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Abstract 

This paper describes a multi-national, multi-institutional 
study that investigated introductory programming 
courses ..  Student participants were drawn from eleven 
institutions, mainly in Australasia, during the academic 
year of 2004.  A number of diagnostic tasks were used to 
explore cognitive, behavioural, and attitudinal factors 
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such as spatial visualisation and reasoning, the ability to 
articulate strategies for commonplace search and design 
tasks, and attitudes to studying.  The results indicate that 
a deep approach to learning was positively correlated 
with mark for the course, while a surface approach was 
negatively correlated; spatial visualisation skills are 
correlated with success; a progression of map drawing 
styles identified in the literature has a significant 
correlation with marks; and increasing measures of 
richness of articulation of a search strategy are also 
associated with higher marks.  Finally, a qualitative 
analysis of short interviews identified the qualities that 
students themselves regarded as important to success in 
programming. 

Keywords:  programming aptitude, education. 



1 Introduction 

What factors might influence entry-level undergraduate 
students’ success in learning programming?  There is 
considerable practical and theoretical interest in this 
question.  Initial efforts concentrated on occupational 
aptitude tests – selecting and evaluating those people 
most likely to have a successful and fulfilling career in 
the emerging computing industry (Cross 1970; Mayer & 
Stalnaker 1968; Wolfe 1971).  An alternative focus on 
academic success emerged during the 1980’s.  Studies 
exploring factors that might predict success in an 
introductory programming course were driven by issues 
such as the rapid growth in popularity of programming 
courses, varying levels of student ability, and the 
consequent demand placed on teaching resources (Barker 
& Unger 1983; Chowdhury, Va n Nelson, Fuelling, & 
McCormick 1987; Leeper & Silver 1982).  

We believe that learning to program is problematic, and 
that the results achieved by students in programming 
courses do not correlate well with their other academic 
results. Our understanding of this phenomenon is patchy 
and poorly integrated, but it does seem clear that there are 
many influences at play.  Factors suggested anecdotally 
and in the literature include mastery of one’s native 
language (the ability to communicate clearly and 
effectively both in speech and in writing), number of 
programming languages used or examined (Hagan & 
Markham 2000), spatial reasoning and mathematical 
ability (Wilson & Shrock 2001), musical ability, logical 
reasoning ability, and previous academic background 
(Boyle, Carter, & Clark 2002). Measures of general 
intelligence correlate well (Mayer, Dyck, & Vilberg 
1989).  The best indicators of success appear to be self-
predicted success, attitude, keenness and general 
academic motivation (Roddan 2002; Rountree, Rountree, 
& Robins 2002).  However, these indicators do not 
distinguish programming from other disciplines, and they 
have such a large effect that they may mask more subtle, 
discipline-specific, indicators. 

The most extensive of recent studies (Wilson & Shrock 
2001) explores twelve possible predictors.  These include 
standard factors such as mathematical background, work 
style preference and previous programming experience, 
and also a range of student self assessments.  
Assessments that proved to be of particular interest 
include comfort level (based on students’ perceptions of 
course/programming difficulty and level of anxiety) and 
attributions (based on students’ beliefs about their 
reasons for success or failure).  In order of diminishing 
significance, comfort level was found to be the best 
predictor of success, with mathematical background the 
second and attribution of success to luck (as a negative 
correlation) the third. 

This paper reports on a study of possible influencing 
factors that is distinctive in a number of ways.  First, it is 
both multi-institutional and multi-national, with 
participants from eleven institutions in three countries.  
This breadth lends support to generalisations about 
factors that can vary across prior educational experience 
(and hence that are likely to be influenced by educational 
intervention) and factors that are invariant. Second, the 

data examined is particularly broad, with separate 
subtasks exploring attitudinal, cognitive, and behavioural 
factors, and a short open-ended interview.  This allows 
many diverse research questions to be addressed using 
multiple methods of analysis.  Third, the scale of the 
study, with 177 participants from eleven institutions in 
three countries, reduces sample bias and increases 
generalisability.  The cost and challenges of carrying out 
empirical research at this scale mean that there are few 
precedents for programming-related studies of this size 
and scope. However, there has been a recent spate of such 
studies (Lister et al 2004; McCracken et al 2001; Petre et 
al 2003; Fincher et al 2004). 

