
Predictors of Success in a First Programming Course

Simon

University of Newcastle, Australia

simon@newcastle.edu.au

Sally Fincher
University of Kent, UK

S.A.Fincher@kent.ac.uk

Anthony Robins
University of Otago, NZ

anthony@cs.otago.ac.nz

Bob Baker
University of New South Wales, Australia

bob.baker@unsw.edu.au

Quintin Cutts

University of Glasgow, UK

quintin@dcs.gla.ac.uk

Patricia Haden
Otago Polytechnic, NZ

phaden@tekotago.ac.nz

Margaret Hamilton
RMIT University, Australia

margaret.hamilton@rmit.edu.au

Marian Petre
Open University, UK

m.petre@open.ac.uk

Denise Tolhurst

University of New South Wales, Australia

d.tolhurst@unsw.edu.au

Ilona Box
University of Technology Sydney, Australia

ilona@it.uts.edu.au

Michael de Raadt

University of Southern Queensland, Australia

deraadt@usq.edu.au

John Hamer
University of Auckland, NZ

J.Hamer@cs.auckland.ac.nz

Raymond Lister
University of Technology Sydney, Australia

raymond@it.uts.edu.au

Ken Sutton
Southern Institute of Technology, NZ

ken.sutton@sit.ac.nz

Jodi Tutty

Charles Darwin University, Darwin, Australia

jodi.tutty@cdu.edu.au

Abstract

This paper describes a multi-national, multi-institutional
study that investigated introductory programming
courses .. Student participants were drawn from eleven
institutions, mainly in Australasia, during the academic
year of 2004. A number of diagnostic tasks were used to
explore cognitive, behavioural, and attitudinal factors

.Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Eighth Australasian Computing Education
Conference (ACE2006), Hobart, Tasmania, Australia, January
2006. Conferences in Research and Practice in Information
Technology, Vol. 52. Denise Tolhurst and Samuel Mann, Eds.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

such as spatial visualisation and reasoning, the ability to
articulate strategies for commonplace search and design
tasks, and attitudes to studying. The results indicate that
a deep approach to learning was positively correlated
with mark for the course, while a surface approach was
negatively correlated; spatial visualisation skills are
correlated with success; a progression of map drawing
styles identified in the literature has a significant
correlation with marks; and increasing measures of
richness of articulation of a search strategy are also
associated with higher marks. Finally, a qualitative
analysis of short interviews identified the qualities that
students themselves regarded as important to success in
programming.

Keywords: programming aptitude, education.

1 Introduction

What factors might influence entry-level undergraduate
students’ success in learning programming? There is
considerable practical and theoretical interest in this
question. Initial efforts concentrated on occupational
aptitude tests – selecting and evaluating those people
most likely to have a successful and fulfilling career in
the emerging computing industry (Cross 1970; Mayer &
Stalnaker 1968; Wolfe 1971). An alternative focus on
academic success emerged during the 1980’s. Studies
exploring factors that might predict success in an
introductory programming course were driven by issues
such as the rapid growth in popularity of programming
courses, varying levels of student ability, and the
consequent demand placed on teaching resources (Barker
& Unger 1983; Chowdhury, Va n Nelson, Fuelling, &
McCormick 1987; Leeper & Silver 1982).

We believe that learning to program is problematic, and
that the results achieved by students in programming
courses do not correlate well with their other academic
results. Our understanding of this phenomenon is patchy
and poorly integrated, but it does seem clear that there are
many influences at play. Factors suggested anecdotally
and in the literature include mastery of one’s native
language (the ability to communicate clearly and
effectively both in speech and in writing), number of
programming languages used or examined (Hagan &
Markham 2000), spatial reasoning and mathematical
ability (Wilson & Shrock 2001), musical ability, logical
reasoning ability, and previous academic background
(Boyle, Carter, & Clark 2002). Measures of general
intelligence correlate well (Mayer, Dyck, & Vilberg
1989). The best indicators of success appear to be self-
predicted success, attitude, keenness and general
academic motivation (Roddan 2002; Rountree, Rountree,
& Robins 2002). However, these indicators do not
distinguish programming from other disciplines, and they
have such a large effect that they may mask more subtle,
discipline-specific, indicators.

