether that change in the weights is good or bad. With threshold units, a 

small change in the weights will often produce no change in the outputs (Sarle, 

2001; Mathwork Inc., 2001).  

 

For the output units, the identity or ‘linear’ transfer function is a good choice 

for the continuous-valued targets with no known bounds.  

 

 

6.3.2.3 Levenberg-Marquardt training algorithm 

Standard backpropagation uses two training algorithms: gradient descent, and 

gradient descent with momentum in general. However, these two methods are 

often too slow for practical problems. Therefore, high performance algorithms 

that can converge from ten to one hundred times faster than the standard 

algorithms are required.  

 

These faster algorithms fall into two main categories. The first category uses 

heuristic techniques, which were developed from an analysis of the performance 

of the standard steepest descent algorithms. One heuristic modification is the 

momentum technique. The second category of the fast algorithms uses standard 

numerical optimisation techniques. There are three types of numerical 

optimisation techniques for neural network training (Mathworks Inc., 2001): 

conjugate gradient, quasi-Newton and Lavenberg-Marquardt, which was applied 

for this work.  

 

The Levenberg-Marquardt training algorithm was designed to approach 

second-order training speed without having to compute the Hessian matrix like 

the quasi-Newton methods. When the performance function has the form of a sum 

of squares (as is typical in training feedforward networks), then the Hessian 

matrix can be approximated as (Mathworks Inc., 2001): 
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JJH T=                   (6.1) 

 

And the gradient can be computed as: 

 

eJg T=                   (6.2) 

where, J is the Jacobian matrix that contains first derivatives of the network errors 

with respect to the weights and biases of turbulence intensity; e is the vector of 

network errors.  

 

The Jacobian matrix can be computed through a standard backpropagation 

technique that is much less complex computing than the Hessian matrix. 

 

The Levenberg-Marquardt algorithm uses this approximation to the Hessian 

matrix in the following Newton-like update: 

 

[ ] eJIJJxx T1T
k1k

−

+ ⋅+−= µ              (6.3) 

 

When the scalar µ is zero, this is just Newton’s method, using the approximate 

Hessian matrix. When µ is large, this becomes the gradient descent with a small 

step size. Newton’s method is faster and more accurate near an error minimum, so 

the aim is to shift towards Newton’s method as quickly as possible. Thus, µ is 

decreased after each successful step (reduction in performance function) and is 

increased only when a tentative step would increase the performance function. In 

this way, the performance function will always be reduced at each iteration of the 

algorithm (Mathworks Inc., 2001). 

 

 

6.3.3 Application of principal component analysis 

Principal component analysis (PCA) is probably the oldest and best known of 

the techniques used for multivariate analysis. The overall goal of PCA is to reduce 
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the dimensionality of a data set, while simultaneously retaining the information 

present in the data (Lavine, 2000).  

 

The method consists of expressing the response vectors Xj in terms of linear 

combinations of orthogonal vectors along a new set of coordinate axes, and is 

sometimes referred to as vector decomposition. Therefore, it helps to display 

multivariate data in two or three dimensions. Along the new axes the sample 

variances are extremes and uncorrelated so that an analysis in terms of principal 

components can show linear interdependence in data. Each orthogonal vector, i.e. 

principal component, accounts for a certain amount of variance in the data with a 

decreasing degree of importance. The scalar product of the orthogonal vectors 

with the response vectors gives the value of the pth principal component (Hines et 

al., 2003): 

 

njnpijipj2p2j1p1p XaXaXaXaZ ++++= LK         (6.4) 

 

The variance of each principal component score, Zp, is maximized under the 

constraint that the sum of the coefficients of the orthogonal sectors or 

eigenvectors ap = (aip, …, ajp, …, anp) is set to unity, and the vectors are 

uncorrelated. The corresponding eigenvalues give an indication of the amount of 

information the respective principal components represent. The eigenvector 

associated with the largest eigenvalue has the same direction as the first principal 

component. The eigenvector associated with the second largest eigenvalue 

determines the direction of the second principal component (Hines et al., 2003). 

 

As there is often a high degree of sensor co-linearity in electronic nose data, 

the majority of the information held in response space can often be displayed 

using a small number of principal components. PCA is in essence a data 

dimensionality reduction technique for correlated data, such that a two or three-

dimensional plot can describe an n-dimensional problem. It can be applied to high 

dimensional data-sets to explore the nature of the classification problem in gas 
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sensor applications and determine the linear separability of the response vectors 

(Hines et al., 2003).  

 

In this work, the data matrix used for training the backpropagation ANN is 

preprocessed using PCA for the following reasons:   

o The reduction of dimensionality would indicate an overlap in the 

responses of the AromaScan’s sensor array. This would further imply 

some redundancy in the sensor data. 

o PCA reduces the linear correlation of the data, allowing the ANN to learn 

the residual non-linear characteristics of the underlying data.  

o The training time could be reduced greatly by reducing the dimensionality 

of the training data. Comparing with the ANN training to search for a 

minimum in the 35 dimensional error-weight surface, the number of 

computations and hence the complexity involved in finding a minimum in 

the error surface can be reduced if the dimensionality of the problem is 

reduced (Hanumantharaya, 2000). 

 

 

6.3.4 Network generalisation 

The critical issue in developing an ANN is ‘generalisation’, i.e., the capability 

of an ANN to predict the cases that are not in the training set (Sarle, 2001). In 

order to try generalisation, it is necessary that the ANN can compute the mapping 

function at different points corresponding to the vectors which have not been 

presented or ‘not seen’ by the ANN during the training process (Hanumantharaya, 

2000). ANNs generalise when they compute or recall full patterns from partial or 

noisy input patterns, when they recognise or classify objects not previously 

trained on, or when they predict new outcomes from past behaviours (Patterson, 

1996). 

If an ANN is properly trained on data that adequately covers the range of the 

input patterns and if the function that is to be approximated is sufficiently smooth, 
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then it is possible for an ANN to interpolate well and hence generalise. 

Generalisation depends on the following factors (Hanumantharaya, 2000): 

o Learning algorithm; 

o Training set; and  

o Network architecture. 

 

A network that is too complex may fit the noise, however, leading to 

overfitting. Overfitting is especially dangerous because it can easily lead to 

predictions that are far beyond the range of the training data. Overfitting can also 

produce wild predictions in multilayer perceptrons even with noise-free data 

(Sarle, 2001).  

 

The best way to avoid overfitting is to use lots of training data. However, it is 

often impossible to get enough data in practical situations. Given a fixed amount 

of training data, there are at least six approaches to avoiding underfitting and 

overfitting, and hence getting good generalization (Sarle, 2001):  

o Model selection;  

o Jittering; 

o Early stopping;  

o Weight decay; 

o Bayesian learning; and  

o Combining networks.  

 

The early stopping generalisation technique was chosen for this work because 

it has the following advantages:  

o It is fast;  

o It can be applied successfully to networks in which the number of weights 

far exceeds the sample size; and    

o It requires only one major decision by the user: what proportion of 

validation cases to use.  
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In addition to the above advantages, the early stopping technique is able to 

decrease the number of epochs. The number of training epochs was up to 50,000 

in the previous attempt at odour quantification work with an ANN and electronic 

nose (Hanumantharaya et al., 1999). With this number of epochs, it is not possible 

to develop an efficient odour prediction model.  

 

‘Early stopping’ or ‘Stopped training’ can be performed by the following 

procedures (Sarle, 2001):  

1. Divide the available data into training and validation sets.  

2. Use a large number of hidden units.  

3. Use very small random initial values.  

4. Use a slow learning rate.  

5. Compute the validation error rate periodically during training.  

6. Stop training when the validation error rate ‘starts to go up’.  
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6.4 Chapter summary  

In this chapter, the AromaScan A32S and artificial neural network techniques 

were addressed. 

 

The AromaScan is an electronic nose which can electronically sense odours 

and aromas. It mimics the three phases of the human olfactory system: detection, 

signal processing and recognition/interpretation. The sensor array of the 

AromaScan has 32 polymer types, which detect a spectrum of compounds similar 

to that of the 30 receptor families in the human nose. For the odour analysis using 

the AromaScan, temperature and humidity should be precisely controlled to 

produce consistent results because these variables can affect changes in the 

sensors’ response. Conditioning the odour samples and humidity control method 

were discussed in this chapter. In addition, a simple method to determine the 

sensor responses for a representative range of the samples was suggested.  

 

The artificial neural network is proposed as the interface for the output of the 

AromaScan A32S to correspond to the results of forced-choice dynamic dilution 

olfactometry. The architecture of the ANN chosen for this research work was a 

two-layer back propagation network, with a tan-sigmoid transfer function in the 

hidden layers and a linear transfer function in the output layer. The training 

algorithm used to set the neural network weight matrix was the Levenberg-

Marquardt algorithm. This training algorithm is regarded as one of the fastest 

methods for training moderate-sized (up to several hundred weights) 

backpropagation neural networks. It has also shown high performance in function 

approximation problems.  

 

PCA was selected for the preprocessing of the data matrix used for training 

the ANN because it can reduce the dimensionality of the training data as well as 

the training time of ANN could be reduced greatly.  
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One of the critical issues in developing an ANN is generalisation. In other 

words, the trained ANN has a capability to predict the cases that are not in the 

training set. An early stopping generalisation technique was chosen in this work 

because it is fast; it can be applied successfully to networks in which the number 

of weights far exceeds the sample size; and it requires only one major decision by 

the user: what proportion of validation cases to use.  
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CHAPTER 7 

CALIBRATION OF THE ODOUR 

QUANTIFICATION TECHNIQUE 

 

 

 

 

 

7.1 Introduction 

It is necessary to develop a rapid, accurate and cost-effective odour 

measurement method to substitute current odour measurement method, i.e., 

olfactometry analysis. Through the intensive literature review, the odour 

quantification methodology based on the AromaScan, an electronic nose, and 

artificial neural network was suggested.  

 

To calibrate and evaluate the methodology, replicable experiments were 

conducted. Odour samples from five different piggery effluent ponds were 

analysed simultaneously using the AromaScan and dynamic dilution 

olfactometry. The resulting sensor data was used to train an artificial neural 

network to correlate the responses to the real odour concentrations. The 

effectiveness of the ANN was evaluated through simulation work using various 

pre-processing techniques and network architecture. Finally, further odour 

samples from an effluent pond were presented to the trained ANN to predict real 

odour concentrations.  
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7.2 Odour sampling and analysis   

 

7.2.1 Odour sampling sites 

The odour samples were collected from effluent ponds at piggeries near 

Toowoomba, Queensland, Australia during February to April 2002. A total of 246 

samples were collected from five ponds, as part of a project by the Queensland 

Department of Primary Industries (QDPI), for the purpose of relating odour 

emission rates to pond loading rate or condition.  The operating condition of each 

effluent pond is given in Table 7.1.  

 

 

Table 7. 1 

The operating conditions of piggery effluent ponds used for odour sampling 

Piggery VS added to pond 
(kg/day) 

VS loading rate 
(g VS/m3day) 

% loading 
of max design Size (m) SPU *1 

A 375 178 223 52 x 56 1457 

B 400 50 51 59 x 69 1426 

C 2,076 166 185 75 x 110 6767 

D 4,406 84 93 116 x 147 14,992 

E 852 363 371 26 x 34 2860 
SPU: Standard Pig Unit. Piggeries in Queensland are licensed by the maximum number of 
Standard Pig Units (SPU) housed in a piggery. The SPU is a unit of measurement for determining 
the size of a piggery based on its waste output. One SPU produces volatile solids equivalent to that 
produced by an average size grower pig (approximately 40kg) (QDPI, 2000) 
 

 

7.2.2 Odour sample collection 

Odour samples were collected using a portable wind tunnel as described by 

Jiang et al. (1995) and Bliss et al. (1995) and modified by Wang et al. (2001) to 

improve sampling efficiency.  A 240-volt fan assembly was used to force carbon-

filtered air into the wind tunnel to generate an internal air velocity of between 0.3 

and 0.5 m/s in the sampling section of the tunnel. A Thermo Systems 
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Incorporated (TSI) Model 8355 hot wire anemometer was used to measure the air 

velocity in the tunnel exhaust section. 

 

Melinex (Polyethylene Terephthalate) sample bags were used to collect and 

transport odour samples. Sample bags were placed into a rigid sampling container 

and the air inside the container was evacuated at a controlled rate using 12-volt 

diaphragm pumps to fill the bags. All components used for sampling were 

composed of stainless steel or polytetrafluoroethylene (PTFE). The bags were 

pre-conditioned as per the Australian Standard (AS4323.3) by filling them with 

odorous air from the source prior to the sample being collected. After finishing 

odour sampling, the containers were then sealed and transported to the 

olfactometer for analysis, and then to the AromaScan A32S instrument for final 

testing. The time between sample collection and testing was always less than 24 

hours. 

 

 

7.2.3 Olfactometry analysis 

Odour concentrations were determined using an eight panellist, triangular, 

forced choice dynamic olfactometer developed by the Department of Primary 

Industries, Queensland, Australia. This olfactometer was constructed to meet the 

requirements of the Australian/ New Zealand Standard for Dynamic Olfactometry 

(AS4323.3) (Standards Australia, 2001).  

 

Each panellist was first screened with the reference gas (n-butanol) according 

to the Australian standard (Standards Australia, 2001) to ensure their detection 

thresholds for the reference gas was between 20 and 80 parts per billion (ppb). 

The 20 to 80 ppb applies to the running average of the last 10 samples so a 

panellist could be outside the range for an individual session.   

 

Odorous air was diluted and presented to the olfactometer panellists in one of 

three ports, while the other two ports emitted clean odour free air. The panellists 
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were then asked to sniff from the ports and determine whether they could detect a 

difference between the three ports. Each panellist was allowed a maximum of 15 

seconds to detect a difference. The panellists were then asked to answer whether 

they were certain, uncertain or guessing from which port the odour (if any) was 

emitted.  

 

This process was repeated by doubling the strength of the previous 

presentation until all panellists had responded with certainty and correctly for two 

consecutive presentations. The panellists’ individual threshold estimate (ZITE) 

were then determined by calculating the geometric mean of the dilution at which 

the panellists did not respond with certainty and correctly and the first of the two 

dilutions where the panellists responded with certainty and correctly. This dilution 

series was defined as a round. Three rounds were undertaken for each sample 

where sufficient sample was available. 

 

At the end of the three rounds, the results of the first round were discarded as 

per the Australian standard (Standards Australia, 2001). The results from rounds 

two and three were then geometrically averaged ( Z ITE). The ratio between ZITE 

and Z ITE is defined as ∆Z. The calculation of ∆Z is as follows (Galvin et al., 

2002). 

 

if  ZITE  ≥ Z ITE  then  ∆Z = 
ITE

ITE

Z
Z             (7.1) 

if  ZITE  ≤ Z ITE  then  ∆Z = 
ITE

ITE

Z
Z             (7.2) 

 

If ∆Z is greater than ± 5 then all ITEs of the panel member with the largest ∆Z 

are excluded from the data set. The screening procedure is then repeated, after 

recalculation of Z ITE for that measurement. If panel member(s) again do not 

comply, the panel member with the largest ∆Z is omitted. This is repeated until all 

panel members in the dataset comply (Standards Australia, 2001). The last value 
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of Z ITE is then defined as the odour concentration and expressed as odour units 

per cubic metre (OU/m3) (Galvin et al., 2002). 

 

Table 7. 2 

The number of samples, mean and range of odour concentrations for each 

pond. 

Odour concentration (OU/m3) 
Piggery Number of 

Samples Mean Range of odour conc. SD 

A 36 17.71 4.1 - 39.8 11.44 
B 81 20.67 5.5 - 49.5 11.85 
C 54 46.47 1.9 - 83.9 27.17 
D 45 31.51 12.8 - 61.1 12.21 
E 30 29.83 10.8 - 61.1 15.20 

Total 246 29.00 1.9 - 83.9 19.50 
 

 

7.2.4 Odour analysis and data acquisition methods using the AromaScan 

All samples were analysed using the AromaScan A32S analyser, in 

conjunction with the AromaScan A8S sample station. The method for odour data 

acquisition for AromaScan is outlined in Table 7.3.  

 

 

Table 7. 3 

Data acquisition procedure used with the Aromascan A32S analyser 

Operating Stage Time 
Reference 15 s 

Sample 300 s 

Wash 30 s 

Reference 180 s 

Washing Solution: 5% 2-Butanol  

Repetition: 3 times per each sample  
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For analysis of each air sample, the reference air stream humidity was set at 

about 10 %RH below that of the sample to maintain the same absolute water 

content. For this calculation, a humidity calculation program provided by 

Aromascan, plc., UK was used.  

 

 

7.2.5 Preprocessing of the AromaScan data for network training 

 

7.2.5.1 Data processing  

The resulting data from the 32 sensors of the AromaScan were converted into 

a digital signal and stored in a personal computer (PC) in a binary format. This 

information was transformed into ASCII format and was used to build a database. 

The database consisted of 246 data files that were obtained from the five different 

effluent ponds and the subsequent sampling by the AromaScan. 

 

These ASCII files were then imported into MATLAB to establish a data 

library. The MATLAB’s neural network toolbox was used for the artificial neural 

network in this research work. The whole data process resulted in 246 matrices 

each having 35 columns. 

 

 

The 35 columns corresponded to the 32 sensor responses and three other 

factors, namely: 

o Base temperature: This is the in-line temperature of the sample; 

o Base sensor temperature: This is the base temperature of the sensors; and 

o Relative humidity: This is the humidity of the reference air which is 

maintained relatively close to that of the sample. In most cases, a level of 

about 10% relative humidity below that of the sample has been found to 

be effective (AromaScan plc., 1996). 
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Since these factors do affect the measurement process and odour of a sample, 

they have been included as inputs to the ANN.   

 

The corresponding odour concentrations (expressed in OU/m3) for the 246 

data files were determined by the olfactometry panel. The results were stored in a 

text file in ASCII format. And then, this file was also imported into MATLAB. 

The odour concentration values were saved in a column vector of size 524 ×1. 

This vector is henceforth referred to as the target outputs’ vector.  

 

Fig 7.1 shows the transformation of the raw data from AromaScan to the 

training data for ANN as well as odour prediction procedure from unknown odour 

samples.  

 

The following steps explain the transformation of the raw data as depicted in Fig 

7. 1: 

1. The odours from the field measurements were measured using the 

AromaScan. 

2. The response of the sensors were saved in binary format (.dat files in the 

figure). 

3. The sensor data in the binary files was converted into csv file format using 

the AromaScan software (*.csv files in the figure). 

4. The csv files containing the sensors’ responses were imported into 

MATLAB. 

5. From the matrices, the sensor responses corresponding to the equilibrium 

phase were extracted and used as training data for the ANN. 

6. The odours were presented to the olfactometry panel to determine odour 

concentration (OU/m3). 

7. The odour concentrations were saved in csv file format for making 

database. 

8. This database was imported into MATLAB. 

9. The odour concentrations were saved in a vector. 
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10. The vector served as the target outputs during ANN training 

11. The database from unknown odour samples was provided to trained ANN 

for odour prediction 

 

Odour
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Sensor response
(*.dat file format)

AromaScan
operating software

File conversion
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Fig 7.1 The transformation of the raw data from the AromaScan A32S for the 
odour prediction from unknown odour samples 
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7.2.5.2 Input scaling 

Since inputs to the neural network must be small in magnitude, the inputs and 

their corresponding outputs are scaled accordingly. ANN become saturated when 

they are used with large input values 

 

A function provided by MATLAB’s Neural Network Toolbox scaled the data 

matrix to have a dynamic range of ±0.9 and mean of zero. The responses 

(numerical values) of the sensors lie in the range of ±10 (on an average) and 

around 40 for the other three parameters - namely base temperature, base sensor 

temperature and relative humidity. By scaling the inputs, it is ensured that the 

inputs lie between ±1 in order to avoid saturation of the neurons. 

 

By scaling the inputs, it ensured that the inputs were between –0.9 and 0.9 for 

the tangent sigmoid transfer function in the hidden layer and the linear transfer 

function in the output layer. The reason for scaling between –0.9 and 0.9 instead 

of between –1 and 1 is that for inputs with odour unit values equal to the limiting 

values of the each transfer function, i.e., -1 or 1, the weight adjustment will be 

small and hence the network tends to ‘saturate’. The backpropagation ANN was 

trained using the scaled inputs and their respective scaled outputs in this work.  

 

 

7.2.6 Neural network training  

The architecture of the artificial neural network chosen for this paper was a 

two-layer back propagation network, with a tan-sigmoid transfer function in the 

hidden layers and a linear transfer function in the output layer. The training 

algorithm used to set the neural network weight matrix was the Levenberg-

Marquardt (trainlm) algorithm available in MATLAB’s Neural Network Toolbox 

4.0. This training algorithm is regarded as one of the fastest methods for training 

moderate-sized (up to several hundred weights) backpropagation ANN. It has also 

shown high performance in function approximation problems. The two-layer 

backpropagation ANN with two hidden layers is depicted in Fig 7.2.  
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Fig 7.2 Two-layer backpropagation neural network architecture with two hidden 

layers: x1…xn, (coded input node); y1…yn (output node) (reproduced from 

Hanumantharaya, 2000) 
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7.3 Analysis and discussion 

In this section, the effect of scaling, principal component analysis (PCA), 

early stopping technique and number of neurons in the hidden and output layers 

on the performance of the ANN are discussed in each section respectively.  

 

 

7.3.1 Results using the preprocessing algorithms 

Scaling and PCA were used to pre-process the data acquired from the 

electronic nose. Pre-processing, i.e., scaling the inputs, is necessary to avoid 

saturation of the ANN when it is used with large values. There are several rules 

for scaling the inputs. One of the rules is that each input variable should be 

preprocessed so that its mean value, averaged over the entire training set, is close 

to zero, or else it is small compared to its standard deviation (Haykin, 1994).  

 

The principal component analysis (PCA) is a linear transformation technique 

generally used for data compression and reduction of dimensionality while 

simultaneously retaining the information present in the data (Lavine, 2000). In the 

analysis of responses from the electronic nose, the PCA acts as a decorrelator at 

the pre-processing stage and maximizes the variance within the data before the 

classification procedure is performed (Kermit & Tomic, 2001). In this paper, the 

data matrix used for training the ANN was preprocessed using the PCA with the 

intention of dimensionality reduction and to find a coordinate system that makes 

the original responses as independent of each other as possible. The 35 

dimensions of the data matrix were reduced to 3 using PCA preprocessing.  

 

The simulations were carried out under the condition of 10-8 of mean square 

error, which was the objective of the network, for the same initial condition with 

preprocessing algorithms and without preprocessing algorithms respectively. In 

these simulations, both of the ANN had five neurons in the hidden layer. The 

neural network performance with preprocessing of the test data was better than for 

the network without preprocessing algorithms. Without preprocessing, the ANN 
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was saturated at 1095 epochs and could not meet the training objective. The value 

of mean square error and gradient were 76.05 and 2.84×10-4 respectively. The 

ANN with preprocessing showed the best performance at 1119 epochs. At this 

epoch, the value of mean square error and gradient were 1.58×10-1 and       

1.05×10-006  respectively. 

 

Fig 7.3 and 7.4 show the plots of the mean squared error versus training 

epochs on a logarithmic scale for the training simulation of the network with and 

without preprocessing algorithms, respectively. It can be seen from Fig 7.3 that 

the ANN could not perform the training process effectively because of saturation 

of the neurons in the hidden layer.    

 

The scatter plot of the actual odour concentration and the predicted neural 

network output (scaled into the odour unit domain) for the test data using the 

results from these training simulations are shown in Fig 7.5 and 7.6, respectively. 