The full initial report on this  study is published as a 
technical report (Fincher et al 2005), but the scope of the 
study is so great that it cannot be fully reported on in one 
conference paper. Therefore this paper presents a broad 
overview of the study, its aims, its method, and its 
conclusions, while other papers (to date, deRaadt et al 
2005; Simon et al 2006; Tolhurst et al 2006) will go into 
more detail on each component of the study, giving a full 
analysis of the data and justification of the conclusions. 

We must make clear at the outset that one particular 
simplification underlies our work. While we would really 
like to find correlations between performance on simple 
tasks and programming aptitude, we cannot do that 
because there is no accepted measure of programming 
aptitude. Therefore we have substituted it with the readily 
quantified measure of mark in a first programming 
course. We do not pretend that there is a linear 
relationship between programming aptitude and mark in a 
first programming course, or that different first 
programming courses are assessed comparably; but we 
have succumbed to the need for an easily measured 
quantity. 

2 The study – an overview 

The study was based on four different diagnostic tasks in 
an attempt to determine or eliminate factors that might 
relate to early programming performance.  Eleven 
institutions participated, using the same protocol to gather 
data from students in introductory programming courses 
taught during 2004.  Data was then pooled and analysed.  
The four focal tasks were: 

• a standard paper-folding test, a cognitive task 
focusing on spatial visualisation and reasoning; 

• map sketching, a behavioural task used to assess 
the ability to design and sketch a simple map and 
to articulate decisions based on that map; 

• searching a phone book, a behavioural task used to 
assess the ability to articulate a search strategy; 

• a standard study process questionnaire, an 
attitudinal task focusing on approaches to learning 
and studying. 

A subset of the researchers conducted small pilot studies 
to trial and refine the overall process and the specifics of 
the behavioural tasks. The attitudinal and cognitive tasks 
employed standard instruments as described below.  In 



most cases student participants completed all four tasks 
and a short open-ended interview. 

Several factors combine to set this study apart from 
others with the same basic goals.  

• Paradigm independence: the use of diverse and 
generalised stimuli makes the tasks independent, 
so that comparisons can be made across 
programming paradigms, languages, and 
pedagogic styles.  

• Triangulation: the study combines different 
approaches and collects both qualitative and 
quantitative data, providing opportunities to 
contradict or corroborate within the study by 
comparing the different factors.  

• Building on existing work : part of the study 
replicates work for which there is standardised 
data available.  

• Scale: the number of institutions means that the 
total number of participants recruited is at a scale 
unusual in the literature. 

The difficulty of predicting programming success is 
compounded by the lack of an agreed, established, ‘core’ 
list of essential programming concepts, let alone any 
robust instruments for assessing students’ acquisition of 
programming concepts or misconceptions.  Certainly 
there is nothing comparable to the ‘Force Concept 
Inventory’ in Physics (Hestenes, Wells, & Swackahmer 
1992; Nasr, Hall, & Garik 2003).  Hence, like many 
researchers in this field, we relate our findings from the 
diagnostic tasks to the marks achieved by students in an 
introductory programming course, leaving somewhat 
open the question of the extent to which these marks 
reflect the students’ actual programming ability. 

3 The study – method 

Most of the data was gathered in individual sessions 
between researchers and students, although at two of the 
participating institutions the paper-folding test was 
administered collectively.  Participants completed the 
paper folding, map, and phone book tasks, and a short 
open-ended interview.  Towards the end of their course 
participants completed the study process questionnaire 
task.  The specifics of the four tasks and the interview are 
discussed in the following subsections. 

One hundred and seventy-seven volunteer participants 
were recruited from the introductory programming 
courses at eleven institutions of post-secondary education 
in Australia, New Zealand and Scotland.  Ages ranged 
from 17 to 50 (three quarters were 22 or younger), with 
137 males and 40 females. 

Eleven of the participating institutions contributed data.  
One institution contributed 32% of the 177 participants, 
but did not collect data for all tasks.  The next highest 
contribution was 8%. 

3.1 Task 1: paper folding 

The purpose of this task was to explore the possibility of 
a correlation between mark in a first programming course 
and success in a cognitive task focusing on spatial 
visualisation and reasoning. 