The most extensive of recent studies (Wilson & Shrock
2001) explores twelve possible predictors. These include
standard factors such as mathematical background, work
style preference and previous programming experience,
and also a range of student self assessments.
Assessments that proved to be of particular interest
include comfort level (based on students’ perceptions of
course/programming difficulty and level of anxiety) and
attributions (based on students’ beliefs about their
reasons for success or failure). In order of diminishing
significance, comfort level was found to be the best
predictor of success, with mathematical background the
second and attribution of success to luck (as a negative
correlation) the third.

This paper reports on a study of possible influencing
factors that is distinctive in a number of ways. First, it is
both multi-institutional and multi-national, with
participants from eleven institutions in three countries.
This breadth lends support to generalisations about
factors that can vary across prior educational experience
(and hence that are likely to be influenced by educational
intervention) and factors that are invariant. Second, the

data examined is particularly broad, with separate
subtasks exploring attitudinal, cognitive, and behavioural
factors, and a short open-ended interview. This allows
many diverse research questions to be addressed using
multiple methods of analysis. Third, the scale of the
study, with 177 participants from eleven institutions in
three countries, reduces sample bias and increases
generalisability. The cost and challenges of carrying out
empirical research at this scale mean that there are few
precedents for programming-related studies of this size
and scope. However, there has been a recent spate of such
studies (Lister et al 2004; McCracken et al 2001; Petre et
al 2003; Fincher et al 2004).

The full initial report on this study is published as a
technical report (Fincher et al 2005), but the scope of the
study is so great that it cannot be fully reported on in one
conference paper. Therefore this paper presents a broad
overview of the study, its aims, its method, and its
conclusions, while other papers (to date, deRaadt et al
2005; Simon et al 2006; Tolhurst et al 2006) will go into
more detail on each component of the study, giving a full
analysis of the data and justification of the conclusions.

We must make clear at the outset that one particular
simplification underlies our work. While we would really
like to find correlations between performance on simple
tasks and programming aptitude, we cannot do that
because there is no accepted measure of programming
aptitude. Therefore we have substituted it with the readily
quantified measure of mark in a first programming
course. We do not pretend that there is a linear
relationship between programming aptitude and mark in a
first programming course, or that different first
programming courses are assessed comparably; but we
have succumbed to the need for an easily measured
quantity.

2 The study – an overview

The study was based on four different diagnostic tasks in
an attempt to determine or eliminate factors that might
relate to early programming performance. Eleven
institutions participated, using the same protocol to gather
data from students in introductory programming courses
taught during 2004. Data was then pooled and analysed.
The four focal tasks were:

• a standard paper-folding test, a cognitive task
focusing on spatial visualisation and reasoning;

• map sketching, a behavioural task used to assess
the ability to design and sketch a simple map and
to articulate decisions based on that map;

• searching a phone book, a behavioural task used to
assess the ability to articulate a search strategy;

• a standard study process questionnaire, an
attitudinal task focusing on approaches to learning
and studying.

A subset of the researchers conducted small pilot studies
to trial and refine the overall process and the specifics of
the behavioural tasks. The attitudinal and cognitive tasks
employed standard instruments as described below. In

most cases student participants completed all four tasks
and a short open-ended interview.

Several factors combine to set this study apart from
others with the same basic goals.

• Paradigm independence: the use of diverse and
generalised stimuli makes the tasks independent,
so that comparisons can be made across
programming paradigms, languages, and
pedagogic styles.

• Triangulation: the study combines different
approaches and collects both qualitative and
quantitative data, providing opportunities to
contradict or corroborate within the study by
comparing the different factors.

• Building on existing work : part of the study
replicates work for which there is standardised
data available.

• Scale: the number of institutions means that the
total number of participants recruited is at a scale
unusual in the literature.

The difficulty of predicting programming success is
compounded by the lack of an agreed, established, ‘core’
list of essential programming concepts, let alone any
robust instruments for assessing students’ acquisition of
programming concepts or misconceptions. Certainly
there is nothing comparable to the ‘Force Concept
Inventory’ in Physics (Hestenes, Wells, & Swackahmer
1992; Nasr, Hall, & Garik 2003). Hence, like many
researchers in this field, we relate our findings from the
diagnostic tasks to the marks achieved by students in an
introductory programming course, leaving somewhat
open the question of the extent to which these marks
reflect the students’ actual programming ability.

