
Teaching Control fundamentals for Mechatronics and Robotics - the use of
JavaScript for simulation and animation.

John Billingsley
University of Southern Queensland

Toowoomba, Queensland 4350, Australia

Abstract
An opinion is expressed on the relevance to
Mechatronics and Robotics ·students of control
theory in the form in which it is at present taught.
A scheme is proposed which will guide the
student first through analysing a 'real' problem
and simulating it, then through attempting to
design a controller and. finally to learning and
applying those mathematical tools which are
necessary to achieve· success. The student ~s

encouraged to look at the whole gamut of
nonlinear and discrete time controllers, not just
those which fit the theory as taught. Software
platforms .are discussed, with an emphasis. on
JavaScript, which will allow easy generation,

.modification and testing of algorithms by the
student.

1 Introduction
As taught in standard degree courses, control t\1eory is
hard to apply to real cases.. The taught material gives a
mathematical solution to linear problems which .have
already been expressed in a mathematical form.

The student is presented with a diet of Laplace
transforms, the complex frequency plane and mappings
from this plane to the complex gain plane in the shape.of
the Nyquist plot. Nonlinearities are patched over WIth
describing functions and discrete-time control is a morass
of zero-order holds and tables of equivalent z-transforms.

To be of use to mechatronics and robotics
students, the introduction to control must start from the
ability to analyse 'real' problems and express them in a
form which ·can be investigated computationally. This
must allow nonlinear factors to be taken into
consideration and must allow an arbitrarily determined
input signal to be applied and tested.

2 Nonlinear control ~trategies.
Once the student has the ability to model the system,
consideration can be given to determining the appropriate
input signal to apply. A much wider range of control
schemes can be explored than 'proportional feedback', in
which the input is determined by the simple sum of
weighted system variables. Many mechatronic systems
require the input to be driven into saturation for a
relatively small error, while others can work acceptably
'open loop'. Most will benefit from 'feed forwar~'..

Mechanical systems often have sIgmficant

10

nonlinearities .which have to play a dominant part in the
design process. Servomotors have limitations on their
driving force and linkages have hard constraints on their
travel. To achieve high performance, such nonlinear
systems will generally call for nonlinear controllers.

At the empirical level,· it is relatively easy to
incorporate all such factors into a computer model simple
enough to be written 'from scratch'. Control schemes can
be attempted by assigning values to the inputs which are
general functions of the system variables and of external
commands or disturbances. .

At this point the· student will become aware of
problems such as- stability, response ~e and over~hoot.

By 'owning' the problem, the student WIll be receptive to
the theory which offers a solution which can bow be
understood.

When practical control must be implemented,
industry will most often turn to a three-term PID which is
then tuned by trial and error. What is too often
overlooked by those who seek to apply 'undergraduate'
theory to tuning a PID controller is that the problem is
essentially nonlinear. The linear theory usually only
defines a small part of ·the overall response, that part
which lies inside the 'proportional band', and its.
application can lead to an unacceptable controller.. .

Through modelling, the student can apprecIate
alternative forms of representing the system response
which will allow n·onlinear control strategies to be
assessed in ways far beyond the capabilities of the
conventional theory. Such general schemes can embrace
all the essential aspects of fuzzy, neural and variable­
structure control while taking a pragmatic approach.

3 Discrete time control.
Frequently the controller is em~i~ in digital fo~.

This introduces two further complIcatIons. The first IS

minor a result of the additional 'noise' implicit in signals
which' are digitised to a limited number of bits. More
important is the restriction that the digital .control can
introduce correction inputs only at discrete intervals of
time. In itself this is very easy to embody in the computer
model, but its theoretical analysis is usually embroidered
with the relationships between tables of Laplace and
z-transforms and the added complication of the zero-order
hold.

The discrete time state equations can be
evaluated more simply by simulating the continuous
system over one sampling interval, start~g from a variety
of initial conditions. These are equal m number to the

columns of the A and B matrices. The method is easy to
follow intuitively. By using the operator 'z' to signify
'next', applied as a multiplier to the variables on the left­
hand side, transfer functions in z can be derived. These
become the tools by which a controller can be designed,
which can then be tested on the model in full detail.

It can be shown that there are excellent control
schemes in which a mixture of discrete and continuous
feedback does not allow an analytical solution. That is
not a good reason to discard them. Discrete control
schemes in which corrections are not 'clocked' at regular
intervals are also outside the capability of z-transform
analysis, but there may be practical reasons why they
have to be applied.

The rounded control graduate should have the
analytic 'toolkit' available to apply when it is appropriate,
but must be· able to generalise the control design process
to solve the practical problem which is presented in the
way which is really needed.

4 Nonlinear examples
A simple position controller makes a good worked
example. The student is instructed to design a system
which can move a one kilogram load over a distance of
one metre, reaching a final accuracy of one millimetre in
one second and resisting disturbing forces up to five
Newtons.

Pole assignment is misleading in this case. The
phase-plane is found to be an appropriate design
environment and an acceptable solution is found with
poles in the proportional band which represent time
constants of 0.16 second and 0.6 milliseconds - a damping
factor of eight!

