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Abstract

Graph neural networks (GNNs) can be effectively
applied to solve many real-world problems across widely
diverse fields. Their success is inseparable from the
message-passing mechanisms evolving over the years.
However, current mechanisms treat all node features
equally at the macro-level (node-level), and the optimal
aggregation method has not yet been explored. In this
paper, we propose a new GNN called Graph Decipher
(GD), which transparentizes the message flows of node
features from micro-level (feature-level) to global-level
and boosts the performance on node classification tasks.
Besides, to reduce the computational burden caused by
investigating message-passing, only the relevant repre-
sentative node attributes are extracted by graph feature
filters, allowing calculations to be performed in a
category-oriented manner. Experiments on 10 node
classification data sets show that GD achieves state-of-
the-art performance while imposing a substantially
lower computational cost. Additionally, since GD has
the ability to explore the representative node attributes
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by category, it can also be applied to imbalanced node
classification on multiclass graph data sets.

KEYWORDS
category-oriented, data augmentation, graph neural network,
message-passing mechanism

1 | INTRODUCTION

Graph neural networks (GNNs) offer effective graph-based techniques applied to solve abundant
real-world problems in diverse fields, such as social science,'? remote sensing,3 protein—protein
interaction networks,* brain neuroscience,” knowledge graphs,”’ image processing,®® physical
systems,'*'" edge computing,'>"* information safety,'* big data,">*” and so forth. The power of
current GNNs'®'? is largely due to the message-passing mechanism, which recursively aggregates
information along edges and updates these newly incorporated features on the center node.

In some early research,”>*' messages were passed along edges uniformly without accounting
for the priority of either graph structure or node attributes. However, it would be more
reasonable for each neighbor node's impact to be distinctive to the central node. Thus, attention-
based GNNs'®'*2? were proposed to evaluate further how the contribution of neighbors to the
central node varies according to the graph characteristics. However, since node attributes are
updated by aggregating the received features from neighbors, the impact of each attribute of the
nodes on information transmission should not be treated equally as well. Therefore, we hope to
transparentize the message flows and make more reasonable use of the graph structure and node
attributes. Moreover, particularly in this study, a Graph Decipher (GD) is proposed to account for
the impact of these two components on the node classification tasks.

The proposed GD scrutinizes the message-passing mechanism on the graph from three
different perspectives: micro-level (feature-level), macro-level (graph-level), and global-level. As
shown in Figure 1, a single head of GD contains two parallel branches: the feature attention
branch (FAB) explores the node attributes at the micro-level and clarifies their different
contributions; while the node attention branch (NAB) focuses on analyzing the difference in
graph structure at the macro-level. Then at the global-level, a multihead attention scheme is
used to repeat the computations in parallel and then combined to produce a final decision.

For more details, the relevance of node attributes or features is first considered at FAB to
gain deeper insights into the message-passing mechanism. Graph feature pooling (GFP) and
upsampling modules are introduced to update the node feature matrix according to node
category. To estimate the impact of each node's internal characteristics on the node
classification task, a dimension-based self-attention mechanism is proposed, which exploits
the attention granted to the node attributes in graph learning. This innovative procedure yields
significant improvements in finding the respective optimal attributes of each node according to
the categories. Moreover, focusing only on the optimal attributes instead of all helps reduce the
computational burden. Then at the end of the FAB, its output is combined with the concurrent
NAB branch that strengthens the contribution of neighbor nodes to the central node for further
calculations. Ultimately, a multihead attention scheme that consists of multiple parallel single-
heads outputs the final decisions. Experiments show this proposed mechanism significantly
outperforms the other state-of-the-art (SOTA) work on 10 common graph data sets used for
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FIGURE 1 A ssingle-head Graph Decipher (GD) includes two main attention branches: the feature attention
branch (FAB) and the node attention branch (NAB). While the NAB (bottom) determines the priority of nodes
under the node classification task at the graph-level, the FAB (top) is dedicated to deep exploiting the
importance of node attributes in a category-oriented manner at the feature-level. The FAB is composed of graph
feature pooling (GFP) and graph feature upsampling (GFU) modules (zoomed-in Figure 2). The objective of the
GFU module is to obtain the internal priority of the prominent representative features highlighted by category in
the GFP. [Color figure can be viewed at wileyonlinelibrary.com]

node classification tasks: Cora,* Citeseer,”> PubMed,”* Amazon Computers and Photo,*
Coauthor CS and Physics,”® Cornell and Texas,”” and Chameleon.*®

GD also performs well on the imbalanced graph data sets, whose distribution of node
categories is inhomogeneous. Samples from a minority of categories are usually under-
represented, resulting in suboptimal performance. Our solution is to increase the number of
nodes in the minorities to balance the distribution. Only the dominant node attributes of each
category analyzed by GD are retained, and the unrepresentative features are randomly dropped
or replaced during reproduction.

The contributions in this paper are summarized as follows:

A transparent GNN, GD, is proposed. This scheme can explain how the graph structure and
node attributes affect message-passing on the node classification tasks from the three levels
of macro, micro, and global.

« Unlike the common methods that assign the same weight to each feature of the same node,
we design novel GFP and upsampling modules to extract and pay more attention to the
dominant features for optimizing the message-passing mechanism.

« To reduce the computational burden, we analyze node attributes in groups by category, and
only the representative attributes extracted by the GFP filter are utilized in the calculation.

« Since GD has the ability to perform representative analysis on the features of each node, it
can be used to augment the samples from a minority of categories, thereby improving the
performance on the imbalanced node classification tasks.

2 | RELATED WORK

2.1 | Graph neural networks
Recent researches®~° applied aggregation operations directly to graphs and aggregated
messages with shared weights from neighbors to each center node. These GNNs only
considered passing messages uniformly from one- or two-hop neighbors along edges.
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GraphSAGE' aggregated and updated features in a range of the two-hop neighbors to the center
node. Directed graph convolutional network?® considered the first- and second-order proximity
to aggregate the attributes on the directed graphs. However, these message aggregators
collected information from all neighbors equally, ignoring the relative importance of different
neighbor nodes.