3 The study – method

Most of the data was gathered in individual sessions
between researchers and students, although at two of the
participating institutions the paper-folding test was
administered collectively. Participants completed the
paper folding, map, and phone book tasks, and a short
open-ended interview. Towards the end of their course
participants completed the study process questionnaire
task. The specifics of the four tasks and the interview are
discussed in the following subsections.

One hundred and seventy-seven volunteer participants
were recruited from the introductory programming
courses at eleven institutions of post-secondary education
in Australia, New Zealand and Scotland. Ages ranged
from 17 to 50 (three quarters were 22 or younger), with
137 males and 40 females.

Eleven of the participating institutions contributed data.
One institution contributed 32% of the 177 participants,
but did not collect data for all tasks. The next highest
contribution was 8%.

3.1 Task 1: paper folding

The purpose of this task was to explore the possibility of
a correlation between mark in a first programming course
and success in a cognitive task focusing on spatial
visualisation and reasoning.

3.1.1 Background

The Paper Folding Test (VZ-2) is taken from the ETS Kit
of Referenced Tests for Cognitive Factors (Ekstrom,
French, Harman, & Dermen 1976). The test is designed
to measure visualisation and spatial reasoning, based on
the ability to manipulate and transform spatial patterns.
In this case, participants identify which pattern of holes
would result in an unfolded sheet of paper after holes are
punched through an arrangement of folds.

The test consists of 20 questions, in two sets of 10, with a
time limit of three minutes per set. Researchers recorded
the time taken to complete each set, along with the
numbers of questions answered correctly, incorrectly, and
not at all.

This study is not the first to use a paper folding test as a
means of assessing aptitude for computer programming.
Evans and Simkin (1989) used a paper folding test, but it
accounted for only a small portion of their entire study.

3.1.2 Discussion

We found correlations between mark and paper folding
score that are significant while not being particularly
strong. We also found a slight negative correlation
between the paper folding and a deep learning approach
(see Section 3.4), which leads to some interesting
speculation about the surface nature of the paper-folding
task as compared with the deep nature of programming.

3.2 Task 2: map sketching

The purpose of this task was to explore the possibility of
a correlation between mark in a first programming course
and either the style of a map produced for a navigational
task or the descriptions of the navigational decision points
on that map.

This task is drawn from classroom practice and a tradition
in computer education that uses commonplace examples
to convey programming concepts and make them relevant
to students (eg Curzon 2000). The goal is to assess
participants’ ability to design and sketch a simple map
and to articulate decisions based on that map.

Participants were asked to sketch a map of a route
between two known locations on or near their campus, a
map that would be useful to somebody unfamiliar with
the area. They were then asked to annotate the map with
decision points, describing how to recognise each
decision point and what to do at that point. Researchers
collected the sketch maps with any annotations, an audio
recording of the session, and their own notes regarding
the order in which the map was drawn.

3.2.1 Background and motivation

In a study of expert programmers (Petre & Blackwell
1999), all of the experts reported using spatial
representations for programming; for example, describing
a problem space as a landscape.

Elsewhere, program code has been characterised as a
virtual space – a Codespace (Cox & Fisher 2004), and
many of the problems that programmers face in
navigating a Codespace have been likened to those
encountered when navigating physical space. In
developing and in understanding program code, the
programmer has to locate code segments and move
between them. Cox and Fisher stress the importance of a
structural view of a program – its layout and organisation
– for being able to move around a Codespace.

Werner et al (1997) suggest a hierarchy in acquisition of
spatial knowledge. At the landmark level, knowledge is
about unique objects at fixed locations. At the route level,
knowledge is about fixed sequences of locations as
experienced in traversing a route. At the survey level, a
single model is synthesised from the known landmarks
and routes. Poucet (1993) describes a similar model.

Our goal was to categorise the participants’ maps
according to Werner’s hierarchy, then to see whether we
could find a correlation between map category and mark
in a first programming course.

3.2.2 Discussion

There is a general trend for students who drew survey
maps to gain higher marks than those who drew route
maps, who in turn do better than those who drew
landmark maps. This trend mirrors the hierarchy of
spatial knowledge described above (Werner et al 1997;
Poucet 1993). The parallels suggest that our participants
do have preferred navigational strategies, and that these
strategies are related to success in an introductory
programming course.

The nature of the relationship is a matter for conjecture at
this stage, but the literature suggests that different
navigational strategies may affect the way in which
programmers are able to navigate programming code and
in so doing to form a conceptualisation of the major
features of this code.