A photographic paper-coating process included
a magazine holding tens of metres of paper, an 'unwinder'
motor driving the massive paper reel, a passive 'float roll'
to take up rilinor variations and a drive roll servo for
filling the magazine. As each reel comes to an end, the
unwinder is stopped while paper continues to be delivered
from the magazine. When the new roll has been pasted
onto the paper web, the unwinder starts up again. It was
found that all too often the float roll would hit its stop and
the whole process would be brought to a halt, with the
loss of thousands of dollars worth of photographic paper
drying in the plant.

Fig. 1 Schematic of a photographic paper coating process

. The faulty controller involved feedback from the
float-roll, having less than a meter of travel, to the
unwinder which has a moment of inertia which changes
by a factor of sixty - not an easy loop to close even with
the most sophisticated of strategies. The level of the
magazine, holding up to a hundred metres of pa~er, was
fed back to the drive roll motor-tacho system WhICh fills
it.

11

The solution is of course to use the drive roll
servo to keep the float roll within close limits. A rapid,
responsive system is used to maintain a the value of a
variable which has only a small safe range of travel. The.
magazine sensor signal is fed to the unwinder motor,
together with an added velocity signal from the drive roll
tachometer. The magazine can accommodate tens of
metres of unwinder variability. "",

Simulation is an ideal method of testing designs
which start from the topology of the feedback scheme,
rather than from poles in the frequency domain.

5 Simulation environments
The simplest form of simulation uses Euler integration of
the state equations , where the value of X is updated to
x + dxldt * eft as the time advances by an interval dt.
dxldt is in turn a simple function of the state variables and
the inputs, so the process requires little more than the
assignment statement common to nearly all computer
languages. The process of updating the variables each
iteration is contained in a program loop, also common to
nearly every language.

It is highly desirable to represent the output
graphically, preferably in real time. It is also an
advantage to be able to interact with the system in real
time to inject disturbances.

If the students are to modify and extend the code
with ease, an interpreted language has advantages over
one which requires lengthy compilation and linking
before it can be run.

When DOS systems were in more common use,
QBASIC presented most of the answers to these
requirements. Its syntax was straightforward, while it had
most of the features of Pascal (without the semicolons).
Keyboard or mouse inputs were easy to interface and
graphic output was achieved with half a dozen simple
functions. The software with extensive 'help'
documentation was bundled free with the DOS operating
system.

Although available as an option with Windows
95, its inclusion in the installation is no longer automatic.
Its future is debatable.

Visual Basic provides a superset of QBASIC and
has superior graphics, but must be purchased as a special
package. A package such as MATLAB can be used as a
simple programming environment, but lacks the ease of
real-time operation. C and its dialects can be used, but the
cycle of edit-compile-link-Ioad-and-test is somewhat
cumbersome in most popular versions.

With the exploding use of HfML web ~aterial,

modem browsers support embedded software. Java
.applets can be downloaded to complete the page and are
then executed. However these are not the real answer,
requiring a compiler to modify them. JavaScript has
much in common with Java, but is interpreted from source
text which can be viewed within the page.

By storing the page locally, it can be edit~ ~th

a simple text editor to vary the software. Code has slnular
syntax to C and real-time input can ,be derived fro~ k~y­

stroke events or by the use of 'form controls. AchieVIng
graphic output requires some ingenuity, however. The
task is complicated by the present conflict betv:een
Netscape and Microsoft, since there are serious

differences between their implementations of what was
supposed to be a standard language. At present Netscape
Communicator 4.0 has a feature which tips the present
balance strongly in its favour.

6 Animation with Javascript
First a simple animation technique is presented which can
be implemented in both Netscape and Internet Explorer ­
though details of the code are different. Only the
Netscape syntax will be described here.

Navigator 4 supports LAYERs. A layer is a
graphics plane which can be repositioned at will by a
MoveTo instruction. Each plane can contain images or text
and the page can hold many layers. These can be
animated by JavaScript instructions, being moved in
response to the changes of the state variables in the
simulation.

Although the possible movement does not
include rotation, alternative GIF images can be substituted
to achieve a similar result if desired.

The following code moves a bold red '0' along a
damped second order response:

<HTHL>
<HEAD>

<SCRIPT LANGUAGZ--javaScript->
var xx-200.0;
var v-O.O;
var tt-O.O,
var tmax-SOO.O;
var dt-l.0;

function .tepmodel(){
if (tt<t:m&x) {

v-v-(.OOS*xx+.02*v}*dt;
xx-xx+v*dt;
tt-tt+dt;
document.ball.moveTo(tt+l0,200-xx};
setTimeout(-stepmodel(}-,4);

}

</SCRIPT>
</HEAD>
<BODY>

<DIV id--ball- style--position:absolute;
left:20; top:200->
O
</DIV>

<p>

<A IlREP--.­
onclick--tt-O.O,xx-200.0,v-O.O,stepmodel()->
GO I
</BODY>
</H'l'HL>

The layer is defined by the 'DIY' tag, one of two
alternative forms of syntax. It is moved by the MoveTo
method in the function 'stepmodel'. The state variables
are updated with just the two ·v=' and I xx=' lines, while tt
is also updated to give movement along a horizontal time
axis.