To solve the issue mentioned above, more studies considered the attention-based
architecture to compute the hidden representations of each node on the graph. By calculating
the node attention coefficients from the neighbors before reaching the center node, graph
attention network (GAT)" implicitly specified the relevance of neighbor nodes in the node
classification task. Gated attention networks®' considered the priority of the multihead
attention with a convolution subnetwork. Graph convolutional networks (GCN)*® utilized
weighted structural features to explore directional structural information for nodes. However,
these GNNs only concentrated at the macro-level by assigning arbitrary weights to the neighbor
nodes. Although the neighbor nodes' priority was investigated, the relevance of node features
was still ignored. For example, since all attributes of a node share the same weight, at nodes
marked as lower weights, significant internal attributes are suppressed to propagate.
Conversely, the nodes with higher attention coefficients may have inconsequential attributes
amplified and passed along to the central node, which causes information interference that
limits the overall accuracy of the network.

Our proposed GD exploits deep characteristics of the message-passing mechanism on both
graph structure and node attributes. The transparent mechanism allows straightforward
investigation of each node's internal and external impacts on the node classification tasks. And
it can also be utilized in a wide range of applications, such as social networks, recommended
systems, the internet of things, emotion estimation, and so forth.

19,31,32

2.2 | Graph data augmentation

Node classification is a primary graph task for a wide range of applications.”®'® Many
researches’** have demonstrated that neural networks are more inclined to learn features
from categories with larger amounts of data, which results in relatively lower accuracy of minor
categories.

Rong et al.*>® designed a DropEdge technology to randomly delete edges before each
training epoch to prevent messages from being passed from the nodes labeled as the
majority category. Chen®’ proposed to change the connections between nodes by adding
edges to nodes of the same category or disconnecting nodes from different categories.
Although the data-imbalance issue can be alleviated, this approach may lead to propagation
errors on the modified graph. Shi*’ facilitated the partition of the annotated nodes with a
class-conditioned adversarial strategy. However, the number of nodes of the minorities is
not increased, and the inconsequential attributes may increase the difficulty of model
training.

We employ GD to augment the samples from a minority of categories by performing
representative analysis on node attributes to solve the above issues. The dominant and
representative node attributes are amplified in the minorities, while the inconsequential ones
are suppressed after the data augmentation. Experiments show that such a method
significantly improves the performance of the minorities on the imbalanced node
classification tasks.
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3 | PRELIMINARIES

Definition 1 (General graph concept). In general, a graph, G, contains two main
matrices: adjacency matrix, A, for graph structure, and feature matrix, X, for graph
attributes. The element of A indicates the connections (Edges) among objects (Nodes).
The row of X represents the feature representation of each node in the graph.

Definition 2 (Graph node classification). Given a graph (A and X), the eventual task is
to estimate the anonymous label y of the node v € N by aggregating and updating the
messages from its neighbors.

4 | METHODS

To investigate the potential of graphs on the node classification task, NAB and FAB are
explored to track down the message-passing mechanism in parallel, as shown in Figure 1.
The NAB learns a node attention matrix, NM, which represents the contribution of neighbors
to the central node at the macro-level. While an innovative FAB is utilized to obtain the feature
attention matrix (FM) to emphasize each node's attributes at the micro-level. Then, these two
matrices are combined to form an integrated attention matrix (IA), which contains both
attention information of the graph structure and node attributes to complete a single-head
prediction. The multihead mechanism is finally used to stabilize the learning process of the
node classification task.

4.1 | Macro-level: Node attention branch

An adjacency matrix is usually used in graph-related tasks to represent the relationship among
nodes on a graph. But it ignores the fact that neighbors may contribute differently to the central
node. And we hope that messages from important neighbors could get more attention when
they converge to the central node. Therefore, in this study, inspired by GATs, an NAB is used to
calculate the contribution of neighbors to the central node according to the characteristics of
the graph task, thereby assigning different weights to the message-passing flows.

Similar to GAT, a node self-attention matrix, g, is learned to determine the relevance
between neighbors and the center node, v, as shown in Equation (1).

Bs = softmax (eys), (5]

where e, = y(W - xy, W - X) represents the importance of neighbor nodes s to v. y indicates
the self-attention mechanism, and W is the weight matrix. x, and x; are node attributes of
nodes v and s. Once attention coefficients are calculated, the activation function o is applied to
get the final nonlinear node attributes in Equation (2).

NAB : x, = a[ > BuW - xs]- ©)]

ScN,
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The node attention coefficients represent the contributions of neighbors to the center node
in NAB. Yet, the roles played by the different internal attributes of each node have not been
considered. Therefore, a new FAB is added to interact with NAB to update the attention of
nodes and their corresponding attributes.

4.2 | Micro-level: Feature attention branch

In the message-passing mechanism of classical GNNs, node attributes are usually refined
through two steps: gathering and updating. In both, information is processed uniformly on all
feature dimensions, which does not factor in the significance of node attributes. It may lead
that inconsequential information causing redundancy or restricting the desired attributes.
Thus, it is crucial to evaluate the internal priority of all node attributes, allowing representative
features to be examined more closely in the message-passing procedures. However, this would
cause a steep computation burden.

We propose a category-oriented self-attention manner to determine the internal priority of
attributes and reduce the number of computations. This manner also improves the efficiency of
information transmission and the network'’s performance under the node classification task.
Two modules connected in series constitute the FAB: GFP and graph feature upsampling
(GFU). The first module highlights prominent representative attributes and reduces the size of
feature maps; the second module distinguishes the priority of these attributes by categories.

421 | GFP module

Since we hope to encourage the representative attributes and restrict the inconsequential ones in the
message-passing procedures, an intuitive method is to calculate the relevance of all node attributes.
In this case, the computation burden is equal to O(XN), where N is the amount of nodes. This
idealized approach can only be applied on the small graph because the computation burden may be
much heavier as the number of nodes on a graph increases. However, in practice, we often encounter
larger graphs with substantial nodes and edges in areas, such as social network graphs.

