
1

CommGNAS: Unsupervised Graph Neural
Architecture Search for Community Detection

Jianliang Gao, Jiamin Chen, Babatounde Moctard Oloulade, Raeed Al-Sabri, Tengfei Lyu, Ji Zhang and Zhao Li

Abstract—Graph neural architecture search (GNAS) has been
successful in many supervised learning tasks, such as node
classification, graph classification, and link prediction. GNAS
uses a search algorithm to sample graph neural network (GNN)
architectures from the search space and evaluates sampled
GNN architectures based on estimation strategies to generate
feedback for the search algorithm. In traditional GNAS, the
typical estimation strategy requires using labeled graph data to
generate feedback, which plays a fundamental and vital role in
the search algorithm to sample a better GNN architecture during
the search process. However, a large portion of real-world graph
data is unlabeled. The estimation strategy in traditional GNAS
cannot use unlabeled graph data to generate feedback for the
search algorithm, so the traditional supervised GNAS fails to
solve unsupervised problems, such as community detection tasks.
To solve this challenge, this paper proposed CommGNAS, an
effective node representation learning method with unsupervised
graph neural architecture search for community detection. In
CommGNAS, we design an unsupervised evaluation strategy with
self-supervised and self-representation learning. It represents
the first research work in literature to solve the problems of
unsupervised graph neural architecture search for community
detection. The experimental results show that CommGNAS can
obtain the best performance in community detection tasks on
real-world graphs against the state-of-the-art baseline methods.

Index Terms—Community detection, unsupervised graph
neural architecture search, self-supervised learning, self-
representation learning, graph neural network

I. INTRODUCTION

COMMUNITY detection is one of the most essential
unsupervised tasks in the field of network analysis for

various real-world applications, such as anomaly detection
and scientific discipline discovery [1]. The goal of community
detection in graphs is to identify modules and possibly their
hierarchies simply by using the encoding feature in the graph
topology [2]. The unsupervised learning of node representation
and the node clustering on graphs is a common method to
implement community detection [3]. Graph neural networks
(GNNs) are an effective tool for processing non-Euclidean
graphs. Researchers increasingly focus on GNNs to explore
communities in attributed graphs or online social networks
[4]–[6].

Jianliang Gao, Jiamin Chen, Babatounde Moctard Oloulade, Raeed
Al-Sabri and Tengfei Lyu are with the School of Computer Science and
Engineering, Central South University, Changsha 410083, Hunan, China.
E-mail:{ gaojianliang, chenjiamin, oloulademoctard, alsabriraeed,
tengfeilyu}@csu.edu.cn.

Ji Zhang is with University of Southern Queensland, Australia. E-mail:
Ji.Zhang@usq.edu.au.

Zhao Li is with Zhejiang University, Hangzhou 311121, Zhejiang, China.
E-mail: zhao li@zju.edu.cn.

(Corresponding Author: Zhao Li)

Attention
Function

const

Aggregation
Function

mean

max

Activation
Function

sigmoid

tanh

relu
...

...

Search Space S
Search Algorithm Architecture

sum

gat tanh

gat

cos

sum

Graph without Label

max

gat sigmoid

Graph with LabelsEstimation Strategy

Supervised GNAS

Unsupervised GNAS
Search Algorithm Architecture Estimation Strategy

Feedback

Validation
Accuracy

Fig. 1. The object of supervised GNAS is the graph with labels, and the
estimation can use the available validation accuracy information to construct
the feedback to guide the search algorithm. However, the unsupervised GNAS
needs to process the graph without labels, and the estimation can’t obtain
practical information from the graph labels to produce feedback for the
search algorithm. How do we construct useful information from unsupervised
learning processes to generate feedback? It is the major challenge for
unsupervised GNAS.

Although GNNs have succeeded in community detection in
graphs, it is time-consuming and requires expert knowledge
to construct and fine-tune graph neural network architecture
for different graph data sets. Automatic machine learning can
design good performance models based on different feature
distributions and downstream tasks. Therefore, automatic ma-
chine learning methods based on GNN modeling have been
used in an increasing number of scenarios [7]. Graph neural
architecture search (GNAS) [8] is an effective method for
designing GNN architecture to achieve good performance for
graph data with different feature distributions. The GNAS
mainly consists of the following four steps: (1) building the
search space of the GNN architecture; (2) designing the search
algorithm and using it to sample GNN architecture from the
search space; (3) using an estimation strategy to evaluate the
sampled GNN architecture to generate feedback; (4) using
the feedback to iterate the search algorithm for improving
the sampling performance. Traditional GNAS methods are
designed for supervised learning problems. The estimation
strategy uses labeled data to generate feedback to guide the
search algorithm in the supervised learning process. However,
there is much-unlabeled graph data in the real world, especially
on social networks. As shown in Figure 1, the core challenge
in achieving an unsupervised graph neural architecture search
for community detection is that the estimation strategy cannot
produce feedback based on unlabeled graph data for the search
algorithm.

To solve this challenge, we propose CommGNAS, an effec-
tive node representation learning method with unsupervised
graph neural architecture search for community detection.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3270181

2

CommGNAS consists of the following four major modules: (1)
The unsupervised neural architecture search. This module has
an unsupervised estimation strategy based on self-supervised
and self-representation learning for GNAS. Specifically, the
strategy uses the loss change in self-supervised and self-
representation learning to construct feedback. It can effectively
guide the search algorithm to sample a GNN architecture
with good performance for unsupervised tasks. (2) The self-
supervised learning module. CommGNAS uses the GNN
model to encode graph data G for obtaining the node embed-
ding matrix Z and the self-supervised loss change in this mod-
ule. (3) The self-representation learning module. CommGNAS
generates a similarity matrix S of node embedding matrix Z
and self-representation loss change. (4) CommGNAS produces
the cluster results by spectral clustering with the similarity
matrix S for the community detection task.

The main contributions of this paper are summarized as
follows: (1) We propose CommGNAS1, an effective node
representation learning method with unsupervised graph neural
architecture search for community detection. (2) In Com-
mGNAS, we propose an unsupervised estimation strategy
based on self-supervised and self-representation learning for
graph neural architecture search, which enables graph neural
architecture search to effectively deal with unsupervised tasks.
(3) We have conducted extensive experiments based on real
graph data, and the experimental results show that Com-
mGNAS can obtain the best performance on F1-score (F1),
normalized mutual information (NMI), and cluster accuracy
(Acc) compared to other baseline methods.

The remainder of this paper is organized as follows. In
section one, we introduce the related work of community de-
tection based on the GNN model and graph neural architecture
search. In section two, we show our proposed CommGNAS
framework and explain each part’s working principle in detail.
In section three, we present the experimental results and
explain the effectiveness of the CommGNAS. The last section
is the conclusion of this work.

II. RELATED WORK

This section highlights related work in community detection
and graph neural architecture search.

A. Community Detection

In this section, we present the related work about commu-
nity detection comprehensively. The idea of community struc-
ture in networks has been proposed by Girvan and Newman
[9], which opened up a pertinent study in the field based on
semantic information [10] and network structure [11].