Our results did show an interaction effect between
mapping style and country (Australia, New Zealand, or
Scotland). Because of the disparity in numbers between
these countries, the interpretation of this result must be
treated with caution. It might be due to general
educational effects, the nature of the courses in each
country, or the nature of the assessment items in each
course.

Although a significant relationship was found between
descriptions of decision points given by participants and
their map style, no correlation was found between these
decision point descriptors and the participants’ final
marks. This suggests that students’ ability to represent
navigational knowledge visually might not be related to
their ability to describe it. There are some potential

implications here for the use of written examinations over
practical exa minations in capturing students’ creation and
comprehension of program structures.

We describe this component of the project in more detail
in Tolhurst et al (2006).

3.3 Task 3: phone book searching

The purpose of this task was to explore the possibility of
a correlation between mark in a first programming course
and participants’ ability to articulate their strategies for a
commonplace search task.

The phone book task was intended to use an everyday
activity to assess the participant’s ability to articulate a
commonplace search strategy.

Participants were asked to look up a specified name in the
local phone book, then to describe the process that they
had used to find the name. They were then asked to look
up a second name, describing that search as they
conducted it. Researchers made and transcribed an audio
recording of the session, and took notes regarding the
nature of the search and the quality of the articulation.

3.3.1 Background and motivation

Anecdotal evidence suggests that programmers are better
than non-programmers at describing search processes. If
true, this would imply that the metacognitive ability to
describe strategy might be relevant to programming skill .
In order to explore this possibility the phone book task
was chosen as a representative example of a
commonplace search activity. This task is drawn from
classroom practice, stemming in turn from a tradition in
computer education of using commonplace examples to
convey programming concepts and to make them relevant
to students (eg Curzon 2000).

A phone book search task has previously been used in a
study of naïve, novice/beginning, and experienced
programmers (Onorato & Schvaneveldt 1987). This
study required participants to write instructions for
looking up a specified name in a phone directory. It was
found, among other things, that experienced programmers
were more likely than novices to incorporate
programming constructs in their descriptions, and that
they were more likely to use terms referring to the phone
book as opposed to its contents. To the extent that the
task of writing instructions can be compared with that of
articulating one’s own actions in speech, our study could
be a useful complement to this one.

In designing the task we sought to explore two aspects of
the ability to articulate strategies: accuracy and richness.
By accuracy we meant how well a given description
matched the researcher’s observation of how the
participant undertook the task. In the event, the accuracy
ratings collected during the task sessions were later
perceived by the researchers as being unreliable. Hence
the measures explored in this report are all attempts to
capture the richness of the articulation. These include a
count of the number of alternative search strategies
elicited from each student at the end of the task; an

assessment of the richness of the students’ articulations
made by individual researchers during the task; and a
similar but more focused assessment of all transcribed
articulations made collectively by three of the
researchers.

We hypothesised that those participants who naturally
articulated their strategy were demonstrating the ability to
situate their actions in a preconceived algorithm or plan,
and that this ability might constitute a useful predictor of
success in learning to program.

Our analysis of novices during the very early stages of
their first programming course directly addresses the
question posed by Onorato and Schvaneveldt: do those
who go on to become successful programmers have pre-
existing abilities or tendencies to describe processes in a
strategic or algorithmic manner?

3.3.2 Discussion

The observed trends are all in the expected direction. All
measures show that increasing richness is associated with
increasing mark in the programming course. The
measures are not all statistically significant, although
most become so if students who failed to complete the
course are included in the analyses (these students come
exclusively or at least predominantly from the weaker
groups). Although individual measures are weak, taken
together they appear to form a reliable picture.

In summary, this study provides some initial evidence
that the question raised by Onorato and Schvaneveldt
(1987) can be answered affirmatively: students who carry
on to be successful programmers tend to have pre-
existing strengths in a strategic / algorithmic style of
articulation.

We describe this component of the project in more detail
in Simon et al (2006).

3.4 Task 4: the study process questionnaire

The purpose of this task was to explore the possibility of
a correlation between mark in a first programming course
and aspects of participants’ approach to study.

The Biggs Study Process Questionnaire derives from the
notion that students’ perceptions and learning activities
are central to learning. An ‘approach to learning’
encompasses the relationship between student, context,
and task (Biggs, Kember, & Leung 2001). The revised
questionnaire assesses deep and surface approaches to
learning in the context of a particular course.