It is a big challenge to balance the demands of investigation and categorize computations under
node classification tasks. From the graph perspective, nodes are categorized together if they share
similar attributes. Inspired by this, we explore node attributes using category-oriented feature
attention coefficients under the graph task. Inner each category, the most significant attributes can
be sorted, selected, and then sent along graph edges, while the less significant attributes are
suppressed. In this manner, the computation burden is mainly derived from the number of node
categories, since the focus is given to prioritizing attributes by category instead of individual nodes.
Each feature dimension shares the same attention coefficient by node category, whose number is
finite and far lower than the total number of nodes, even on huge graphs. Thus, the computation
can be reduced sharply to O (X) in the learning process, because the total sizes of all concatenated
attention matrices labeled by node category are equal to the size of the feature matrix, X.

In a category-oriented manner, nodes are assigned into finite groups according to their
categories. As shown in Figure 2, the original 2D feature matrix X is divided into C' subfeature
matrices. The goal of GFP module is to highlight the local prominent attributes by category. It
contains three main steps: sort the nodes in the two-dimensional (2D) subfeature matrix, transform
the sorted matrices to 3D subfeature maps, and highlight the local dominant attributes by category.
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FIGURE 2 Overview of the FAB. It includes two connected serial modules, GFP and GFU, separated by a
red dash line. Each module contains three main operations. The details are illustrated in Algorithm 1. FAB,
feature attention branch; GFP, graph feature pooling; GFU, graph feature upsampling. [Color figure can be
viewed at wileyonlinelibrary.com]

Sort: Since nodes in the same group or submatrix have comparable attributes, the mean feature
vector can be regarded as the most representative attribute vector to indicate the corresponding
category in each subfeature matrix. Then, nodes are sorted in each subfeature matrix in Equation (3)

based on the similarity between each node attributes with the mean feature vector, X; = o ;"ix
sim(X;, X) = cos X Ox
b %1l - lixll” ®)

where X; is the mean feature vector, and m; is the number of feature vectors of the ith
subfeature matrix. x indicates each feature vector of the subfeature matrix, and ©® represents
the dot product between two feature vectors.

Transform: Since adjacent nodes represent similar attributes in the sorted subfeature
matrices, we hope to identify the local dominant values, as they indicate the most
representative attributes by dimensions, F. In this procedure, each 2D matrix m; X F is
transformed to a corresponding 3D feature map k; X k; X F labeled with the node category,
where F is the depth of the 3D feature map and also the dimension of the 2D feature matrix.
Note that the square root is not necessarily an integer, thus k; is rounded up to the nearest
integer, k; = [\/m;]. In other words, the shape of the original 2D subfeature matrix m; is
increased to a larger value k in most cases.

Highlight: The final step of GFP is to highlight the local dominant and representative
attributes in the max-pooling operation on each feature map with the corresponding category.
The stride of the operation is equal to the size of the pooling filter, and the dimension of the
updated feature maps is given by Equation (4).

ki ki
)' 4)

dim (feat_maps) = (—, —,
s s

The stride, s, determines the number of representative attributes utilized to calculate the interior
priority of nodes in GFU. The computation burden and performance must be balanced, as large
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stride values lower the computation burden while degrading performance, while lower stride values
induce prohibitively enormous computation burdens. This is discussed further in Appendix A.

4.2.2 | GFU module

Although the local dominant representative node attributes in each category are highlighted at
the end of the GFP, the internal priority of the representative features is not yet known. Thus,
the objective of the serially connected module, GFU, is to obtain the internal priority of the
locally prominent and representative features in distinctive categories, as illustrated in Figure 2.
GFU includes three main steps: recover the 3D subfeature maps, convert them back to the 2D
subfeature matrix, and calculate the inner priority of dominant attributes.

Recover: In the GFU, the upsampling operation is performed first to recover feature maps
from the size (%, %, F) to (k;, k;, F). Since the total size of the recovered feature map is
extensive, vacant positions in the matrix are filled with zeros as they do not affect the graph
semantics in corresponding feature dimensions.

Convert: Next, a transformation operation is performed to convert each 3D feature map back to
a 2D subfeature matrix X'. Because nodes are assigned by the feature similarity in the GFP module,
they are sorted in their original order in each subfeature matrix. Meanwhile, a corresponding mask
with the same matrix shape with a special value (0/1) is also generated to record the position of the
local representative features. A value of 1 in each mask indicates a local representative attribute at
this position in the corresponding subfeature matrix. In contrast, a value of 0 representing this
position's corresponding value may be unrepresentative in this category.

Calculate: Since the local representative attributes have already been determined in each
updated feature matrix, they can now be utilized to find the internal priority of nodes by category.
This step applies a learnable self-attention scheme to each subfeature matrix in Equation (5).

exp (X;)

a; = softmax (X)) = ——————,
/ Yy en(x)

(5)

Algorithm 1: The dimension-based self-attention mechanism on the feature attention branch

Input : The original 2D feature matrix X

Output: The updated 2D feature matrix X’

1. Split X to n sub-feature matrices // n=C+1
// for each category

2. fori+—1ton—1 do

// GFP module

. Mean feature vector: X; = — mi

m; 21

. Similarity: sim(X;,x) = cos%
7

X

. Sort the nodes based on the sim
. Transform to 3D feature maps

(mi x F) = (ki X ks x F) where k; = [\/m;]
7. Highlight (k; x ki x F) — (& x % x F)

DUt = W

// GFU module
8. Recover (% x K F) s (ki x ki X F)

9. Convert back t(j 2D sub-feature matrix
(ki X ks X F) — (m; x F)
10. Update the mask for the representative features
11. Calculate Feature Attention Coefficient with mask

aj = softmax(x;) where j < (1, F)

end
12. Merge all sub-feature matrices to the matrix X’
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where x; indicates the vector of the jth dimension in each subfeature matrix. Since only the
local dominant and representative features are needed in this step, the computational burden
can be further reduced by using masks that record the position of local representative features,
allowing the unnecessary zeros to be ignored in the computation. The new nonlinear node v's
feature is applied by the activation function ¢ in Equation (6).