The value for the correlation coefficient (r) in Fig 7.5 and 7.6 are 0.89, 

respectively. However, intensive clustering of neural network output is observed 

especially at the low range of prediction in Fig 7.5. Therefore, the value for r in 

Fig 7.5 could not represent the correlation between the measured and predicted 

odour units. 
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Fig 7.3 The result of artificial neural network training without preprocessing. 
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Fig 7.4 The result of artificial neural network training with preprocessing. 
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Fig 7.5 The odour prediction results using artificial neural network without 

preprocessing. 
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Fig 7.6 The odour prediction results using artificial neural network with 

preprocessing. 
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7.3.2 Improving network performance using an early stopping technique  

The early stopping technique was used to get good generalisation performance 

and to decrease the number of epochs. The data obtained from Aromascan 

analysis was divided into four equal subsets. The first and the third subset are the 

training set, which was used for computing the gradient and updating the network 

weights and biases. The second set is the test set. The test set error was not used 

during the training, but it was used to compare different models. It is also useful 

to plot the test set error during the training process. If the error in the test set 

reaches a minimum at a significantly different iteration number than the 

validation set error, this may indicate a poor division of the data set. The fourth 

subset is the validation set. The error on the validation set is monitored during the 

training process. It controls the total training process of an ANN. The validation 

error normally decreases during the initial phase of training, as does the training 

set error. However, when the network begins to overfit the data, the error on the 

validation set typically begins to rise. When the validation error increases for a 

specified number of iterations, the training is stopped, and the weightings and 

biases at the minimum of the validation error are returned (Demuth & Beale, 

1994).  

 

The results using the early stopping method indicated that it has the possibility 

to decrease the computation time and the required number of epochs. The number 

of training epochs, which were required for the simulation, was 22. Fig 7.7 is the 

plot of the mean squared error versus the training epochs on a logarithmic scale 

for the training simulation of the network with an early stopping algorithm. The 

PCA was not applied to this simulation work. 

   

The value of mean square error and gradient resulted in 1.19×10-2 and 63.45 

respectively. However, it can be seen that the test errors decrease as the training 

proceeds and after reaching a certain minimum, the errors on the test data start to 

increase even as the errors on the training data are still decreasing. From the 
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above results, it could be concluded that the network was overfitted. Therefore, 

there is a need to enlarge the network size by increasing the number of neurons in 

the hidden layer. The scatter plot of the actual odour concentrations and the 

predicted neural network output from the training simulations is shown in Fig 7.8. 
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Fig 7.7 The result of artificial neural network training using the early stopping 

technique:  –––,training;  - - - -, validation; ------, test  
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Fig 7.8 The odour prediction results using artificial neural network with the early 

stopping technique 

 

 

 

7.3.4 Effect of the number of hidden neurons on network performance  

It is important to determine the number of neurons in the hidden layer in order 

to build an ANN. An ANN with too few hidden neurons has a tendency to 

produce high training error and high generalisation error due to underfitting and 

high statistical bias. The ANN with too many hidden neurons can show low 

training error, but high generalisation error due to overfitting. Generally, the 

number somewhere between the input layer size and the output layer size is 

recommended using ‘the rule of thumb’ given by various articles (Blum, 1992; 

Swingler, 1996; Berry & Linoff, 1997; Boger & Guterma, 1997). However, this 

rule is not suitable because the number of training cases, the amount of noise in 

the targets and the complexity of the function are not considered.    

 

The network was tested with 3, 5, 10 and 20 hidden neurons to find the optimal 

number of hidden neurons. Although there seems to be no upper limit in the 



Chapter 7. CALIBRATION OF THE ODOUR QUANTIFICATION TECHNIQUE 

Ph. D dissertation 
  Page 165 

neural network using an early stopping algorithm, it is not necessary to use too 

many hidden neurons because it needs more computation time and memory 

requirement. These numbers are larger than in the work reported by 

Hanumantharaya (2000).  

 

All of the training simulations were performed with the same architecture, 

which is the two-layer back-propagation network, with tan-sigmoid transfer 

function in the hidden layer and a linear transfer function in the output layer. A 

preprocessing and an early stopping algorithm were applied as well. 

 

Although it had same network architecture as the simulation in Fig 7.7 except 

the PCA preprocessing, the increase of the errors on the test data set was not 

observed in the simulation using 5 hidden neurons. Hence, it can be concluded 

that PCA preprocessing not only reduces dimensionality of training data but also 

enhances the generalisation of the network.  

 

The mean square error decreased with an increase in the number of neurons in 

the hidden layer. The neural network performed the best with 20 hidden neurons. 

The values of the mean square error, gradient and r with 3, 5, 10, 20 and 30 

hidden neurons are given at Table 7.4.   
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Table 7.4 

The artificial neural network simulation results for 3, 5, 10, 20, and 30 

hidden neurons 

 The ANN simulation 

Hidden Neurons 3 5 10 20 30 
Number of 

epochs 16 39 47 55 54 
Mean square 

error 4.06×10-1 1.70×10-1 8.74×10-2 3.06×10-3 4.71×10-3 

Gradient 5.87 3.52 1.59 20.33 3.06 
Correlation 
coefficient 0.79 0.84 0.93 0.98 0.98 

 

 

The scatter plots of the actual odour concentrations and the predicted neural 

network output from each training simulation are shown in Figs 7.9, 7.10, 7.11 

and 7.12. The correlations between the measured and predicted data were 0.79, 

0.84, 0.93, 0.98 and 0.98 for 3, 5, 10, 20 and 30 hidden neurons, respectively. The 

simulation results were influenced by the number of hidden neurons. The best 

performance of the ANN was observed in the network using 20 neurons. The 

results show that the network has an ability to give satisfactory predictions of 

piggery odour concentration with the data set provided by the electronic nose. 
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Fig 7.9 The odour prediction results using artificial neural network with 3 hidden 

neurons: ○, data point;  –––––, best linear fit; - - - - -, 1:1 
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Fig 7. 10 The odour prediction results using artificial neural network with 5 

hidden neurons: ○, data point;  –––––, best linear fit; - - - - -, 1:1 
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Fig 7.11 The odour prediction results using artificial neural network with 10 

hidden neurons: ○, data point;  –––––, best linear fit; - - - - -, 1:1 
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Fig 7. 12 The odour prediction results using artificial neural network with 20 

hidden neurons: ○, data point;  –––––, best linear fit; - - - - -, 1:1 
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7.3.4 Prediction of the odour concentration with unknown air samples 

Nine air samples were collected from effluent pond B in September, 2002 to 

test the ability of the ANN to predict odour concentrations from electronic nose 

data. The same sampling methodology was used in the previous trials. The 

atmospheric conditions, pond loading rate and chemical constituents of the 

effluent were not measured but it is unlikely that they were the same as in the 

previous trials.  

 

The odour concentration of each sample was determined by olfactometry as 

before. As well, three sets of Aromascan responses were taken for each odour 

sample.  The three data sets from each odour sample were used in the trained 

ANN to predict odour concentrations. The predictions were repeated three times 

giving nine predictions from each odour sample. Table 7.5 shows the results of 

the ANN predictions in the form of an average concentration and range of the 

predictions.     

 

Table 7.5  

The artificial neural network prediction results for effluent pond B. 

Odour concentration, OU/m3 
AromaScan results using neural network 

Sample 
ID Olfactometry 

Mean Max Min SD* 
Ratio, % 

1 64.4 78.0 82.4 72.2 3.29 121.1 

2 58.8 66.5 69.1 64.1 1.63 113.1 

3 45.5 68.8 70.7 66.4 1.58 151.2 

4 39.2 11.9 19.4 5.2 4.74 30.4 

5 41.2 46.6 49.6 40.6 4.41 113.1 

6 44.1 41.1 45.1 36.6 2.78 93.2 

7 16.4 18.1 20.7 14.7 1.93 110.4 

8 37.0 48.2 52.5 44.6 2.45 130.3 

9 14.8 54.1 58.5 51.3 2.52 365.5 
*SD, Standard Deviation 
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The predicted odour concentrations for these samples were consistently higher 

than the olfactory measurements.  The ratio of the predicted to the actual odour 

concentrations ranged from 30.4% to 365.5%, with an average of 136.4%. The 

value for the coefficient of determination, r2 of statistical regression analysis was 

0.59. However, the value for r2 can be improved to 0.92 by excluding samples ID 

4 and 9 because most of the error came from these samples. Therefore, except for 

samples ID 4 and 9, the ANN was able to predict the actual odour concentration 

of unknown air samples reasonably successfully.   
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7.4 Chapter summary 

In this study, an artificial neural network and the AromaScan A32S, electronic 

nose, were used to predict the odour concentrations emanating from a piggery 

effluent pond. The sensor data analysed by an electronic nose was used to train an 

artificial neural network, and to correlate the responses to the actual odour 

concentration provided by a human olfactometry panel. 

 

In order to find an optimal model for piggery odour quantification, various 

preprocessing techniques and network architectures were evaluated through 

network simulation. 

 

The simulation results showed that the two-layer back-propagation neural 

network, which has a tan-sigmoid transfer function in the hidden layer and a 

linear transfer function in the output layer, can be trained to predict piggery odour 

concentrations correctly with a low mean squared error. The results from the 

application of scaling and principal component analysis suggest that these 

preprocessing algorithms are necessary to avoid the failure of the network caused 

by saturation.  

 

With regard to the early stopping technique for network generalisation, it is 

possible to provide benefits to network performance in terms of the decrease of 

computation time and overfitting. It was observed that the optimal number of 

hidden neurons is 20. The values of the mean square error, gradient and value for 

r for 20 hidden neurons are 3.06×10-3, 20.33 and 0.98, respectively.  

 

The trained artificial neural network model was able to predict the odour 

concentration of unknown nine air samples with a value for the coefficient of 

determination, r2 of 0.59.  
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CHAPTER 8 

THE USQ WIND TUNNEL 

 

 

 

 

 

8.1 Introduction 

Wind tunnel techniques have been identified as the best available method for 

the sampling of odour emissions from area sources (Smith & Watts, 1994; Jiang 

& Kaye, 1996). After Lindvall (1970) used wind tunnel techniques to compare the 

strength of odour from different areal odour emission sources, a range of wind 

tunnels has been developed for estimating gaseous emissions. These include 

determining ammonia emissions from dairy cow collecting yards (Misselbrook et 

al., 1998), from arable land (Loubet et al., 1999b), estimating odour emissions 

from piggeries (Smith & Dalton, 1999), from feedlots (Smith & Watts, 1994; 

Watts et al., 1994), from poultry manure (Jiang & Sands, 1998), from anaerobic 

piggery pond (Galvin et al., 2002), and the effect of permeable covers on 

anaerobic pond (Hudson et al., 2002).  

 

However, there is no standard for the design of wind tunnels. Differences 

between the various tunnels include the material used in the construction of the 

tunnel, the length/width ratio, the surface area sampled and the height. 

Consequently, there are substantial effects on the aerodynamics over the emitting 

surface. A further complication is the variation in wind speed from one device to 

another (Smith & Watts, 1994). In addition, most wind tunnels are portable wind 

tunnel systems, designed for the collection of odour samples from field emission 

sources (Wang et al., 2001). However, these simple tunnels are inadequate for 

more demanding tasks, such as the precise measurement of the kinetics of odour 

emissions from liquid effluent.  
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An ideal wind tunnel for odour sampling work would have the capability to 

duplicate natural ground level wind conditions in the sampling chamber. This 

requirement is almost impossible to achieve in a small portable wind tunnel. 

Therefore, portable wind tunnels have been developed to create an environment 

where the boundary layer is well developed and convective mass transfer occurs 

(Bliss et al., 1995). The rate at which odour is emitted from liquid effluents 

derived from intensive animal operation, human sewage and food processing is 

known to depend on the chemical and microbial characteristics of the effluent, as 

well as meteorological factors such as wind speed, humidity and temperature 

(Harper et al., 1983; Smith & Watts, 1994a: Smith & Watts, 1994b). However, 

the currently available portable wind tunnel systems are not able to adequately 

control these factors.  

 

In addition to this, few studies have been reported on the aerodynamics of the 

airflow inside wind tunnels. Van Belois & Azion (1992) reported on the wind 

speed profile inside a tunnel, with important crosswind gradients highlighting the 

need for a careful analysis of the turbulence inside the tunnel. Moreover, 

measurements of acetone concentration in the tunnel exhibited strong vertical 

gradients, suggesting that the design of the sampling system may be of great 

importance in determining the average concentration downwind of the emitting 

area (Loubet et al., 1999a). 

 

Loubet et al. (1999a, 1999b) evaluated the wind tunnel technique for 

estimating ammonia volatilisation from land. The wind tunnels were constructed 

according to the system proposed by Lockyer (1984). The hypothesis that the 

airflow is completely mixed downwind of the emission plot of a wind tunnel, was 

tested using a homogeneously distributed CO2 source. It showed that the vertical 

profiles of wind velocity and CO2 concentration were non-uniform in the 

measurement section of the tunnel. The airflow was far from being completely 

mixed leading to a recovery rate ranging from 77 to 87%. The research suggested 
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that an improved sampling system, consisting of a modified duct section with a 

four branch and 20 point sampling system, could decrease the error due to 

sampling to a small percentage.  

 

Baldo (2000) compared two different types of wind tunnels. One was the 

University of New South Wales model, modified and tested by Jiang (1995). The 

other was the Lockyer hood that is used throughout Europe. The main objective of 

the study was to map wind speed profile over the emission section. She indicated 

the parameters that affect the wind speed profile in the tunnels. It includes surface 

type, tunnel wind speed, entrance characteristics, wind tunnel shape and 

modifications of tunnel geometry such as flat vanes, fixed inlet duct and baffle. 

 

A novel wind tunnel, with the capability to control factors such as airflow rate, 

has been developed to measure the odour emissions from liquid effluent for this 

study. The USQ wind tunnel allows for the emission of odours and other volatiles 

in an atmospheric transport system under conditions similar to ambient conditions.  

  

In this chapter, the USQ wind tunnel is described and then evaluated in terms 

of the aerodynamics of the airflow inside the tunnel, and the gas recovery 

efficiency rate, in order to further improve its performance. These data will also 

be used to calibrate the odour emission rates measured using the USQ tunnel to 

provide more reliable data for the further research. Particular attention has been 

given to the effect of experimental variables such as airflow rate and tracer gas 

supply rates on the aerodynamics and the gas recovery rates of the tunnel.  
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8.2 Development of the USQ wind tunnel 

 

8.2.1 Overview of the USQ wind tunnel 

The novel wind tunnel was developed for evaluating the kinetics of offensive 

odour emissions from area sources including liquid effluents. The basic concept 

of the wind tunnel was based on the much larger emission chamber used at the 

Silsoe Research Institute in the UK for the measurement of odours and gases from 

ageing pig waste (Hobbs et al., 1999) and for ammonia emissions from slurry 

(Cumby et al., 1995). However, it was able to be smaller than the tunnel in the 

UK because odour measurement using an electronic nose requires only 5L of air 

sample rather than the 150L required for olfactometry analysis.  

 

The wind tunnel was designed to control factors such as wind speed, and the 

meteorological conditions (temperature and humidity) that directly effect the 

emission of odours. In addition, as the wind tunnel has modular design, it can be 

easily modified to achieve specific experimental requirements. After development 

into fully functional status, the USQ wind tunnel will take the form of a sealed, 

insulated, recirculating wind tunnel as shown in Fig 8.1.     

 

 

 

 
 

Fig 8.1 Schematic diagram of the USQ wind tunnel configured to recirculate air 

for conditioning purposes 
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8.2.2 Design considerations  

As the major objectives of the wind tunnel are to have capabilities to control 

wind speed as well as the meteorological conditions (temperature and humidity), 

the basic design assumptions for the wind tunnel included the following:  

o An air chamber of about 1 m3 capacity to control temperature and 

humidity of air;  

o A flow establishment/straightening section leading to and of similar 

dimensions to the emission section to regulate the characteristics of 

airflow stream; 

o An emissions section (0.5 m long by 0.5 m wide and 0.3 m high) designed 

to be placed over the odour emission source (with a surface area 0.5 m 

long by 0.5 m wide);   

o A tapered mixing section to provide complete mixing of the emissions 

with the passing air stream;  

o Air sampling points at the downstream ends of the emission and mixing 

sections;   

o A fan to recirculate the air with a capacity to produce wind speeds typical 

of atmospheric conditions (speeds up to 0.5 m/s or flow rates up to 0.03 

m3/s) through the emissions section; and 

o Wind speed, the atmospheric conditions of temperature and humidity, and 

the effluent characteristics (such as volatile solids, temperature and pH) 

which effect the generation of odour will be precisely controlled. 

 

 

8.2.3 Construction of the USQ wind tunnel   

The wind tunnel has an emission section of 0.25m2, the dimensions of which 

are 0.5m long by 0.5m width. The tunnel is rectangular in cross-section and 0.5m 

high. Air is drawn into the tunnel by a variable speed axial-type vent fan 

connected to the upper part of wind tunnel. A flow establishment/straightening 

module leads to the emission section. A tapered mixing section provides mixing 

of the emissions with the passing air stream. There is an air sampling port at the 
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downstream ends of the emission and mixing sections. The axial-type fan is 

capable of producing wind speeds typical of atmospheric conditions (wind speeds 

up to 0.5m/s or flow rates up to 0.03m3/s) through the emission section. The wind 

tunnel and all accessories were manufactured from food-grade stainless steel. The 

USQ wind tunnel facility and odour sampling work are shown in Fig 8.2. This 

facility is constructed on the field experimental station of USQ.     

 

 

  

 

 

 

 

 

 

 
(a) The USQ wind tunnel facility 
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(b) Variable speed fan and odour sampling 

 

Fig 8.2  The USQ wind tunnel facility and odour sampling work 

 

 

Sensors and a fan speed controller installation 

Temperature and relative humidity can be measured simultaneously at the 

inlet and outlet using the HUMITTER® 50U/50Y(X) integrated humidity and 

temperature transmitter. A data logger, ADAMS 4000®, is used to collect these 

data. A TECO-Westinghouse® variable controller is used as a speed controller of 

the fan, SPEEDLOCK® AF-300-304 S/S. Sensors and a data-logger are shown in 

Fig 8.3. The variable speed fan and a fan speed controller are depicted in Fig 8.4.  

 

 



Chapter 8. THE USQ WIND TUNNEL 

Ph. D dissertation 
  Page 179 

 

 

(a) Integrated humidity and 

temperature transmitter 

(b) Data logger, ADAMS 4000 

Fig 8.3 Sensor and data-logger installed in the tunnel  

 

(a) Variable speed axial type vent fan  (b) Fan speed controller 

 

Fig 8.4  The variable speed fan and a fan speed controller installed in the 

tunnel 

 

Operating software development for monitoring of the USQ wind tunnel  

Operating software was developed for real-time monitoring of the tunnel and 

data logging using a scientific graphical user interface (GUI) language tool, 

Labview Ver. 5.1. It shows the wind speed, relative humidity and temperature of 

air at inlet and outlet locations on the front panel of the software. The front panel 

and block diagram for the operating software for the USQ wind tunnel made by 

Labview 5.1 are shown in Fig 8.5.  
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(a) Front panel of the software 
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(b) Block diagram 

 

Fig 8.5 The front panel and block diagram for the operating software of the tunnel programmed with LabviewTM 5.1 
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8.3 Experimental evaluation of the wind tunnel  

 

8.3.1 The USQ wind tunnel 

The USQ wind tunnel was used in this study. The aerodynamics of the airflow inside 

the tunnel and the gas recovery efficiency were evaluated for further improvement of the 

performance of the tunnel. The tunnel was operated in non-recirculating mode under 

different airflow rates. The functions controlling the atmospheric conditions of 

temperature and humidity were not applied for this research work.  

 

8.3.1.1 Sampling points for wind speed profile measurements 

As the USQ wind tunnel has the shape of a rectangular duct, the locations of points 

for wind speed sampling were selected by the standard method of the Australian Standard 

4323.1. The sampling plane is divided into equal areas by imaginary lines, which are 

parallel to the side of the duct. A sampling point is to be located at the centre of each such 

area which is shown in Fig 8.6. If the lengths of the sides of the sampling plane, L and l, 

are divided into N parts and n parts respectively, the number of sampling points will be 

N×n and the smallest distance from a wall of the duct to a sampling point will be L/2N 

and l/2n (Australian Standard4323.1: Stationary source emission, 1995). An example of 

this procedure is also shown in Fig 8.6. The vertical and horizontal sampling point 

distances applied for this research work are presented in Table 8.1. In total, there are 25 

sampling points which are located at the centre of the emission section of the tunnel.  
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Fig 8.6 Sampling point positions in rectangular and square ducts  

(reproduced from AS 4323.1, 1995) 

 

 

Table 8.1 

Vertical and horizontal distances for sampling points 

Horizontal Distances (m) Vertical Distances (m) 

0.08 0.05 

0.17 0.10 

0.25 0.15 

0.33 0.20 

0.42 0.25 
 

 

8.3.1.2 Sampling port for gas recovery efficiency measurements 

For gas recovery efficiency measurements, data initially were derived from samples 

collected using a one point sampling port installed in the end of the mixing section of the 

tunnel. The measured sample recovery efficiency ranged between 20.0% to 81.3%. 
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Subsequently, a modified sampling port with four branches and five sampling holes per 

branch was applied to the USQ wind tunnel. The 20 sampling points are quadratically 

spaced across the sampling port. According to the numerical simulation test carried out 

by Loubet et al. (1999a), this type of sampling port showed a theoretical sample recovery 

efficiency of 100.4%.        

  

Teflon tube φ18

Width of sampling port

Diameter of the mixing module of the tunnel

Hole φ2

Air collection and drain port

Distance to sampling point
on the traverse

 
 

Fig 8.7 The schematic diagram of sampling port with four branches and quadratically 

spaced five sampling holes per branch 

 

 

8.3.2 Experiments 

Four experiments were undertaken concurrently: 

 

Experiment 1: Identify the effect of surface type on the aerodynamic characteristics of the 

tunnel.  
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Two different types of surface, a solid surface with different roughness heights and a 

liquid surface, were applied to the tunnel and their effect on aerodynamic characteristics 

including wind speed profile, turbulent intensity, and gas concentration profile were 

examined. To represent a solid surface, a foam mattress with various roughness heights 

was used to simulate actual conditions. Roughness heights varied between 5 and 25mm 

(Hancock & Smith, 1994; Baldo, 2000). For the liquid surface, the liquid piggery effluent 

contained in pond simulating reactor vessel was used.  

  

Experiment 2: Identify the effect of airflow rate on the aerodynamic characteristics of the 

tunnel.  

As the tunnel has the capability to control airflow rate using a variable speed fan, a 

series of trials was performed to identify the relationship between airflow rates and the 

aerodynamic characteristics. The tunnel was operated at five different airflow rates, 

ranging from 0.001 to 0.028m3/s.  

 

Experiment 3: Identify the effect of sampling port design on gas recovery efficiency.  

Two different types of sampling ports were tested for their effect on gas recovery 

efficiency. Initially, a simple one-point sampling port was installed centrally at the end of 

the mixing section and evaluated. Later, a new sampling port with four branches and five 

quadratically spaced sampling holes per branch, was installed in the tunnel and evaluated.   

 

Experiment 4: Determine the effect of airflow rate and CO supply rate on gas recovery 

efficiency of the tunnel.  

The effects of airflow rate and gas supply rate on gas recovery efficiency rate were 

tested. Five different airflow rates, ranging from 0.001 to 0.028m3/s, were applied to this 

experiment 4. The gas supply rates were 2.5, 5.0, 7.5 and 10.0 litre/min respectively.  

 

In experiments 3 and 4, pure carbon monoxide gas was introduced from a cylinder 

into the tunnel through perforated tubes. Four tubes were laid out under the testing 

module of the tunnel in parallel rows. Each tube had 50 tiny holes per metre to provide 

homogeneous gas emissions to the tunnel. A gas regulator and a visual flowmeter were 
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used to control the CO supply rate.  The basic concept of the carbon monoxide injection 

system was based on the similar system used for estimating ammonia volatilization from 

land (Loubet et al., 1999a). 

 

 

8.3.3 Measurements 

 

Temperature and relative humidity 

Temperature and relative humidity were measured simultaneously at the inlet and 

outlet of the tunnel using an integrated sensor unit. These parameters were monitored by 

the operating program which is addressed in section 8.2.3. Each measurement was made 

over a 900s period at a sample rate of 20Hz. A data logger was used to collect these data.  

 

Carbon monoxide concentration 

The CO concentration in samples collected from the sampling port was measured 

with the 300E gas filter correlation CO analyser at a frequency of 10Hz. Air was 

continuously sampled at the sampling port and drawn to the analyser through 

polytetrafluoroethylene (PTFE) tubes. The analyser was regularly calibrated with two 

reference standard CO gases at 206 and 1000 ppm. The detection limit was 0.04ppm. 