The line I setTimeout (Ie stepmodel " ,4) ;' causes
the stepmodel function to be restarted every four
milliseconds; it is invoked for as long as the condition
(tt<tmax) remains true.

With similar code, an undamped mass-spring-

12

wheel suspension can be simulated with GIF images
providing an animated picture.

Fig.2. Animated mass-spring system.

Although entertaining, these do not give results
which can be represented as a printed record. The second
method enables graphs to be plotted and saved in a
document.

7 Graph plotting in JavaScript
In itself, JavaScript has no provision for ceating graphical
images. However Navigator 4 has a feature called
LiveConnect which allows properties and methods. to be
employed from the Java library. In particular,
Java.awt.Graphics has an extensive set of functions which
fulfill all the standard graphic requirements.

Gaining access to these functions is still not
trivial. The programming structure is bound up with the
'object oriented' ideology and necessary ceremonies have
to be observed. While many objects have 'constructors'
which enable them to be created, such as new browser
windows, Graphics is resticted to operate on a component
which already exists. Once such a component can be
located, however,its graphics properties can be assigned
to a variable, as in

var g-component.getGraphics(}

and the way is open to apply any of the graphics methods.
The only way I have found to obtain such a

component is to load it as an applet, Graph.class. This
applet has virtually no content at all, serving merely to
invoke the awt.Graphics library. Its source is

import java. awt •Graphics,
puh1ic class Graph extend. java.applet.Applet {
}

The inclusion of the applet in the HTML page also
defines a frame in which the graph is to be drawn.

Care must be taken to delay execution of any
simulation code until the applet has completed loading,
otherwise a 'no properties' error will be encountered. In
the example which follows, a form is added which allows
gain and damping ratio to be modified, then plots a
response from an initial displacement when a button is
clicked. An effective way to clear the screen when a
number of plots have been drawn is to click the browser's
'reload' icon.

.-t:."i~~~i~~ ··~~·,:···,.·.··:f'·~;;yT .':~:'~~~~JI

IPosition feedl.d, ~'.~~.~__.__" .: DllmpingJ~ .~~._ __ ..~

1---------------------
\
i
\

Fig. 3. Graphical plot using JavaScript.

<HTML>
<HEAD>
<SCRXPT LANGOAGE--javaScript->
var a-.005;
var b-.02;

function ruumodel()
{
var g-document.Graph.getGraphics();
var x-200.0;
var oldx-x
var v-O.O;
var oldv-v
var tt-O.O;
var tmax-SOO.O;
var dt-l;

while (tt<tm&x) {
v-v-(a*x+b*v)*dt,
x-x+v*dt;
tt-tt+dt;
g.drawLine(tt+l0,200-oldx,tt+l0+dt,200-x);
oldx-x;
}

g.drawLine(10,200,SOO,200);
g.drawLine(10,O,10,400);
}

</SCRXPT>
</BEAD>
<BODY >
<PORM name-gains>
position feedback gain
<XNPUT TYPE--text- HAMB--gl- ~OE.-.OOS­

SXZE-l0 >
Damping
<XNPUT TYPE.-text- HAMB.-g2- ~OB.-.02­

SXZB.l0 >
<XNPUT TYPB.-button- HAMB.-doit­
VALOB.-Run the Model­
onClick--a-eval(gains.gl.value);
b-eval(gains.g2.value);
javascript:ruumodel();- >
</PORM>
<CBN'l'ER>
<HR><APPLBT

code-Graph.cla88
name-Graph
width-640
height-480 >

</APPLET></CBNTER>
</BODY>
</H'l'ML>

These examples are 'stripped down' to show that
the essential content is quite small. Actual examples are
more polished, but care must be taken that the 'gloss' does
not get in the way of the student's understanding.

13

8 Conclusions
As web-based teaching material becomes ever

more fashionable, we can expect the student to be sitting
in front of a computer.' If we can use the web material to
deliver a simulation environment in which control
problems can be 'felt and tasted' we might draw closer to
the goal of making control courses relevant to the solution
of real mechatronic problems.

I would not for a moment advocate the omission of
frequency domain techniques and transform theory. They
must be grasped by the student as the solution to a
problem, however, not merely as an arcane ritual to be
memorised for an examination.

References
[Billingsley 1989] John Billingsley. Controlling with

Computers: Control theory and practical digital
systems. McGraw-Hill, Jan 1989, ISBN 0-07-084193­
4.

[Billingsley 1991] John Billingsley. On the design of
position control systems. Proceedings lEE Part D, vol
138, no 4, pages 331-336, London, July 1991

[Billingsley 1995] John Billingsley. A mechatronic
cynic's view of control theory. lEE Computing and
Control Engineering Journal, vol 6, no 5, pages 243­
244, London, October 1995.