FAB : x, = (p[ D ochva- (6)
je(,F)

The final step is to capture both attention matrices from parallel branches in Equation (7).

h=¢ W-O'[Z ﬁvsWxs]-go[ D ochxv] . 7

ScN, jc(,F)

This combined attention matrix contains the graph structure's attention information and
the nodes’ internal attributes needed to complete a single-head prediction. The algorithm of
FAB is summarized in Algorithm 1.

4.3 | Global-level: Multihead attention mechanism

The multihead attention mechanism assigns distinctive attentions, ¢, on each head to stabilize
the learning process. Thus the embedding at the next hidden layer, h;; = o(%zgzlc : hl), is

updated, where ¢ is the head number.

5 | EXPERIMENTS
5.1 | Performance on node classification task
51.1 | Comparison with basic frameworks

We first experimentally validate our proposed algorithm on three graph citation data sets (Cora,
Citeseer, and PubMed), two copurchase data sets (Amazon Computers and Amazon Photo),
and two Coauthor graphs (Coauthor CS and Coauthor Physics). More details about data sets are
in Appendix A.

The details of the experiment's setup are introduced in Appendix A. The accuracy for the
node classification task of distinctive algorithms on all seven data sets is illustrated in Table 1. It
can be observed that the performance of the GNNs (MoNet,*® GCN, GraphSage, GAT, and ours)
surpasses the performance of non-GNN frameworks (MLP and LabelProp”), which benefit
from the message-passing mechanism by considering both node attributes and graph structure
on a graph.

The MoNet, GCN, and GraphSage pass messages along edges uniformly on the graph. GAT
evaluates only the contribution of direct neighbors to the central node on the graph structure.
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TABLE 1 Comparison of the performance (accuracy%) of different algorithms for the node classification
task on different data sets

Coauthor Amazon Amazon
Method Cora Citeseer PubMed Coauthor CS Physics Computers Photo Year
MLP" 551 46.5 71.4 88.3 88.9 45.1 69.6 2017
LabelProp®® 739 66.7 72.3 76.7 86.8 75.0 83.9 2009
MoNet*® 81.7 712 78.6 90.8 92.5 83.5 91.2 2017
GCN*° 81.5 703 79.0 91.1 92.8 82.6 91.2 2016
GraphSAGE' 79.2 71.6 77.4 91.3 93.0 82.4 91.4 2017
GAT™ 83.4 725 79.0 90.5 92.5 78.0 85.1 2017
GD (ours) 883 78.9 85.5 95.9 97.3 83.1 89.3 2022

Note: Bold values indicate the optimal choice by trading off the complexity and average precision.
Abbreviations: GAT, graph attention network; GCN, graph convolutional network; GD, Graph Decipher; MLP, multilayer
perceptron.

The measured performance of GAT is 83.4%, 72.5%, and 79.0% on the Cora, Citeseer, and
PubMed, respectively. It is superior to uniform GNNs on small graph data sets, but it degrades on
Amazon Computers and Amazon Photos, with extended node attributes. Since all attributes are
considered uniformly, the desired attributes are inefficiently confined to enhance performance.

Because GD effectively biases its attention to representative node attributes alongside the
most relevant neighbor nodes on the graph structure, it achieves SOTA performance in five out
of seven data sets under the node classification task. GD achieves the accuracy of 88.3%, 78.9%,
85.5%, 95.9%, and 97.3% on the Cora, Citeseer, PubMed, Coauthor CS, and Coauthor Physics
data sets, respectively. In the case of the two most extensive data sets, Amazon Computer and
Amazon Photo, GD lagged behind the front-runner by only 0.4% and 2.1%, respectively. These
experiments demonstrate the contribution of high-priority components, consisting of node
attributes and neighbors of the graph structure, under the node classification task.

The size of the pooling filter in GFP is a significant parameter that affects GD's performance
and computation burden as it determines the amount of local dominant and representative
features by category in the learning process. In experiments, the filter size, which equals 2,
typically imposes a slightly more significant computation burden than competing algorithms.
More details about it and other ablation studies are discussed in Appendix A.

51.2 | Comparison with more SOTA approaches

Inspired by the results of previous experiments, we hope to demonstrate the power of GD by
comparing it with more SOTA approaches to those data sets. Table 2 illustrates the
performance of all SOTA approaches under the node classification task on three graph citation
data sets and two Coauthor graphs.

GraphStar merges message-passing relay and self-attention mechanism to classify the node
embedding on the graph.*' As a reinforcement learning-based approach, GraphNAS
automatically utilizes the best recurrent network to maximize the expected accuracy in the
test procedure.*” Graph-Bert only employs a self-attention mechanism instead of graph
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TABLE 2 Comparison of more state-of-the-art node classification approaches on Cora, Citeseer, PubMed,
Coauthor CS, and Coauthor Physics data sets

Method Cora Citeseer PubMed Coauthor CS Coauthor Physics Year
GraphStar*! 82.1 71.0 77.2 - - 2019
GraphNAS* 84.2 73.1 79.6 = = 2019
Graph-Bert* 84.3 71.2 79.3 - - 2020
DifNet* 85.1 72.7 79.5 = = 2020
Cleora* 86.8 75.7 80.2 - - 2021
LinkDistMLP*® 87.6 75.3 88.8 95.7 96.9 2021
CoLinkDist*® 87.9 75.8 89.6 95.8 97.1 2021
LinkDist*® 88.2 74.7 88.8 95.7 96.9 2021
3ference*’ 87.8 76.3 88.9 95.9 97.2 2022
GD (ours) 88.3 78.9 85.5 95.9 97.3 2022

Note: The best results (Acc) are shown in bold.
Abbreviation: GD, Graph Decipher.

aggregation operators.”” DIFNET also considers the attention mechanism to diffuse the
information of neighborhood nodes along edges.** The performance of attention-based
approaches is powerful on graph citation data sets, demonstrating that the attention-based
mechanism is efficient in extracting node features at the macro-level on the graph.