Linearity was better than 1% full scale for CO concentrations greater than 10ppm, and 

better than 0.2ppm for lower concentrations. The precision was 0.5% of the value read.  

 

Wind speed  

The wind speed was measured with a Velocicalc® velocity meter. The wind velocity 

meter was regularly calibrated by the supplier. It was located as described in section 

8.4.1.1 for the vertical wind speed profiles and cross-sectional wind speed profiles. For 

the gas recovery efficiency trials, the probe was placed in the middle of the testing 

section of the tunnel as a reference. The results were compared with the data derived 

from the wind speed profiles and turbulence intensity profiles to calculate airflow rates. 

The air temperature data was corrected by a factor of T/294.55 under a standard 

temperature and pressure condition to obtain actual wind speeds, where T is the air 
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temperature in °K. Absolute accuracy was 1% of full-scale, which corresponded to 

0.01m/s. 

 

 

Standardisation of airflow rate 

The volume airflow rate at standard conditions (0 °C and 101.3kPa) was then 

calculated in accordance with ISO 10780 using equation 8.1 (modified from AS4323.1, 

1995) 

 

3.101
P

)t273(
)0273(QQ s

s0,R ×
+
+

×=                (8.1) 

where, 0,RQ  is the volume airflow rate at standard conditions (0 °C and 101.3kPa), m3/s; 

Ps is the absolute pressure in the tunnel, kPa; sQ is the mean volume airflow rate through 

the tunnel, m3/s; and t is the tunnel temperature, °C.  

 

 

Turbulence Intensity   

The turbulence intensity, I is defined by two variables: the fluctuating components of 

wind speed v′ and the mean wind speed in the profile V . v′ is defined as:  

 

 

VVv −=′                     (8.2) 

 

Using the equation 8.2, the turbulence intensity is defined as: 

 

V
vI

2′
=                      (8.3) 
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Gas recovery efficiency rate 

The recovery rate of the tunnel was calculated using the equation 8.4 (modified from 

Loubet et al., 1999a).  

 


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


=

exp

m

exp

C
A
Q

Φ
α                   (8.4) 

where, α is the  recovery rate of the sampling system; Q is the mean volumetric airflow 

rate through the tunnel, m3/s; Aexp is the experimental area covered by the tunnel, m2; Cm 

is the measured average concentration in the measurement section, kg/m3; Φexp is the CO 

emission rate emitted from the ground of the testing section, kg/m2s.  
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8.4 Results and discussion 

 

8.4.1 Wind speed profiles  

The mean vertical wind speed profiles were measured at the centre of the emission 

section of the tunnel for the solid surface and for the liquid surface respectively. The 

results are presented in Fig 8.8 and Fig 8.9 as a function of height (z).  
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Fig 8.8 Mean wind speed profiles over the solid surface for various airflow rates  
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Fig 8.9 Mean wind speed profiles over the liquid surface for various airflow rates 

 

 

As shown in Fig 8.8 and Fig 8.9, while the airflow rate was increasing, the vertical 

wind speed was increasing accordingly. However, the vertical profiles of wind speed are 

not uniform regardless the airflow rate. For all of the higher airflow rates, there was a 

pronounced peak in the profile at about 0.1m above the bottom of the emission section 

for the solid surface and 0.15m for the liquid surface, respectively. The lowest velocity 

was usually recorded at the bottom of the emission section and the vertical profiles 

exhibited a logarithmic shape near the tunnel walls. Moreover, it was observed that for 

any given airflow rate, the peak speed over the liquid surface was higher than over the 

solid surface.  

 

Both sets of profiles indicated incomplete development of the flow, caused by an 

insufficient straight length of ducting prior to the sampling section. The difference 

between the profiles for the solid and liquid surfaces is due to the different surface 

roughness.  
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In order to examine the cross-sectional air flow distribution, contour plots were made 

of the wind speeds collected from 25 sampling points. The contour plot for the cross-

sectional wind speed profile over the solid surface is shown in Fig 8.10.  The profiles for 

the liquid surface are plotted in Fig 8.11.  

 

As well as the wind speed variation in the vertical direction, these profiles show a 

considerable variation in velocity across the width of the tunnel. In each case, two zones 

of high wind speed are observed near the centre of each half of the cross section. Again 

this reflects the inadequate performance of the flow straightening and flow development 

section of the wind tunnel.  

 

Differences between the lateral wind speed profiles for the two surfaces were not 

significant except for the higher peak velocities over the liquid surface as mentioned 

previously.   

 

In order to get a more evenly distributed airflow profile, the installation of a 

perforated baffle (Wang et al., 2001; Baldo, 2000; Jiang & Kaye, 1996) upstream of the 

sampling section could be one option to improve the overall aerodynamic performance of 

the tunnel. 

 

As will be discussed in section 8.4.5, the non-uniform velocity profile could be one 

cause of reduced gas recovery efficiencies. Therefore, modifications including increasing 

the wind speed with a higher speed fan, baffle installation and narrowing of the testing 

module to increase wind speed may be required to improve the performance of the USQ 

wind tunnel.  



Chapter 8. THE USQ WIND TUNNEL 

Ph. D dissertation 
  Page 192 

Width (m)

0.10 0.15 0.20 0.25 0.30 0.35 0.40

H
ei

gh
t (

m
)

0.05

0.10

0.15

0.20

0.25
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 

(m/s)

 
 

Fig 8.10 Cross-sectional wind speed profiles over the solid surface (airflow rate, 

0.028m3/s) 
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Fig 8.11 Cross-sectional wind speed profiles over the liquid surface (airflow rate, 

0.028m3/s) 
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8.4.2 Turbulence intensity profiles 

The turbulence intensity profiles over the solid surface and the liquid surface are 

shown as a function of height in Fig 8.12 and 8.13, respectively. As with wind speed, the 

vertical profiles of turbulence intensity are not uniform regardless of the airflow rate and 

surface type. In fact, the turbulence intensity shows a strong inverse relationship with 

velocity. The highest intensity is located where velocity is lowest, that is, close to the 

wall of the wind tunnel.   

 

It was observed that the peak turbulence intensity over the liquid surface is higher 

than for the solid surface for the same fan speed stage. The turbulence intensity profiles 

are similar to those reported by Loubet et al. (1999a). Loubet et al. (1999a) also indicated 

that Laufer (quoted in Hinze, 1959) presented similar results for turbulent flow in a 

cylindrical duct.  

 

Reynolds numbers above 1×104 are associated with turbulent flow. The Reynolds 

number is defined as: 

  

ν
ρLV

=Re                    (8.5) 

where, Re is the Reynolds number; L is the characteristic length of the duct, m; V  is the 

wind speed in the duct of the wind tunnel, m/s; ρ is the density of the air, kg/m3; υ is the 

dynamic viscosity of the air, kg/ms.  

 

The dynamic viscosity of air at 20 °C is about 1.8×10-5 kg/ms. Hence, the Reynolds 

number was estimated to 1.4×104 in this wind tunnel. Therefore, the airflow inside the 

duct is revealed to be turbulent flow. However, this number is lower than the Reynolds 

number of between 3×104 and 9×104 presented by Loubet et al. (1999a) for their wind 

tunnel.  
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Fig 8.12 Turbulence intensity profiles over the solid surface 
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Fig 8.13 Turbulence intensity profiles over the liquid surface 
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8.4.3 Gas concentration profiles in the testing section of the tunnel  

The result of the trial to reveal gas concentration profiles is presented in Fig 8.14.  

The gas supply rate applied in the trial was 5 L/min. The trial was done over the solid 

surface, with the gas concentration profiles measured within the sampling section of the 

tunnel.   

 

In order to get normalized gas concentration, the mean volumetric concentration 

increase in a section of the tunnel incC is calculated as the ratio of the CO volumetric flow 

injected into the tubes QCO, to the volumetric airflow in the tunnel Q (modified from 

Loubet et al., 1999a): 

 

Q
QC CO

inc =                     (8.6) 

 

The normalized concentration is then defined as the ratio of the concentration at a 

given position CZ minus the background concentration CB to the mean concentration 

increase incC in the same cross-section: 

 

( )
inc

BZ
norm C

CCC −
=                    (8.7) 

 

It is observed that the normalized concentration profiles showed a strong asymmetry, 

with much greater concentration at the bottom. However, the normalized concentration 

profiles were very similar for the five different airflow rates. These results are similar 

with the gas concentration profiles of a conventional wind tunnel, which was reported by 

Loubet et al. (1999a). They indicated that the asymmetric shape would likely be 

independent of the wind speed in the tunnel, for a given geometric configuration of the 

experimental area.  
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Fig 8.14 Normalised gas concentration profiles over the solid surface with 5 L/min CO 
supply rate 

 

 

8.4.4 Effect of sampling port design on the gas recovery efficiency 

The results of experiment 3 regarding the sampling port design are summarised in 

Table 8.2 and Fig 8.15. When the CO gas was supplied at a rate of 5.0 L/min, the sample 

recovery efficiency using the one point sampling port ranged between 20.0 % to 81.3 %. 

The mean±sd recovery efficiency was 49.0±28.9 %. In contrast, the 20-point integrated 

sampling port, produced a mean±sd recovery efficiency of 71.4±10.7 %. The range of 

recovery efficiency was 63.6 to 89.7 %. It is proposed that this improvement was mainly 

due to the number of sampling points and the hole distribution. Loubet et al. (1999a) 

reported ‘simulated’ recovery efficiencies of a 1-point and a 20-point sampling port (with 

a linear distribution) of 61 % and 89 % respectively. In addition, the 20-point sampling 

port with a quadratic distribution showed 100.4 % efficiency. The reason is due to the 

number of sampling points per unit area. For the linear distribution of sampling points, 
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the number of sampling points per unit area will decrease with distance to the centre of 

the duct, whereas in the case of a quadratic distribution, it remains constant. 

 

Table 8.2 

Experimental results for wind tunnel sampling system between one point sampling 

port (port A) and 20-point four branched sampling port with quadratic (port B). 

 Airflow 
rate 

CO 
supply rate 

Inlet 
CO 

Theoretical 
CO 

Measured 
CO 

Recovery 
efficiency 

 
Port 

design 
(m3/s) (l/min) (ppm) (ppm) (ppm) (%) 

A 2.85 20.0 Test 1 B 0.001 5.0 15450 14.24 9.30 65.3 
A 0.68 16.8 Test 2 B 0.005 5.0 15450 4.02 2.68 66.6 
A 0.79 61.9 Test 3 B 0.015 5.0 15450 1.27 0.91 71.9 
A 0.51 65.2 Test 4 B 0.024 5.0 15450 0.78 0.51 63.6 
A 0.54 81.3 Test 5 B 0.028 5.0 15450 0.67 0.59 89.7 
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Fig 8.15 Sample recovery efficiency rates between one point sampling port and 20 point 

four branched sampling port with quadratic 
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8.4.5 Effect of airflow rate and gas supply rate on gas recovery efficiency  

The results of experiments regarding the relationship between airflow rates and gas 

supply rates are presented in Fig 8.16. The results reveal gas recovery efficiencies for 

individual tests ranging  from 61.7 to 106.8%, while the average result for the entire data 

set was 81.1%. 

 

With regard to the airflow rate, it was observed that the optimal sample recovery 

efficiency was 88.9±3.96% at an airflow rate of 0.028m3/s. This optimal recovery 

efficiency is similar to or higher than efficiencies reported in other studies using different 

wind tunnel systems. Other researchers reported recovery efficiencies in a range from 

70% to 103% under varying tunnel geometry and operating condition (Mannheim et al., 

1994; van der Weerden et al., 1996; Reitz et al., 1997; Loubet et al., 1999; Wang et al., 

2001). 

 

At the airflow rate of 0.015m3/s, the tunnel showed the highest efficiency rate of 

95.0±15.86%. However, it included overestimated CO concentrations of 106.8 and 

103.6% as well as high variability. It is proposed that this was due to inadequate mixing 

and dispersion of CO within the air stream. 

 

Sample recovery efficiencies at gas supply rates of 2.5, 5.0, 7.5 and 10.0 litre/min 

were 80.4 ± 17.28%, 71.4 ± 10.68%, 80.8 ± 13.54% and 91.5 ± 9.94% respectively.  The 

results suggest that the estimated emission rates are closely related to the uniformity of 

odour concentration profile and hence, degree of mixing developed inside the tunnel. 

Therefore, non-uniform odour concentration profiles caused by low emission rates will 

have negative effects on the sample recovery efficiency rate of the wind tunnel. In 

addition, some leakage of CO gas was observed through the joints between sections of 

the tunnel. It could be another cause of errors 

 

The results of this study suggested that the developed wind tunnel will give estimates 

of the odour emission rate with significant level of precision. However, the wind tunnel 
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needs to be calibrated to compensate for the different recovery efficiencies caused by 

different airflow rates and odour emission rates. In order to get more reliable and 

repeatable results, improvements to the wind tunnel in terms of aerodynamics and 

boundary layer effect will be required.  
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Fig 8.16  Sample recovery efficiency rates between different airflow rates and gas supply 

rates 
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8.5 Chapter summary 

In this chapter, a novel wind tunnel was developed with the capability to control wind 

speed and airflow rate. Later, it will also be able to control other meteorological factors, 

such as humidity and temperature. The USQ wind tunnel was evaluated in terms of the 

aerodynamics of the airflow inside the tunnel, and the gas recovery efficiency rate, in 

order to further improve the performance of the wind tunnel. Conclusions are made from 

the results of this evaluation.  

 

While the airflow rate increased, the vertical wind speed was increasing accordingly. 

However, the vertical profiles of wind speed are not uniform regardless of the airflow 

rate. Wind profile results indicated incomplete development of the flow, caused by an 

insufficient straight length of ducting prior to the sampling section. The difference 

between the profiles for the solid and liquid surfaces is due to the different surface 

roughness.  

 

Cross-sectional wind speed profiles results showed a considerable variation in 

velocity across the width of the tunnel. Two zones of high wind speed were observed 

near the centre of each half of the cross section. This reflects the inadequate performance 

of the flow straightening and flow development section of the wind tunnel. Therefore, the 

installation of a perforated baffle upstream of the sampling section was suggested to get  

more evenly distributed airflow profiles.  

  

From the results of turbulent intensity profiles, the Reynolds number was estimated 

between 4.11×103 and 7.80×103 in the USQ wind tunnel under the current configuration. 

Therefore, the airflow inside the duct is revealed to be turbulent flow;  

 

The developed wind tunnel showed that sample recovery efficiencies ranged from 

61.7 to 106.8 %, while the average result from the entire test was 81.1 %. The optimal 

sample recovery efficiency of the tunnel was observed to be 88.9 % from statistical 

analysis. The values of airflow rate and gas supply rate corresponding to the optimal 

sample recovery efficiency were 0.028 m3/s and 10.0 litre/min respectively.  
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It can be suggested that the wind tunnel will give estimates of the odour emission rate 

with a significant level of precision. However, the wind tunnel needs to be calibrated to 

compensate for the errors caused by different airflow rates and odour emission rates.  
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CHAPTER 9 

EFFECTS OF POND LOADING RATES ON ODOUR 

EMISSIONS  

 

 

 

 

 

9.1 Introduction 

The odour emissions from effluent treatment ponds have been defined as a main 

contributor of the nuisance to neighbours in the piggery industry.  In order to solve this 

problem, the first step is to quantify the emission rates of odour from effluent ponds. 

Current methods for estimating odour nuisance use standard emission rates that do not 

take into account the effect of loading rates and effluent characteristics. Consequently, 

there is considerable difference between estimated and real measured values. 

 

Appropriately designed and well-managed ponds produce a lower odour than 

overloaded and undersized ponds, but there are few data to corroborate this perception.  

A more complete data set of gross odour emission rates and effluent characteristics are 

required for a range of piggery effluent treatment ponds to assist in the planning process 

of new and expanding piggery developments. Also required are easy-to-measure 

indicators of pond condition and the likelihood of odour emissions. Allied to this is the 

need for a convenient and low cost method of odour measurement, using the electronic 

nose and newly emerging pattern recognition techniques like an artificial neural network.  

 

An experimental facility consisting of reactor vessels to simulate the operation of 

effluent ponds and the USQ wind tunnel for odour sampling was developed. The USQ 

wind tunnel is described in Chapter 8. The machine-based odour quantification technique 

using the AromaScan and ANN was also developed. This odour quantification technique 

is presented in Chapter 7.  
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 The purpose of this chapter is to establish the relationship between pond loading rate 

and odour emission rate through replicable experimental studies using an experimental 

facility and the machine-based odour quantification technique.  



Chapter 9. EFFECTS OF POND LOADING RATES ON ODOUR EMISSIONS 

Ph. D dissertation 
  Page 204 

9.2 Experimental design 

Two experiments have been conducted to investigate the effect of key variables such 

as organic loading rate (OLR) and hydraulic retention time (HRT) on odour emission 

rate. The experimental methodology and operation of the experimental facility were 

modified slightly for each experiment. A brief summary of the two main experiments is 

outlined in Table 9.1. 

 

 

Table  9.1 
The summary of experimental design 

 

Experiment  
 Exp. 1 Exp. 2 

Variable 1 OLR1 OLR 

Variable 2 HRT2 (30 days) HRT (60 days) 

Materials Piggery effluent Piggery effluent 

Operation periods 12 months 6 months 

Season 4 seasons Summer-Autumn 

Temperature 8 – 25 °C 25 – 15 °C 

Odour measurement Aromascan A32s Aromascan & Olfactometry 
1. OLR: organic loading rate 

2. HRT: hydraulic retention time 

 

 

9.2.1 Determination of organic loading rate 

As the most common method for designing anaerobic treatment ponds is the Rational 

Design Standard (RDS), it was applied to determine standard VS loading rate for the 

reactor vessels. This standard was developed by Barth (1985) and is based on 3 

requirements (FSA environmental, 2001): 

o Control of pond odour. 

o Allowance for sludge accumulation. 

o Maintenance of a minimum treatment volume 
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Since climate has a large effect on the biological activity of a pond, anaerobic activity 

within piggery ponds is reduced with lower average ambient temperatures. The volatile 

solids (VS) loading rate is adjusted using a factor (k), which varies according to piggery 

location. Higher average ambient temperatures in an area give a higher optimum pond 

loading rate. The standard VS loading rate (100g VS/m³day) is multiplied by the 

temperature dependent k factor to calculate the minimum required active volume of a 

pond as shown in equation 9.1.  

 

100k
VSVOL L

A ⋅
=                   (9.1) 

where, AVOL  is the active volume of the effluent pond, m3; LVS  is the volatile solid 

loading rate, g/day; k is the temperature factor according to piggery location, g/m³day.  

 

Not all the solids that enter the pond are degradable. Approximately 20% of the solids 

in fresh piggery waste are fixed (ash) and are not degradable. The rate at which solids 

accumulate in the bottom of the pond is expressed in the term of the sludge accumulation 

rate (SAR). This is generally measured as a volume per kg of total solids (TS) added. 

Although the most widely accepted SAR figure is 0.00303 m³/kg of TS added (Barth, 

1985), this figure is regarded in Queensland as being an over-estimate of SAR, with 

measured SAR for piggeries in southern Queensland being lower than this. The research 

by Anderson et al. (2000) obtained an accurate estimate of the sludge volume in an 

anaerobic pond after 15 years continuous use. The figure they obtained was found to be 

79% lower than the sludge volume estimated using the ASAE method (FSA 

environmental, 2001).  

 

For the calculation of the required volume for sludge, equation 9.2 can be used:   

 

PLs LARSTS VOL ⋅⋅=                   (9.2) 
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where, sVOL  is the sludge volume in the effluent pond, m3; TSL is the total solid loading 

rate, kg/year; SAR is the sludge accumulation rate in pond, m3/kg; LP is the pond life, 

year. 

 

The minimum required active volume is added to the sludge volume to give a total 

required pond volume (VOLT) as shown in equation 9.3.  

 

SAT VOLVOL VOL +=                  (9.3) 

 

The RDS method requires the calculation of a maximum volatile solid loading rate 

based on a 20% odour detection rate. This is calculated from a standard VS loading rate 

for odour control (61 g VS/m³day), multiplied by the temperature dependent k factor as 

shown in equation 9.4.  

 

k
VS
VSVOL

O

L
O ⋅=                   (9.4) 

where, VOLO is the volume of effluent pond for odour control, m3; VSO is the standard 

VS loading rate for odour control, 61 g VS/m³day    

 

Since this research work was conducted in Toowoomba, Queensland, the following 

figures were used to determine standard VS loading rates for the reactor vessels.  

 

o Typical VSL: 85 g VS/m³ day (100 g VS/m³day times a k factor of 0.85) 

o k factor: 0.85 

o VS producing per a Standard Pig Unit (SPU): 250 g VS/day (90 kg/yr) 

o Sludge accumulation rate: 0.00303 m³/kg of TS 

o Pond life: 10 years 

o Volume for odour control: 0.25m3(0.5m✕ 0.5m✕ 1.0m high) 

o Standard VS loading rate for odour control: 61 g/m³day 
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From the above design assumptions, the VS loading rate for odour control expecting a 

20% odour detection of a reactor vessel could be calculated to be 18.0 g/day. Since the 

reactor vessels were fed weekly, the VS loading rate for odour control was 126.0 g/week. 

This figure was used as the standard loading rate for this research.  

 

 

9.2.2 Determination of hydraulic retention time 

One of the key factors for successful design and operation of piggery ponds is the 

hydraulic retention time (HRT). Wood (1986) indicated that the design of a waste 

stabilisation pond depends substantially on two factors: an adequate description of its 

mixing characteristics and an adequate estimation of its biological degradation rate 

constant. HRT is closely related to the mixing characteristics of a pond. HRT is estimated 

by dividing the pond liquid volume by the average flow rate of piggery effluent.  

 

The theoretical mean HRT can be defined by equation 9.5 (Martin, 1991).  

E

P
T Q

VOLHRT =                   (9.5) 

where, HRTT is a theoretical mean hydraulic retention time, days; VOLP is the total liquid 

volume of pond; EQ is the average flowrate of the piggery effluent entering the pond 

 

However, piggery effluent ponds are neither precise plug flow reactors nor 

completely mixed systems. Therefore, it is necessary to consider the actual mean HRT 

(HRTA). HRTA can be calculated by equation 9.6.  

 

E

P
A Q

EVOLHRT =                   (9.6) 

where, EVOLP  is the effective or useful liquid volume of the pond 

 

EVOLP is usually less than VOLP due to short-circulation in ponds. Allan & Jeffreys 

(1987) reported that about 40% of the volume of an effluent pond in Whitehorse, Yukon, 

Canada was unused due to short-circuiting. Tracer tests conducted in the Whitehorse 
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pond showed that HRTA was about 60 % of HRTT. Pena et al. (2002) reported HRTA 

values around 30 – 50 % of HRTT in his dispersion studies in anaerobic ponds. LiCl was 

used as a tracer to show the hydrodynamic behaviour of the pond. 

 

The recommended design HRT for piggery effluent ponds is normally 30 - 60 days 

(ISU, 2003). Canter & Englande (1970) estimated average HRT values of 31 days for 

anaerobic effluent ponds used in the warmer southern states in USA (cited from Martin, 

1991). Therefore, an HRT of 30 days was applied in experiment 1 as a standard HRT. In 

experiment 2, an HRT of 60 days was used to compare the results with that of experiment 

1. HRTA was considered to be 60 % of HRTT. 
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9.3 Materials and methods   

An experimental facility was established at the field experimental station of the 

University of Southern Queensland (USQ) in Toowoomba, Queensland, Australia to 

conduct the proposed experiments. An experimental building with 5.8m×5.8m×2.3m 

dimension was customised to provide a controlled laboratory experimental environment. 

The facility was operated for 18 months.  

 

 

9.3.1 Raw piggery effluent 

Two hundred litres of fresh piggery effluent were collected from beneath the slatted 

floor of a commercial intensive piggery operation unit by pump twice a month and used 

as raw feed material to the reactor vessels. The raw feed material was sourced from the 

Donley piggery at Highfields, near Toowoomba, and stored in an airtight 200L steel tank.  