Towards the end of their introductory programming
course participants completed the revised questionnaire,
consisting of 20 closed-response questions scored on a 5-
point Likert scale. Researchers recorded the participants’
answers to each question.

3.4.1 Background and motivation

The emphasis in the Biggs revised two-factor Study
Process Questionnaire R-SPQ-2F is upon the context -
specific and the situated nature of learning. ‘Students’

approaches to learning are conceived as forming part of
the total system in which an educational event is located’
(Biggs et al 2001 p135). This approach to learning will
depend upon a number of factors that range from personal
(eg motivation, available time, personal perception of
task demands) through environmental (eg classroom
climate, learning activities, assessment methods) to
institutional factors (eg course culture, curriculum
design). These different factors affect how students
perceive the demands of a specific learning task and then
how they choose to deal with it.

The R-SPQ-2F aims to measure two different learning
approaches, deep and surface. Students adopting a deep
approach aim from the outset to develop a broad
understanding of the task and relate it to other topics and
their personal experience. This approach is typically
motivated by intrinsic interest in the material. Students
adopting a surface approach build their view from facts
and from the details of activities with the aim of
reproducing material rather than making theoretical
connections. This approach is typically associated with a
fear of failure.

3.4.2 Discussion

We found a positive correlation between deep learning
approaches and mark, and a negative correlation between
surface learning approaches and mark. Students who
engaged more deeply with the material tended to do
better than those who did not. This result is consistent
with results reported in Biggs (1987).

These correlations, while significant, were only
indications of a trend rather than strongly suggesting that
students who adopt a deep learning approach are likely to
succeed and those who employ a surface approach are
likely to fail. A student’s choice of learning style depends
upon the complex interaction between the learning
environment and the student’s decisions, motivation and
metacognitive ability. In a study such as this across
multiple institutions with different curricula and
assessments, strategic decisions made by students on the
most appropriate learning approach will vary from
institution to institution. Biggs et al (2001 p137) write
that at the end of the course the scores ‘may describe how
teaching contexts differ from each other’. We found some
variation between the institutions in the strengths of the
correlations; this variation might be indicative of such
differences between teaching contexts.

The discussion so far has been for students who
completed the courses. There were a number of students
who completed the Biggs questionnaire at the end of the
semester and then dropped out before the exam. As their
final mark was incomplete, these students were not
included. However, when they are included all of the
correlations described above become stronger. Not
surprisingly, those who discontinued at this late stage
were dominated by surface learners.

We describe this component of the project in more detail
in de Raadt et al (2005).

3.5 The interview questions

The purpose of this part of the study was to elicit the
qualities or skills that entry-level undergraduate students
express as important to the successful learning of
programming.

This final element of the study was a wholly qualitative
semi -structured interview. We had no particular
expectations regarding the outcome, apart from a belief
that the richness of qualitative data can highlight factors
that are difficult to capture using more structured tasks,
and can facilitate the exploration of a wide range of
approaches and methods of analysis.

Having completed the first three tasks, participants were
asked:

• What do you think we were trying to find out?

• How do you think the sketch-map task might
relate to programming?

• How do you think the phone book task might
relate to programming?

• What qualities or skills do you think are important
to learn programming well, to ‘get it’?

An audio recording of each session was made and
transcribed.

3.5.1 Background and motivation

We were unable to find any prior studies designed to
elicit the qualities, knowledge, skills, or abilities that
students perceive as important to learning programming.

There are non-discipline specific studies about students’
preparation for and perception of learning at university,
such as the work by Biggs (1987). While these studies
apply to students in general, they provide no insight into
specific student perceptions of what it takes to learn
programming well.

Bailey and Stefaniak (2001) conducted a survey of
industry perceptions of the knowledge, skills, and
abilities (KSAs) needed by entry-level computer
programmers. The survey questions were developed from
focus groups of a few individuals from five companies.
The 85 KSAs that emerged were divided into 53
technology skills, 20 soft skills , and 12 business concepts.
In the absence of any studies more pertinent to our own
interests, we were interested in exploring the similarities
between their work and our own.

3.5.2 Discussion

The qualities and skills identified most often by our
participants were logical thinking and problem-solving.
The next top eight were attention to detail, consideration
of alternatives, mathematics, knowledge of programming,
ability to learn, knowledge of computers, modularis ing,
and planning. The top 10 KSAs in the industry study
(Bailey & Stefaniak 2001) are ability to read, understand
and modify programs written by others, ability to code
programs, ability to debug software, listening skills ,
problem-solving process, teamwork skills, knowledge of

structured programming fundamentals, ability to
implement programs, knowledge of multiple
programming languages, and ability to visualise/
conceptualise.