Besides the above four attention-based approaches, another five nonattention-based SOTA
approaches are also compared. Cleora iterative weighted averaging the neighbor features and
then normalizing embedding across dimensions.*® LinkDist series (LinkDistMLP, CoLinkDist,
and LinkDist) extract useful features by distilling self-knowledge from associated couple
nodes.*® 3ference analyzes the transition patterns of node labels on the graph.*” The
performances of these SOTA approaches are improved. However, our proposed GD achieved
four out of five top on all graph citation and coauthor data sets. These experiments demonstrate
the contribution of high-priority category-oriented node features at the micro-level under the
node classification task.

51.3 | Comparison with SOTA approaches on more data sets

Besides three graph citation data sets, two copurchase data sets, and two Coauthor graphs, we
compare more SOTA approaches on three heterophily data sets, Cornell, Chameleon, and
Texas. Cornell and Texas data sets represent hyperlinks (edges) between web pages (nodes)
from the department of computer science in different universities. Chameleon data set
performs the web pages to discuss corresponding cases in Wikipedia.

In these experiments, we compare the proposed network with another nine SOTA
approaches, which enhance the aggregation mechanism for node representation learning.
Geom-GCN extracts the structural information from a continuous space underlying the graph
aggregation on a graph.** SDRF classifies the nodes by introducing an edge-based
combinatorial curvature.*” CNMPGNN exploits node patterns by utilizing the common-
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TABLE 3 Comparison of more state-of-the-art node classification approaches on Cornell, Chameleon, and
Texas data sets

Method Cornell Chameleon Texas Year
Geom-GCN-S*® 55.68 59.96 59.73 2020
Geom-GCN-I* 56.76 60.31 57.58 2020
Geom-GCN-P* 60.81 60.90 67.57 2020
SDRF* 54.61 42.73 64.40 2021
CNMPGNN>° 82.38 73.29 85.68 2021
GGCN*! 85.68 71.14 84.86 2021
FDGATII*? 82.43 65.17 80.54 2022
GloGNN>? 83.51 69.78 84.32 2022
GloGNN++>? 85.95 71.21 84.05 2022
GD (ours) 87.26 72.47 86.73 2022

Note: The best results (Acc) are shown in bold.

Abbreviations: CNMPGNN, Common Neighbors Motifs Perceptive Graph Neural Network; FDGATII, fast dynamic graph
attention with initial residual and identity mapping; GCN, graph convolutional network; GD, Graph Decipher; GGCN, graph
convolutional neural network; GNN, graph neural network.

neighbors-based motifs.”> GGCN proposes the degree corrections and signed messages to learn
the node representations.” FDGATII adopts an expressive dynamic self-attention mechanism
to improve the performance under node classification task.>

GloGNN and GloGNN++ aggregates representations from global nodes to the center
node.”

Ilustrated in Table 3, GD receives the accuracy of 87.26%, 72.47%, and 86.73% on Cornell,
Chameleon, and Texas data set, respectively. It achieves the SOTA performance in two out of
three data sets under the node classification task. Even in the Chameleon data set, GD lagged
behind the front-runner by only 0.82%.

52 | Graph data augmentation

In Section 2.2, we discuss the significance of graph data augmentation and its influence on
the multiclass imbalanced data set. Without data augmentation, most false predictions are
concentrated in minority categories in each graph data set, diminishing the network
performance. Current research®**>°*> rely on attempts to balance the distribution of
categories by sampling from a portion of the original data sets or class-conditioned
adversarial graph learning. The primary issue with these approaches is that all node features
or attributes are considered in the graph learning process regardless of their relevance. It
means insignificant node attributes are amplified and affect graph learning. We hope to
evaluate only the critical node features or attributes to balance the node category distribution.
Thus, we propose a new method of graph data augmentation to improve the network's
performance, especially in minority categories, by utilizing the FAB of the message-passing
mechanism.
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5.2.1 | Data augmentation on two categories: Majority and minority

The distribution of node categories of all graph data sets is analyzed in Appendix A. The
multiclass imbalanced phenomenon generally causes most false predictions in the node category
with the smaller data collection in the inference process. To prove our conjecture, nodes from the
major and minor node categories are extracted to create a new imbalanced train and test data sets
separately. The network achieves 99.7% and 98.9% accuracy on new imbalanced Cora and
Citeseer data sets. We receive this kind of ‘extraordinary’ performance because the node
attributes with the major node category are weighted more heavily in the training process and
propagated extensively on the imbalanced test data set. However, if the retrained network only
tests on the minority, the accuracy drops to 47.6% and 42.1%, respectively, agreeing with our
prediction. To solve this issue, we reconsidered the utilization of feature attention of the pre-
trained model to gain efficiency. Therefore, we designed a series of experiments to find feasible
data augmentation approaches to alleviate the imbalanced problem.

In these experiments, each data set is split into 10 imbalanced data sets, containing only two
node categories, majority and minority, with differing proportions. The proportion in the
imbalanced data set is around 10:1 at the beginning. A straightforward approach, Originally
(ORI), for node reproduction is directly cloning the nodes and node attributes in the minority.
However, it may lead to the induced overfitting issue because the network amplifies and learns
the inconsequential node features in the learning process. Thus, another innovative approach
for node reproduction is proposed.

Since GD can explore the priority of node attributes under the node classification task, the
node attributes are separated into two groups: representative and unrepresentative features.
The former are retained in the reproduction, and the unrepresentative features are addressed
with two different approaches to reproducing the minority: (1) AA: All the inconsequential
attributes are cleaned, and the cleaned attributes are directly cloned. (2) AP: Some
inconsequential attributes are cleared randomly for each reproduction. Thus, the values of
reproduced data are not the same. Finally, the propagation of majority and minority is followed
by 10:1, 10:2, 10:3, 10:4, 10:5, 10:6, 10:7, 10:8, 10:9, and 10:10. The GD is then retrained on the
newly synthesized data sets.