 

 

9.3.2 Experimental facility 

The experimental facility consists of two main parts. First is the pond simulating 

reactor vessels and the second is the wind tunnel. The main role of the reactors is to 

simulate the operation of real effluent ponds under controlled laboratory conditions and is 

the odour producing source. The second part of the experimental facility is the USQ wind 

tunnel, used for the sampling of odour emitted from the reactor vessels. The detailed 

physical dimensions and description of the USQ wind tunnel are provided in Chapter 8.  

   

Pond Simulating Reactor Vessels  

The pond simulating reactor vessels were designed to simulate the workings of 

effluent ponds. They have worked as the odour-producing source for the further odour 

analysis work using the novel wind tunnel and the AromaScan A32S, an electronic nose. 

Since anaerobic ponds are comparable to single-stage, unmixed, unheated digesters, the 

basic design concept of the reactors is based on the simple single-stage digester system 

model. With five independent reactor vessels, five different loading rates can be tested at 

the same time under controlled environmental conditions. It consists of: 
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o five reactor vessels each about 0.25m3 capacity (0.5m✕ 0.5m✕ 1.0m high); and  

o five sampling port per each reactor vessel for liquid and sludge sampling.  

 

The CAD design of the experimental facility is shown in Fig 9.1, 9.2, and 9.3. The 

completed experimental facility is depicted in Fig 9.4.  

 

 

 

 

 
 

Fig 9.1 A CAD drawing for reactor vessels 
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Fig 9.2 A CAD drawing for the experimental facility consisting of a wind tunnel and 

reactor vessels, front view 

 

 

 

 
Fig 9.3 A CAD drawing for the experimental facility consisting of a wind tunnel and 

reactor vessel, side view 
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Fig 9.4 Experimental facility used to quantify effects of pond loading rates on odour 

emissions 

 

 

The method of operation was adopted from the upflow anaerobic sludge blanket 

(UASB) system (Sohn, 1997): 

o Start-up: At the beginning of the experiments, the reactor vessels were seeded with 

sludge and water from an existing pond operating under optimum conditions. After 

first seeding, the loading rate was gradually increased for 2 or 3 weeks to prevent 

shock loading and to give enough time for anaerobic microbes to propagate; 

o Feeding of wastewater: After monitoring of the condition of start-up, weekly feeding 

with raw effluent was started with a different pre-designed loading rate to each 

vessel; 
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o Monitoring: During the operating period, chemical analysis and physical 

measurements were undertaken to monitor the condition of the reactor vessels; and 

o Disposal of effluent from reactor vessels: At the conclusion of each experiment the 

effluent was collected and disposed of in accordance with work place health and 

safety requirements. 

 

 

9.3.3 Reactor vessel initiation  

Once the five reactor vessels and the wind tunnel were installed, the reactor vessels 

were filled with anaerobic effluent and mature sludge, which were collected from a 

mature piggery effluent pond. Exposure of the anaerobic sludge to oxygen was 

minimised as far as possible through the transport using an airtight container. Equivalent 

volumes of sludge (50L which is 20% of reactor volume) and effluent (200L, 80% of 

reactor volume) were discharged to each reactor vessel with minimal aeration. Once the 

digesters were filled, they were allowed to equilibrate.  

 

A regular programme of adding fresh effluent from the sump of the Donley piggery to 

the reactor vessels commenced soon after the initial filling. A small volume (2.5L) of 

sump effluent was added to each reactor vessel daily after the same volume of effluent 

were removed from the reactor to maintain a constant liquid level and headspace volume. 

Measurement of pH and electrical conductivity (EC) in the reactor vessels at initiation are 

shown in Fig 9.5.  

 

The values of pH and EC were measured to check the effluent condition of each 

reactor vessel. The results showed minimal variations between reactor vessels. After 

completion of the initiation process of 45days duration, experiment 1 commenced.  
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Fig 9.5 The results of reactor vessels initiation 

 

 

9.3.4 The experiments  

After the reactor vessels were initiated, experiment 1 was conducted for 12 months 

from 8th August 2001 to 14th August 2002. The reactor vessel 2 operated with the organic 

loading (OLR) of 72 g VS/m3·day recommended by the Rational Design Standard 

method. It was used as a control reactor to compare it with the other reactor vessels. 

Reactors 1, 3, 4 and 5 were operated with the OLR of 36, 108, 144 and 180 g VS/ m3·day, 

respectively. Average HRT was 30 days. 

 

At the conclusion of experiment 1, the reactor vessels were allowed to equilibrate for 

60 days each with the same OLR of 72 g/m3·day. Experiment 2 was then conducted for 6 

months from 13th November 2002 to 26th March 2003. The same OLR used in 

experiment 1 were applied in experiment 2. Averaged HRT was 60 days. A summary of 

OLR and HRT used for the experiments is presented in Table 9.2.  
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In addition to the chemical parameters analysed in experiment 1, more chemical 

parameters including total phosphorus, potassium, sulphide and sulphate were analysed in 

experiment 2 to ascertain the relationship between odour emission rates and chemical 

parameters. The surface layer grab sampling method, which is addressed in section 9.3.8, 

was used in experiment 2.   

 

The detailed results of physical and chemical parameters collected from experiment 1 

and 2 are presented in Appendices C and D, respectively.  

 

 

Table 9.2 

Summary of organic loading rate and hydraulic retention time used for experiments 

 Experiment 1 Experiment 2 

 OLR 
(VS g/m3day) 

HRT 
(days) 

OLR 
(VS g/m3day) 

HRT 
(days) 

Reactor 1 36 30 36 60 

Reactor 2 72 30 72 60 

Reactor 3 108 30 108 60 

Reactor 4 144 30 144 60 

Reactor 5 180 30 180 60 

 

 

 

9.3.5 Odour sampling 

Odour samples were collected in MelinexTM (Polyethylene Terephthalate) sample 

bags. The sample bags were placed into a rigid 30L or 120L sample containers which 

were customised for this research work. The 30L and 120L sample container were used 

for the AromaScan and olfactometry analysis, respectively. They are shown in Fig 9.6 

and Fig 9.7 respectively. One end of a polytetrafluoroethylene (PTFE) tube is fixed to the 

sampling port of the USQ wind tunnel and the other end of which was attached to a 

sampling container, fitted with a MelinexTM bag insert. An air sample is drawn into the 
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MelinexTM bag with a diaphragm pump that evacuates the air space between the container 

and the MelinexTM bag.  

 

All components used for sampling were composed of stainless steel or PTFE 

material. The bags were pre-conditioned by filling them with odorous air from the wind 

tunnel prior to the sample being collected. The sampling container was then sealed and 

transported to the Aromascan A32S instrument for analysis, and then onto the 

olfactometer for final testing. The time between sample collection and testing should be 

less than 24 hours in order to minimise the effect of rapid decomposition of odours. 

 

 

 

 

 
 

Fig 9.6 The 30L odour sample container for the AromaScan analysis 
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Fig 9.7 The 120L odour sample container and a diaphragm pump for olfactometry 
analysis 

 

 

9.3.6 Odour analysis using olfactometry 

Odour concentrations were determined using an eight-panellist, triangular, forced 

choice dynamic olfactometer developed by the Department of Primary Industries, 

Queensland, Australia (Galvin et al., 2002).  The methodology to determine odour 

concentrations is addressed in section 7.2.3. Using the odour concentration, the odour 

emission rate (OER) was calculated using equation 9.7 (modified from Galvin et al., 

2002). 

 

s

t
ts A

AVCOER =                   (9.7) 

where, Cs is the odour concentration in the bag, OU/m3; Vt is the wind speed inside the 

tunnel, m/s; At is the cross sectional area of the tunnel, m2; As is the surface area covered 

by the tunnel, m2 
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Equation 9.7 assumes that the incoming air has had all background odour removed by 

the activated charcoal filter of wind tunnel and that there is complete mixing between the 

emissions and the airflow in the tunnel (Smith, 1996). 

 

The calculated OER was then scaled to a standard tunnel wind speed of 1m/s 

according to Smith & Watts (1994a). They compared two different sized wind tunnels 

and concluded that the emission rate OERv at a particular tunnel wind speed Vt was 

related to the emission rate OER1 at a tunnel wind speed of 1m/s. This is shown in 

equation 9.8 (Galvin et al., 2002). 

 

63.0
t

1

v V
OER
OER

≈                    (9.8) 

 

The exponent of 0.63 was derived as a factor for wind tunnels when used on solid 

surfaces at feedlots and does not apply to ponds. However, Pollock (1997) discussed the 

use of an exponent of 0.5 for pond surfaces. This value has been adopted for the purposes 

of calculations for this research work.  

 

 

9.3.7 Odour analysis using the AromaScan 

The AromaScan A32S “Electronic nose”, in conjunction with the AromaScan A8S 

sample station, was used as the main odour measurement instrument for the collected 

odour samples in this study. The AromaScan A32S and experimental set-up for odour 

sample analysis is shown in Fig 9.8.  

 

The calibration of this instrument including the training of the artificial neural 

network system, was described in Chapters 6 and 7, respectively. 
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For this study, the ANN retrained using olfactometry data obtained during experiment 

2. Odour concentrations and odour emission rates were then determined for each sample 

by presenting the AromaScan sensor responses to the trained ANN. 

  

 

 
 

Fig 9.8 The Aromascan A32S and experimental set-up for odour sample analysing 

 

 

9.3.8 Liquid sampling and analysis 

In experiment 1, the liquid effluent in each of the reactor vessels was sampled for 

analysis every two weeks. A 500 mL sample was collected from four levels of each 

reactor vessel, through their respective sampling taps, and aggregated to make a 2 L 

sample. This procedure minimises the variance caused by the depth from the surface of 

the vessel. 

 

In experiment 2, the reactor vessels were sampled every two weeks. In this case, grab 

samples were taken from within the top 300 mm of the surface of reactor vessels. 

Samples were collected to exclude scum on the surface. Each grab sample was then 
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placed into a large bucket and mixed. The composite samples were then drawn from this 

bucket for chemical and physical analysis.  

 

The liquid sampling method in experiment 2 was used for the following reasons: 

o The chemistry of the surface layer of an effluent pond is assumed to be the main 

contributor to the odour emissions (Hudson, 2002); and  

o Other related research on odour emissions from piggery effluent ponds used the 

surface effluent sampling method (Galvin et al, 2002; FSA Environmental, 2001; 

Hudson et al, 2001)       

 

Liquid samples were stored at 4 ºC and analysed within three days to minimize any 

change in concentration caused by microbiological processes. Various chemical and 

physical analyses were conducted. They can be classified under four groups:  

o Physical and chemical characteristics of raw feed material (pH, Alkalinity, EC, 

TS, VS, VS/TS, T-N, NH3-N, COD, K, T-P, Sulphide, Sulphate)  

o Determination of volatile organic loading rate (VS); 

o Physical operating condition of reactor vessel (pH and EC); and 

o Chemical operating condition of reactor vessel (Alkalinity, EC, TS, VS, VS/TS, 

T-N, NH3-N, COD, K, T-P, Sulphide, Sulphate).  

 

A summary of equipment and methods used for the chemical and physical analysis is 

presented in Table 9.3. 
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Table  9.3 

Summary of analytical methods and instrument used for the experimental work 

(Hach, 2004) 

 

Item Applied method Instrument US EPA 
Approved* 

Total Solid (TS) 
Volatile Solid (VS) 

o Gravimetric method o Memmert® forced-ventilating drying 
oven 

o Satorius® micro balance 
√ 

Chemical Oxygen 
Demand (COD) 

o Reactor digestion 
method 

o HACH® DR-2000 analyser 
√ 

Electrical Conductivity  
(EC)  

o Electrode method o TPS® MC-84 conductivity-salinity 
meter √ 

Total Kjeldahl Nitrogen 
(TKN)  

o Nessler method 
o Photometric 

determination 

o HACH® DR-2000 analyser 
o HACH® Digesdahl digester √ 

Ammonia Nitrogen  
(NH3-N)  

o Nessler method 
o Photometric 

determination 

o HACH® DR-2000 analyser 
o HACH® Digesdahl digester √ 

Phosphorus, Total   o Acid Persulphate 
digestion 

o Photometric 
determination  

o HACH® DR-2000 analyser 
√ 

Sulphate  o SulphaVer 4 
method   

o HACH® DR-2000 analyser 
√ 

Sulphide o Methylene Blue 
method 

o HACH® DR-2000 analyser 
√ 

pH o Electrode method o HANNA® HI 9017 pH meter 
o ORION® ROSS M81-02 electrode √ 

Total alkalinity  o Buret titration 
method 

o HANNA® HI 9017 pH meter 
o ORION® ROSS M 81-02 electrode √ 

 

9.3.9 Statistical analysis 

All data were analysed with the statistical package SPSS Version 11.5 for Windows. 

It was used mainly to derive the relationship between odour emission rate and the 

experimental variables through paired samples Student’s T-test, Pearson’s correlation and 

linear/non-linear regression statistical analysis.  
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9.4 Results and Discussion 

 

9.4.1 Characteristics of raw piggery effluent 

The results of the chemical and physical analysis for the raw piggery effluent, used as 

the feed material to the reactors, are summarised in Table 9.4 below.  

 

 

Table  9.4 

The chemical and physical analysis of the raw piggery effluent  

Parameter Unit Mean N1 Min Max SD2 

pH  7.42 35 6.68 8.28 0.34 

Total Alkalinity mg/L as CaCO3 7227 21 2280 12240 3146 

EC dS/m 19.64 35 13.80 25.12 3.22 

TS mg/L 21796 35 5628 77249 19042 

VS mg/L 13442 35 1968 54349 13583 

VS/TS % 54.3 35 36.0 76.0 14.37 

Total Nitrogen mg/L 2479 18 1920 3420 446 

Ammonia Nitrogen mg/L 2164 18 1480 3110 455 

COD mg/L 10629 18 4460 22220 5084 

Potassium mg/L 1125 5 985 1330 126.6 

Sulphates mg/L 18 3 8.2 34.8 14.62 

Sulphides mg/L 5.53 4 2.4 14.1 5.76 

Total Phorphorus mg/L 294.2 5 150 401 94.35 
1. N: Number of samples 
2. SD: Standard deviation  
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As can be seen in Table 9.4, significant variation was observed in the characteristics 

of the raw effluent from the piggery. These variations are mainly due to the irregular 

maintenance of the piggery housing. Moreover, there are additional factors affecting the 

physical and chemical characteristics of raw piggery effluent. The factors are: 

o Seasonal variance;  

o Changing feedstuff; 

o Growth stage of pig; and 

o Manure storage time in sump. 

 

The range of chemical and physical parameters was similar to that reported by the 

other researchers (FSA Environmental, 2001; Pieters et al., 1999; MWPS, 1997).  

 

 

9.4.2 Odour quantification using the AromaScan  

The odour quantification technique, which was developed as a part of this research 

work was applied to get odour emission rates from sensor output data of the AromaScan. 

The detailed methodology of the odour quantification technique is addressed in Chapter 6. 

The odour emission rates predicted by the technique, were used to derive a relationship 

between odour emission rates and volatile organic loading rates in experiment 1 and 2.  

 

The odour emission rates (determined by olfactometry) from the five reactor vessels 

in experiment 2, are depicted in Fig 9.9. Though it was expected that a relationship would 

exist between odour emission rate and organic loading rate, it was observed that the 

relationship was not strong in each individual trial. However, with the increase in the 

volatile organic loading rates, an increase in the odour emission rates was observed. With 

regard to the mean odour emission rate over experiment 2, the highest mean odour 

emission rate was from reactor vessel 5. Galvin et al. (2002) reported similar results from 

his field study on the effect of loading rate on odour emissions from anaerobic effluent 

ponds.  
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The results of olfactometry and the Aromascan in experiment 2 were used to train the 

ANN. Five sensor output results of the AromaScan were produced from each odour 

sample. Two sensor outputs were used to train the ANN. The others were left for use as 

unknown data sets. After the network was trained, the unused data sets were presented to 

the trained ANN to predict odour emission rates in experiment 2. The same prediction 

technique, using the trained ANN and sensor output results of the AromaScan, was then 

applied to the results from experiment 1.   

 

The architecture of the ANN used for this work was a two-layer back propagation 

network, with a tan-sigmoid transfer function in the hidden layers and a linear transfer 

function in the output layer. It has 20 neurons in the hidden layer. A preprocessing 

algorithm and an early stopping technique were applied to improve the performance of 

the ANN. 
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Fig 9.9 Course of the odour emission rate analysed by olfactometry in the five reactor 

vessels in experiment  2: R1, OLR 36 g VS/m3day; R2, 72; R3, 108; R4, 144; R5, 180   
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The plots of mean squared error versus the training epochs on a logarithmic scale for 

the training simulation of the network is presented in Fig 9.10. The value of mean square 

error and gradient were 3.22×10-3 and 25.47 respectively. The training was stopped at 

epoch 85. The scatter plot of the actual odour emission rates and the predicted neural 

network output (scaled into the odour emission rate domain) for the test data using the 

results from this training simulation is shown in Fig 9.11.  The value for the correlation 

coefficient (r) in Fig 9.11 was 0.97. The best linear fit was observed in OERA = 0.99 

OERP+0.007. As seen in Fig 9.11, the trained ANN explains 94 % of the total variance of 

the training data. The predicted odour emission rates obtained by the neural regression, 

are well distributed around the ideal 1:1 straight line. Therefore, the result of training 

simulation shows that the trained ANN model is able to predict the odour emission rate of 

unknown air samples correctly with a low mean squared error.  
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Fig 9.10 The result of artificial neural network training using preprocessing algorithms 

and 20 hidden neurons 
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Fig 9.11 The odour emission rate prediction results using AromaScan and artificial 

neural network 

 
 

The three unused sensor data for each odour sample were presented to the trained 

ANN to predict the odour emission rates. The results were compared with the results of 

olfactometry. The comparison plots of odour emission rates between olfactometry and the 

Aromascan in reactor vessel 5 over the experiment 2 are shown in Fig 9.12. The results 

for reactor vessels 1, 2, 3, and 4 are presented in Appendix E. From the comparison plots, 

it is observed that the predicted odour emission rates have high correlation with the actual 

odour emission rates measured by olfactometry.  
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Fig 9.12 The comparison of odour emission rate between olfactometry and the 

AromaScan in Reactor 5 over experiment 2: ○, odour emission rate measured by 

olfactometry; ■, odour emission rate predicted by the Aromascan and ANN 

 

 

The non-linear regression result of odour emission rates between olfactometry and the 

AromaScan data, which was predicted by the trained ANN in experiment 2, is depicted in 

Fig 9.13. The value for the coefficient of determination, r2 of statistical non-linear 

regression analysis was 0.96. The relationship of odour emission rate between 

olfactometry and the AromaScan was expressed using equation 9.9. 

 

27.0OER18.1OER027.0OER A
2

Ap −+−=             (9.9) 

where, OERP is the predicted odour emission rate by the AromaScan, OU/m2s; OERA  is 

the actual odour emission rate measured by olfactometry, OU/ m2s  
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The final evaluation of a statistical non-linear regression was made on unknown data, 

i.e., data which had not been used for training the ANN. As seen in Fig 9.13, the non-

linear regression model explains 96% of the total variance of the analysing data. 

 

The odour quantification technique using ANN gives the ability to predict odour 

emission rate from the sensor response of the AromaScan with a high level of confidence. 

However, one must keep in mind that the regression process must only be used for 

interpolations. In addition, this odour quantification technique needs sufficient reliable 

odour data from olfactometry to train the ANN. 
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Fig 9.13 The non-linear regression result of odour emission rate between olfactometry 

data and the predicted values using the AromaScan and artificial neural network in 

experiment  2 

 

 



Chapter 9. EFFECTS OF POND LOADING RATES ON ODOUR EMISSIONS 

Ph. D dissertation 
  Page 229 

9.4.3 Effect of organic loading rate on the physical and chemical characteristics of 

reactor vessels  

In order to investigate the effect of OLR on the physical and chemical characteristics 

of the reactor vessels, paired-sample Student’s T-test with 95% confidence were used to 

analyse the results. This statistical method will verify if the differences in data between 

the reactor vessels as a result of OLR are statistically significant. The results of T-test in 

experiment 1 and 2 are summarised in Table 9.5 and Table 9.6, respectively.  

 

 

 

Table 9.5 

 The results of paired-sample Student’s T-test from effect of organic loading rate on 

the physical and chemical parameters in the reactor vessels in experiment 1 

 

  TS VS pH Alkalinity EC COD TKN NH3-N 

 T-test significant (2-tailed) 

R1:R2 0.005* 0.005* 0.501 0.089 0.000* 0.017* 0.420 0.437 

R3:R2 0.022* 0.078 0.228 0.285 0.000* 0.735 0.704 0.340 

R4:R2 0.000* 0.001* 0.803 0.000* 0.000* 0.022* 0.005* 0.814 

R5:R2 0.001* 0.001* 0.194 0.001* 0.000* 0.001* 0.005* 0.661 

*: 95% Probability (P < 0.05) 
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Table  9.6 

The results of paired-sample Student’s T-test from effect of organic loading rate on 

the physical and chemical parameters in the reactor vessels in experiment 2 

 TS VS pH Alkalinity EC COD TKN NH3-N TP K S2- 

 T-test significant (2-tailed) 

R1:R2 0.089 0.898 0.905 0.009* 0.000* 0.055 0.149 0.112 0.014* 0.007* 0.077 

R3:R2 0.255 0.196 0.086 0.054 0.056* 0.595 0.192 0.085 0.017* 0.001* 0.198 

R4:R2 0.443 0.291 0.827 0.002* 0.006* 0.083 0.020 0.012* 0.012* 0.042* 0.065 

R5:R2 0.046* 0.169 0.650 0.014* 0.000* 0.285 0.027 0.022* 0.009* 0.020* 0.053 

*: 95% Probability (P < 0.05) 
 

Strong relationships between OLR and physical and chemical parameters were 

observed except for pH and NH3-N. In terms of VS, as the OLR has been determined by 

the concentration of VS, it is a logical conclusion that the results of VS have direct 

relationship with OLR. The results of TS have a similar tendency to VS because the 

concentration of TS in piggery effluent has a linear relationship with VS. Piggery effluent 

has a relatively constant VS/TS ratio of about 60% (MWPS, 1985).  

 

It was observed that pH has no relationship with OLR. This is due to the buffering 

capacity of piggery effluent. Piggery effluent used in this research, has a high alkalinity 

value ranging from 2280 to 12240 mg/L as CaCO3. Another contributing factor is the 

process stability of the reactor vessels. Even under the highest loading rate of 250% of 

recommended OLR in reactor vessel 5, the process was stable. Therefore, the rapid 

decrease of pH value mainly caused by ‘shock loading’ has not occurred in any reactor 

vessel.  

 

The results of EC show clear differences between reactor vessels with varying of 

OLR (P<0.05). Similar results were observed in the results of COD (P<0.05). i.e. these 

two parameters have strong relationship with OLR. Therefore, it indicates that these 
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parameters can be used as an indicator of the operating condition of a piggery effluent 

pond.  

 

In the T-test of TKN value, the effect of OLR is significant under high loading 

conditions (200% and 250% of the recommended OLR, P<0.01) i.e. reactor vessel 4 and 

5. However, the  lower loading rates (ranging from 50 to 150%) show a poor relationship.  

 

It was observed that there is no relationship between NH3-N and OLR. In the 

‘Nitrogen Cycle’, NH3-N is converted to NO2
--N and NO3

--N through the nitrification 

process under the aerobic condition. The bacteria groups of Nitrosomonas and 

Nitrobacter are involved in this nitrification process. Under the anaerobic condition, 

denitrification occurs, where NO2
--N and NO3-N are the terminal electron acceptor to 

produce nitrogen gas as a final product. Thus, NH3-N can be converted to NO2
--N and 

NO3
--N at the surface layer of reactor vessels because the surface layer (less than about 

50cm) may have dissolved oxygen, depending on wind, temperature and OLR 

(Thirumurthi, 1991). Therefore, NH3-N could not show a strong relationship with OLR 

because it is unstable. In addition, some portion of nitrogen is used for microbial cell 

synthesis. Thirumurthi (1991) indicated that microbial cells contain about 50% carbon, 

20% oxygen, 10-15% nitrogen, 8-10% hydrogen, 1-3% phosphorus, and 0.5-1.5% 

sulphur on a dry weight basis. 