There is some alignment between the two studies, but
there are also significant differences. For example, none
of our participants mentioned listening skills , which
ranked quite high in the industry study.

Because we did not use probing questions to clarify the
participants’ meanings, a number of their utterances
remain open to interpretation. For example, do these two
utterances mean the same thing? (1) ‘Problem-solving’;
(2) ‘Problem-solving and being able to identify what the
problem is and being able to solve that, sort of finding,
making sure you understand how the problem works and
what you want to achieve, what your goals are and then
trying to develop a method that solves that particular
problem’.

Other aspects of the study lead us to conclude that the
reliability of the data source is weak. Even so, the results
suggest that the students lack an awareness of what it
takes to learn programming well, at least in comparison
with the expert opinion generated by the industry study.

4 Conclusions

This study has explored a number of issues that may
influence success in learning to program. Researchers at
eleven participating institutions used the same protocol to
gather data from students in introductory programming
courses taught during 2004. The study was based on four
different diagnostic tasks: a spatial visualisation task (a
standard paper folding test); a behavioural task used to
assess the ability to design and sketch a simple map; a
second behavioural task used to assess the ability to
articulate a search strategy; and an attitudinal task
focusing on approaches to learning and studying (a
standard study process questionnaire). Most participants
also completed a short exit interview.

The results show trends of varying strengths, generally in
accordance with our expectations and with predictions
drawn from the literature.

A deep approach to learning is positively correlated with
marks in introductory programming courses, while a
surface approach is negatively correlated. Interestingly,
the difference between deep and surface learners’ scores
becomes mo re prominent at the higher end of mark scale.

Only a small positive correlation was found between
scores in the spatial visualisation (paper folding) task and
programming marks. This suggests that components of
IQ other than spatial skills may account for most of the
effect of IQ on programming success (Mayer et al 1989).

In the map-sketching task a progression of map-drawing
styles identified in the literature, from landmark to route
to survey, has a significant correlation with marks. For
this effect there is some interaction with the institution’s
country which remains to be explored.

In a simple search task, increasing measures of richness
of articulation of a search strategy are generally

associated with higher marks, but none of the effects are
strong.

Finally, a qualitative analysis of the exit interviews
identified the qualities that students themselves regarded
as important to learn programming well. As might be
expected, these self-reported qualities cover only part of a
much wider range of attributes specified in an industry
survey.

The strengths of this study include the large number of
participants and the use of diverse and generalised
stimuli, the latter making the tasks independent so that
comparisons can be made across paradigms,
programming languages, and pedagogic styles. The study
combined different approaches and collected both
qualitative and quantitative data, thus providing
opportunities to compare the different factors. The study
builds on existing work and uses some tests for which
standardised data are available. The main limitations of
the study arise from the use of multiple researchers, and
include issues with respect to the consistency of the
application of the study protocol and of the coding,
transcription, and analysis.

It seems likely that a multi-factor model employing tasks
such as those used in this study could be used as a
reasonable predictor of success in introductory
programming. However, this study suggests that further
exploration of possible diagnostic tasks is required, as we
must be careful to have a clear understanding of their
inherent biases. It would also be useful to explore the
extent to which such tasks relate either to general
measures of IQ or to standard components of IQ such as
verbal and spatial factors.

5 Acknowledgments

This study was supported by an ACM Special Interest
Group in Computer Science Education (SIGCSE) Special
Projects Grant and by a grant from Computing Research
and Education Association of Australasia (CORE).

Thanks to Caroline Wills for assistance with workshop
organisation and transcription; to Diane Hagan, CSSE,
Monash University, for her insight and assistance in
conducting the study with Monash students while a
participating researcher was on a Visiting Scholar Grant;
to Warren Hill of Charles Darwin University, Charles
Thevathayan of RMIT University, and Dongmo Zhang of
University of Western Sydney for facilitating access to
participants; to Susan Snowdon for her contribution to the
literature search; to Anthony Robins and Raymond Lister
for exemplary workshop organisation and support; and to
Box Catering Inc for phenomenal food.