The test data set now only includes the minority in the inference process. The accuracy of
the imbalanced synthesized data sets is summarized in Figure 3. The AA results arrangement is
less than 60% in all cases because all the inconsequential attributes are cleared. This result
indicates that even inconsequential attributes have insignificant contributions to the node
classification tasks. The maximum scores of the ORI approach increased in all cases. However,
the scores of the ORI approach are only better than AA in one of our seven cases. While there
are performance gains, improvements are still needed if the minority node information is
repetitive. Furthermore, the AP approach'’s performance is compared with the ORI approach in
every case because the distribution of the synthesized data set with AP is diversified.

Following this discovery, another approach called AN is used to reproduce the data set. This
approach introduces small amounts of random noise to replace part inconsequential node
attributes. An achieved higher scores than AP on the following data sets: Cora, Citeseer,
Coauthor CS. However, in the remaining data sets, AP performed better than AN. The
interquartile range (IQR) provides a visual indicator regarding the spread of accuracy amongst
different synthesized data sets for each case. From Figure 3, the differences in IQRs for both AN
and AP are tiny for each case, meaning both approaches can improve predictions on the
minority category of the inhomogeneous data set. However, it is essential to note that the

8518017 SUOUILIOD BAIRRD 3|qedt|dde auy Aq peussnob e sppile YO ‘8sN J0 S9N 10} Akeiq1T8UIIUO 8|1 UO (SUORIPUOI-PUE-SW IR0 A 1M Ae.d 1 BUl|UO//SAIY) SUORIPUOD PUe SULB | 8U} 89S *[£202/60/80] U0 ARiq1T8UliuO AB|iM ‘pUesueend uieyinos JO AISAIUN Ad 99622 1U1/200T 0T/I0p/wod A | imAelq jputuo//Sdiy Wwoly papeojumoq ‘TT ‘2202 ‘XTTT860T



8760 Wl LEY PANG ET AL.
Cora Citeseer PubMed
100 10vs7 85 100
0vsé
» 10vs7 - 10xz7 10vs8 - 10vs8 10ys7 AN: Attention with noise
9 (7 10vs 10 9
% 80 ' % 65 % 80 10vs 8 ORI Original dataset
8 8 8
= I = . . AA: Attention with all clean
10vs8 I 10vs 9 3 i i r
50 s 45 " i AP Attention with part clean
B 10vs 8: Majority vs Minority
T T T T T T T T T T T T
AN ORI AP AA AN ORI AP AA AN ORI AP AA
- Coauthor CS o Coauthor Physics Amazon CS - Amazon Photos
100
10vs 8 10vs 8 10vs 8 10vs 8 T0vs 8 10ys8
10vs7 10vs9

g 80 g 0 g 0vs7 g 80
5 58 5 80 2 10vs7
g 10vs8 g 0vs8 2 8] el

40 1[];7 60 i 0vsé 60 10vs7 60

= | =
Ea =3
T T T T T T T T T T T T T T T T
AN ORI AP AA AN ORI AP AA AN ORI AP AA AN ORI AP AA

FIGURE 3 Accuracy indicates the effect on the performance of different approaches in the minority
category. The numbers above the max bar, 10 versus 7, represent the ideal proportion of the majority and
minority categories on each inhomogeneous synthesized data set. AA, Attention with All Clean; AN, Attention
with Noise; AP, Attention with Part Clean; Ori, Originally clone the information of minority. [Color figure can
be viewed at wileyonlinelibrary.com|

artificial noise introduced has no practical use in real-world applications. Thus, although the
network is more robust, the AN approach cannot be used in certain domains which require a
strong interpretability graph network, such as in medical science.

In addition, the number above the max bar in Figure 3 represents the proportion of the
majority and minority categories on each imbalanced synthesized data set. Here the max scores
of each approach are not from the most balanced setting, 10 versus 10, of the synthesized data
sets in each case. For example, the best setting of AP in the Cora synthesized case is 10
(majority category) versus 6 (minority category). On the other hand, in synthesized Coauthor
CS, the best proportion of the majority and minority categories is 10 versus 8 in both the AN
and AP approaches. This is because the synthesized data sets are generated based on a portion
of the minority nodes. Thus, an appropriate number of generated nodes from the minority
category is sufficient to balance the inhomogeneous multiclass issue.

5.2.2 | Data augmentation on all categories

This section demonstrates GD's performance after data augmentation of all categories under
the node classification task. We followed the same procedures in Section 5.2.1 to balance the
node distribution of all seven data sets: (1) Analyze all data sets by a pretrained GD; (2) Retain
the representative features; (3) Reproduce the minorities by AP. After data augmentation, the
ratio of each two categories is concentrated at 1:1.5 on each training data set. Then, our
network is retrained on new imbalanced graph data sets. Figure 4 illustrates the increment of
the network performance with the data augmentation. As a result, networks’ performance is
further improved than before augmentation on all 10 data sets, demonstrating the
improvements delivered by our innovative feature attention mechanism of GD. Currently,
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FIGURE 4 Increment histogram. The y-axis indicates the accuracy of GD under the node classification task.
The solid bar is the performance of GD on each original data set. The shaded area shows the increment of
network performance with the data augmentation approach, AP, on each graph data set. AP, Attention with Part
Clean; Az-Cs, Amazon CS; Az-Ph, Amazon Photos; Cham., Chameleon; Cite, Citeseer; Co-Cs, Coauthor CS;
Co-Ps, Coauthor Physics; Corn., Cornell; GD, Graph Decipher; Pub., PubMed. [Color figure can be viewed at
wileyonlinelibrary.com]

GD fails to handle the time-varied graph-based structure because the nodes and links may
emerge and disappear along the time dimension. Our future work will advance the GD to be
suitable for dynamic graphs.