 

The results of experiment 2 made an interesting comparison with the results of 

experiment 1. In Table 9.6, the parameters of TS, VS and COD show no relationship 

with OLR. However, these same parameters revealed strong relationships in experiment 1. 

A contributing factor may be the application of different methods of liquid sampling, i.e., 

from mixing sampling to surface sampling. This finding is discussed in more detail in the 

following section because it is closely related to the odour emission rates.  

 

The additional chemical parameters of total phosphorus, potassium, sulphide and 

sulphate were analysed in experiment 2. It was observed that total phosphorus and 

potassium show a strong relationship with OLR (P<0.05). On the contrary, sulphide 
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showed a weak relationship. Like NH3-N, sulphur compounds are converted and restored 

in the ‘Sulphur Cycle’. Hence, this may cause the weak relationship with OLR. No 

statistical analysis was carried out for sulphate because of missing data and the low 

sensitivity of the method of analysis.       

 

Pearson’s correlation analysis was used to determine the correlation between the raw 

feed effluent and the liquid samples collected from the reactor vessels. The results are 

shown in Table 9.7. In Table 9.7, the physical and chemical parameters analysed in this 

research work show no correlation with the raw feed effluent except pH, which showed a 

weak correlation (P<0.05). However, the results of pH were not significant because the 

value of the correlation coefficient, r was low ranging from 0.47 to 0.58.  

 

Consequently, it can be concluded that it is not possible to predict the concentration 

of physical and chemical parameters in the reactor vessels based on the concentration of 

raw feed effluent. Similar results were obtained in experiment 2. The detailed results of 

the correlation analysis in experiments 1 and 2, are provided in Appendices C and D, 

respectively.   

 

Piggery effluent ponds are generally operated on a long-term basis (10-15 years). 

Furthermore, under the proper management, there is no rapid change of OLR. Under such 

conditions, it is possible to predict the physical and chemical concentration of effluent 

ponds except pH and NH3-N. To prove this hypothesis, non-linear regression statistical 

analysis was conducted using the mean value of OLR and parameters. The results of the 

non-linear regression analysis for EC, COD and NH3-N are shown in Fig 9.14, 9.15 and 

9.16, respectively. The results of the non-linear regression analysis for the other 

parameters in experiments 1 and 2, are provided in Appendices C and D, respectively.   

 

The regression results for EC and COD show that these two parameters can be 

predicted accurately with the values of the correlation coefficient, r of 0.99 and 0.98, 

respectively. The regression analysis for NH3-N had an r value of 0.69. It was observed 

that the data points were widely dispersed in the scatter plot for NH3-N. 



Chapter 9. EFFECTS OF POND LOADING RATES ON ODOUR EMISSIONS 

Ph. D dissertation 
  Page 233 

 

Table  9.7 

The results of Pearson’s correlation analysis to show the relationship between raw 

feed piggery effluent and liquid sample in reactor vessels in experiment 1 

 

  PH Alkalinity EC COD TKN NH3-N 
Pearson 

correlation 0.467* 0.319 0.083 0.144 0.104 0.096 
Reactor 1 

Sig†. (2-tailed) 0.019 0.288 0.692 0.638 0.735 0.755 

Pearson 
correlation 0.476* 0.283 0.085 0.190 0.136 0.119 

Reactor 2 
Sig. (2-tailed) 0.016 0.349 0.685 0.535 0.657 0.698 

Pearson 
correlation 0.547* 0.269 0.140 0.257 0.192 0.205 

Reactor 3 
Sig. (2-tailed) 0.005 0.374 0.504 0.397 0.530 0.501 

Pearson 
correlation 0.584* 0.251 0.047 0.254 0.140 0.148 

Reactor 4 
Sig. (2-tailed) 0.002 0.409 0.824 0.403 0.649 0.629 

Pearson 
correlation 0.529* 0.290 0.025 0.195 0.036 -0.003 

Reactor 5 
Sig. (2-tailed) 0.007 0.337 0.906 0.523 0.907 .993 

†: significant, 2-tailed 

*: 95% probability (P<0.05) 
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Fig 9.14 EC non- linear regression result between EC loading rate and expected EC 

values 

Chemical oxygen demand loading rate (CODI,mg/m3 day-1)
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Fig 9.15 COD linear regression result between COD loading rate and expected COD 

values 
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Ammonia nitrogen loading rate (NH3-NI, mg/m3 day-1) 
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Fig 9.16 NH3-N linear regression result between NH3-N loading rate and expected NH3-

N values 

 

 

9.4.4 Effect of organic loading rate on the odour emission rates 

The odour emission rates in experiment 1 were acquired by the odour prediction 

process described in section 9.4.3. The results are shown in Fig 9.17. 

 

   As they are shown in trial sets 7, 8 and 9, it is observed that the missing or 

erroneous data were predicted by the trained ANN. These erroneous data were mainly 

due to the fuzzy sensor responses from the AromaScan. These data are excluded in 

following statistical analysis. In Fig 9.17, the predicted odour emission rate does not 

obviously increase as a function of organic loading rate, while the physical and chemical 

properties show strong relationships with organic loading rate. Odour emissions vary 

significantly in each trial and in time. One of the suggested reasons is that high odour 

emissions may be related to activity in the pond sludge layer. FSA environmental (2001) 
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noted odour concentrations up to three times higher than average emissions where sludge 

upwellings had occurred. 
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Fig 9.17 Course of the odour emission rate predicted by the AromaScan in five reactor 

vessels in experiment 1: R1, OLR 36g VS/m3day; R2, 72; R3, 108; R4, 144; R5, 180 

 

While individual measurements show no trend, the time averaged odour emission rate 

does increase with organic loading rate though it shows high values of standard deviation. 

The results of time averaged odour emission rate in experiment 1 and 2, are presented in 

Fig 9.18.  It also shows that the odour emission rate does not necessarily increase linearly 

with OLR.  
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From the linear regression analysis between OLR and time averaged odour emission 

rate in experiments 1 and 2, the time averaged odour emission rate increases with OLR 

with high value of the correlation coefficient, r2 of 0.96 and r2 of 0.95, respectively. 

Therefore, it can be concluded that a heavily loaded effluent pond would produce more 

odour.  

 

However, it is difficult to get these strong relationships between OLR and odour 

emission rate or odour concentration from each individual data. Taking a few odour 

samples during short time period is unlikely to provide a representative odour emission 

rate from the effluent pond. A continuous odour monitoring instrument will be required 

for that kind of more demanding task. 

 

 

Organic loading rate (g VS/m3day-1) 

36 72 108 144 180

O
do

ur
 e

m
is

si
on

 ra
te

 b
y 

th
e 

A
ro

m
aS

ca
n 

(O
U

/m
2 s)

0

2

4

6

8

10

12

14

Experiment 1
Experiment 2

 
 

Fig 9.18 The relationship between the time averaged  odour emission rates predicted by 

the AromaScan and organic loading rates in experiment 1 and 2 
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Pearson’s correlation results between odour emission rate and chemical parameters in 

experiment 1 are presented in Table 9.8. No correlation was found between odour 

emission rate and the chemical parameters. However, the correlation results presented in 

Table 9.9 show that in experiment 2, the odour emission rates measured by the 

AromaScan show a correlation with the chemical parameters (P<0.05) except TS, VS and 

S2-. However, because of the lower number of data, the odour emission rates measured by 

olfactometry show no correlation with the chemical parameters except for total 

phosphorus.  

 

One of the reasons to explain the difference between experiment 1 and 2, is the 

change of liquid sampling method to ‘surface liquid sampling’. It is observed that odour 

emissions are more strongly related to the chemistry of the surface layer of effluent ponds.  

 

As seen in Table 9.9, the odour emission rate measured by the AromaScan shows 

stronger correlation to chemical parameters (P<0.05) than olfactometry. It suggests that 

the sensor of the AromaScan may be more sensitive than the human nose to some 

specific volatile chemical compounds, i.e., it has a tendency to show stronger response to 

the volatile chemical compounds than actual human nose. However, there are insufficient 

data to allow firm conclusion to be drawn.  

 
 

Table  9.8 

The results of Pearson’s 2-tailed correlation analysis between odour emission rates 

and chemical parameters in experiment 1 

  TS VS pH Alkalinity EC COD TKN NH3-N 

OER_EN1 Correlation -0.047 -0.132 0.287 0.177 0.269 -0.043 0.072 0.176 

 Sig.2  
(2-tailed) 0.805 0.488 0.124 0.351 0.150 0.839 0.731 0.401 

 N3 65 65 65 65 65 65 65 65 

1. OER_EN: predicted odour emission rate by the AromaScan, OU/m2s  

2. Sig: significant value 

3. N: number of samples used for the statistical analysis 
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Table  9.9 

The results of Pearson’s 2-tailed correlation analysis between odour emission rates 

and chemical parameters in experiment 2 

 

 TS VS pH Alkalinity EC COD TKN NH3-N TP K S2- 

OER1            

Correlation -.021 -.104 .266 .191 .297 -.097 .095 .205 .487* .186 -.092 
Sig.2 

(2-tailed) .911 .585 .155 .312 .111 .646 .650 .326 .013 .373 .707 

N3 30 30 30 30 30 25 25 25 25 25 19 

OER_EN4            

Correlation -.017 -.030 -.360* -.366* .308* .325* .262* .245* .482* .157 -.117 
Sig. 

(2-tailed) .891 .814 .003 .003 .013 .008 .035 .049 .015 .454 .634 

N 30 30 30 30 30 25 25 25 25 25 19 
1. OER: actual odour emission rate by olfactometry, OU/m2s  

2. Sig: significant value 

3. N: number of samples used for the statistical analysis 

4. OER_EN: predicted odour emission rate by the AromaScan, OU/m2s 

5. *: 95% Probability (P<0.05)  

 

 

9.4.5 Effect of hydraulic retention time on the odour emission rates 

The effect of HRT was examined. The results are presented in Table 9.10. The HRT 

was increased from 30 days of experiment 1 to 60 days of experiment 2, resulting in a 

significant decrease in odour emission rates from the reactor vessels. The reactor vessel 2 

was used as a control with 72 g/m3day of standard OLR. The mean odour emission rates 

of reactor vessel 2 in experiment 1 and 2 were 7.53 and 3.08 OU/m2s, respectively, a 

decrease of about 60 %. The decrease over all reactor vessels ranged from 59.1 % to 

54.9 %, with an average of 57.1 %. Therefore, it can be concluded that an increase in 

HRT will decrease the odour emission rate. However, caution is required in the use of 

this conclusion due to the high standard deviation of measured odour emission rates 

indicated in Table 9.10.         
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Table 9.10 

Effect of hydraulic retention time on the odour emission rates 

 

Experiment 1 Experiment 2 
 

OLR 
(VS g/m3day 

 
OER 

(OU/m2s) SD OER 
(OU/m2s) SD 

Ratio of 
OER decrease 

(%) 

Reactor 1 36 6.67 3.54 2.93 1.39 56.2 

Reactor 2 72 7.53 2.92 3.08 1.29 59.1 

Reactor 3 108 7.67 2.93 3.27 1.65 57.3 

Reactor 4 144 8.51 2.70 3.57 1.04 58.1 

Reactor 5 180 8.91 3.12 4.02 0.70 54.9 
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9.5 Chapter summary 

The aim of this chapter was to demonstrate the relationship between odour emission 

rates and the pond loading rates through replicable experimental studies using a novel 

experimental facility and the machine-based odour quantification technique. 

 

The results of olfactometry and the AromaScan in experiment 2 were used to train the 

ANN. This training was rapid and accurate (as reflected by a low mean square error). The 

trained network was able to predict the odour emission rates for the test data with a 

correlation coefficient of 0.975.  

 

A strong relationship between OLR and the physical and chemical parameters of the 

effluent in the reactor vessels was observed except for pH and NH3-N. The pH was not 

affected by OLR. This is mainly due to the buffering capacity of piggery effluent. The 

results of EC show a clear difference between reactor vessels depending on the change of 

OLR (P<0.05). Similar results were observed for COD (P<0.05). The regression results 

for EC and COD show that these two parameters can be predicted accurately by OLR 

with the values of the correlation coefficient, r of 0.99 and 0.98, respectively. Therefore, 

these parameters can be used as an indicator of the operating condition of the piggery 

effluent pond. 

 

The odour emission rates measured by the AromaScan showed a stronger correlation 

to chemical parameters (P<0.05) than the results of olfactometry. It suggests that the 

sensor of the AromaScan is more sensitive than the human nose to some specific volatile 

chemical compounds. 

 

The effect of HRT was examined. The HRT was increased from 30 days in 

experiment 1 to 60 days in experiment 2, resulting in a significant decrease in odour 

emission rates from the reactor vessels. The decrease for the five reactor vessels ranged 

from 59.1% to 54.9%. Therefore, it can be concluded that an increase of HRT will 

decrease odour emission rates.  
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 While the individual odour emission rates exhibited a high variance, time averaged 

odour emission rates were strongly correlated with OLR. Consequently, it can be 

concluded that a heavily loaded effluent pond would produce more odour. However, it is 

difficult to find strong relationships between OLR and odour emission rate or odour 

concentration from each individual data. Taking a few odour samples during a short time 

period is unlikely to provide a representative odour emission rate from an effluent pond.  
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CHAPTER 10 

CONCLUSION  

 

 

 

 

 

10.1 Review of research 

Odours caused by intensive piggery operation units have become a major 

environmental issue in the piggery industry in Australia. Effluent ponds are the 

major source of odours in typical Australian piggeries. It is assumed that the 

odour emissions from ponds are mainly driven by pond loading rate. However, 

there are few data to corroborate this assumption. A more complete set of data on 

gross odour emission rates and effluent physical and chemical characteristics is 

required to investigate the relationship. 

 

In addition, sensitive and cost effective odour measurement techniques have 

always been critical areas to achieve this requirement. Olfactometry, in which a 

human panel evaluates the odours, has been accepted as the only available 

technique for quantifying odour concentration. Human assessment, however, can 

be time-consuming, expensive and often impractical because of its use of 

subjective human panels.  

 
This Ph. D. study successfully addressed these issues in three key areas. These 

are:  

o Development and experimental verification of a novel wind tunnel for 

odour sampling; 

o Application of the electronic nose and artificial neural network (ANN) for 

odour quantification; and 

o Application of the sampling and measurement methods in the 

investigation of the effects of pond loading rate on odour emissions. 
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10.2 Major outcomes and key findings 

The major outcomes and key findings are provided in the following sections 

according to the three key areas.  

  

10.2.1 Application of the electronic nose for odour quantification 

An ANN and the electronic nose, the AromaScan A32S, were used to predict 

the odour concentrations emanating from a piggery effluent pond. The sensor data 

analysed by an electronic nose were used to train the ANN, and to correlate the 

responses to the actual odour concentration provided by a human olfactometry 

panel. In an effort to find an optimal artificial neural network model for piggery 

odour quantification, various preprocessing techniques and network architectures 

were evaluated through network simulation. 

 

1. The simulation results showed that a two-layer back-propagation neural 

network, which has a tan-sigmoid transfer function in the hidden layer and 

a liner transfer function in the output layer, can be trained to predict 

piggery odour concentrations correctly with a low mean squared error (See 

Fig 7.12). Odour concentrations were predicted for the test data with a 

coefficient of determination, r of 0.98. 

 

2. The results from the application of scaling and principal component 

analysis suggested that these preprocessing algorithms are necessary to 

avoid the failure of the network caused by saturation.  

 

3. The early stopping technique was used for network generalisation to 

provide benefits to network performance in terms of a decrease in 

computation time and overfitting. It was observed that the optimal number 

of hidden neurons is 20. 
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4. The trained ANN was able to predict the odour concentration of nine 

unknown air samples with a value for the coefficient of determination, r2 

of 0.59.  

 

 

10.2.2 Development and experimental verification of the USQ wind tunnel 

for odour sampling 

A novel wind tunnel was developed in University of Southern Queensland 

(USQ). The USQ wind tunnel was designed to have a capability to control wind 

speed and airflow rate. The USQ wind tunnel was evaluated in terms of the 

aerodynamics of the airflow inside the tunnel, and the gas recovery efficiency, in 

order to quantify and improve its performance. From the results of this evaluation, 

it can be concluded that: 

 

1. Wind speed and turbulence intensity profiles within the tunnel were 

statistically non-uniform. Two zones with higher wind speeds were 

observed at the centre of each half of the cross section. These non-uniform 

wind speed profiles could be one cause of low gas recovery efficiency 

rates. The installation of perforated baffle at the upstream of emission 

section is suggested to get more evenly distributed airflow profiles. 

   

2. The USQ wind tunnel showed sample recovery efficiencies ranging from 

61.7 to 106.8%, while the average result from the entire test was 81.1%. 

The optimal sample recovery efficiency of the tunnel was observed to be 

88.9% from statistical analysis. The values of airflow rate and gas supply 

rate corresponding to the optimal sample recovery efficiency were 

0.028m3/s and 10.0 litres/min, respectively (See Fig 8.16). 

 

 

3. Consequently, it can be suggested that the USQ wind tunnel will give 

estimates of the odour emission rate with significant level of precision. 
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However, the tunnel needs to be calibrated to compensate for the varying 

gas recovery efficiencies caused by different airflow rates and odour 

emission rates.  

 

 
10.2.3 Application of the sampling and measurement methods in the 

investigation of the effects of pond loading rate on odour emissions 

To investigate the relationship between pond loading rate and odour emission 

rate, replicable experimental studies were conducted using a novel experimental 

facility and the machine-based odour quantification technique. The experimental 

facility consisted of reactor vessels to simulate the operation of effluent ponds and 

the USQ wind tunnel for odour sampling. The machine-based odour 

quantification technique used the AromaScan for odour measurement as well as 

ANN for data interpretation.  

 

1. The ANN training results showed that the trained network was able to use 

the sensor response of the AromaScan to predict odour emission rate from 

the reactor vessels with a high level of confidence. The value for the 

correlation coefficient, r in this case was 0.975.  

 

2. A strong relationship between organic loading rate (OLR) and physical 

and chemical parameters was observed except for pH and NH3-N. The pH 

was not affected by OLR. This is mainly due to the buffering capacity of 

piggery effluent. The results of EC showed clear differences between 

reactor vessels depending on the change of OLR (P<0.05). Similar results 

were observed for COD (P<0.05). The regression results of EC and COD 

showed that these two parameters can be predicted accurately by OLR 

with the values of the correlation coefficient, r of 0.99 and 0.98, 

respectively. It is concluded that these parameters can be used as 

indicators to estimate the operating condition of a piggery effluent pond. 

 



Chapter 10. CONCLUSION 

Ph. D dissertation 
  Page 247 

3. The time averaged odour emission rates from the reactor vessels showed a 

strong relationship with OLR, confirming the empirical evidence that a 

heavily loaded effluent pond would produce more odours. 

 

4. The effect of hydraulic retention time (HRT) was examined. The HRT was 

increased from 30 days in experiment 1 to 60 days in experiment 2, 

resulting in a significant decrease in odour emission rates from the reactor 

vessels. This decrease ranged from 59.1 % to 54.9 %, with an average of 

57.1 %. Therefore, it can be concluded that increasing HRT will decrease 

odour emission rate. 

 

5. This trial confirmed the value of the project methodology in obtaining 

unambiguous data on odour emission processes. However, more data are 

required for a wider range of OLR, HRT and other pertinent variables 

before a usable model can be formulated. 
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10.3 Recommendations for further research 

Through the course of this Ph. D. study, it has become apparent that a heavily 

loaded effluent pond would produce more odours. However, it was difficult to 

find strong relationships between OLR and odour emission rate or odour 

concentration due to the high variance in the individual odour emission 

measurements. Taking a few odour samples during a short time period is unlikely 

to provide a representative odour emission rate from the effluent pond. Therefore, 

it is necessary to improve current odour sampling and measurement methods. A 

summary of key topics identified for further research and study is provided below.  

 

1. Improvement of the USQ wind tunnel 

o Further improvement of the USQ wind tunnel in order to control other 

meteorological factors including humidity and temperature 

o Evaluation of the wind tunnel performance in recirculating mode 

o Development of a standard operation protocol for the USQ wind tunnel to 

minimise and compensate for the varying gas recovery efficiency caused 

by different experimental conditions 

o Evaluation of the kinetics of odour emissions from different odour sources 

for odour modelling work 

 

2. Odour measurement using an electronic nose 

o Training of the electronic nose and ANN for a range of odour sources, 

types and characters  

o Determination of the minimum number of samples for effective training of 

the electronic nose and ANN  

o Investigation of on-site continuous odour measurement methods using a 

micro-size electronic nose 

o Development of a signal processing engine using artificial neural network 

and conventional statistical approaches 

o Improvement of the artificial neural network pattern recognition system 

using image processing technique 
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3. Effect of pond loading rate on odour emissions 

o Estimation of the operating condition of piggery effluent ponds focused on 

the odour emission rate using EC and COD analysis 

o Further trials to refine the relationship between odour emission rates and 

OLR, HRT and the other key variables and the development of a process 

model of emissions 

o Investigation of the effect of sludge accumulation and up-welling on pond 

odour emissions 
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GLOSSARY 

 

 

 

 

 

Accuracy: Closeness of agreement between test result and the accepted reference 

value. 

 

Adaptation(sensory): Temporary modification of the sensitivity of a sense organ 

due to continued and/or repeated stimulation. [ISO 5492:1992] 

 

Adaptive: Adaptive neural networks classify patterns. Input data similar to 

previously seen patterns are classified as one of them. Patterns not similar to 

previous ones have a new class of patterns created for them. 

 

Adaptive learning(or "Hebbian learning"): Learning where a system programs 

itself by adjusting weights or strengths until it produces the desired output. 

 

Adaptive learning rate: In artificial neural networks, training time of some 

networks can be decreased by the use of an adaptive learning rate which attempts 

to keep the learning step size as large as possible while keeping learning stable. 

The learning rate is made responsive to the complexity of the local error surface. 

 

Adsorption: Electrochemical attraction of positively or negatively charged 

molecules on solid surfaces with an opposite charge. 

 

Aerobic: A process that requires oxygen.  

 

Aerobic bacteria: Bacteria that require free elemental oxygen for their growth. 

Oxygen in chemical combination will not support aerobic organisms. 
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Aerosols: An assembly of liquid or solid particles suspended in a gaseous 

medium long enough to enable observation or measurement. 

 

AI: Artificial intelligence.  

 

Algorithm: A detailed sequence of actions to perform to accomplish some task. 

Named after an Iranian mathematician, Al-Khawarizmi.  

 

Ambient: Surrounding, as in the surrounding environment. The medium 

surrounding or contacting an organism (e.g., a person), such as outdoor air, indoor 

air, water, or soil, through which chemicals or pollutants can be carried and can 

reach the organism. 

 

Ambient air quality: Quality of the outdoor air to which humans are exposed 

during the course of their normal lives. 

 

American Standard Code for Information Interchange: The predominant 

character set encoding of present-day computers. The modern version uses seven 

bits for each character, whereas most earlier codes (including an early version of 

ASCII) used fewer.  

 

Ammonia volatilisation: Loss of ammonia (NH,) to the atmosphere. 

 

Anaerobic:  A process that does not require oxygen. 

 

Anaerobic bacteria: Bacteria not requiring the presence of free or dissolved 

oxygen. Facultative anaerobes can be active in the presence of dissolved oxygen, 

but do not require it. 
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Anaerobic pond design and management: Anaerobic ponds are less odorous 

than manure storage pits. Ponds usually have the largest surface area per animal 

of all storage structures. This implies a significant potential for odour release (i.e. 

emission rate) if the pond is not functioning properly. Design and management 

considerations have a great impact on the odour generation of ponds. Odour of 

low intensity and offensiveness will be detectable from well-designed and 

managed anaerobic ponds. 