1) Traditional Methods: The earlier methods for com-
munity detection were static methods that aim to study a
community’s structure from the current state of the networks.
However, this method cannot be used in real-world dynamic
networks. Static methods can further be categorized as graph
partitioning, hierarchical clustering, partitional clustering, and
spectral clustering. In graph partitioning, also known as graph

1https://github.com/AutoMachine0/CommGNAS

clustering, vertices of a graph are divided into partitions of
fixed size so that the number of edges between the partition
is minimized [12]. Each node is associated with only one
partition in this approach, and no overlaps occur. Spectral clus-
tering enables dynamic node learning network structures and
maps nodes to other nodes in a low-dimensional space. The
modern spectral clustering algorithm consists of three steps,
including regularization of a proper adjacency or Laplacian
matrix, a form of spectral truncation, and a k-means algorithm
in the truncated spectral-domain [13].

2) Deep Learning-based Methods: In recent years, deep
learning (DL) has attracted much attention and has been shown
to have great power in a wide variety of problems, including
community detection [14]. Deep learning-based methods for
community detection can be classified into three main classes,
including auto-encoder-based methods [15], generative adver-
sarial network-based methods [14] and convolutional network-
based methods [16]. Auto-encoders (AEs) [17] are neural
network models that aim to minimize the error between input
feature representation and output feature representation based
on cross-entropy loss. Thus Auto-encoders can learn the latent
structural features inside the data and perform clustering based
on the latent structural features. To directly discover commu-
nities, many researchers have integrated clustering into the
model [18]. Depending on the type of auto-encoder used, exist-
ing models can be divided into four types: stacked AE-based,
where stacked AEs depict multi-level and dynamic information
to flexibly reinforce wide community detection implementa-
tions [19], sparse AE-based, where a sparsity penalty is intro-
duced in network hidden layers, denoising AE-based, where
it aims to minimize the reconstruction loss between the input
feature and output feature, and variational auto-encoders that is
an extension of AEs with variational inference. Convolutional
neural networks (CNNs) and graph convolutional networks
(GCNs) are popular methods for community detection. CNNs
are an effective method to extract Euclidean data features, such
as image data, the convolution kernels of different layers can
learn feature representations of different levels to improve the
performance of downstream tasks. Xin et al. [20] proposed the
first community detection model based on CNNs. They use
max-pooling operators for network representation and a fully
connected layer for community detection. Later, Cai et al. [21]
proposed Community Network Local Modularity R (ComNet-
R), classifying edges within and between communities by
CNNs. ComNet-R prepares the independent preliminary com-
munities by removing inter-community edges and merging
communities based on local patterns. Many other CNNs-based
methods have been proposed [22], but they showed some
limitations when applied to non-Euclidian data and have yet to
be up to the success they had known until then on Euclidean
data. This is because non-Euclidian data does not have the
spatial translation invariance of Euclidean data. Graph neural
network [7] performs convolution operation based on message
passing mechanism to successfully solve the problem that non-
Euclidian data does not have spatial translation invariance.
Sun et al. [23] propose a probabilistic generative model to
collaboratively learn community membership and node rep-
resentation. More recently, D. Bo et al. [16] presented GNN

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3270181

3

algorithms that can operate directly for community detection
in a graph. He et al. [24] derived node community membership
in the hidden layer of an encoder and introduced a community-
central dual decoder to reconstruct network structures and
node attributes in an unsupervised manner. S. Bandyopad et
al. [25] proposed the SEComm framework for the community
detection task. The SEComm used self-supervised and self-
representation learning to construct an unsupervised learning
training data set. It trained the GCN and MLP using the
training data set based on the combined loss function for
the downstream unsupervised learning task. Despite their
success, these approaches require dense manual work and
domain knowledge. Our work aims to automatically design a
GNN architecture with good performance for different graphs
without labels to achieve community detection tasks.

B. Graph Neural Architecture Search

The target of the graph neural architecture search (GNAS)
is finding the optimal architecture of the GNN model that
will have a competitive performance for the targeted task.
The existing method usually consists of three components:
a search space S, a search algorithm A, and an estimation
strategy E. The search algorithm A selects an architecture s
from a predefined search space S. The estimated performance
of s is calculated using the estimation strategy E to generate
feedback for the search algorithm A. This section presents the
related work about graph neural network architecture search
comprehensively.

1) Method based on Reinforcement Learning: GNAS mod-
els based on the reinforcement learning method use a recurrent
network as a controller to sample the descriptions of GNN
architecture from the search space. Then, they compute the
rewards of the sampled GNN architecture as feedback to max-
imize the expected performance of sampled GNN architecture
on the validation accuracy. This method has been used in
many works for GNAS [8], [26] with slight differences. Y.
Ga et al. [8] proposed the GraphNAS framework based on
reinforcement learning and constructed the first general graph
neural network search space. They also adopted the parameter-
sharing strategy to optimize efficiency to avoid training each
model from scratch to convergence. K. Zho et al. [27] proposed
Auto-GNN that uses multiple recurrent networks to search
for different GNN architecture components. R. S. Sutton.
[28] proposed a reinforcement neural architecture search using
a controller-based reinforcement rule of policy gradient to
gradually validate architectures with small steps.

2) Method based on Genetic Algorithm: The method based
on genetic algorithm [29]–[31] use a genetic population-based
meta-heuristic optimization algorithm, which is inspired by
the mechanics of natural selection and natural genetics. In
these works, the individual is described by a GNN architecture.
However, because of the large size of the search space, it is
almost impossible to determine the fitness of all individuals
as training one GNNs is time-consuming, especially with a
large graph data set. Another limit of this method is the
slow convergence [7]. To alleviate these limitations, GraphPAS
[31] proposes a parallel genetic algorithm that explores the

search space in parallel, and GNN architecture distribution
information entropy is used to constrain the direction of
genetic search, which improves the search convergence of the
genetic method.

3) Method based on Bayesian Optimization: The method
based on bayesian optimization (BO) uses a probabilistic-
based method combining a prior probability with a likelihood
function. The process of bayesian optimization is adaptive,
with predictions and uncertainty estimates updated as new
observations are made. These models work by building a
probability distribution over sampled candidates tested by
the surrogate function and using the acquisition function to
interpret the response from the surrogate function and effi-
ciently search for candidate samples before selecting them to
evaluate the actual objective function. The acquisition function
is optimized at each step to determine the best sample for the
next evaluation. Then, the model is updated, and the process is
repeated until convergence. Although BO has achieved good
performances in NAS [32], Yoon et al. [33] has designed a
search algorithm with BO for GNAS. BO is computationally
expensive and almost impossible for large-scale search space
to work efficiently [7].

4) Method based on Differentiable Search: The basic idea
of differential search is to use trainable architecture parameters
to continue the whole search space to construct a hypernet
[34]. To improve the efficiency of GNAS, Zhao et al. [35]
proposed the macro and micro architecture of the GNN search
space with an efficient differential search process. Wei et
al. [36] designed the specific GNN search space for graph
classification. It optimizes the differential search process with
the characteristics of graph pooling operations for graph
classification. Qin et al. [37] further analyzed the relationship
between the exploration direction of differential search and
graph feature distribution, and discussed the feasibility of
the GNN architecture search with graph data optimization.
Compared with the previous search method, the differential
search method effectively improves the efficiency of GNAS.