6 | CONCLUSION

This paper proposes a transparent GNN, GD, that investigates the message-passing mechanism on
a graph under the node classification task. GD improves functionality by showing how the graph
structure and node attributes affect the message-passing mechanism in the node classification task
from the micro-, macro-, and global-levels. By giving higher priority to both neighbor nodes on the
graph structure and representative features of node attributes, GD efficiently improves performance
on the 10 graph data sets studied. Meanwhile, the computation burden imposed by GD is
acceptable due to three novel features: (i) it explores the node attributes with category-oriented
feature attention coefficients; (ii) it investigates the representative attributes retained by the GFP
filter; (iii) it calculates the interior priority of node attributes on the sparse matrix generated from
the mask. Additionally, an innovative GD-based graph data augmentation approach alleviates the
imbalanced node classification problem on multiclass graph data sets. We hope these discoveries
will encourage future research into the possibilities of GNNs in additional real-world applications.
In the future, we hope to advance and transfer our algorithm to the time-varied graph-based
structure, which is more complicated. The current approach fails to handle those dynamic graphs
which record all continuous evolution over time. Because links and nodes may emerge and
disappear on the graphs along the temporal dimension, it is time-consuming to investigate node
representations by category at each moment. Especially, the nodes in one category are disappeared
at an occasion.
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APPENDIX A

A.1 | Data set

We experimentally validate our proposed algorithm on seven real-world graph data sets, as
shown in Table Al, which summarizes the statistics of these seven data sets and the
configuration of the train/val/test splits. The statistics summary of node attribute values in each
data set is shown in Table A2.

A.1.1 | Overall
Cora and Citeseer” and PubMed>*: These three public data sets are graphs used to describe
citation patterns of scientific publications. The nodes represent publications, while the edges
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TABLE Al Details of graph data sets in our experiments
#Train #Val #Test

Data set #Classes #Features #Nodes #Edges nodes nodes nodes
Cora 7 1433 2485 5069 140 500 1000
Citeseer 6 3703 2110 3668 120 500 1000
PubMed 3 500 19,717 44,324 60 500 1000
Coauthor CS 15 6805 18,333 81,894 300 500 1000
Amazon Photo 8 745 7487 119,043 160 500 1000
Coauthor Physics 5 8415 34,493 247,962 100 500 1000
Amazon 10 767 13,381 245,778 200 500 1000

Computers

TABLE A2 Statistic of node attribute values in the above seven graph data sets

Data set Feature values

Cora [0,1]

Citeseer [0,1]

PubMed [0,571]

Coauthor CS [0~ 5]

Amazon Photo [0,1]

Coauthor Physics [0~10, 14, 21, 28, 29, 37]
Amazon Computers [0,1]

Note: The symbol, 574, indicates the PubMed data set's 57 special fractions (feature values).

indicate the citation links among distinctive publications. For the Cora and Citeseer data sets,
dictionaries (feature vectors) are utilized to explore the most common words that appear in
these publications. Thus, each publication is described by a 0/1 value, which indicates the
absence/existence of the corresponding word from the dictionary. While for the publications in
the PubMed data set, a term frequency-inverse document frequency (TF/IDF) is used to
calculate the separation between them. In summary, the Cora data set includes 2708 nodes with
5429 links in seven categories, and the dimension of each node feature is 1433. The Citeseer
data set consists of 3327 nodes with 4732 links in six categories, and each node feature has 3703
dimensions. The PubMed data set contains 19,717 nodes with 44,338 links in three categories
and 500 dimensions per node feature vector.

Amazon Computers and Amazon Photo®: These two data sets represent two different
Amazon copurchase graphs. Each node denotes products in different categories, while edges
show two interests in bundle sales. And each dimension of the node features represents bag-of-
words encoded product reviews. In summary, the Amazon Computers data set includes 11,381
nodes with 245,778 links in 10 categories, and the dimension of each node feature is 767. On
the other hand, the Amazon Photo data set consists of 7487 nodes with 119,043 links in eight
categories, and each node feature has 745 dimensions.
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Coauthor CS and Coauthor Physics*®: In both coauthorship graphs, each node represents an
author, while the edge indicates two nodes coauthored a paper. The authors are grouped into
different active fields or categories. Node feature vector illustrates the paper's keywords for each
node, which represents the author's article. In summary, the Coauthor CS data set includes
18,333 nodes with 81,894 links in 15 categories, and the dimension of each node feature is 6805.
The Coauthor Physics data set consists of 34,493 nodes with 247,962 links in five categories, and
each node feature has 8415 dimensions.

A.1.2 | Distribution of node categories
This section summarizes the distribution of the node categories of all seven data sets, as
illustrated in Table A3.

Cora: 2708 nodes in seven categories. Cora data set holds the second least number of nodes
among all seven data sets. The number of the top node class (#4) is 818, while the smallest node
class (#7) only exists 180. The ratio between the majority and minority is around 9:2.

Citeseer: 2110 nodes in six categories. The Citeseer data set has the least number of nodes
among all seven graph data sets. The number of the top node class (#4) is 701, while the
smallest node class (#1) only exists 249. The ratio of the majority and minority is around 3:1.

PubMed: 19,717 nodes in three categories. PubMed data set contains the least types of the
node category among all seven graph data sets. The number of the top node class (#3) is 7875,
while the smallest node class (#7) only exists 4103. The ratio of the majority and minority is
around 2:1.

Coauthor CS: 18,333 nodes in 15 categories. Coauthor CS data set has the most types of the
node category among all seven graph data sets. The number of the top node class (#14) is 4136,
while the smallest node class (#10) only exists 118. The ratio of the majority and minority is
around 35:1. Thus, the distribution of this graph data set is the most imbalanced in our
experiment.

Coauthor Physics: 34,493 nodes in five categories. Coauthor Physics data set obtains the most
nodes among all seven graph data sets. The number of the top node class (#3) is 17,426, while
the smallest node class (#10) only exists 2753. The ratio of the majority and minority is
around 6:1.

TABLE A3 Distributions of node categories in different graph data sets are illustrated

Data set #1 #2 #3 #4 #5 #6 #7 #8
Cora 351 217 418 818 426 298 180 -
Citeseer 249 590 668 701 596 508 =

PubMed 4103 7739 7875 - - - - -
Coauthor CS* 708 462 2050 429 1394 2193 371 924
Coauthor CS* 775 118 1444 2033 420 4136 876 -
Amazon Photo 369 1686 703 915 882 823 1941 331
Coauthor Physics 5750 5045 17,426 2753 3519 - - -
Amazon Computers* 436 2142 1414 542 5158 308 487 818

Note: The symbols § and # represent the first eight and the following seven categories of the Coauthor CS data set. The third
symbol * indicates the first eight categories in the Amazon Computers data set, containing another two categories with 2156
and 291 nodes separately.
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Amazon Photo: 7487 nodes in eight categories. The number of the top node class (#7) is 1941,
while the smallest node class (#8) only exists 331. The ratio of the majority and minority is
around 6:1.