 

Anaerobic pond loading rates: The "health" of an anaerobic pond is controlled 

primarily by the volatile solids loading rate. Loading rates should not exceed the 

biological limits of the bacteria. Primary overloading problems can be caused by 

expanding animal numbers, sludge loading, concentrated waste input, inadequate 

dilution water, or conditions that are not favourable for methane forming bacteria 

(cold temperatures, low pH). The result is incomplete anaerobic decomposition 

and can lead to stronger odours from the pond. As a rule, reducing the volatile 

solids loading rate reduces the potential for odours. Smaller daily or weekly 

loading results in best performance; this assures a continuous food supply for the 

bacteria and helps keep the bacteria populations in balance. A two or three stage 

pond system may improve management capabilities and thereby lower odour 

emissions as compared to a single step system. 

 

Anaerobic pond start-up: Ponds will have elevated odour levels until reaching 

maturity, which usually takes at least one year. Ponds should be carefully 

managed during start-up to minimise potential odours. Ponds should be started in 

the late spring or summer to allow the bacteria opportunity to become established 

since they grow and reproduce faster at warmer temperatures. The minimum 

treatment volume or two-thirds of the pond should be filled with water prior to 

introducing manure. Manure loading should be gradually increased over a 2 to 3 

month period. Rapid loading of an immature pond will increase odours. 
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Anaerobic pond storage volumes: Anaerobic ponds must have adequate 

capacity (i.e., low volatile solids loading rate) to produce relatively little odour. 

Design criteria have been developed based on the volatile solids loading rate, 

which is proportional to the volume per kilograms of animal liveweight. Pond 

capacity should be sufficient to allow liquid removal to coincide with beneficial 

nutrient utilisation on crops and advantageous weather conditions.  

 

Anosmia: Lack of sensitivity to olfactory stimuli – unable to detect odours at all 

(compare with hyposmia). 

 

Area source: Surface-emitting source, which can be solid (for example the 

spreading of wastes, material stockpiles, surface of a biofilter) or liquid (storage 

ponds, effluent treatment plant). 

 

Artificial neural network(ANN):  A man-made neural network as opposed to a 

biological one (a brain).  

 

Assessor:  A person who participates in odour testing. 

 

Asthma: A lung disease with the following characteristics: 1) airway obstruction 

(or airway narrowing) that is reversible (but not completely so in some patients) 

either spontaneously or with treatment; 2) airway inflammation; and 3) airway 

hyper-responsiveness to a variety of stimuli. 

 

Ausplume: An air dispersion model developed by the Victorian Environment 

Protection Authority.  

 

Backpropagation (generalised delta-rule): A learning algorithm for modifying 

a feed-forward neural network which minimises a continuous error function. 

Back-propagation is a gradient descent method of training in that it uses gradient 
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information to modify the network weights to decrease the value of the error 

function on subsequent tests of the inputs.  

 

Bias: Binary output, an output that can only take one of two values. For example, 

in a control system an output neuron that indicated a fault had occurred would 

have a binary output (cf. continuous output).  

 

Bioaerosol: Includes the sub-class of viable particulates that has an associated 

biological component. 

 

Biodegradation: The breakdown of organic and inorganic matter by bacteria. 

 

Biofilters: Filters constructed of biologically active materials, such as compost, 

straw, wood chips, peat or soil, that contain microorganisms that break down 

volatile organic compounds and oxidisable inorganic gases and vapours into non-

malodorous compounds such as water and carbon dioxide. 

 

Biological Oxygen Demand (BOD): The amount of oxygen required to 

decompose the biodegradable organic wastes in a given volume of water during a 

5 day period at 20 oC. 

 

Biomass: Organic plant materials like cornstalks, small grain straw, and other 

plant fibres. Total amount of living material, plants and animals, above and below 

ground in a particular area. 

 

Bronchiolitis obliterans: A disease of the airways of the lung that is 

characterized by fibrosis (scarring) of the small airways (bronchioles). Known 

causes include some viral infections, rejection of a transplanted lung, and 

inhalation of some mineral dusts and irritant fumes.  
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Buffer distance: Minimum distance between a shed and a specified potential 

odour receptor. 

 

Character descriptors: Terms used by trained odour panellists to describe an 

odour’s character (e.g., mint, citrus or earthy). 

 

Chemical Oxygen Demand (COD): The amount of oxygen required for the 

chemical conversion of organic waste matter. 

 

Chronic effects: Effects produced by prolonged exposures of three months to a 

lifetime. 

 

Cognitive: Relating to thinking processes and related brain functioning. 

 

Composting: Controlled aerobic microbial degradation of organic waste yielding 

an environmentally safe and nuisance-free soil conditioner and fertiliser. 

 

Concentrate feed: Animal feed containing mineral supplements. 

 

Control condition: Condition in which no treatment occurs, thus allowing 

comparison of the effects of the experimental treatment. 

 

Cross ventilated shed: Shed provided with mechanical ventilation across its 

medial axis. 

 

Data processing: The input, verification, organisation, storage, retrieval, 

transformation, and extraction of information from data. The term is normally 

associated with commercial applications such as stock control or payroll.  

 

Dehydration: Dehydration is one common technique for inhibiting anaerobic 

decomposition, thereby reducing odours in solid manure. When the moisture 
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content of manure is lowered to 50 percent or less (preferably 30%), the manure is 

sufficiently porous to permit air diffusion and to preclude anaerobic 

decomposition. 

 

Detection threshold: The point at which an increasing concentration of an odour 

sample becomes strong enough to produce a first sensation of odour in 50% of the 

people to whom the sample is presented. The odour concentration at the detection 

threshold is one odour unit. 

 

Diffuse sources: Sources with defined dimensions (mostly surface sources) 

which do not have a defined waste air flow, such as waste dumps, lagoons, fields 

after manure spreading, non-aerated compost piles. 

 

Digesters: Odour control is a substantial benefit of digesters. There are three 

types of digesters: batch, complete mix, and plug flow. The batch digester is 

loaded in a single charge and does not accommodate a continuous flow of 

manure. The complete mix digester is characterized by continuous feeding and 

mixing to enhance bacterial performance. The plug-flow digester is an elongated 

tube in which manure solids are introduced to one end and allowed to proceed to 

the other end with no mixing while digestion takes place.  

 

Dilution factor: The dilution factor is the ratio between flow or volume after 

dilution and the flow or volume of the odorous gas. 

 

Disposal: The discharge, deposit, injection, dumping, spilling, leaking, or placing 

of any solid waste or hazardous waste into the environment (land, surface water, 

ground water, and air). 

 

Drainage: Open feedlots should include sufficient drainage to minimise puddling 

and wet surfaces. For open feedlots, manure treatment for odour control consists 

of maintaining aerobic conditions to the extent possible. All pens should be well 
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drained (e.g., uniform slopes of 2% to 5% away from feeding troughs). Keeping 

the feedlot surface, alleys, and ditches cleaned and graded to shed water rapidly 

minimises anaerobic conditions after rainfall events. Pen-to-pen drainage should 

be avoided in favour of discrete pen drainage. 

 

Dynamic olfactometer: A dynamic olfactometer delivers a flow of mixtures of 

odorous and neutral gas with known dilution factors to a common outlet.  

 

Effluent: Liquid discharge of a manure treatment process. 

 

Eigenvalue: The factor by which a linear transformation multiplies one of its 

eigenvectors.  

 

Electronic nose: An electronic instrument that detects a select number of 

individual chemical compounds to measure an odour. 

 

Emissions: The rate at which gases or particulates leave a surface or ventilated 

structure. An emission rate is calculated by multiplying the concentration of a gas 

(mass or volume basis) by the airflow rate (volume of air per unit time) associated 

with this concentration. 

 

Emissions inventory: The list of all applicable regulated pollutants and their 

expected annual emissions.  

 

Emulation: One system is said to emulate another when it performs in exactly the 

same way, though perhaps not at the same speed. A typical example would be 

emulation of one computer (by a program running on) another. 

 

Epoch: One complete presentation of the training set to the network during 

training. 
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Exposure: Concentration  × duration × frequency of the odour to which a 

receptor is exposed. 

 

Facultative:  A process that utilizes free oxygen when it is available and use 

other substances as electron acceptor (i.e. oxidants such as nitrate and sulphate 

ions). 

 

Facultative bacteria: Bacteria that can grow in the presence, as well as the 

absence, of oxygen. 

 

Facultative ponds: Facultative ponds combine anaerobic and aerobic bacteria 

treatment by "capping" an anaerobic pond with an aerobic surface. Mechanical 

aerators can be used to aerate the pond surface. This treatment system can be 

utilised to reduce odours liberated to the atmosphere.  

 

Farrow-to-Finish: Piggery operation encompassing from birth to slaughter/death. 

 

Feed: See rations. 

 

Field sniffer: Trained panellist who determines odour intensity in the field. 

 

Flushing liquid: Many producers recycle pond liquid for pit flushing in order to 

reduce the amount of water added to a treatment system and consequently reduce 

the quantity of pond liquid to be land applied and thus the odour exposure. 

Second stage pond effluent is preferable to primary pond effluent for flushing due 

to lower odour potential and solids content. 

 

Flushing systems: Flushing systems generate less odours than any other manure 

handling system for confinement buildings due to very frequent manure collection. 

Flushing or draining manure prior to the onset of manure decomposition is 

recommended 3-4 times daily for controlling ammonia generation. 
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Forced choice method: An olfactometric method in which assessors are forced to 

make a choice out of two or more air flows, one of which is the diluted sample, 

even if no difference is observed. 

 

Fugitive emissions: Emissions identified with a discrete process but not traceable 

to a single emission point such as the end of a stack. Fugitive emissions from a 

cattle feedlot or an open lot dairy include dust resulting from cattle activity on the 

feedlot surface or from vehicle traffic on unpaved roads. Analogous to non-point 

source water pollution. 

 

Fugitive sources: Elusive or difficult to identify sources releasing undefined 

quantities of odorants e.g. valve and flange leakage, passive ventilation apertures 

etc. 

 

Gas chromatograph/mass spectrometer: Research laboratory device that both 

identifies and measures gas concentrations by having very small samples of air 

injected into a carrier (nitrogen or helium) gas stream. This gas stream is passed 

through a column that adsorbs and desorbs the chemicals in the air at different 

rates plus a detector, which identifies individual chemicals and the amount in the 

sample. 

 

Generalisation:  A measure of how well a network can respond to new images on 

which it has not been trained but which are related in some way to the training 

patterns. An ability to generalize is crucial to the decision making ability of the 

network.  

 

Hazard: Potential for radiation, a chemical or other pollutant to cause human 

illness or injury. 
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Health: Health is a state of complete physical, social and mental, and social well-

being and not merely the absence of disease or infirmity. 

 

Hebbian: Refers to the most common way for a neural network to learn, namely 

supervised learning. Using a training sample which should produce known 

responses, the connection weights are adjusted so as to minimise the differences 

between the desired and actual outputs for the training sample.  

 

Hedonic tone: A judgement of the relative pleasantness or unpleasantness of an 

odour made by assessors in an odour panel. Odours which are more offensive will 

have a negative hedonic score whilst less offensive will tend towards a positive 

score. Scale that ranges from -10, which is unpleasant, to +10, which is pleasant, 

to describe an odour. 

 

Housing unit: Any facility used to house livestock or poultry incorporating either 

a mechanical or natural ventilation system for providing fresh-air exchange. 

 

H2S: Hydrogen sulfide. 

 

Hyposmia: Partial inability to detect odours (compare with anosmia). 

 

Image recognition: The identification of objects in an image. This process would 

probably start with image processing techniques such as noise removal, followed 

by (low-level) feature extraction to locate lines, regions and possibly areas with 

certain textures. The clever bit is to interpret collections of these shapes as single 

objects, e.g. cars on a road, boxes on a conveyor belt or cancerous cells on a 

microscope slide. One reason this is an AI problem is that an object can appear 

very different when viewed from different angles or under different lighting. 

Another problem is deciding what features belong to what object and which are 

background or shadows etc. The human visual system performs these tasks mostly 
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unconsciously but a computer requires skilful programming and lots of processing 

power to approach human performance.  

 

Indicator tube: Glass tube with both ends sealed that measures a wide range of 

gases. 

 

Individual threshold: Detection threshold applying to an individual. 

 

Instrumental assessment: An assessment of an odorous sample using 

instrumentation to provide information on the concentration and possibly provide 

identification of the chemical species present. Compare with “sensory” 

assessment. 

 

Input layer: Neurons whose inputs are fed from the outside world. 

 

Intensity: Describes the strength of an odour sample. 

 

Intensive farming: The strong trend of monopolization and vertical integration in 

agricultural production, processing, and marketing, as well as in the 

manufacturing of farm inputs. 

 

International Organization for Standardization (ISO): A voluntary, nontreaty 

organization founded in 1946, responsible for creating international standards in 

many areas, including computers and communications. ISO produced the seven 

layer model for network architecture (Open Systems Interconnection). Its 

members are the national standards organizations of 89 countries, including the 

American National Standards Institute. The term "ISO" is not actually an acronym 

for anything. It is a pun on the Greek prefix "iso-", meaning "same". Some ISO 

documents say ISO is not an acronym even though it is an anagram of the initials 

of the organization's name.  
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Irritant: Toxicant that exerts its deleterious effects by causing inflammation of 

mucous membranes with which they came into contact. Irritants principally act on 

the respiratory system and can cause death from asphyxiation due to lung edema. 

Other mucous membranes that may be affected by irritants are those of the eyes. 

 

Iteration: Repetition of a sequence of instructions. A fundamental part of many 

algorithms. Iteration is characterised by a set of initial conditions, an iterative step 

and a termination condition. A well known example of iteration in mathematics is 

Newton-Raphson iteration.  

 

Land application: Application of manure, sewage sludge, municipal wastewater, 

and industrial wastes to land either for disposal or for utilization of the fertilizer 

nutrients, organic matter, and improvement of soil tilth. 

 

Layer: A group of neurons that have a specific function and are processed as a 

whole. The most common example is in a feedforward network that has an input 

layer, an output layer and one or more hidden layers. 

 

learning algorithms (supervised, unsupervised): An adaptation process 

whereby synapses, weights of neural network's, classifier strengths, or some other 

set of adjustable parameters is automatically modified so that some objective is 

more readily achieved. The backpropagation and bucket brigade algorithms are 

two types of learning procedures. 

 

Learning rule: The algorithm used for modifying the connection strengths, or 

weights, in response to training patterns while training is being carried out. 

 

Low-emission housing: Livestock housing with a lower ammonia emission than 

conventional housing.  
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Lower detection limit, LDL: Lowest value of the air quality characteristic 

which, with 95% probability, can be distinguished from a zero sample [ISO 

6879]. 

 

Manure: The fecal and urinary excretion of livestock and poultry. Often referred 

to as livestock waste. This material may also contain bedding, spilled feed, water 

or soil. It may also include wastes not associated with livestock excreta, such as 

milking centre wastewater, contaminated milk, hair, feathers, or other debris. 

Manure may be described in different categories as related to solids and moisture 

content. These categories are related to handling equipment and storage types. 

 

Manure storage unit: Any structure used to store manure, including long-term 

storage inside the housing unit. Includes above- and below-ground structures. 

 

MATLAB: An interactive program from The MathWorks for high-performance 

numeric computation and visualisation. MATLAB integrates numerical analysis, 

matrix computation, signal processing, and graphics in an easy-to-use 

environment. MATLAB is built on sophisticated matrix software for analysing 

linear equations. The tools supplied can be used for applied mathematics, physics, 

chemistry, engineering, finance and other areas dealing with complex numerical 

calculations.  

 

Mechanically ventilated shed: Shed provided with mechanical ventilation. 

 

Mesophilic: Temperature range of 15 - 35oC. 

 

Meteorological: Pertaining to the atmosphere and its phenomena, especially of its 

variations of heat and moisture, of its winds, etc. 

 

Methanogenic: Bacteria that produce methane while breaking down organic 

matter. 
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Methane: A gas that is released during the digestive processes of ruminants or 

the anaerobic decomposition of waste. Methane is a greenhouse gas. 

 

Microorganism:  Microscopic organisms such as  bacteria, protozoa, algae and  

fungi. 

 

Multilayer Perceptron (MLP): A network composed of more than one layer of 

neurons, with some or all of the outputs of each layer connected to one or more of 

the inputs of another layer. The first layer is called the input layer, the last one is 

the output layer, and in between there may be one or more hidden layers.  

 

Naturally ventilated shed: Shed using natural forces produced by operation of 

shed openings together with energy from ambient wind, temperature and direct 

radiant energy, to achieve ventilation. 

 

Neural net: See neural network.  

 

Neural Network (NN): A network of neurons that are connected through 

synapses or weights. Each neuron performs a simple calculation that is a function 

of the activations of the neurons that are connected to it. Through feedback 

mechanisms and/or the nonlinear output response of neurons, the network as a 

whole is capable of performing extremely complicated tasks, including universal 

computation and universal approximation. Three different classes of neural 

networks are feedforward, feedback, and recurrent neural networks, which differ 

in the degree and type of connectivity that they possess. 

 

Neuron: A simple computational unit that performs a weighted sum on incoming 

signals, adds a threshold or bias term to this value to yield a net input, and maps 

this last value through an activation function to compute its own activation. Some 
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neurons, such as those found in feedback or Hopfield networks, will retain a 

portion of their previous activation. 

 

NH3: Ammonia. 

 

Nitrification: The biological oxidation of ammoniacal nitrogen to nitrite and then 

to nitrate. 

 

NO2: Nitrogen dioxide. 

 

Nonlinear (Scientific computation): A property of a system whose output is not 

proportional to its input. The behaviour of a system containing non-linear 

components is thus harder to model and to predict.  

 

Nonpoint source (NPS): Entry of effluent into a water body in a diffuse manner 

so there is no definite point of entry. 

 

Nonpoint source pollution: Nonpoint source pollution, unlike pollution from 

industrial and sewage treatment plants, comes from many diffuse sources. 

Nonpoint source pollution is caused by rainfall or snowmelt moving over and 

through the ground. As the runoff moves, it picks up and carries away natural and 

human-made pollutants, finally depositing them into lakes, rivers, wetlands, 

coastal waters, and even our underground sources of drinking water. In rural areas 

these pollutants include bacteria and nutrients from livestock, soil sediments, 

fertilizers, herbicides, and insecticides. 

 

Normalisation: A transformation applied uniformly to each element in a set of 

data so that the set has some specific statistical property. For example, monthly 

measurements of the rainfall in London might be normalised by dividing each one 

by the total for the year to give a profile of rainfall throughout the year.  
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Normalised: Resulting from normalisation.  

 

Nuisance: Any condition that inhibits the reasonable use or enjoyment of 

property. 

 

Objective method: Any method in which the effects of personal opinions are 

minimised. [ISO 5492] 

 

Odour: Organoleptic attribute perceptible by the olfactory organ on sniffing 

certain volatile substances. [ISO 5492] 

 

Odour annoyance: Odour impact perceived by a receptor as unpleasant. 

 

Odorant: A substance which stimulates a human olfactory system so that an 

odour is perceived. 

 

Odour concentration: Number of odour units per unit of volume. The numerical 

value of the odour concentration is equal to the number of dilutions to arrive at 

the odour threshold (OU/m3). 

 

Odour detection: To become aware of the sensation resulting from adequate 

stimulation of the olfactory system. 

 

Odour detection threshold: An estimate of the odour detection threshold 

concentration.  

 

Odour impact: Effect perceived by an individual receptor or group of receptors 

at a distance from an odour-emitting source. 

 

Odour impact criterion: A rule providing an objective means for assessing or 

testing odour impact. 
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Odour intensity: The intensity of sensation stimulated by an odorant as assessed 

on a scale of 0 1 2 3 4 5 6. 

 

Odorous gas: Gas that contains odorants. 

 

Odour panel: See panel. 

 

Odour plume: A downwind air mass containing odorous gases from an odour 

source like an animal production building or a manure storage facility. 

 

Odour sensitive receptor: The closest fixed building or installation where odour 

annoyance may occur, such as residential homes, school, hospital, overnight 

facility for holidays etc.  

 

Odour strength: The strength of an environmental odour determined as an odour 

concentration (i.e. the number of times a sample of air carrying the environmental 

odour needs to be diluted to arrive at the odour threshold). By definition the odour 

threshold corresponds to an odour concentration of one odour unit per cubic metre 

(i.e. 1 OU/m3). 

 

Odour threshold: The lowest concentration of an odour in air that can be 

detected by the human olfactory sense. 

 

Odour unit: Quantity of a gaseous substance or mixture of substances which, 

when evaporated into 1 m3, is distinguished from odourless air by half the panel 

members. 

 

Offensiveness: An expression of the degree of unpleasantness of one odour 

relative to another. The perceived offensiveness of an odour will vary between 

individuals as a result of both physical and psychosocial differences, but in a 
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population a relatively consistent response on the relative offensiveness of 

different odours is returned. 

 

Olfactometer: Device that delivers known concentrations of an odorous air 

sample to a sniffing port for evaluation by trained human panellists who 

determine the odour detection or recognition thresholds that are reported in odour 

units. 

 

Olfactory: Pertaining to the sense of smell. [ISO 5492]  

 

Olfactory receptor: Specific part of the olfactory system which responds to an 

odorant. [after ISO 5492] 

 

Olfactory stimulus: That which can excite an olfactory receptor. [ISO 5492, 

modified] 

 

Output neuron: A neuron within a neural network whose outputs are the result 

of the network. 

 

Panel: A group of panel members. 

 

Panel member: An assessor who is qualified to judge samples of odorous gas, 

using olfactometry. 

 

Panel selection: Procedure to determine which assessors are qualified as panel 

members. 

 

Panel threshold: Detection threshold applying to a panel. 

 

Particulate: Includes the class of both inert and viable aerosols. Includes total, 

inhalable, and respirable fractions. 
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Pattern recognition: A branch of artificial intelligence concerned with the 

classification or description of observations. Pattern recognition aims to classify 

data (patterns) based on either a priori knowledge or on statistical information 

extracted from the patterns. The patterns to be classified are usually groups of 

measurements or observations, defining points in an appropriate multidimensional 

space.  

 

Perception: Awareness of the effects of single or multiple sensory stimuli. [ISO 

5492] 

 

Perceptron:  An artificial neural network capable of simple pattern recognition 

and classification tasks. It is composed of three layers where signals only pass 

forward from nodes in the input layer to nodes in the hidden layer and finally out 

to the output layer. There are no connections within a layer.  

 

pH: A value used to express acidity and alkalinity (scale 1 to 14, with 1 being 

very acidic and 14 very being alkaline; water typically has an a pH value of 7); an 

alternative way to express H+ ion concentration. 

 

Point source: An intentional point of release such as a vent or stack, where it may 

be possible to obtain a sample in order to quantify the concentration and 

determine the mass release rate. 

 

Point source pollution: Pollution from a particular source. 

 

Pollutant: A contaminant that adversely alters the physical, chemical, or 

biological properties of the environment. The term includes toxic metals, 

carcinogens, pathogens, oxygen-demanding materials, heat, and all other harmful 

substances, contaminants, or impurities. 

 



GLOSSARY 
 

Ph. D dissertation 
  Page 302 

Pollution: Presence of a contaminant to such a degree that the environment (land, 

water, or air) is not suitable for a particular use. 

 

Pond: An earthen facility for the biological treatment of wastewater. It can be 

aerobic, artificially aerated, anaerobic or facultative depending on the loading rate, 

design, and type of organisms present. 

 

Ppb: Parts per billion. 

 

Ppm: Parts per million. 

 

Real-time: Describes an application which requires a program to respond to 

stimuli within some small upper limit of response time (typically milli- or 

microseconds). Process control at a chemical plant is the classic example. Such 

applications often require special operating systems (because everything else must 

take a back seat to response time) and speed-tuned hardware. 

 

Recognition threshold: The odour concentration which has the probability of 0.5 

of being recognised under the conditions of the test. The recognition threshold is 

generally a higher concentration than the detection threshold. It is generally two 

or three odour units in a laboratory setting but may be higher than this outside the 

lab. 

 

Regulation: A requirement or rule passed by an agency or department of federal, 

state, or local government that is authorized to create and enforce a requirement or 

rule through an authorizing statute or constitutional authority. 