III. PROBLEM DEFINITION

Given a graph G = (V,E) where V is a set of nodes,
and E is a set of edges. v ∈ V is used to denote a node
and euv = (u, v) ∈ E denotes an edge directed from u
to v. We assume that each node u carries properties also
called features denoted by vectors xu. The node features of
a graph are represented by a matrix X ∈n×d where n stands
for the number of nodes in the graph and d represents a node
feature dimension. The goal of our work is to learn a partition
function f : V → [K], where [K] = {1, 2, ...,K} is a set
of the community (cluster) indices to map each node to a
community by exploiting the graph representation learning.
The partition of function f should follow these principles:
(1) There should be more internal connections between nodes
partitioned into a community. (2) Node representations pro-
cessed by the partition function f in the same community
should have higher spatial similarity than node representations
in other communities.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3270181

4

sum

gat sigmoid

...

12
13
14
15

n1

n112 13 14 150

...
2n 3n 4n 5n 01n

...
... ...
... ns112s 13s 14s 15s1

...
2ns 3ns 4ns 5ns 11ns

... ...

Cluster 1

Cluster 2Cluster 3

Feature Engineering GNN Model

Spectral Clustering

21s 23s 24s1 25s ns2

... ...

...

）（ nnd ）（ nnd

）（ rnd

Decomposition

Self-representation Learning

Input

Coefficient Matrix CSimilarity Matrix S

Embedding Matrix Z

a

b

...

...

... ...

...

...

...

3z

5z

2

11 z
i

n
iiz

1z
 2z

4z

Self-supervised Learning

sum

gat
sigmoid

c

Unsupervised Graph Neural Architecture Search

Search
Space

Search
Alogrithm

Unsupervised
Estimation

Strategy

Feedback

g

0 0 0

0 0 0

0 0 0 0 0 0

0 0 0
Graph Data G

Output

epoch
 loss

SSLC=abs(-)

epoch
loss

SRLC=abs(-)

start
end

start
end

start end

start end

X

×zn

d（n ×r）
Embedding Matrix Z

）（ und

...

...

...

Feature Matrix

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Fig. 2. CommGNAS framework. The unsupervised graph neural architecture search module uses the search algorithm to sample the GNN architecture from
the search space and builds the GNN model g based on the sampled architecture. In the self-supervised learning module, CommGNAS gets the training
graph data sets based on feature engineering. Then it uses the training graph data sets to train the GNN model g for getting self-supervised loss change
(SSLC), where SSLC=abs(βstart-βend), βstart, βend stands for the loss value after the first training epoch and the last training epoch respectively in
the self-supervised learning process. And using the trained GNN model g to encode the original node feature matrix X for obtaining the node embedding
matrix Z. In the self-representation learning module, using a single-layer linear MLP to reconstruct the embedding matrix Z to get coefficient matrix C and
self-representation loss change (SRLC), where SRLC=abs(αstart-αend), αstart, αend represents the loss value after the first training epoch and the last
training epoch respectively in the self-representation learning process. Using matrix decomposition to obtain the similarity matrix S based on the coefficient
matrix C. Finally, using similarity matrix S as input of spectral clustering to achieve community detection.

IV. PROPOSED FRAMEWORK COMMGNAS
CommGNAS is an unsupervised automatic graph neural net-

work modeling framework for the community detection task,
which consists of three parts. We first introduce the overall
framework of CommGNAS and then introduce each part of
the framework in detail. The first part is the self-supervised
learning module, the second part is the self-representation
learning module, and the last part is the unsupervised graph
neural architecture search module.

A. Overview of CommGNAS

As shown in Figure 2, the graph data G with node features
and topological structure is used as the input of CommGNAS.
Then, the unsupervised graph neural architecture search mod-
ule uses the search algorithm to sample the GNN architecture
from the search space and builds the GNN model g based
on the sampled architecture, as shown in sub-figure c. To
encode the topological structure and node features of the graph
data G, in the self-supervised learning module, first, we get
training graph data sets X1, X2 from feature engineering
and use them to train GNN model g for obtaining the self-
supervised loss change (SSLC). We use the trained GNN
model g to encode the original node feature matrix X for
obtaining node embedding matrix Z and, as shown in sub-
figure a. We construct a self-representation learning module to
further enhance the spatial similarity of similar node features
in the node embedding matrix Z. As shown in sub-figure

b, we reconstruct the embedding matrix Z based on self-
representation learning to get coefficient matrix C and self-
representation learning loss change (SRLC), the goal of self-
representation learning is to use other node feature vectors
to represent the target node feature vector. We use the SSLC
and SRLC to construct the unsupervised estimation strategy
to generate feedback. The feedback is passed into the search
algorithm and guides the search direction in the search space to
get the optimal GNN g. Finally, we get the coefficient matrix C
with the optimal GNN g sampled from the unsupervised graph
neural architecture module, and use matrix decomposition to
obtain the similarity matrix S based on the coefficient matrix
C, we perform spectral clustering using the similarity matrix
S as input to achieve community detection.

B. Self-supervised Learning

Self-supervised learning is a method for effectively mining
the inherent characteristics of data without data labels, it can
provide valuable feature representations for downstream tasks.
Self-supervised learning [38] has been successfully applied to
graph neural networks. Some previous works [39], [40] use it
to obtain graph-level and node-level embedding representation.
We use self-supervised learning based on the contrastive
mechanism to encode the graph node feature matrix X . The
formula is as follows:

Z = g(X,E), (1)

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3270181

5

where Z represents the node embedding matrix, g stands for
the graph neural network model sampled by the unsupervised
graph neural architecture search module, X is the node feature
matrix, and E represents the edge relationship information
after feature engineering. There are five parts in the self-
supervised learning process of CommGANS, namely Feature
Engineering, Feature Matrix X , GNN Model g, Embedding
Matrix Z, and Self-supervised Loss Function.

1) Feature Engineering: Feature engineering consists of
two sections. Section one is the node dropout operation, which
randomly changes some node feature vectors to all zero vectors
in the original node feature matrix X . The second section is the
edge dropout operation, which randomly deletes some edges
in the original graph data G.

2) Feature Matrix X: In the self-supervised learning mod-
ule, to build a contrastive learning target, for the given graph
data G = (V,E), we perform feature engineering on the
original graph data G to get different graph data G1, G2. We
can obtain two different node feature matrices X1, X2 from the
graph data G1 and G2. We use the node feature matrices X1,
X2 as the input of the sampled GNN model g to get the output
node embedding matrix Z1 and Z2. We construct a consistent
number of positive and negative sample pairs as a training set
for self-supervised learning based on node embedding matrix
Z1 and Z2. Each positive sample pair consists of two nodes,
which are from the same node corresponding to Z1 and Z2.
The negative sample pair is composed of two cases. Case 1,
the negative sample pair is composed of different nodes of the
Z1. Case 2, the negative sample pair is composed of different
nodes of different node embedding matrices Z1 and Z2.

3) GNN Model g: In the unsupervised graph neural archi-
tecture search module, the search algorithm will sample GNN
architecture from search space, and build sampled GNN model
g based on the GNN architecture.

4) Embedding Matrix Z: When the training process of the
sampled GNN model g is completed, we use the original node
feature matrix X as the input of the sampled GNN model g
to obtain the node embedding matrix Z.