Amazgon Computers: 13,381 nodes in 10 categories. Amazon Computers data set involves the
second largest number of node categories among all seven graph data sets. The number of the
top node class (#5) is 5158, while the smallest node class (#10) only exists 291. The ratio of the
majority and minority is around 18:1.

A.2 | Experimental setup

To avoid the gradient from exploding or vanishing during the learning process, we chose Glorot
and Bengio® to initialize the parameters of GD. The exponential linear unit®’ yields nonlinear
outputs at the end of both modules, NAB and FAB. The softmax®® is used to send the
probability distribution over predicted node categories at the end of GD. Moreover, during the
training process, the dropout approach’ is introduced to avoid overfitting, and the dropout rate
is set to a range of 0.3-0.7 depending on the data set. The GFP size, s, is set as 2, and the
number of multiheads, ¢, is applied to 8.

A.3 | Ablation study

In this section, a comprehensive analysis of our network is provided. Section A.3.1
demonstrates the impact of GFP size for the network performance and computation, and
Section A.3.2 discusses the effectiveness of multiheads architecture based on the proposed
single-head layer.

A.3.1 | Filter size of the GFP

In GFP, the graph feature filter's size is a significant parameter that affects GD's performance
and computation burden as it determines the amount of local dominant and representative
features by category in the learning process. The GD's performance as a function of filter size
applied to our seven data sets is shown in Figure Al. In these tests, the accuracy and number of
parameters are indicators of a network's performance and computation burden.

As shown in Figure Al, the GD with feature pooling size 2 (GD-2) performs nearly as well
as or better than most algorithms tested. The GD-2 algorithm typically imposes a slightly more
significant computation burden than competing algorithms, though the gains in performance
are clear. By computing only representative attributes in the GFP filter, the GD-2 algorithm can
perform more efficiently. We found the optimal GFP size to be 2, effectively balancing the
network's performance and computation burden. Filter size of 3 (GD-3) offers much lower
computation burdens; however, this comes at the expense of the network performance, as
shown in each test. These experiments show that the GFP module successfully preserves the
representative attributes under the node classification task, achieving clear performance gains
with greater network capacity.

A.3.2 | Multiheads architecture

This section demonstrates how the addition of heads impacts the overall performance of the
network. We evaluated the performance and complexity of GD on all seven graph data sets as a
function of heads under the node classification task, which are illustrated in Tables A4 and AS5.
The floating-point operations per second (FLOPs) and average precision (AP) are network
complexity and performance indicators. As heads were added, an improvement trend was
observed to the point of diminishing returns, usually when around 8 or 10 heads are employed.
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FIGURE Al Performance (accuracy%) and parameters of different networks on seven data sets under the
node classification task. GAT, graph attention network; GCN, graph convolutional network; GD-x, Graph
Decipher with a graph filter size of x; GS, GraphSAGE; MLP, multilayer perceptron. [Color figure can be viewed

at wileyonlinelibrary.com]|

TABLE A4 Balance between complexity (MFLOPs) and accuracy of our network with distinctive
multiheads on Cora, Citeseer, and PubMed data sets

Cora Citeseer PubMed
Heads Flops (M) AP Heads Flops (M) AP Heads Flops (M) AP
2 22.01 85.7 2 27.03 76.6 2 1166.64 83.3
4 36.67 86.3 4 45.01 77.3 4 1945.18 83.9
6 51.33 87.3 6 63.01 77.9 6 2719.16 85.1
8 66.01 88.3 8 81.01 78.9 8 3498.94 85.5
10 80.67 88.5 10 99.05 79.0 10 4277.67 85.7

Note: Bold values indicate the optimal choice by trading off the complexity and average precision.

Abbreviation: AP, average precision.

On the Cora, Citeseer, PubMed, and Coauthor data sets, dual-head performance of GD is 85.7%,
76.6%, 83.3%, 93.7%, and 94.9%, respectively, while the GAT achieves 83.4%, 72.5%, 79.0%,
90.5%, and 90.5%. These experiments demonstrate GD's superior ability to push the upper limit
of an existing network's performance. When using four and six parallel heads, the performance
trend continues to improve dramatically. The eight-head configuration improves over the six-
head configuration by 1.0% and costs 14.08M FLOPs on the Cora data set. Beyond an eight-head
configuration, the trend begins to subside, as there is only a marginal 0.2% gain in performance
at 10-heads while costing a substantial 14.66M FLOPs. These results indicate that the
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TABLE A5 Balance between complexity (MFLOPs) and accuracy of our network with distinctive
multiheads on Coauthor CS, Coauthor Physics, Amazon Computer, and Amazon Photo data sets

Amazon P

Heads
2
4
6

8
10

Note: Bold values indicate the optimal choice by trading off the complexity and average precision.
Abbreviation: AP, average precision.

Coauthor C

1008.62
1681.04
2353.46
3025.87

3698.29

93.7
94.5
95.0

95.9

959 10

2

4

6
8

Flops (M) AP Heads Flops (M)

3568.26
5982.16
8326.02
10,709.76

13,083.77

Coauthor P

Amazon C

AP Heads Flops (M) AP Heads Flops (M)

949 2
95.8 4
96.6 6
973 8

97.5 10

537.07
895.12
1248.17
1611.41
1969.26

81.3
81.9
82.8
83.1

83.2 10

2
4
6

8

168.21
281.36
389.53
526.70

616.88

AP

87.1
87.9
89.0
89.2

89.2

eight-head configuration of GD achieves high performance with an optimally balanced
complexity on the Cora, Citeseer, and Coauthor data sets, and on the PubMed and Amazon
data sets, the six-head configuration of GD is the ideal option considering the trade-offs in

performance and complexity.
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