3.1.1 Background 

The Paper Folding Test (VZ-2) is taken from the ETS Kit 
of Referenced Tests for Cognitive Factors (Ekstrom, 
French, Harman, & Dermen 1976).  The test is designed 
to measure visualisation and spatial reasoning, based on 
the ability to manipulate and transform spatial patterns.  
In this case, participants identify which pattern of holes 
would result in an unfolded sheet of paper after holes are 
punched through an arrangement of folds. 

The test consists of 20 questions, in two sets of 10, with a 
time limit of three minutes per set.  Researchers recorded 
the time taken to complete each set, along with the 
numbers of questions answered correctly, incorrectly, and 
not at all. 

This study is not the first to use a paper folding test as a 
means of assessing aptitude for computer programming.  
Evans and Simkin (1989) used a paper folding test, but it 
accounted for only a small portion of their entire study. 

3.1.2 Discussion 

We found correlations between mark and paper folding 
score that are significant while not being particularly 
strong. We also found a slight negative correlation 
between the paper folding and a deep learning approach 
(see Section 3.4), which leads to some interesting 
speculation about the surface nature of the paper-folding 
task as compared with the deep nature of programming.   

3.2 Task 2: map sketching  

The purpose of this task was to explore the possibility of 
a correlation between mark in a first programming course 
and either the style of a map produced for a navigational 
task or the descriptions of the navigational decision points 
on that map. 

This task is drawn from classroom practice and a tradition 
in computer education that uses commonplace examples 
to convey programming concepts and make them relevant 
to students  (eg Curzon 2000).  The goal is to assess 
participants’ ability to design and sketch a simple map 
and to articulate decisions based on that map. 

Participants were asked to sketch a map of a route 
between two known locations on or near their campus, a 
map that would be useful to somebody unfamiliar with 
the area.  They were then asked to annotate the map with 
decision points, describing how to recognise each 
decision point and what to do at that point.  Researchers 
collected the sketch maps with any annotations, an audio 
recording of the session, and their own notes regarding 
the order in which the map was drawn. 



3.2.1 Background and motivation 

In a study of expert programmers (Petre & Blackwell 
1999), all of the experts reported using spatial 
representations for programming; for example, describing 
a problem space as a landscape. 

Elsewhere, program code has been characterised as a 
virtual space – a Codespace (Cox & Fisher 2004), and 
many of the problems that programmers face in 
navigating a Codespace have been likened to those 
encountered when navigating physical space. In 
developing and in understanding program code, the 
programmer has to locate code segments and move 
between them. Cox and Fisher stress the importance of a 
structural view of a program – its layout and organisation 
– for being able to move around a Codespace.  

Werner et al (1997) suggest a hierarchy in acquisition of 
spatial knowledge. At the landmark level,  knowledge is 
about unique objects at fixed locations. At the route level, 
knowledge is about fixed sequences of locations as 
experienced in traversing a route. At the survey level, a 
single model is synthesised from the known landmarks 
and routes. Poucet (1993) describes a similar model. 

Our goal was to categorise the participants’ maps 
according to Werner’s hierarchy, then to see whether we 
could find a correlation between map category and mark 
in a first programming course. 

3.2.2 Discussion 

There is a general trend for students who drew survey 
maps to gain higher marks than those who drew route 
maps, who in turn do better than those who drew 
landmark maps.  This trend mirrors the hierarchy of 
spatial knowledge described above (Werner et al 1997; 
Poucet 1993). The parallels suggest that our participants 
do have preferred navigational strategies, and that these 
strategies are related to success in an introductory 
programming course. 

The nature of the relationship is a matter for conjecture at 
this stage, but the literature suggests that different 
navigational strategies may affect the way in which 
programmers are able to navigate programming code and 
in so doing to form a conceptualisation of the major 
features of this code. 

Our results did show an interaction effect between 
mapping style and country (Australia, New Zealand, or 
Scotland). Because of the disparity in numbers between 
these countries, the interpretation of this result must be 
treated with caution. It might be due to general 
educational effects, the nature of the courses in each 
country, or the nature of the assessment items in each 
course. 