5) Self-supervised Loss Function: We use cosine similar-
ity to measure the distance between positive and negative
sample pairs to construct a loss function. The goal of the loss
function is to make the distance between the positive sample
pairs closer and the distance between the negative sample pairs
as far as possible, the formula is as follows:

LSS =
∑
i∈V

[log(
∑
j∈V

e
cos(z1,i,z1,j)

τ + e
cos(z1,i,z2,j)

τ)

− cos(z1,i, z2,i)

τ
],

(2)

where z1,i, z1,j represent the i-th node embedding feature
vector and the j-th node embedding feature vector in the node
embedding matrix Z1. And z2,i, z2,j stand for the i-th node
embedding feature vector and the j-th node embedding feature
vector in the node embedding matrix Z2. The V is the set of
nodes in graph G, and the τ is the temperature parameter.
When the training is over, we use the first epoch loss value
βstart to subtract the last loss value βend to get the absolute

value of the loss change SSLC, which will become part of
the feedback signal.

C. Self-representation Learning

Inspired by the principle of self-representation learning [41],
to further enhance the spatial similarity of features between
similar nodes in the node embedding matrix Z obtained in the
previous module, we use a single-layer linear MLP to build
the self-representation learning module. We call the trainable
parameter matrix of the single-layer linear MLP coefficient
matrix C in this work. As shown in the formula (3).

Zsr = MLP (Z;C), (3)

where Zsr represents the output feature matrix of self-
representation learning based on the MLP with the coeffi-
cient matrix C. When the self-representation learning module
training is completed, we can get the coefficient matrix C,
which contains the intrinsic spatial similarity between each
node in the graph. Then, based on the decomposition of the
coefficient matrix C, we can obtain the similarity matrix S of
the node embedding matrix Z. The self-representation learning
of CommGNAS contains two important matrices and one loss
function, namely Coefficient Matrix C, Similarity Matrix S,
and Self-representation loss function.

1) Coefficient Matrix C: The core idea of self-
representation learning is to use the linear combination
of other node features vector in the node embedding matrix Z
to represent the target node feature vector zi =

∑
j∈V αi,jzj ,

j ̸= i. The coefficient matrix C is composed of αi,j where
the coefficient matrix C is a square matrix and the diagonal
elements are zero.

2) Similarity Matrix S: To use spectral clustering to
achieve community detection, we need to obtain the similarity
matrix S of the node embedding feature Z. Based on the
coefficient matrix C, a heuristic method [42] to calculate the
similarity matrix S, the calculation process is as follows:
(1) C∗ = 1

2 (C + CT);
(2) Decomposing matrix C∗ using SVD, C∗ = U

∑
V T ;

(3) Computing matrix R = U
∑ 1

2 and normalize each row
of R;

(4) Obtaining matrix R∗ by setting negative values in R to
zero;

(5) Building similarity matrix S = R∗+R∗T

∥R∥∞
.

3) Self-representation Loss Function: We use the square
of the Frobenius norm to measure the difference between the
target node embedding vector zi and the linear combination of
other node embedding vectors

∑
j∈V αi,jzj . The destination

of the loss function is to minimize the difference between
them. The loss function is shown in the following formula:

LSR = ∥Z − Zsr∥2F + λ ∥C∥2F , (4)

where Z represents the node embedding matrix, C stands for
the coefficient matrix, ∥·∥2F represents the square of matrix
Frobenius norm, ∥C∥2F is the regularization term of the loss
function, and λ is the regularization strength. When the self-
representation learning training process is completed, we use

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3270181

6

mutation selection probability vector

P

gat
tanh

selection

sum

gat
sigmoid

Population

Search Direction Restricting

sum

gat
relu

selection mutation

mean

gat
tanhsum

cos
relu

selection

sumconst
sigmoidmean

Search Space

entropy vector

H

layer 1

att agg act head dim

layer 2
layer l

...

layer 1

att agg act head dim

layer 2
layer l

...

softmax

sum

gat

tanh

sum

gat

relu

mean

cos

relu
...

mutation num = m

mutation num = m - 1 ...

mutation num = 1

Self-tuning Search

sum

gat
sigmoid

GNN Model

search epoch = 1

search epoch = int(N/m)

search epoch = N

...

Unsupervised Graph Neural Architecture Search

Attention
Function

Aggregation
Function

Activation
Function

Multi Head

Hidden
Dimension

mutation

mutation

Search Algorithm
Unsupervised

Estimation Strategy

Feedback = SSLC SRLC

sum

cos sigmoid

sum

gat
tanh

sum

const
sigmoid

...
Children GNN

Updating

epoch
 loss

SSLC=abs(-)

epoch
loss

SRLC=abs(-)

start
end

start
end

start end

start end

Fig. 3. Unsupervised Neural Architecture Search Framework. Randomly sampling N GNN architectures from the search space, and using an unsupervised
estimation strategy to get the fitness of each architecture. Selecting the top k GNN architectures as the population based on fitness. Calculating the information
entropy vector H⃗ using the architecture component value frequency distribution in the population. Computing mutation selection probability pi based on
information entropy vector H⃗ . Getting the mutation selection probability vector P⃗ . Using self-tuning search to sample child GNN architectures. Using the
product of SSLC and SRLC as fitness for each child’s GNN architectures. Where SSLC=abs(βstart-βend), βstart, βend stands for the loss value after the
first training epoch and the last training epoch respectively in the self-supervised learning process. And SRLC=abs(αstart-αend), αstart, αend represents
the loss value after the first training epoch and the last training epoch respectively in the self-representation learning process. Collecting the child GNN
architectures generated by the self-tuning search process as the children. If the fitness of the child GNN architecture is greater than the threshold, adding the
child architecture into the population.

the same method as the self-supervised module to calculate the
self-representation loss change (SRLC). SRLC forms another
part of the feedback signal generated by the unsupervised
evaluation strategy.

D. Unsupervised Graph Neural Architecture Search

Inspired by the study of the learning rate decay strategy
[43], we proposed the self-turning search strategy based on
the GraphPAS [31] search algorithm for the CommGNAS
framework to improve the search performance further. In this
module, we construct an effective unsupervised evaluation
using the product of the self-supervised loss change (SSLC)
and the self-representation loss change (SRLC) for generating
feedback to update the search algorithm. The framework of the
self-tuning graph neural architecture search module is shown
in Figure 3.

1) Search Space: In this work, we use a search space
containing five graph neural network architecture components.
Different graph neural network components have different
functions.

• Attention Function: The attention function calculates
the correlation coefficient ai,j between the center node
and neighbor nodes, which can measure the contribution
of different neighbor node features to the center node
representation. The table I shows the different attention
functions we used in this work, where di represents the
degree of node i, hi stands for the representation of node
i, W is the learnable parameter vector, and ∗ represents
the matrix multiplication.

• Aggregation Function: This function aggregates the
neighbor node representations of the current layer with

TABLE I
ATTENTION FUNCTIONS

Attention Class Function

const aconst
ij = 1

gcn agcnij = 1/
√

didj

gat agatij = reaky relu(Wc ∗ hi +Wn ∗ hj)

sym-gat asymij = agatij + agatji

linear alinij = tanh(sum(Wc ∗ hi))

cos acosij =< Wc ∗ hi,Wn ∗ hj >

gene-linear agenij = Wb ∗ tanh(Wc ∗ hi +Wn ∗ hj)

correlation coefficients to obtain the central node repre-
sentation of the next layer. The aggregation function is
the key operation in the graph neural network.
Attention Head: Calculating multiple independent at-
tention correlation coefficients for the central node can
effectively stabilize the learning process, which is crucial
for the rapid convergence of the GNN model.