 

Repeatability: Precision under repeatability conditions. [ISO 5725-part 1] 

 

Repeatability conditions: Conditions where independent test results are obtained 

with the same method on identical test material in the same laboratory by the 
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same operator using the same equipment within short intervals of time. [ISO 

5725-part 1] 

 

Reproducibility: Precision under reproducibility conditions. [ISO 5725-part 1] 

 

Reproducibility conditions: Conditions where test results are obtained with the 

same method on identical test material in different laboratories with different 

operators using different equipment. [ISO 5725-part 1] 

 

Risk assessment: The characterization of the potential adverse health effects of 

human exposures to environmental hazards. 

 

Sample: The odorous gas sample which is assumed to be representative of the gas 

mass or gas flow under investigation, and which is examined to determine the 

odour concentration, to characterize the odour or to identify constituent 

compounds. 

 

Scentometer: Hand-held device that can be used to measure ambient odour levels 

in the field. 

 

Sensitive receptor: People who are exposed to odour released from a given 

source, or have the potential to be exposed. Unlike other pollutants, odour at 

environmental exposure levels is not considered in terms of possible detrimental 

effects on animals and plants. 

 

Sensory: Relating to the human response to a particular stimulus (in this case, 

odour). Compare with “analytical” methods of assessment. 

 

Setback: Specific distance that a structure or area must be located away, from 

other defined areas or structures. 
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Setback distance: Minimum distance between a group of sheds and a specified 

potential odour receptor. 

 

Sigmoid function: An S-shaped function that is often used as an activation 

function in a neural network. 

 

Smell: To detect or to attempt to detect an odorant. 

 

Specific emission rate: The emission rate per unit of area of liquid or solid. 

 

Standard conditions for olfactometry: At room temperature (293 K), normal 

atmospheric pressure (101.3 kPa) on a wet basis [as in ISO 10780].  

 

Standard pig unit (SPU): Piggeries in Queensland are licensed by the maximum 

number of standard pig units (SPU) housed in a piggery. The SPU is a unit of 

measurement for determining the size of a piggery based on its waste output. One 

SPU produces volatile solids equivalent to that produced by an average size 

grower pig (approximately 40 kg).  

 

Static olfactometer: A static olfactometer dilutes by mixing two known volumes 

of gas, odorous and odourless, respectively. The rate of dilution is calculated from 

the volumes.  

 

Statistically significant difference: A research finding that is unlikely (usually 

less likely than 5 percent) to be due to chance. 

 

Step factor: The factor by which each dilution factor in a dilution series differs 

from adjacent dilutions. 

 

Stress: Emotional, physical, behavioural, and social reactions to stressors. 
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Stressor: Short-term or ongoing conditions, situations, or relationships that cause 

stress, often involving change, conflict, or pressure. 

 

Subjective method: Any method in which the personal opinions are taken into 

consideration. [ISO 5492]  

 

Substance: Species of matter of definite chemical composition. 

 

Test result: The value of a characteristic obtained by completely carrying out a 

specific measurement, once. 

 

Thermophilic: Temperature range of 50 - 60oC. 

 

Tolerance: Condition in which repeated exposure increases the size of the dose 

required to produce lethality. 

 

Unnormalised: Before normalisation. 

 

Ventilation rate: Ventilation rate for a shed is the product of the measured 

escape air velocity and the cross sectional area of the side opening through which 

escape air leaves the shed.  

 

Volatile organic compounds (VOCs): Organic molecules, usually arising from 

the decomposition of manure, that tend to move from liquid into the air above 

animal facilities (e.g., ammonia, carbon dioxide, and methane).  

 

Weight: In a neural network, the strength of a synapse (or connection) between 

two neurons. Weights may be positive (excitatory) or negative (inhibitory). The 

thresholds of a neuron are also considered weights, since they undergo adaptation 

by a learning algorithm. 
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APPENDIX A 

Application of Gas Chromatography for Odour 

Measurement 

 

 

 

 

 

A. 1 Introduction 

Gas chromatography (GC) is a widely used analytical technique for separating 

the components of an odorous air sample for identification and quantification. 

Generally, GC using standards of known substances, or gas chromatography 

coupled with mass spectrometry (GC-MS) when the composition of a gas sample 

is unknown, is an accurate and very sensitive method of chemical analysis of the 

nature of the gas (down to 0.1 ppb levels) (NZWWA, 2000). 

 

The basic steps for GC analysis are (Powell, 2002): 

o Sampling - which may involve pre-concentration of a gaseous sample onto 

a solid adsorbent or absorption in a reagent; 

o Thermal desorption or solvent extraction; 

o Separation of the components by passing through a GC column; and 

o Detection and identification. 

 

Under the situation where the odour sample has an unknown composition, a 

GC-MS has more practical usefulness. Identification of the resulting mass 

spectrographic pattern is made with reference to a computer based spectrum 

library, although identification of compounds with similar structures and/or 

masses can be difficult. 
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The application of GC and GC-MS in odour measurement can be summarised 

in below (Powell, 2002):  

o Provides reasonable quantitative analysis for a broad range of aliphatic, 

aromatic, alcohols and ketones; 

o Provides semi-quantitative analysis for certain organic sulphides; 

o Does not detect inorganic species, e.g. ammonia, hydrogen sulphide; and  

o Poor response to highly reactive species, e.g. amine and certain organic 

sulphides. 

 

However, GC and GC-MS only give an indication of the nature and 

concentration of chemical compounds in the sample, not their contributions to the 

overall odour of the mixture. Furthermore, odorous compounds often create 

nuisance at very low concentrations, while non-odorous components of the air 

sample may be present at much higher concentrations, making interpretation of 

the chromatogram difficult. A sample may result in literally hundreds of peaks, 

with only a fraction of them formed by odorous substances. Odour concentrations 

of most of them are not yet available (NZWWA 2000). 

 

Powell (2002) summarised the disadvantages of GC and GC-MS in odour 

measurement as follow:    

o Direct calibration for analysing odours is difficult because the composition 

mixture will often be unknown;  

o The concentration in ambient air of individual compounds may be below 

or close to the lower limit of detection; and  

o Longer term samples will average out any peaks, although this may be of 

secondary importance in source/compound identification. 

 

In this chapter, the theory of GC is presented. And then the selection of 

columns and detectors, which are appropriate to the purpose of odour 

measurement, are discussed. In addition, the odour measurement case study using 

GC or GC-MS technique is presented in the end of this chapter.   
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A. 2 Basic theory for gas chromatography 

Gas chromatography technique principally involves a carrier gas that passes 

over a stationary phase for which the volatile components have a differential 

affinity to effect separation. The efficiency of the chromatography is improved by 

precision temperature control of the column and constant flow of carrier gas 

(Hobbs, 2001). 

 

In detail, Gas chromatography method can be defined as a method of 

continuous chemical separation of one or more individual compounds between 

two phases. One phase remains fixed (stationary phase); the other, the mobile 

phase (carrier gas), flows over the stationary phase. The components enter the 

stationary phase simultaneously at the injector but move along at different rates. 

The lower the vapour pressure of the compound (higher boiling point), the longer 

the compound will remain in the stationary phase. The time that each compound 

remains in the stationary phase depends on two factors: the vapour pressure of the 

compound and its solubility in the stationary phase. These compounds are then 

detected at the end of the column. A plot of the output of the detector response 

versus time is termed a chromatogram. In order to separate a narrow boiling range 

of solutes, Gas chromatography can be run isothermally (Driscoll, 1999). 

  

The Retention time is defined as the time measured from the start of injection 

to the peak maximum and can be used to identify resolved components in 

mixtures. The retention time is characteristic for a compound and the stationary 

phase at a given temperature and is used for identification when the mixture of 

compounds is completely resolved (Driscoll, 1999). 

 

A range of detectors can be attached to the end of the column with the mass 

spectrometer proving the most effective for the identification of unknown 

components of an odour. If a flame ionisation detector (FID) is used, volatile 

components can be recognised by matching the retention time with a known 

compound on the column. Often the flow to the detector can be split and an odour 
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port used to identify the odour note for a given component. Odour components are 

introduced into the column through an injector inlet: However, with the 

introduction of capillary columns small volumes have to be introduced and pre-

concentration of an odour is required (Hobbs, 2001). In summary, successful 

analysis in Gas chromatography depends upon its inlet, column and detector 

configuration. 
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A. 3 Sample odorant profile and its relationship to olfactory 

description 

Gas chromatography can obtain a profile of odorant concentration and provide 

useful information, which is directly related to human olfactory response. 

However, a means is needed to transform the odour expressed as odorant 

composition into one that expresses olfactory response. 

 

In early stage of odour research, some researchers have attempted to find a 

relationship between odour concentration and the concentration of a single or a 

couple of components in the air sample to simplify odour measurements (Darling, 

1977; Schaefer, 1977). However, it was revealed that establishing an indicative 

relationship between odour concentration and any component might be difficult or 

impossible because of the variation of odour measurements and emissions for the 

main. Livermore & Laing (1998) suggest that odours are recognised as an object 

from an emission source even though the odorants are complex mixtures of 

chemicals. Studies using 1-butanol, 2-pentanone and n-butyl acetate have 

demonstrated that sensitivity to, and stability of the odour was enhanced by 

composites of the three components rather than the presence of a single 

component (Patterson et al., 1993). In the study, mixtures could exhibit an 

additive effect on odour and in some cases hyper and hypo addition where the 

results were above addition and below addition of their threshold levels 

respectively.  

 

In a recent research regarding the odorant compounds which are made from 

the decay process of piggery manure (Hobbs et al., 2001), hydrogen sulphide, 

acetic acid and ammonia are present. And, as expected, hydrogen sulphide was 

found to be the primary odorant. The result showed that the acid-base balance 

gave no effect to the odour concentration. Furthermore, 4-methyl phenol gave a 

negative odour concentration effect with increasing concentration.  
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Consequently, GC-MS can give information of the concentration of a lot of 

volatile compounds presented in odorous air samples. However, the concentration 

of different odorous compounds found in odour emission sources is still unknown 

because many compounds are present at very low concentrations under the 

detection limit of GC. Furthermore, the concentration of each component is 

continuously changed. Work has been performed trying to correlate odour to 

concentrations of the single component such as ammonia and hydrogen sulphide 

(Livestock and poultry odour workshop I, University of Minnesota, 2000). 

However, it was concluded that there might be no correlations between the 

concentration of single component and odour. 



APPENDICES 

Ph. D dissertation 
  Page 312 

A. 4 Choice of chromatography column and detectors 

In the odour measurement using Gas chromatography, the selection of 

appropriate column and detector for specific air samples can be difficult as there 

are several options or combinations necessary to obtain the best information about 

odour components. The choice of column will affect those odorants that are 

observable and detectable. Often two columns may be used especially during 

method development and possibly with different detectors to obtain the required 

sensitivity.  

 

Typically, some columns will be able to analyse sulphides but may not be able 

to separate volatile fatty acids and a sample splitter should be used with a dual 

column system. Choice of column will be limited by the gas volume to be 

analysed, as well as considering the flow capacity of the detector. Overall a 

balancing act has to be performed to ensure that sample introduction, gas 

chromatographic separation and detector specifications are compatible. 

 

Capillary columns have dimensions between 0.05 and about 1 mm internal 

diameter and operate with gas flows lower than I ml/min, so a small volume of 

sample is required for analysis. Here the packed columns have an advantage over 

the capillary columns in determining low concentrations chiefly because the FID 

response is a function of the mass of the analyte ionised in the detector. However, 

peak separation for packed columns becomes a problem with complex mixtures 

and there are difficulties with materials used. Sulphur-containing compounds will 

readily disappear into silica or metal or porous polymer surfaces. 

 

From the analytical point of view, the important factors are that the odour 

sample or its components are not decomposed or lost on the instrument surfaces 

due to adsorption. This primarily dictates the choice of column, fittings and 

sampling method. As sulphides are relatively unstable and often present in 

malodours, then consideration should focus around minimising oxidation, 

adsorption and chromatographic column choice. Low concentrations of odorants 
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means a high sample volume and column size unless samples can be pre-

concentrated onto an adsorbent and adequately retrieved for analysis. Samples 

obviously have to be volatile and increasing volatility means they are more likely 

to be eluted quickly from the column.  

 

With regarding to the choice of detector, the limit of Gas chromatography 

systems and the characteristics of detector are main factors to consider. Generally, 

odours and more certainly malodours are mostly polar in behaviour and are 

flammable. Therefore, Flame Ionisation Detectors (FID) would be a good choice. 

 

Flame Ionisation Detectors (FID) 

Maybe, the most commonly used detector for the measurement of odorous 

compounds. The principal process of FID is that the measurement of the 

ionisation current of the analyte after combustion. In detail, the process of 

ionisation which occurs in organic compounds when the carbon-carbon bond is 

broken via a thermal process in the flame that results in the formation of carbon 

ions. These ions are collected in the flame by applying a positive potential to the 

FID jet and the ions are pushed to the collection electrode where the current is 

measured. The response (current) is proportional to the concentration and is 

measured with an electrometer/amplifier.  

 

The sensitivities of FID in the low ng range are lower than the Mass 

Spectrometry systems for most compounds by a factor of 2 or 3. The dynamic 

range of FID is 106. FID is a good choice as odorants are mostly composed of 

hydrogen and carbon. However, sensitivity to sulphur containing compounds can 

be less for the FID for the same reason. 

 

 

Mass spectrometry (MS) 

Although Mass Spectrometry (MS) is expensive, it should be the detector of 

choice because it has the additional capacity to identify unknown compounds 
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from the air samples. There are limitations to gas flows of often up to 1 ml/min. 

Therefore, it is compatible with capillary columns. Normally, MS systems operate 

in the ng range when scanning the full mass scale of 10 to 600 mass units but this 

can be improved by single ion monitoring. 

 

One of the limitations is that the sensitivity increases with lower gas flows 

into the MS, because there are less gas molecules to impede travel of ions to the 

detector. Additional problems include the inflow of oxygen into the ion source 

from the sample volume especially if it requires desorption from a solid adsorbent 

after odour sampling in air. Oxygen will react with the hot surfaces of the ion lens 

reducing the sensitivity by the build up of electrostatic charges on these oxidised 

surfaces.  
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A. 5 Odour measurement using gas chromatography 

As Gas chromatography is a major instrumental method in the field of 

analytical chemistry, the sampling and analysis techniques of Gas 

chromatography for odorous components have been rapidly developed. Although 

there are a lot of research data using Gas chromatography, the works related to the 

odour issues in livestock operations are reviewed in this dissertation.   

 

In terms of the sampling methods for Gas chromatography analysis, Solid 

Phase Micro Extraction (SPME) is a solvent-less extraction method for gaseous 

and liquid phases. The schematic diagram of SPME device is presented in Fig  

A.1. 

 

 

 
 

Fig A. 1 Schematic diagram of SPME device, fiber coating is exposed to 

airborne VOCs (reproduced from Koziel, 2001) 

 

SPME is an alternative to conventional sampling and sample preparation for 

determining complex VOC mixtures in both air and liquid. SPME has been 

successfully applied in numberous environmental, food, flavour, pharmaceutical, 

clinical, and forensic applications. Recently, it has also been applied to detect 
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VOC compounds emitted from animal housings and manure storages (Auvermann 

et al., 2002).  

 

The usages of Gas chromatography have concentrated mostly on the 

emissions of ammonia from livestock in terms of animal housing (Hartung, 1992), 

from storage facilities (Petersen et al., I998b) and land spreading of liquid slurry 

(Pain et al., 1990) and total emission rates have been used to produce an inventory 

for the UK of ammonia emissions (Pain et al., 1998).  

 

Some work involving VOCs have been performed on livestock wastes, and 27 

VOCs have been identified (Zahn et al., 1997). These VOCs decrease the air 

quality near the livestock operations. The VFAs C2-C9 demonstrated the greatest 

potential for decreased air quality, since these compounds exhibited the highest 

transport coefficients and highest airborne concentrations. Flux measurements 

suggested that the total rate of VOC emissions from the deep-basin swine waste 

storage system was 500 to 5700 fold greater than established VOC fluxes from 

natural sources. The emission rates were positively correlated with wind velocity 

between 0.2 and 9.4 m/s and a maximum concentration of VOCs present in the air 

was observed to occur at a wind velocity of 3.6 m/s. 

 

Biofilters have been evaluated for controlling animal rendering odours using 

an odour port Gas chromatography and a Gas chromatography coupled with Mass 

Spectrometry system and compared with a forced choice olfactometric response 

from an odour panel. About 300 compounds were identified and 40 were 

recognised as odorous. Some compounds originated from the biofilter (Luo & van 

Oostrom, 1997). An unusual compound, 3-hydroxy-4,5-dimethyl-2(5H)-furanon, 

was detected during composting especially when high temperatures were reached 

(Krauss et al., 1992). 
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APPENDIX B 

Contouring Plots for the USQ Wind Tunnel 

 
 
 
 
 
B. 1 Contouring plots over the solid surface 
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Fig B. 1Cross-sectional wind speed profile over the solid surface, airflow rate 

0.001m3/s 
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Fig B. 2 Cross-sectional wind speed profile over the solid surface, airflow rate 

0.005m3/s 
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Fig B. 3 Cross-sectional wind speed profile over the solid surface, airflow rate 

0.015m3/s 
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Fig B. 4  Cross-sectional wind speed profile over the solid surface, airflow rate 

0.024m3/s 
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Fig B. 5  Cross-sectional wind speed profile over the solid surface, airflow rate 

0.028m3/s 
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B. 2  Contouring plots over the liquid surface 
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Fig B.6  Cross-sectional wind speed profile over the liquid surface, airflow rate 

0.002m3/s 
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Fig B.7  Cross-sectional wind speed profile over the liquid surface, airflow rate 

0.005m3/s 
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Fig B.8  Cross-sectional wind speed profile over the liquid surface, airflow rate 

0.013m3/s 
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Fig B.9  Cross-sectional wind speed profile over the liquid surface,  airflow rate 

0.021m3/s 
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Fig B.10 Cross-sectional wind speed profile over the liquid surface,  airflow rate 

0.028m3/s 
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APPENDIX C 

Physical and Chemical Analysis Results in the Pond 

Experiment 1 

 

 

 

 

 

C. 1 Overview of the experiment 1 

Experiment 1 had been conducted for 12 months from 8th August 2001 to 14th 

August 2002. Reactor vessel 2 operated the organic loading rate (OLR) of 72g 

VS/m3·day was used as a control reactor to compare the results from the other 

reactor vessels. Reactor 1, 3,4 and 5 had been operated with the OLR of 36, 108, 

144, and 180g VS/ m3·day respectively. Averaged detention time was 128days.   

 

In analysing the data, paired samples Student’s T-test with 95% or 99% 

confidence had been applied to find out the difference of physical and chemical 

parameters between each reactor vessels. And then, the correlation between raw 

feeding effluent and liquid sample collected from the reactor vessel are analysed. 

Non-linear regression statistical method has been used to develop a simple 

empirical model to predict the effect of feeding effluent on the chemical 

constituent of the piggery effluent pond.  
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C. 2 Total Solid and Volatile Solid Analysis 
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Fig C. 1 Course of the Total Solid values in five reactor vessels and raw feeding 

effluent in time 
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Fig C. 2  Course of the Volatile Solid values in five reactor vessels and raw 

feeding effluent in time 
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Table C. 1 Total Solid T-test  
 

 Mean SD t df Sig.(2-tailed) 

R1 × R2 -631.54 659.49 -3.453 12 0.005** 

R3 × R2 -367.08 504.79 -2.622 12 0.022* 

R4 × R2 -1098.69 696.81 -5.685 12 0.000** 

R5 × R2 -1898.00 1576.34 -4.341 12 0.001** 
1. *: 95% Probability (P<0.05) 
2. **: 99% Probability (P<0.01)  

 
 
 
 

Table C. 2 Volatile Solid T-test 
  

 Mean SD t df Sig.(2-tailed) 

R1 × R2 -330.69 351.01 -3.397 12 0.005** 

R3 × R2 -221.77 414.47 -1.929 12 0.078 

R4 × R2 -597.54 475.06 -4.535 12 0.001** 

R5 × R2 -1224.77 960.24 -4.599 12 0.001** 
1. **: 99% Probability (P<0.01) 
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C. 3  pH and Alkalinity 
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Fig C. 3 Course of the pH in five reactor vessels and raw feeding effluent in time 
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Fig C. 4  Course of the total alkalinity in five reactor vessels and raw feeding 

effluent in time 
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Table C. 3 pH T-test 
  

 Mean SD t df Sig.(2-tailed) 

R1 × R2 0.015 0.111 0.684 24 0.501 

R3 × R2 -0.029 0.118 -1.236 24 0.228 

R4 × R2 0.006 0.119 0.252 24 0.803 

R5 × R2 0.048 0.181 1.337 24 0.194 

 
 
 

Table C. 4 pH correlation analysis 
 

Trial 1 
(36g1) 

Trial 2 
(72g) 

Trial 3 
(108g) 

Trial 4 
(144g) 

Trial 5 
(180g) 

 

Raw R1 Raw R2 Raw R3 Raw R4 Raw R5 

Mean 7.33 8.00 7.33 7.98 7.33 8.01 7.33 7.96 7.33 7.93 

SD 0.287 0.232 0.287 0.286 0.287 0.307 0.287 0.288 0.287 0.344 Descriptive 
statistics 

N 25 25 25 25 25 25 25 25 25 25 

Pearson Cor. 0.467*2 0.476* 0.547**3 0.584** 0.529** 

Sig (2-tailed) 0.019 0.016 0.005 0.002 0.007 Correlations 

N 25 25 25 25 25 

1. Organic Loading Rate (g VS /m3·day) 
2. *: 95% Probability (P<0.05) 
3. **: 99% Probability (P<0.01) 

  

 

 

Table C. 5 Total alkalinity T-test 
  

 Mean SD t df Sig.(2-tailed) 

R1 × R2 -202.3 393.6 -1.853 12 0.089 

R3 × R2 -56.2 180.8 -1.120 12 0.285 

R4 × R2 -296.2 190.4 -5.609 12 0.000** 

R5 × R2 -446.9 341.9 -4.713 12 0.001** 
1. **: 99% Probability (P<0.01)  
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Table C. 6 Total alkalinity correlation analysis 
 

Trial 1 
(36g)1 

Trial 2 
(72g) 

Trial 3 
(108g) 

Trial 4 
(144g) 

Trial 5 
(180g)  

Raw2 R13 Raw R2 Raw R3 Raw R4 Raw R5 

Mean 16.61 2.13 33.23 2.33 49.84 2.39 66.45 2.63 83.06 2.78 

SD 13.44 0.67 26.88 1.04 40.32 1.17 53.76 1.19 67.20 1.36 Descriptive 
statistics 

N 13 13 13 13 13 13 13 13 13 13 

Pearson Cor. 0.319 0.283 0.269 0.251 0.290 

Sig. (2-tailed) 0.288 0.349 0.374 0.409 0.337 Correlations 

N 13 13 13 13 13 

1. Organic Loading Rate (g VS /m3·day) 
2. Total akalinity loading rate(g Alkalinity/m3·day ) 
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Fig C. 5   pH non-linear regression between input pH and expected pH values 
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Fig C. 6  Total alkalinity linear regression between input and expected total 

alkalinity values 
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C. 4 Electrical Conductivity 
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Fig C. 7   Course of the EC values in five reactor vessels and raw feeding effluent 

in time 

 
 
 

Table C. 7 Electrical Conductivity T-test  
 

 Mean SD t df Sig.(2-tailed) 

R1 × R2 -0.906 0.674 -6.723 24 0.000** 

R3 × R2 -0.600 0.606 -4.945 24 0.000** 

R4 × R2 -1.074 0.538 -9.971 24 0.000** 

R5 × R2 -1.360 0.894 -7.603 24 0.000** 
1. **: 99% Probability (P<0.01)  
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Table C. 8 Electrical conductivity correlation statistical analysis 
 

Trial 1 
(36g1) 

Trial 2 
(72g) 

Trial 3 
(108g) 

Trial 4 
(144g) 

Trial 5 
(180g) 

 