Although a significant relationship was found between 
descriptions of decision points given by participants and 
their map style, no correlation was found between these 
decision point descriptors and the participants’ final 
marks. This suggests that students’ ability to represent 
navigational knowledge visually might not be related to 
their ability to describe it. There are some potential 

implications here for the use of written examinations over 
practical exa minations in capturing students’ creation and 
comprehension of program structures. 

We describe this component of the project in more detail 
in Tolhurst et al (2006). 

3.3 Task 3: phone  book searching 

The purpose of this task was to explore the possibility of 
a correlation between mark in a first programming course 
and participants’ ability to articulate their strategies for a 
commonplace search task. 

The phone book task was intended to use an everyday 
activity to assess the participant’s ability to articulate a 
commonplace search strategy. 

Participants were asked to look up a specified name in the 
local phone book, then to describe the process that they 
had used to find the name.  They were then asked to look 
up a second name, describing that search as they 
conducted it.  Researchers made and transcribed an audio 
recording of the session, and took notes regarding the 
nature of the search and the quality of the articulation. 

3.3.1 Background and motivation 

Anecdotal evidence suggests  that programmers are better 
than non-programmers at describing search processes.  If 
true, this would imply that the metacognitive ability to 
describe strategy might be relevant to programming skill .  
In order to explore this possibility the phone book task 
was chosen as a representative example of a 
commonplace search activity.  This task is drawn from 
classroom practice, stemming in turn from a tradition in 
computer education of using commonplace examples to 
convey programming concepts and to make them relevant 
to students  (eg Curzon 2000). 

A phone book search task has previously been used in a 
study of naïve, novice/beginning, and experienced 
programmers (Onorato & Schvaneveldt 1987).  This 
study required participants to write instructions for 
looking up a specified name in a phone directory.  It was 
found, among other things, that experienced programmers 
were more likely than novices to incorporate 
programming constructs in their descriptions, and that 
they were more likely to use terms referring to the phone 
book as opposed to its contents.  To the extent that the 
task of writing instructions can be compared with that of 
articulating one’s own actions in speech, our study could 
be a useful complement to this one. 

In designing the task we sought to explore two aspects of 
the ability to articulate strategies: accuracy and richness.  
By accuracy we meant how well a given description 
matched the researcher’s observation of how the 
participant undertook the task.  In the event, the accuracy 
ratings collected during the task sessions were later 
perceived by the researchers as being unreliable.  Hence 
the measures explored in this report are all attempts to 
capture the richness of the articulation.  These include a 
count of the number of alternative search strategies 
elicited from each student at the end of the task; an 



assessment of the richness of the students’ articulations 
made by individual researchers during the task; and a 
similar but more focused assessment of all transcribed 
articulations made collectively by three of the 
researchers. 

We hypothesised that those participants who naturally 
articulated their strategy were demonstrating the ability to 
situate their actions in a preconceived algorithm or plan, 
and that this ability might constitute a useful predictor of 
success in learning to program.   

Our analysis of novices during the very early stages of 
their first programming course directly addresses the 
question posed by Onorato and Schvaneveldt: do those 
who go on to become successful programmers have pre-
existing abilities or tendencies to describe processes in a 
strategic or algorithmic manner? 

3.3.2 Discussion 

The observed trends are all in the expected direction.  All 
measures show that increasing richness is associated with 
increasing mark in the programming course.  The 
measures are not all statistically significant, although 
most become so if students who failed to complete the 
course are included in the analyses (these students come 
exclusively or at least predominantly from the weaker 
groups).  Although individual measures are weak, taken 
together they appear to form a reliable picture. 

In summary, this study provides some initial evidence 
that the question raised by Onorato and Schvaneveldt 
(1987) can be answered affirmatively: students who carry 
on to be successful programmers tend to have pre-
existing strengths in a strategic / algorithmic style of 
articulation. 

We describe this component of the project in more detail 
in Simon et al (2006). 

3.4 Task 4: the study process questionnaire  

The purpose of this task was to explore the possibility of 
a correlation between mark in a first programming course 
and aspects of participants’ approach to study. 

The Biggs Study Process Questionnaire derives from the 
notion that students’ perceptions and learning activities 
are central to learning.  An ‘approach to learning’ 
encompasses the relationship between student, context, 
and task (Biggs, Kember, & Leung 2001).  The revised 
questionnaire assesses deep and surface approaches to 
learning in the context of a particular course. 