• Hidden Dimension: Effectively transforming the dimen-
sions of the original features based on the learnable
matrix can enhance the expression of the hidden layer.
It can help the GNN model achieve better performance.

• Activation Function: The activation function gives the
model the ability to fit nonlinear data, and different acti-
vation functions have different effects on the performance
of the GNN model.

The functions of different graph neural network components
in the search space are shown in the table II

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3270181

7

TABLE II
SEARCH SPACE

Component Candidate Values

Attention function listed in TABLE I

Aggregation function sum, mean, max

Attention head 1, 2, 4, 8

Hidden dimension 8, 16, 32, 64 128, 256

Activation function
tanh, sigmoid, relu,
linear, relu6, elu,
leaky relu, softplus

2) Search Algorithm: The learning rate decay strategy
makes the learning rate decay automatically as the training
epoch increases during the training process. Related studies
[43] have proved that the learning rate decay strategy can
make the optimization function converge faster and achieve
better optimization results. Inspired by the learning rate decay
strategy, we propose a self-tuning search algorithm with the
exploration-intensity decay strategy. When the search algo-
rithm samples the graph neural network architecture in the
search space, the exploration intensity will decrease with
the search epoch increases. The unsupervised graph neural
architecture search module includes the following processes:

• Population: Randomly sampling N GNN architectures
from the search space, and using an unsupervised estima-
tion strategy to get the fitness of each architecture. Then,
select the top k GNN architectures as the population
based on fitness.

• Search Direction Restricting: Calculating the infor-
mation entropy h(ci) by Eq. 5 using the architecture
component value frequency distribution in the population.

h(ci) =−
∑
j

f(vj)log2f(vj)

i ∈ [1, 5× l], l ∈ N∗,

(5)

where h(ci) stands for the information entropy of the i-
th architecture component, vj represents the j-th value
of the i-th component in the population, f(vj) denotes
frequency of occurrence of vj in the population, l is the
number of GNNs layer. Next, achieving the information
entropy vector H⃗ = [h(c1), h(c2), ..., h(ci)]. After, com-
puting mutation selection probability pi based on Eq. 6.
Finally, getting the mutation selection probability vector
P⃗ = [p1, p2, ..., pi].

pi = softmax(h(ci))

i ∈ [1, 5× l], l ∈ N∗.
(6)

• Self-tuning Search: Using wheel strategy to select t
parent individuals based on fitness from the population.
Perform mutation operation on every parent individual
based on mutation-selection probability vector P and mu-
tation intensity m to get t new child GNN architectures,
in which each parent GNN architecture will select m

components based on probability vector P for random
mutation. For the self-tuning search strategy, assuming
that the total number of search epochs is N , in the search
process, each time the search epoch increases by int(Nm),
which int represents rounding, the mutation intensity
m will automatically decrease by one until mutation
intensity m is equal to one.

• Children GNN& Updating: Collecting the GNN archi-
tectures generated by the self-tuning search process as
the children GNN. If the fitness of the children GNN
architecture is greater than the threshold, add the children
architecture to the population.

3) Unsupervised Estimation Strategy: The evaluation
strategy of the traditional graph neural architecture search
(GNAS) method is designed based on the supervised learning
problem, so the traditional GNAS method cannot solve
the problem of unsupervised learning. To overcome this
challenge, we propose an unsupervised learning estimation
strategy based on self-supervised and self-representation
learning in CommGNAS. We use the product of the self-
supervised loss change (SSLC) and the self-representation
loss change (SRLC) to construct an unsupervised estimation
strategy to generate feedback for the search algorithm.

In supervised learning, the loss convergence value and loss
change are important indicators to measure whether the model
is under-fitting. The loss change refers to the absolute value
of the difference between the first epoch loss value and the
last epoch loss value at the end of the model training. In our
CommGNAS framework, the loss function of self-supervised
and self-representation learning is similar to the optimization
objective of the supervised learning loss function. When the
loss value of self-supervised and self-representation learning
converges to a smaller value or loss change is large, the
model can better mine the inherent features and similarity re-
lationships of unlabeled data. The CommGNAS includes self-
supervised and self-representation learning processes. We need
to use the loss information generated in the two unsupervised
learning processes to guide the search algorithm to sample
GNN architecture in the search space. The effective use of loss
change information is the key to constructing an unsupervised
evaluation strategy. To reduce the hyperparameters of the
unsupervised graph neural architecture search module and
to avoid the coupling problem caused by the inconsistent
magnitude of the two different loss changes, we use the
product of two-loss changes to construct our unsupervised
evaluation strategy. The formula is as follows:

Feedback = |αstart − αend|
× |βstart − βend| ,

(7)

where αstart, αend represents the loss value after the first
training epoch and the last training epoch respectively in the
self-representation learning process. βstart, βend stands for the
loss value after the first training epoch and the last training
epoch respectively in the self-supervised learning process. The
meaning of |·| is to take the absolute value.

In this work, the optimal GNN architecture designed by
CommGNAS for different data sets is shown in Figure 4.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3270181

8

TABLE III
PERFORMANCE OF COMMUNITY DETECTION BY COMMGNAS AND OTHER BASELINE METHODS.

data set Metrics VAE VGAE MGAE ARGE ARVGE AGC GUCD SEComm CommGNAS

Cora
F1-score 41.97% 41.50% 38.01% 61.90% 62.70% 65.61% - 73.94% 74.50%

NMI 40.69% 38.45% 45.57% 44.90% 45.00% 53.68% 32.3% 56.04% 58.68%
Acc 53.25% 55.95% 63.43% 64.00% 63.80% 68.92% 50.5% 75.92% 75.96%

Citeseer
F1-score 29.13% 31.88% 39.49% 54.60% 52.90% 62.48% - 60.25% 62.58%

NMI 18.34% 22.71% 39.75% 35.00% 26.10% 41.13% 27.43% 42.53% 42.87%
Acc 41.26% 44.38% 63.56% 57.30% 54.40% 67.00% 54.47% 69.82% 70.06%

Wiki
F1-score 15.35% 20.49% 39.20% 38.27% 37.80% 40.36% - 44.48% 47.26%

NMI 17.33% 30.28% 47.97% 39.50% 40.01% 45.28% - 51.38% 54.48%
Acc 53.25% 28.67% 50.14% 41.40% 41.55% 47.65% - 53.10% 56.05%

 Att Agg Head Dim Act Att Agg Head Dim Act
 const mean 4 256 relu6 linear sum 4 64 tanhCora

 Att Agg Head Dim Act Att Agg Head Dim Act
 sum 2 64 tanh const max 2 128 relu6Citeseer

 Att Agg Head Dim Act Att Agg Head Dim Act
 gcn mean 2 256 gat sum 2 128 Wiki

Second LayerFirst Layer

sigmoid

sym-gat

leaky_relu

Fig. 4. An example of the optimal GNN architecture designed by CommG-
NAS for different data sets on community detection.

E. Spectral Clustering

Spectral clustering is an unsupervised clustering model
with simple principles and better performance than traditional
clustering methods such as K-means. When CommGNAS
obtain the optimal GNN architecture based on an unsupervised
graph neural architecture module, it will use the optimal GNN
architecture to construct the GNN model g. Then, CommG-
NAS trains the optimal GNN model g with the self-supervised
learning module and achieve the node embedding matrix Z.
Next, the framework uses the node embedding matrix Z as
the input of the self-representation learning module to get
coefficient matrix C. After, based on the coefficient matrix C,
CommGNAS performs the matrix decomposition operation to
construct the similarity matrix S of the node embedding matrix
Z. Finally, output the final community detection results based
on the similarity matrix S with spectral clustering.