6 References

Bailey, J.L., & Stefaniak, G., (2001). Industry perceptions
of the knowledge, skills and abilities needed by
computer programmers. Proc 2001 ACM SIGCPR
conference on Computer personnel research, San
Diego, CA, USA, 93-99, ACM Press.

Barker, R., & Unger, E., (1983). A predictor for success
in an introductory programming class based upon

abstract reasoning development. ACM SIGCSE Bulletin
15(1):154-158.

Biggs, J. (1987). Student approaches to learning and
studying . Melbourne, Australian Council for
Educational Research.

Biggs, J., Kember, D., & Leung, D.Y.P. (2001). The
revised two-factor study process questionnaire: R-SPQ-
2F. British Journal of Educational Psychology
71(1):133-149.

Boyle, R., Carter, J., & Clark, M. (2002). What Makes
Them Succeed? Entry, progression and graduation in
Computer Science. Journal of Further and Higher
Education, 26(1):3-18.

Chowdhury, A., Van Nelson, C., Fuelling, C.P., &
McCormick, R.L. (1987). Predicting success of a
beginning computer course using logistic regression
(Abstract only). Proc 15th ACM Annual Computer
Science Conference, St Louis, MO, USA, 449.

Cox, A., & Fisher, M. (2004). Navigating codespace: A
new direction for spatial cognition research. Poster
presented at the Biannual Convention of the
International Society for Human Ethology, Ghent,
Belgium. http://users.cs.dal.ca/~amcox/pubs/pubs.html.
Accessed 3 Oct 2005.

Cross, E. (1970). The behavioral styles of computer
programmers . Proc 8th Annual SIGCPR Conference,
Maryland, WA, USA, 69-91.

Curzon, P. (2000). Learning Computer Science through
Games and Puzzles. Interfaces 42:14-15.
http://www.bcs-hci.org.uk/interfaces/interfaces42.pdf.
Accessed 3 Oct 2005.

de Raadt, M., Hamilton, M., Lister, R., Tutty, J., Ba ker,
B., Box, I., Cutts, Q., Fincher, S., Hamer, J., Haden, P.,
Petre, M., Robins, A., Simon, Sutton, K., Tolhurst, D.
(2005). Approaches to learning in computer
programming students and their effect on success. In
Brew, A., & Asmar, C. (2005). Higher Education in a
changing world: Research and Development in Higher
Education, 28:407-414.

Ekstrom, R.B., French, J.W., Harman, H.H., & Dermen,
D. (1976). Kit of factor-referenced cognitive tests.
Princeton, NJ, USA, Educational Testing Services.

Evans, G., & Simkin, M. (1989). What best predicts
computer proficiency? Communications of the ACM
32(11):1322-1327.

Fincher, S., Petre, M., Tenenberg, J., Blaha, K., Bouvier,
D., Chen, T-Y., Chinn, D., Cooper, S., Eckerdal, A.,
Johnson, H., McCartney, R., Monge, A., Moström, J.,
Powers, P., Ratcliffe, M., Robins, A., Sanders, D.,
Schwartzman, L., Simon, B., Stoker, C., Tew, A., &
Vandegrift, T. (2004). A multi-national, multi-
institutional study of student-generated software
designs. 4th Annual Finnish / Baltic Sea Conference on
Computer Science Education, Koli, Finland, 1-8.

Fincher, S., Baker, B., Box, I., Cutts, Q., de Raadt, M.,
Haden, P., Hamer, J., Hamilton, M., Lister, R., Petre,

M., Robins, A., Simon, Sutton, K., Tolhurst, D., Tutty,
J. Programmed to succeed?: a multi-national, multi-
institutional study of introductory programming
courses (2005). Computing Laboratory Technical
Report 1-05, University of Kent, Canterbury, UK.

Hagan, D., & Markham, S. (2000). Does it help to have
some programming experience before beginning a
computing degree program? ACM SIGCSE Bulletin
32(3):25-28.

Hestenes, D., Wells, M., & Swackahmer, G. (1992).
Force Concept Inventory. Physics Teacher 30:141-158.

Leeper, R.R., & Silver, J.L. (1982). Predicting success in
a first programming cours e. ACM SIGCSE Bulletin
14(1):147-150.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer,
J., Lindholm, M., McCartney, R., Moström, J.,
Sanders, K., Seppälä, O., Simon, B., & Thomas, L.
(2004). A Multi-National Study of Reading and
Tracing Skills in Novice Programmers. ACM SIGCSE
Bulletin 36(4):119-150.