Raw2 R1 Raw R2 Raw R3 Raw R4 Raw R5 

Mean 72.7 12.3 145.3 13.2 218.0 13.8 290.7 14.3 363.3 14.5 

SD 72.0 3.3 144.0 2.8 216.1 2.5 288.1 2.6 360.1 2.2 Descriptive 
statistics 

N 25 25 25 25 25 25 25 25 25 25 

Pearson Cor. 0.083 0.085 0.140 0.047 0.025 

Sig. (2-tailed) 0.692 0.685 0.504 0.824 0.906 Correlations 

N 25 25 25 25 25 

1. Organic loading rate (g VS /m3·day) 
2. Feeding electrical conductivity value (EC dsm-1/m3·day) 
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Fig C. 8  EC linear regression between input and expected EC values 
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C. 5  Chemical Oxygen Demand 
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Fig C. 9  Course of the COD values in five reactor vessels and raw feeding 

effluent in time 

 

 

Table C. 9 Chemical oxygen demand T-test 
  

 Mean SD t df Sig.(2-tailed) 

R1 × R2 -399.23 522.80 -2.753 12 0.017* 

R3 × R2 -72.31 753.48 -0.346 12 0.735 

R4 × R2 -663.08 909.00 -2.630 12 0.022* 

R5 × R2 -938.46 826.75 -4.093 12 0.001** 
1. *: 95% Probability (P<0.05) 
2. **: 99% Probability (P<0.01)  
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Table C. 10 Chemical Oxygen Demand correlation analysis 
 

Trial 1 
(36g1) 

Trial 2 
(72g) 

Trial 3 
(108g) 

Trial 4 
(144g) 

Trial 5 
(180g) 

 

Raw2 R13 Raw R2 Raw R3 Raw R4 Raw R5 

Mean 33123 3865 66247 4264 99370 4336 165616 4927 165616 5202 

SD 31527 2945 63053 2780 94579 2820 157632 2603 157632 2722 Descriptive 
statistics 

N 13 13 13 13 13 13 13 13 13 13 

Pearson Cor. 0.144 0.190 0.257 0.254 0.195 

Sig. (2-tailed) 0.638 0.535 0.397 0.403 0.523 Correlations 

N 13 13 13 13 13 

1. Organic Loading Rate (g VS /m3·day) 
2. COD loading rate (COD mg/m3·day) 
3. COD value in reactor vessel (mg/L)  
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Fig C. 10 COD linear regression between input and expected COD values 
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C. 6  Total Nitrogen and Ammonia Nitrogen Compounds 
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Fig C. 11 Course of the TKN values in five reactor vessels and raw feeding 

effluent in time 
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Fig C. 12  Course of the NH3_N values in five reactor vessels and raw feeding 

effluent in time 
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Table C. 11 Total Kjeldahl Nitrogen T-test 
 

 Mean SD t df Sig.(2-tailed) 

R1 × R2 -36.00 155.56 -0.834 12 0.420 

R3 × R2 14.77 136.64 0.390 12 0.704 

R4 × R2 -89.39 92.51 -3.484 12 0.005** 

R5 × R2 -153.39 163.20 -3.389 12 0.005** 
1. **: 99% Probability (P<0.01)  

 

Table C. 12 Ammonia Nitrogen T-test  
 

 Mean SD t df Sig.(2-tailed) 

R1 × R2 -37.69 169.17 -0.803 12 0.437 

R3 × R2 44.08 160.07 0.993 12 0.340 

R4 × R2 -4.92 73.66 -0.241 12 0.814 

R5 × R2 -22.62 181.67 -0.450 12 0.661 
1. *: 95% Probability (P<0.05) 
2. **: 99% Probability (P<0.01)  

 

Table C. 13 Total Kjeldahl Nitrogen correlation analysis 
 

Trial 1 
(36g1) 

Trial 2 

(72g) 

Trial 3 

(108g) 

Trial 4 

(144g) 

Trial 5 

(180g)  

Raw2 R13 Raw R2 Raw R3 Raw R4 Raw R5 

Mean 7341 885 14683 921 22024 906 29365 1010 36707 1074 

SD 6320 407 12640 460 18960 335 25279 488 31600 426 
Descriptive 

statistics 

N 13 13 13 13 13 13 13 13 13 13 

Pearson Cor. 0.104 0.136 0.192 0.140 0.036 

Sig. (2-tailed) 0.735 0.657 0.530 0.649 0.907 Correlations 

N 13 13 13 13 13 

1. Organic Loading Rate (g VS /m3·day) 
2. TKN loading rate (TKN mg/m3·day) 
3. TKN value in reactor vessel (TKN mg/L)  
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Table C. 14 Ammonia Nitrogen correlation analysis 
 

Trial 1 
(36g1) 

Trial 2 
(72g) 

Trial 3 
(108g) 

Trial 4 
(144g) 

Trial 5 
(180g)  

Raw2 R13 Raw R2 Raw R3 Raw R4 Raw R5 

Mean 6561 811 13122 849 19683 805 26244 854 32805 871 

SD 5619 355 11237 430 16856 279 22474 429 28093 343 Descriptive 
statistics 

N 13 13 13 13 13 13 13 13 13 13 

Pearson Cor. 0.096 0.119 0.205 0.148 -0.003 

Sig. (2-tailed) 0.755 0.698 0.501 0.629 0.993 Correlations 

N 13 13 13 13 13 

1. Organic Loading Rate (g VS /m3·day) 
2. NH3-N loading rate (NH3-N mg/m3·day) 
3. NH3-N value in reactor vessel (NH3-N mg/L)  
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Fig C. 13 TKN linear regression between input and expected TKN values 
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Fig C. 14  NH3-N linear regression between input and expected NH3-N values 
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APPENDIX D 

Physical and Chemical Analysis Results in the Pond 

Experiment 2 

 

 

 

 

 

D. 1  Overview of the experiment 2 

After conducting experiment 1, reactor vessels were allowed to equilibrate 

for experiment 2 with same VS loading rate of 72g/m3·day for 60 days. 

Experiment 2 had been conducted for 6 months from 13th November 2002 to 26th 

March 2003.  

 

Canter & Englande (1970) estimated the mean hydraulic retention time 

(HRT) values of 31days for anaerobic effluent ponds used in the warmer southern 

states in USA (Martin, 1991). Therefore, HRT of 30 days was applied in 

experiment 2 as a standard HRT. 

 

The same VS loading rates used in experiment 1 were applied in experiment 

2. In addition to the chemical parameters analysed in experiment 1, more 

chemical parameters including total phosphorus, potassium, sulphide and sulphate 

were analysed to find out the relationship between odour emission rates and 

chemical parameters.  

 

In analysing the data, paired samples Student’s T-test with 95% or 99% 

confidence, correlation and regression statistical analysis were applied in this 

research work.  
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D. 2 Total Solid and Volatile Solid Analysis 
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Fig D. 1  Course of the Total Solid values in five reactor vessels and raw feeding 

effluent in time 
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Fig D. 2  Course of the Volatile Solid values in five reactor vessels and raw 

feeding effluent in time 
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Table D. 1 Total Solid T-test 
 

 Mean SD t df Sig.(2-tailed) 

R1 × R2 -754.17 875.75 -2.109 5 0.089 

R3 × R2 -1040.17 1981.21 -1.286 5 0.255 

R4 × R2 -362.67 1067.26 -0.832 5 0.443 

R5 × R2 -1237.67 1146.41 -2.644 5 0.046* 

1. *: 95% Probability (P<0.05) 

 

 

Table D. 2 Volatile Solid T-test 
 

 Mean SD t df Sig.(2-tailed) 

R1 × R2 32.00 579.64 0.135 5 0.898 

R3 × R2 -461.67 758.02 -1.492 5 0.196 

R4 × R2 -266.67 553.36 -1.180 5 0.291 

R5 × R2 -573.83 875.53 -1.605 5 0.169 
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D. 3 pH and Alkalinity 
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Fig D. 3 Course of the pH in five reactor vessels and raw feeding effluent in time 
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Fig D. 4 Course of the total alkalinity in five reactor vessels and raw feeding 

effluent in time 
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Table D. 3 pH T-test 
 

 Mean SD t df Sig.(2-tailed) 

R1 × R2 0.006 0.155 0.123 9 0.905 

R3 × R2 -0.071 0.116 -1.929 9 0.086 

R4 × R2 -0.009 0.126 -0.225 9 0.827 

R5 × R2 -0.019 0.128 -0.469 9 0.650 

 
 
 

Table D. 4 pH correlation analysis 
 

Trial 1 
(36g1) 

Trial 2 
(72g) 

Trial 3 
(108g) 

Trial 4 
(144g) 

Trial 5 
(180g) 

 

Raw R1 Raw R2 Raw R3 Raw R4 Raw R5 

Mean 7.64 8.32 7.64 8.32 7.64 8.39 7.64 8.33 7.64 8.34 

SD 0.36 0.37 0.36 0.38 0.36 0.34 0.36 0.37 0.36 0.38 Descriptive 
statistics 

N 10 10 10 10 10 10 10 10 10 10 

Pearson Cor. 0.821** 0.769** 0.690* 0.732* 0.677* 

Sig. (2-tailed) 0.004 0.009 0.027 0.016 0.032 Correlations 

N 10 10 10 10 10 

1. Organic Loading Rate (g VS /m3·day) 
2. *: 95% Probability (P<0.05) 
3. **: 99% Probability (P<0.01) 

 

Table D. 5  Total alkalinity T-test 
 

 Mean SD t df Sig.(2-tailed) 

R1 × R2 -733.3 429.6 -4.181 5 0.009** 

R3 × R2 -246.7 240.6 -2.512 5 0.054 

R4 × R2 -560.0 218.4 -6.282 5 0.002** 

R5 × R2 -920.0 604.5 -3.728 5 0.014* 
1. *: 95% Probability (P<0.05) 
2. **: 99% Probability (P<0.01) 
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Table D. 6 Total alkalinity correlation analysis 
 

Trial 1 
(36g)1 

Trial 2 
(72g) 

Trial 3 
(108g) 

Trial 4 
(144g) 

Trial 5 
(180g) 

 

Raw2 R13 Raw R2 Raw R3 Raw R4 Raw R5 

Mean 29.9 2.82 59.8 3.6 89.7 3.8 119.5 4.1 149.4 4.5 

SD 13.8 0.1 27.7 0.3 41.5 0.3 55.3 0.2 69.2 0.4 Descriptive 
statistics 

N 6 6 6 6 6 6 6 6 6 6 

Pearson Cor. -0.056 -0.159 -0.577 -0.316 -0.215 

Sig. (2-tailed) 0.916 0.763 0.231 0.541 0.683 Correlations 

N 6 6 6 6 6 

1. Organic Loading Rate (g VS /m3·day) 
2. Total alkalinity loading rate(g Alkalinity/m3·day ) 

 

pHI

7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4

pH
E

7.4

7.6

7.8

8.0

8.2

8.4

8.6

8.8

9.0

80.19pH53.6pH37.0pH
54.0R

IIE

2

2 −+−=
=

 
Fig D. 5  pH non-linear regression between input pH and expected pH values 
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Fig D. 6  Total alkalinity linear regression between input and expected total 

alkalinity values 



APPENDICES 

Ph. D dissertation 
  Page 345 

D. 4  Electronic Conductivity 
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Fig D. 7  Course of the EC values in five reactor vessels and raw feeding effluent 

in time 

 

 

Table  D. 7 Electrical Conductivity T-test 
 

 Mean SD t df Sig.(2-tailed) 

R1 × R2 -1.40 0.80 -5.510 9 0.000** 

R3 × R2 -0.83 1.20 -2.194 9 0.056 

R4 × R2 -1.59 1.42 -3.538 9 0.006** 

R5 × R2 -2.53 1.50 -5.335 9 0.000** 
1. **: 99% Probability (P<0.01)  
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Table D. 8 Electrical Conductivity correlation statistical analysis 
 

Trial 1 
(36g1) 

Trial 2 
(72g) 

Trial 3 
(108g) 

Trial 4 
(144g) 

Trial 5 
(180g) 

 

Raw2 R1 Raw R2 Raw R3 Raw R4 Raw R5 

Mean 120.4 12.1 240.7 13.5 361.1 14.4 481.5 15.1 601.8 16.1 

SD 72.5 2.0 145.0 2.5 217.5 2.5 290.0 2.8 362.5 2.9 Descriptive 
statistics 

N 10 10 10 10 10 10 10 10 10 10 

Pearson Cor. -0.362 -0.190 -0.303 -0.151 -0.218 

Sig. (2-tailed) 0.304 0.599 0.395 0.678 0.545 Correlations 

N 10 10 10 10 10 

1. Organic loading rate (g VS /m3·day) 
2. Feeding electrical conductivity value (EC dsm-1/m3·day) 
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Fig D. 8  EC linear regression between input and expected EC values 
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D. 5  Chemical Oxygen Demand  
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Fig D. 9 Course of the COD values in five reactor vessels and raw feeding 

effluent in time 

 

 

Table D. 9 Chemical Oxygen Demand T-test 
 

 Mean SD T df Sig.(2-tailed) 

R1 × R2 -296 246.0 -2.690 4 0.055 

R3 × R2 -62 240.4 -0.577 4 0.595 

R4 × R2 -322 313.7 -2.295 4 0.083 

R5 × R2 -468 849.6 -1.232 4 0.285 
1. *: 95% Probability (P<0.05) 
2. **: 99% Probability (P<0.01)  
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Table D. 10 Chemical Oxygen Demand correlation analysis 
 

Trial 1 
(36g1) 

Trial 2 
(72g) 

Trial 3 
(108g) 

Trial 4 
(144g) 

Trial 5 
(180g) 

 

Raw2 R13 Raw R2 Raw R3 Raw R4 Raw R5 

Mean 29110 2630 58221 2926 87332 2988 116442 3248 145554 3394 

SD 14153 300 28306 299 42458 319 56611 379 70764 1022 Descriptive 
statistics 

N 5 5 5 5 5 5 5 5 5 5 

Pearson Cor. 0.877 0.586 0.315 0.013 0.073 

Sig. (2-tailed) 0.051 0.299 0.606 0.984 0.908 Correlations 

N 5 5 5 5 5 

1. Organic Loading Rate (g VS /m3·day) 
2. COD loading rate (COD mg/m3·day) 
3. COD value in reactor vessel (mg/L)  
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Fig D. 10  COD linear regression between input and expected COD values 
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D. 6 Total Nitrogen and Ammonia Nitrogen Compounds 
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Fig D. 11  Course of the TKN values in five reactor vessels and raw feeding 

effluent in time 
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Fig D. 12  Course of the NH3_N values in five reactor vessels and raw feeding 

effluent in time 
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Table D. 11 Total Kjeldahl Nitrogen T-test 
 

 Mean SD T df Sig.(2-tailed) 

R1 × R2 -99.6 124.7 -1.786 4 0.149 

R3 × R2 -139.6 199.0 -1.569 4 0.192 

R4 × R2 -166.8 99.0 -3.767 4 0.020* 

R5 × R2 -247.0 161.6 -3.417 4 0.027* 
1. **: 99% Probability (P<0.01)  

 

 

Table D. 12 Ammonia Nitrogen T-test  
 

 Mean SD T df Sig.(2-tailed) 

R1 × R2 -84.0 92.6 -2.028 4 0.112 

R3 × R2 -80.4 79.0 -2.275 4 0.085 

R4 × R2 -117.2 60.3 -4.346 4 0.012* 

R5 × R2 -217.8 133.7 -3.642 4 0.022* 
1. *: 95% Probability (P<0.05) 

 

 

Table D. 13 Total Kjeldahl Nitrogen correlation analysis 
 

Trial 1 
(36g1) 

Trial 2 
(72g) 

Trial 3 
(108g) 

Trial 4 
(144g) 

Trial 5 
(180g)  

Raw2 R13 Raw R2 Raw R3 Raw R4 Raw R5 

Mean 7.98 0.64 15.96 0.74 23.95 0.88 31.93 0.91 39.91 0.99 

SD 2.42 0.08 4.84 0.08 7.26 0.13 9.68 0.04 12.10 0.17 Descriptive 
statistics 

N 5 5 5 5 5 5 5 5 5 5 

Pearson Cor. -0.144 0.358 -0.732 -0.208 -0.462 

Sig. (2-tailed) 0.817 0.555 0.159 0.738 0.434 Correlations 

N 5 5 5 5 5 

1. Organic Loading Rate (g VS /m3·day) 
2. TKN loading rate (TKN g/m3·day) 
3. TKN value in reactor vessel (TKN g/L)  
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Table D. 14 Ammonia Nitrogen correlation analysis 
 

Trial 1 
(36g1) 

Trial 2 
(72g) 

Trial 3 
(108g) 

Trial 4 
(144g) 

Trial 5 
(180g)  

Raw2 R13 Raw R2 Raw R3 Raw R4 Raw R5 

Mean 6.52 0.62 13.05 0.71 19.57 0.79 26.10 0.83 32.62 0.93 

SD 1.78 0.04 3.55 0.07 5.33 0.07 7.11 0.09 8.88 0.15 Descriptive 
statistics 

N 5 5 5 5 5 5 5 5 5 5 

Pearson Cor. -0.517 0.413 -0.348 0.191 0.111 

Sig. (2-tailed) 0.372 0.489 0.566 0.759 0.859 Correlations 

N 5 5 5 5 5 

1. Organic Loading Rate (g VS /m3·day) 
2. NH3-N loading rate (NH3-N g/m3·day) 
3. NH3-N value in reactor vessel (NH3-N g/L)  
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Fig. 10.32 TKN linear regression between input and expected TKN values 
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Fig D. 13  NH3-N linear regression between input and expected NH3-N values 
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D. 7 Total Phosphorus 
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Fig D. 14  Course of the Total Phosphorus values in five reactor vessels and raw 

feeding effluent in time 

 

 

Table D. 15 Total Phosphorus T-test 
 

 Mean SD t df Sig.(2-tailed) 

R1 × R2 -18.6 9.97 -4.174 4 0.014* 

R3 × R2 -19.6 11.19 -3.915 4 0.017* 

R4 × R2 -15.2 7.79 -4.362 4 0.012* 

R5 × R2 -25.2 11.69 -4.819 4 0.009** 
1. *: 95% Probability (P<0.05) 
2. **: 99% Probability (P<0.01)  
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Table D. 16 Total Phosphorus  correlation analysis 
 

Trial 1 
(36g1) 

Trial 2 
(72g) 

Trial 3 
(108g) 

Trial 4 
(144g) 

Trial 5 
(180g)  

Raw2 R13 Raw R2 Raw R3 Raw R4 Raw R5 

Mean 957 138 1914 157 2870 176 3827 172 4784 182 

SD 126 10.7 251 19.0 377 22.1 502 20.0 628 22.4 Descriptive 
statistics 

N 5 5 5 5 5 5 5 5 5 5 

Pearson Cor. 0.855 0.884* 0.761 0.759 0.724 

Sig. (2-tailed) 0.065 0.046 0.135 0.136 0.167 Correlations 

N 5 5 5 5 5 

1. Organic Loading Rate (g VS /m3·day) 
2. T-P loading rate (T-P mg/m3·day) 
3. T-P value in reactor vessel (T-P mg/L)  
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Fig D. 15  Total Phosphorus linear regression between input and expected T-P 

values 
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D. 8  Potassium 
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Fig D. 16  Course of the Potassium values in five reactor vessels and raw feeding 

effluent in time 

 

 

Table D. 17 Potassium T-test  
 

 Mean SD t df Sig.(2-tailed) 

R1 × R2 -136 59.83 -5.083 4 0.007** 

R3 × R2 -158 38.99 -9.062 4 0.001** 

R4 × R2 -106 80.50 -2.944 4 0.042* 

R5 × R2 -124 73.69 -3.763 4 0.020* 
1. *: 95% Probability (P<0.05) 
2. **: 99% Probability (P<0.01)  
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Table D. 18 Potassium correlation analysis 
 

Trial 1 
(36g1) 

Trial 2 
(72g) 

Trial 3 
(108g) 

Trial 4 
(144g) 

Trial 5 
(180g) 

 

Raw2 R13 Raw R2 Raw R3 Raw R4 Raw R5 

Mean 4.03 1.15 8.06 1.29 12.09 16.13 16.13 1.39 20.16 1.41 

SD 1.62 0.07 3.24 0.12 4.86 6.48 6.48 0.20 8.10 0.08 Descriptive 
statistics 

N 5 5 5 5 5 5 5 5 5 5 

Pearson Cor. 0.362 0.129 -0.138 0.023 -0.491 

Sig. (2-tailed) 0.549 0.837 0.824 0.971 0.401 Correlations 

N 5 5 5 5 5 

1. Organic Loading Rate (g VS /m3·day) 
2. K loading rate (K g/m3·day) 
3. K value in reactor vessel (K g/L)  
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Fig D. 17 Potassium linear regression between input and expected K values 
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D. 9 Sulphide and Sulphate 
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Fig D. 18  Course of the Sulphide values in five reactor vessels and raw feeding 

effluent in time 

 

 

Table D. 19 Sulphide T-test  
 

 Mean SD t df Sig.(2-tailed) 

R1 × R2 -0.27 0.14 -3.402 2 0.077 

R3 × R2 -0.19 0.23 -1.646 3 0.198 

R4 × R2 -0.62 0.43 -2.848 3 0.065 

R5 × R2 -1.67 1.08 -3.096 3 0.053 
1. *: 95% Probability (P<0.05) 
2. **: 99% Probability (P<0.01)  
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Table D. 20 Sulphide correlation analysis 
 

Trial 1 
(36g1) 

Trial 2 
(72g) 

Trial 3 
(108g) 

Trial 4 
(144g) 

Trial 5 
(180g) 

 

Raw2 R13 Raw R2 Raw R3 Raw R4 Raw R5 

Mean 15.25 0.26 30.00 0.45 45.25 0.64 60.75 1.07 75.75 2.12 

SD 12.60 0.13 25.60 0.22 38.20 0.24 51.31 0.49 64.19 1.29 Descriptive 
statistics 

N 4 3 4 4 4 4 4 4 4 4 

Pearson Cor. 1.000 -0.616 -0.183 -0.978* -0.651 

Sig. (2-tailed) . 0.384 0.817 0.022 0.349 Correlations 

N 3 4 4 4 4 

1. Organic Loading Rate (g VS /m3·day) 
2. Sulphide loading rate (S2- mg/m3·day) 
3. Sulphide value in reactor vessel (S2- mg/L)  
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Fig D. 19  Sulphide linear regression between input and expected Sulphide values 
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Table D. 21 Sulphate Analysis Result  
 

Date RAW R1 R2 R3 R4 R5 

26/11/02 - - - - - - 

10/12/02 8.2 5.2 5.1 - 6.8 13.8 

24/12/02 11 - - - - - 

31/01/03 - - - - - - 

18/02/03 - - - 20.2 17.3 19.1 

04/03/03 34.8 8.3 6.2 15.5 28.7 11.9 

MEAN 18.00 6.75 5.65 17.85 17.60 14.96 

SD 14.62 2.19 0.78 3.32 10.95 3.73 

 



APPENDICES 

Ph. D dissertation 
  Page 360 

 

APPENDIX E 

The Comparison of Odour Emission Rate between 

Olfactometry and the AromaScan in Experiment 2 
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Fig E. 1  The comparison of odour emission rate between olfactometry and the 

AromaScan in Reactor 1 over experiment 2: ○, odour emission rate measured by 

olfactometry; ■, odour emission rate predicted by the Aromascan and ANN  
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Fig E. 2  The comparison of odour emission rate between olfactometry and the 

AromaScan in Reactor 2 over experiment 2: ○, odour emission rate measured by 

olfactometry; ■, odour emission rate predicted by the Aromascan and ANN  
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Fig E. 3 The comparison of odour emission rate between olfactometry and the 

AromaScan in Reactor 3 over experiment 2: ○, odour emission rate measured by 

olfactometry; ■, odour emission rate predicted by the Aromascan and ANN 
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Fig E. 4  The comparison of odour emission rate between olfactometry and the 

AromaScan in Reactor 4 over experiment 2: ○, odour emission rate measured by 

olfactometry; ■, odour emission rate predicted by the Aromascan and ANN 
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Fig E. 5 The comparison of odour emission rate between olfactometry and the 

AromaScan in Reactor 5 over experiment 2: ○, odour emission rate measured by 

olfactometry; ■, odour emission rate predicted by the Aromascan and ANN 

 