V. EXPERIMENT RESULTS

In this section, we first present the experimental data set.
Then, we show the setup used in our experiment. Next,
we briefly introduce the baseline methods. Finally, we will
introduce our performance experiment and ablation experiment
results.

A. Datasets

To evaluate the performance of the CommGNAS frame-
work, we use three publicly graph data sets [44], [45]. Data
set statistics are summarized in Table IV. Cora and Citeseer
are citation data sets in which nodes correspond to papers and
edges connect nodes if one paper references another paper
in the data set. Cora contains seven ground truth labels for

TABLE IV
BENCHMARK GRAPH DATA SETS.

data set Nodes Edges Node Features Labels

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6

Wiki 2,405 17,981 4,973 17

unsupervised learning performance evaluation. Each category
indicates which machine learning method the paper belongs
to, such as genetic learning methods, reinforcement learning
neural networks, etc. Similarly, Citeseer includes six ground
truth labels. Wiki is a collection of webpages in which nodes
are individual webpages that are linked together if one links
to another. And Wiki data set contains seventeen ground truth
labels. Each of these data sets has an attribute feature vector
for each node.

B. Experiment Setup

For our proposed CommGNAS framework, the hyperparam-
eters we used in this work for different modules are as follows:

• Self-supervised Learning Module: In order to get train-
ing graph data sets G1 and G2, we set the edge dropout
rate to 0.2 and 0.4 respectively for G1, G2, and the
node dropout rate to 0.6 for two graph data sets. For
the training process of GNN model g, we set the model
learning rate to 5 × 10−3 and the L2 regularization
intensity to 5×10−4, the training epoch is 200. We choose
Adam as the optimization function. For the temperature
parameter in the self-supervised loss function, we set it
as 0.4.

• Self-representation Learning Module: In this module,
we use Adam as the optimizer, where the learning
rate is set to 10−3, and the L2 regularization strength
is set to 10−5. The regularization strength in the self-
representation learning loss function is 0.5. The training
epoch is 80.

• Unsupervised Graph Neural Architecture Search
Module: We set the number of random initialization
GNN architectures to 100, and the initial mutation m
is set to 4, and the initial population size is 5. The parent
size is 5 for every search epoch and the search epoch is
100. The sampled GNN architecture layer is fixed to 2. In

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3270181

9

TABLE V
ABLATION STUDY OF COMMGNAS.

data set Cora Citeseer Wiki
Metrics F1 NMI Acc F1 NMI Acc F1 NMI Acc

CommGNAS-with-GCN 69.99% 58.11% 73.74% 58.09% 37.97% 62.70% 41.75% 52.44% 52.44%
CommGNAS-with-GAT 72.80% 56.26% 73.34% 59.30% 37.46% 61.98% 39.24% 46.11% 48.36%
CommGNAS-w/o-SR 65.86% 58.37% 72.30% 61.68% 40.76% 65.04% 45.71% 52.54% 53.47%

CommGNAS 74.50% 58.68% 75.96% 62.58% 42.87% 70.06% 47.26% 54.48% 56.05%

the GNN architecture search process, the training epoch
of sampled GNN model g is 100 in the self-supervised
learning module.

C. Method Baseline

To demonstrate the superiority of CommGNAS, we compare
the optimal GNN architectures identified by our CommGNAS
framework against a set of unsupervised GNNs for community
detection tasks. GNN-based techniques have the advantage
of being able to make use of both the topological structure
and the node attribute of the graph. In our experiments, we
use the methods that learn the node embeddings and then
utilize clustering algorithms on the node embeddings to form
groups including graph autoencoder (GAE) and graph vari-
ational autoencoder (VGAE) [46], adversarially regularized
graph autoencoder (ARGE) and variational graph autoencoder
(ARVGE) [47], and marginalized graph autoencoder (MGAE)
[48]. We also use the recent community detection methods
including GUCD [24], which employs an auto-encoder-based
framework to obtain direct community category for every node
in the graph, and AGC [44], which uses high-order graph
convolution to get node embeddings and detect communities
via spectral clustering on the embeddings. and SEComm [25],
an end-to-end GCN model based on self-supervised and self-
representation learning mechanisms for community detection.

D. Performance of Community Detection

The comparison of performance experiment results on three
data sets is reported in Table III. We use three popular
metrics to evaluate the quality of community detection in-
cluding macro F1-score (F1), normalized mutual information
(NMI), and clustering accuracy (Acc). We use ground truth
community labels of the nodes only to get the performance of
these quality metrics.

We have gotten the best results from the available literature
[25]. We use the symbol − to represent the result of that
algorithm for the data set that is not publicly available. The
average improvement of our framework to the best baseline is
0.56%, 2.64%, and 0.04% for F1-score, NMI, and Acc on the
Cora data set and 0.1%, 0.34% and 0.24% on Citeseer data
set, which justifies the effectiveness of our model. Particularly,
our proposed model also outperforms other best baselines by
2.78% for F1-score, 3.1% for NMI, and 2.8% for Acc on the
Wiki data set. The better performance of our framework is
attributed to the fact that (a) CommGNAS can automatically
design the optimal GNN model from the search space to en-
code the node feature, it can better mine the internal structure

features of graph data, and (b) our proposed unsupervised
estimation strategy can effectively guide the search direction
of the search algorithm to sample good GNN architectures for
the downstream unsupervised tasks. Specifically, in the self-
supervised learning module, contrast-based self-supervised
learning can effectively mine the internal structural features
and correlations between nodes in graph data. In the self-
representation module, the coefficient matrix obtained from
the method of reconstructing the node embedding matrix
can enhance the spatial similarity of the nodes with similar
features in the graph data. At the same time, the similarity
matrix generated by the coefficient matrix decomposition can
well represent the internal spatial similarity between similar
nodes in the graph data. In the unsupervised GNAS module,
the unsupervised estimation strategy constructed by the self-
supervised and self-representation learning loss changes can
generate effective feedback to update the search algorithm
for sampling the better GNN architectures. In the process of
sampling the GNN architecture, the search algorithm based on
the self-tuning strategy can automatically tune the intensity of
the exploration, which enhances the performance of the search.