Towards the end of their introductory programming 
course participants completed the revised questionnaire, 
consisting of 20 closed-response questions scored on a 5-
point Likert scale.  Researchers recorded the participants’ 
answers to each question. 

3.4.1 Background and motivation 

The emphasis  in the Biggs revised two-factor Study 
Process Questionnaire R-SPQ-2F is upon the context -
specific and the situated nature of learning. ‘Students’ 

approaches to learning are conceived as forming part of 
the total system in which an educational event is located’ 
(Biggs et al 2001 p135). This approach to learning will 
depend upon a number of factors that range from personal 
(eg motivation, available time, personal perception of 
task demands) through environmental (eg classroom 
climate, learning activities, assessment methods) to 
institutional factors (eg course culture, curriculum 
design). These different factors affect how students 
perceive the demands of a specific learning task and then 
how they choose to deal with it. 

The R-SPQ-2F aims to measure two different learning 
approaches, deep and surface. Students adopting a deep 
approach aim from the outset to develop a broad 
understanding of the task and relate it to other topics and 
their personal experience. This approach is typically 
motivated by intrinsic interest in the material. Students 
adopting a surface approach build their view from facts 
and from the details of activities with the aim of 
reproducing material rather than making theoretical 
connections.  This approach is typically associated with a 
fear of failure. 

3.4.2 Discussion 

We found a positive correlation between deep learning 
approaches and mark, and a negative correlation between 
surface learning approaches and mark. Students who 
engaged more deeply with the material tended to do 
better than those who did not. This result is consistent 
with results reported in Biggs (1987). 

These correlations, while significant, were only 
indications of a trend rather than strongly suggesting that 
students who adopt a deep learning approach are likely to 
succeed and those who employ a surface approach are 
likely to fail. A student’s choice of learning style depends 
upon the complex interaction between the learning 
environment and the student’s decisions, motivation and 
metacognitive ability. In a study such as this across 
multiple institutions with different curricula and 
assessments, strategic decisions made by students on the 
most appropriate learning approach will vary from 
institution to institution. Biggs et al (2001 p137) write 
that at the end of the course the scores ‘may describe how 
teaching contexts differ from each other’. We found some 
variation between the institutions in the strengths of the 
correlations; this variation might be indicative of such 
differences between teaching contexts.  

The discussion so far has been for students who 
completed the courses. There were a number of students 
who completed the Biggs questionnaire at the end of the 
semester and then dropped out before the exam. As their 
final mark was incomplete, these students were not 
included. However, when they are included all of the 
correlations described above become stronger. Not 
surprisingly, those who discontinued at this late stage 
were dominated by surface learners. 

We describe this component of the project in more detail 
in de Raadt et al (2005). 



3.5 The interview questions  

The purpose of this part of the study was to elicit the 
qualities or skills that entry-level undergraduate students 
express as important to the successful learning of 
programming. 

This final element of the study was a wholly qualitative 
semi -structured interview. We had no particular 
expectations regarding the outcome, apart from a belief 
that the richness of qualitative data can highlight factors 
that are difficult to capture using more structured tasks, 
and can facilitate the exploration of a wide range of 
approaches and methods of analysis. 

Having completed the first three tasks, participants were 
asked: 

• What do you think we were trying to find out? 

• How do you think the sketch-map task might 
relate to programming? 

• How do you think the phone book task might 
relate to programming? 

• What qualities or skills do you think are important 
to learn programming well, to ‘get it’? 

An audio recording of each session was made and 
transcribed. 

3.5.1 Background and motivation 

We were unable to find any prior studies designed to 
elicit the qualities, knowledge, skills, or abilities that 
students perceive as important to learning programming. 

There are non-discipline specific studies about students’ 
preparation for and perception of learning at university, 
such as the work by Biggs (1987). While these studies 
apply to students in general, they provide no insight into 
specific student perceptions of what it takes to learn 
programming well. 

Bailey and Stefaniak (2001) conducted a survey of 
industry perceptions of the knowledge, skills, and 
abilities (KSAs) needed by entry-level computer 
programmers. The survey questions were developed from 
focus groups of a few individuals from five companies. 
The 85 KSAs that emerged were divided into 53 
technology skills, 20 soft skills , and 12 business concepts. 
In the absence of any studies more pertinent to our own 
interests, we were interested in exploring the similarities 
between their work and our own. 