Mayer, D.B., & Stalnaker, A.W. (1968). Selection and
Evaluation of Computer Personnel – the Research
History of SIG/CPR. Proc 1968 23rd ACM National
Conference, Las Vegas, NV, USA, 657-670.

Mayer, R.E., Dyck, J.L., & Vilberg, W. (1989). Learning
to program and learning to think: what's the
connection? In Soloway, E., & Sphorer, J.C. (Eds.),
Studying the Novice Programmer. Hillsdale, New
Jersey: Lawrence Erlbaum.

McCracken, W.M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y.B.-D., Laxer, C., Thomas, L.,
Utting, I., & Wilusz, T. (2001). A multi-national,
multi-institutional study of assessment of programming
skills of first-year CS students. ACM SIGCSE Bulletin
33(4):125-140.

Nasr, R., Hall, S.R., & Garik, P. (2003). Student
misconceptions in signals and systems and their
origins. Proc 33rd ASEE/IEEE Frontiers in Education
Conference, Boulder CO, USA, T2E23-T2E28.

Onorato, L.A., & Schvaneveldt, R.W. (1987).
Programmer-nonprogrammer differences in specifying
procedures to people and computers. The Journal of
Systems and Software 7(4):357-369.

Petre, M., & Blackwell, A.F. (1999). Mental Imagery in
Program Design and Visual Programming.
International Journal of Human-Computer Studies
51(1):7-30.

Petre, M., Fincher, S., Tenenberg, J., Anderson, R.,
Anderson, R., Bouvier, D., Fitzgerald, S., Gutschow,
A., Haller, S., Jadud, M., Lewandowski, G., Lister, R.,
McCauley, R., McTaggart, J., Morrison, B., Murphy,
L., Prasad, C., Richards, B., Sanders, K., Scott, T.,
Shinners-Kennedy, D., Thomas, L., Westbrook, S., &
Zander, C. (2003). ‘My criterion is: Is it a Boolean?’: a
card-sort elicitation of students’ knowledge of
programming constructs . Computing Laboratory

Technical Report 6-03. University of Kent, Canterbury,
UK.

Poucet, B. (1993). Spatial cognitive maps in animals:
New hypotheses on their structure and neural
mechanisms. Psychological Review 100(2):163-182.

Roddan, M. (2002). The determinants of student failure
and attrition in first year computing science. Final-year
undergraduate project. http://www.psy.gla.ac.uk/
~steve/localed/mrodd.html. Accessed 3 Oct 2005.

Rountree, N., Rountree, J., & Robins, A. (2002).
Predictors of success and failure in a CS1 course. ACM
SIGCSE Bulletin 34(4):121-124.

Simon, Cutts, Q., Fincher, S., Haden, P., Robins, A.,
Sutton, K., Baker, B., Box, I., de Raadt, M., Hamer, J.,
Hamilton, M., Lister, R., Petre, M., Tolhurst, D., Tutty,
J. (2006). The ability to articulate strategy as a
predictor of programming skill. Proc Eighth
Australasian Computing Education Conference,
Hobart, Australia, Jan 2006.

Tolhurst, D., Baker, B., Hamer, J., Box, I., Cutts, Q., de
Raadt, M., Fincher, S., Haden, P., Hamilton, M., Lister,
R., Petre, M., Robins, A., Simon, Sutton, K., Tutty, J.
(2006). Do map-drawing styles of novice programmers
predict success in programming? A multi-national,
multi-institutional study. Proc Eighth Australasian
Computing Education Conference, Hobart, Australia,
Jan 2006.

Werner, S., Krieg-Brückner, B., Mallot, H.A., Schweizer,
K., & Freksa, C. (1997). Spatial cognition: the role of
landmark, route, and survey knowledge in human and
robot navigation. In Jarke, M., Pasedach, K., & Pohl,
K. (Hrsg.), Informatik 97: Informatik Aktuell 41-50,
Berlin.

Wilson, B.C., & Shrock, S. (2001). Contributing to
success in an introductory computer science course: a
study of twelve factors. ACM SIGCSE Bulletin
33(1):184-188.

Wolfe, J.M. (1971). Perspectives on Testing for
Programming Aptitude. Proc 1971 26th ACM National
Conference, Chicago, IL, USA, 268-277.