E. Ablation Study
Since there are different modules in CommGNAS, we

analyze their impacts via an ablation study. Three variants
of CommGNAS are designed to further explore the different
contribution components of CommGNAS. Table V reports the
performance of our framework and its several variants. We
introduce the variants and analyze their effect respectively.
CommGNAS-with-GCN is the model variant that we use the
GCN model to replace the optimal GNN model sampled from
the unsupervised graph neural architecture search module. The
variant of CommGNAS-with-GAT is similar to the variant
of CommGNAS-with-GCN, the only difference is that we
use the GAT model instead of the optimal GNN model.
CommGNAS-w/o-SR is the model variant in that we remove
the self-representation module and use k-means to complete
the community detection based on the node embedding matrix.
It can be known from the results of ablation experiments, that
compared with the manually designed GNN model, Comm-
GANS can automatically sample the GNN model with better
performance based on an unsupervised GNAS module for the
community detection task. This is because our proposed un-
supervised GNAS module can automatically design different
graph neural network architectures based on different graph
data distributions. The result based on CommGNAS-w/o-
SR illustrates that self-representation learning can effectively
enhance the spatial similarity of similar nodes in graph data.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3270181

10

F. Visualization of Node Embeddings

Finally, we provide qualitative results by visualizing the
node embeddings learned with SEComm and CommGNAS.
Specifically, we use t-SNE [49] to reduce the node embed-
ding to a two-dimensional space from the high-dimensional
space. As shown in Figure 5, each node is colored with
its corresponding ground-truth class label for Citeseer. As
is seen in Figure 5 (b), the node representations learned
with CommGNAS exhibit better discernible clusters in the
projected two-dimensional space than SEComm. The much
clearer cluster structures of learned node representations com-
pared to SEComm verify that the unsupervised estimation
strategy we constructed can guide the CommGNAS to design
an effective GNN model for community detection.

(a) SEComm(Citeseer) (b) CommGNAS(Citeseer)

Fig. 5. Visualization of node embeddings learned with SEComm and
CommGNAS on the Citeseer. t-SNE is applied to project node embeddings
into two-dimensional spaces. Each node is colored with its corresponding
ground-truth class label.

VI. CONCLUSION

In this work, we propose CommGNAS, an unsupervised
graph neural network automatic modeling framework for the
community detection task. In the CommGNAS, we propose
an unsupervised estimation strategy based on self-supervised
and self-representation learning, which enables GNAS to
solve unsupervised problems effectively. We use the product
of self-supervised loss change and self-representation loss
change to construct an unsupervised estimation strategy to
generate feedback. The search algorithm based on the self-
tuning search strategy can sample the better performance
of GNN architecture for the community detection task. The
experiment results show that CommGNAS can achieve state-
of-the-art performance on all the data sets that we used on the
community detection task.

REFERENCES

[1] C.-C. Lin, D.-J. Deng, and S.-Y. Jhong, “A triangular nodetrix vi-
sualization interface for overlapping social community structures of
cyber-physical-social systems in smart factories,” IEEE Transactions on
Emerging Topics in Computing, vol. 8, no. 1, pp. 58–68, 2020.

[2] S. Fortunato, “Community detection in graphs,” Physics reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[3] T. Song, W. Zheng, S. Liu, Y. Zong, Z. Cui, and Y. Li, “Graph-embedded
convolutional neural network for image-based eeg emotion recognition,”
IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 3,
pp. 1399–1413, 2022.

[4] Z. Chen, L. Li, and J. Bruna, “Supervised community detection with line
graph neural networks,” in Proceedings of the International Conference
on Learning Representations, 2019, pp. 1–12.

[5] L. Hutton and T. Henderson, “Toward reproducibility in online social
network research,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 6, no. 1, pp. 156–167, 2018.

[6] X. Huang, H. Cheng, and J. X. Yu, “Dense community detection in
multi-valued attributed networks,” Information Sciences, vol. 314, pp.
77–99, 2015.

[7] B. M. Oloulade, J. Gao, J. Chen, T. Lyu, and R. Al-Sabri, “Graph
neural architecture search: A survey,” Tsinghua Science and Technology,
vol. 27, no. 4, pp. 692–708, 2021.

[8] Y. Gao, H. Yang, P. Zhang, C. Zhou, and Y. Hu, “Graph neural archi-
tecture search,” in Proceedings of the International Joint Conference on
Artificial Intelligence, 2020, pp. 1403–1409.

[9] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” PNAS, vol. 99, no. 12, pp. 7821–7826, 2002.

[10] D. Jin, Z. Liu, W. Li, D. He, and W. Zhang, “Graph convolutional
networks meet markov random fields: Semi-supervised community de-
tection in attribute networks,” in Proceedings of the AAAI Conference
on Artificial Intelligence, 2019, pp. 152–159.

[11] J. Kim and J.-G. Lee, “Community detection in multi-layer graphs: A
survey,” ACM SIGMOD Record, vol. 44, no. 3, pp. 37–48, 2015.

[12] M. E. Newman, “Spectral methods for community detection and graph
partitioning,” Physical Review E, vol. 88, no. 8, p. 042822, 2013.

[13] S. Soor, A. Challa, S. Danda, B. S. D. Sagar, and L. Najman, “Iterated
watersheds, A connected variation of k-means for clustering GIS data,”
IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 2, pp.
626–636, 2021.

[14] L. Yang, Y. Wang, J. Gu, C. Wang, X. Cao, and Y. Guo, “JANE: jointly
adversarial network embedding,” in Proceedings of the International
Joint Conference on Artificial Intelligence, 2020, pp. 1381–1387.

[15] P. Zhang, F. Xiong, H. Leung, and W. Song, “Funkr-pdae: Personalized
project recommendation using deep learning,” IEEE Transactions on
Emerging Topics in Computing, vol. 9, no. 2, pp. 886–900, 2021.

[16] D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui, “Structural deep
clustering network,” in Proceedings of the International World Wide Web
Conference, 2020, pp. 1400–1410.

[17] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[18] J. Cao, D. Jin, and J. Dang, “Autoencoder based community detection
with adaptive integration of network topology and node contents,” in
Proceedings of the International conference on knowledge science,
engineering and management, 2018, pp. 184–196.

[19] F. Liu, J. Wu, S. Xue, C. Zhou, J. Yang, and Q. Sheng, “Detecting the
evolving community structure in dynamic social networks,” World Wide
Web, vol. 23, pp. 715–733, 2020.

[20] X. Xin, C. Wang, X. Ying, and B. Wang, “Deep community detection
in topologically incomplete networks,” Physica A: Statistical Mechanics
and its Applications, vol. 469, pp. 342–352, 2017.

[21] B. Cai, Y. Wang, L. Zeng, Y. Hu, and H. Li, “Edge classification based
on convolutional neural networks for community detection in complex
network,” Physica A: Statistical Mechanics and its Applications, vol.
556, p. 124826, 2020.

[22] A. D. Santo, A. Galli, V. Moscato, and G. Sperlı̀, “A deep learning
approach for semi-supervised community detection in online social
networks,” Knowledge-Based Systems, vol. 229, p. 107345, 2021.

[23] F. Sun, M. Qu, J. Hoffmann, C. Huang, and J. Tang, “vgraph: A
generative model for joint community detection and node representation
learning,” in Proceedings of the International Conference on Neural
Information Processing Systems, 2019, pp. 512–522.

[24] D. He, Y. Song, D. Jin, Z. Feng, B. Zhang, Z. Yu, and W. Zhang,
“Community-centric graph convolutional network for unsupervised com-
munity detection,” in Proceedings of the International Joint Conference
on Artificial Intelligence, 2020, pp. 3515–3521.

[25] S. Bandyopadhyay and V. Peter, “Unsupervised constrained community
detection via self-expressive graph neural network,” in Proceedings of
the Uncertainty in Artificial Intelligence Conference, 2021, pp. 1078–
1088.

[26] H. Zhao, L. Wei, and Q. Yao, “Simplifying architecture search for graph
neural network,” in Proceedings of the International Conference on
Information and Knowledge Management, 2020, pp. 1–12.

[27] K. Zhou, Q. Song, X. Huang, and X. Hu, “Auto-gnn: Neural architecture
search of graph neural networks,” arXiv preprint arXiv:1909.03184,
2019.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3270181

11

[28] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Proceedings of the Advances in Neural Information Processing
Systems Conference, 1999, pp. 1057–1063.

[29] M. Shi, D. A. Wilson, X. Zhu, Y. Huang, Y. Zhuang, J. Liu, and
Y. Tang, “Evolutionary architecture search for graph neural networks,”
arXiv preprint arXiv:2009.10199, 2020.

[30] Y. Li and I. King, “Autograph: Automated graph neural network,” in
Proceedings of the International Conference on Neural Information
Processing, 2020, pp. 189–201.

[31] J. Chen, J. Gao, Y. Chen, M. B. Oloulade, T. Lyu, and Z. Li, “Graphpas:
Parallel architecture search for graph neural networks,” in Proceedings of
the International ACM SIGIR Conference on Research and Development
in Information Retrieval, 2021, pp. 2182–2186.

[32] H. Zhou, M. Yang, J. Wang, and W. Pan, “Bayesnas: A bayesian
approach for neural architecture search,” in Proceedings of the Inter-
national Conference on Machine Learning, 2019, pp. 7603–7613.

[33] M. Yoon, T. Gervet, B. Hooi, and C. Faloutsos, “Autonomous graph
mining algorithm search with best speed/accuracy trade-off,” in Pro-
ceedings of the IEEE International Conference on Data Mining, 2020,
pp. 751–760.

[34] H. Zhao, Q. Yao, and W. Tu, “Search to aggregate neighborhood
for graph neural network,” in Proceedings of the IEEE International
Conference on Data Engineering, 2021, pp. 552–563.

[35] Y. Zhao, D. Wang, X. Gao, R. Mullins, P. Lio, and M. Jamnik, “Prob-
abilistic dual network architecture search on graphs,” arXiv preprint
arXiv:2003.09676, 2020.

[36] L. Wei, H. Zhao, Q. Yao, and Z. He, “Pooling architecture search
for graph classification,” in Proceedings of the ACM International
Conference on Information & Knowledge Management, 2021, pp. 2091–
2100.

[37] Y. Qin, X. Wang, Z. Zhang, and W. Zhu, “Graph differentiable archi-
tecture search with structure learning,” in Proceedings of the Advances
in Neural Information Processing Systems, 2021, pp. 16 860–16 872.

[38] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bach-
man, A. Trischler, and Y. Bengio, “Learning deep representations
by mutual information estimation and maximization,” arXiv preprint
arXiv:1808.06670, 2018.

[39] F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, “Infograph: Unsupervised
and semi-supervised graph-level representation learning via mutual
information maximization,” arXiv preprint arXiv:1908.01000, 2019.

[40] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax.” arXiv preprint arXiv:1809.10341, 2018.

[41] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm,
theory, and applications,” IEEE transactions on pattern analysis and
machine intelligence, vol. 35, no. 11, pp. 2765–2781, 2013.

[42] P. Ji, M. Salzmann, and H. Li, “Efficient dense subspace clustering,”
in Proceedings of the IEEE Winter Conference on Applications of
Computer Vision, 2014, pp. 461–468.

[43] K. You, M. Long, J. Wang, and M. I. Jordan, “How does learning rate
decay help modern neural networks?” arXiv preprint arXiv:1908.01878,
2019.

[44] X. Zhang, H. Liu, Q. Li, and X. Wu, “Attributed graph clustering via
adaptive graph convolution,” in Proceedings of the International Joint
Conference on Artificial Intelligence, 2019, pp. 4327–4333.

[45] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proceedings of the International Conference
on Learning Representations, 2017, pp. 1–12.

[46] Kipf, Thomas N and Welling, Max, “Variational graph auto-encoders,”
arXiv preprint arXiv:1611.07308, 2016.

[47] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversarially
regularized graph autoencoder for graph embedding,” in Proceedings of
the International Joint Conference on Artificial Intelligence, 2018, pp.
2609–2615.

[48] C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang, “MGAE: marginalized
graph autoencoder for graph clustering,” in Proceedings of the ACM
on Conference on Information and Knowledge Management, 2017, pp.
889–898.

[49] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, pp. 2579–2605, 2008.

Jianliang Gao received the Ph.D. degree from the
Institute of Computing Technology (ICT), Chinese
Academy of Sciences, China. He is currently a
professor at the School of Computer Science and
Engineering, Central South University, China. He
is the general chair of the 2016 IEEE Conference
on Big Data. His main research interests include
automatic machine learning and graph data mining.

Jiamin Chen received the B.S. degree in ap-
plied physics from Nanchang University, Nanchang,
Jiangxi, China in 2014, and the M.S. degree in
radio physics from Nanchang University, Nanchang,
Jiangxi, China in 2017. He is currently a Ph.D.
candidate at the School of Computer Science and
Engineering at Central South University, Changsha,
Hunan, China. His research interests are automatic
machine learning and graph neural networks.

Babatounde Moctard Oloulade received a B.S.
degree in computer science from the National School
of Applied Economics and Management, University
of Abomey-Calavi, Cotonou, Benin in 2012. He
received the M.S. degree in Computer Science and
Technology from Wuhan University of Technology,
Wuhan, China in 2020. He is currently a Ph.D.
student at the School of Computer Science and
Engineering, Central South University, Changsha,
China. His current research interests include auto-
matic machine learning and graph neural networks.

Raeed Al-sabri received the B.S. degree in Infor-
mation Technology from Thamar university, Thamar,
Yemen in 2011, and the M.S. degree in Computer
Science and Technology from Nanjing University
of Information Science and Technology, Nanjing,
Jiangsu, China in 2020. He is currently a Ph.D.
candidate at the School of Computer Science and
Engineering, Central South University, Changsha,
China. His research interests are natural language
processing, machine learning, and graph neural net-
works.

Tengfei Lyu received the B.S. degree from Bohai
University, Jinzhou, Liaoning, China, in 2019. He
received his M.S. degree from Central South Univer-
sity, Changsha, China, in 2022. His research interests
include machine learning and graph neural networks.

Ji Zhang is currently a full Professor in computer
science at the University of Southern Queensland
(USQ), Australia. He is an IET Fellow, IEEE Se-
nior Member, ACM member, Australian Endeavour
Fellow, Queensland International Fellow (Australia),
and Izaak Walton Killam Scholar (Canada). His
research interests are big data analytics, knowledge
discovery and data mining (KDD), and computa-
tional intelligence. He received his degree of Ph.D.
from the Faculty of Computer Science at Dalhousie
University, Canada in 2009. He has published over

230 papers in major peer-reviewed international journals and conferences.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3270181

12

Zhao Li obtained his Ph.D. in computer science
at the University of Vermont with an excellent
graduate award in 2012. He is currently leading
the adversarial intelligence team as a senior staff
scientist and technical director in the Taobao divi-
sion at Alibaba Group. His research interest lies in
multi-agent reinforcement learning, big data-driven
security, and large-scale graph computing. He has
published several papers in prestigious conferences
and journals including WWW, AAAI, ICDE, VLDB,
TKDE, etc. He also won the CIKM Analyticup

Champion in 2019.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3270181

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern Queensland. Downloaded on January 17,2024 at 10:52:21 UTC from IEEE Xplore. Restrictions apply.