3.5.2 Discussion 

The qualities and skills identified most often by our 
participants were logical thinking and problem-solving. 
The next top eight were attention to detail, consideration 
of alternatives, mathematics, knowledge of programming, 
ability to learn, knowledge of computers, modularis ing, 
and planning. The top 10 KSAs in the industry study 
(Bailey & Stefaniak 2001) are ability to read, understand 
and modify programs written by others, ability to code 
programs, ability to debug software, listening skills , 
problem-solving process, teamwork skills, knowledge of 

structured programming fundamentals, ability to 
implement programs, knowledge of multiple 
programming languages, and ability to visualise/ 
conceptualise. 

There is some alignment between the two studies, but 
there are also significant differences. For example, none 
of our participants mentioned listening skills , which 
ranked quite high in the industry study. 

Because we did not use probing questions to clarify the 
participants’ meanings, a number of their utterances 
remain open to interpretation. For example, do these two 
utterances mean the same thing? (1) ‘Problem-solving’; 
(2) ‘Problem-solving and being able to identify what the 
problem is and being able to solve that, sort of finding, 
making sure you understand how the problem works and 
what you want to achieve, what your goals are and then 
trying to develop a method that solves that particular 
problem’. 

Other aspects of the study lead us to conclude that the 
reliability of the data source is weak. Even so, the results 
suggest that the students lack an awareness of what it 
takes to learn programming well, at least in comparison 
with the expert opinion generated by the industry study. 

4 Conclusions  

This study has explored a number of issues that may 
influence success in learning to program.  Researchers at 
eleven participating institutions used the same protocol to 
gather data from students in introductory programming 
courses taught during 2004.  The study was based on four 
different diagnostic tasks: a spatial visualisation task (a 
standard paper folding test); a behavioural task used to 
assess the ability to design and sketch a simple map; a 
second behavioural task used to assess the ability to 
articulate a search strategy; and an attitudinal task 
focusing on approaches to learning and studying (a 
standard study process questionnaire).  Most participants 
also completed a short exit interview. 

The results show trends of varying strengths, generally in 
accordance with our expectations and with predictions 
drawn from the literature.  

A deep approach to learning is positively correlated with 
marks in introductory programming courses, while a 
surface approach is negatively correlated.  Interestingly, 
the difference between deep and surface learners’ scores 
becomes mo re prominent at the higher end of  mark scale.  

Only a small positive correlation was found between 
scores in the spatial visualisation (paper folding) task and 
programming marks.  This suggests that components of 
IQ other than spatial skills may account for most of the 
effect of IQ on programming success (Mayer et al 1989).  

In the map-sketching task a progression of map-drawing 
styles identified in the literature, from landmark to route 
to survey, has a significant correlation with marks.  For 
this effect there is some interaction with the institution’s 
country which remains to be explored. 

In a simple search task, increasing measures of richness 
of articulation of a search strategy are generally 



associated with higher marks, but none of the effects are 
strong. 

Finally, a qualitative analysis of the exit interviews 
identified the qualities that students themselves regarded 
as important to learn programming well.  As might be 
expected, these self-reported qualities cover only part of a 
much wider range of attributes specified in an industry 
survey. 

The strengths of this study include the large number of 
participants and the use of diverse and generalised 
stimuli, the latter making the tasks independent so that 
comparisons can be made across paradigms, 
programming languages, and pedagogic styles.  The study 
combined different approaches and collected both 
qualitative and quantitative data, thus providing 
opportunities to compare the different factors.  The study 
builds on existing work and uses some tests for which 
standardised data are available.  The main limitations of 
the study arise from the use of multiple researchers, and 
include issues with respect to the consistency of the 
application of the study protocol and of the coding, 
transcription, and analysis.  

It seems likely that a multi-factor model employing tasks 
such as those used in this study could be used as a 
reasonable predictor of success in introductory 
programming.  However, this study suggests that further 
exploration of possible diagnostic tasks is required, as we 
must be careful to have a clear understanding of their 
inherent biases.  It would also be useful to explore the 
extent to which such tasks relate either to general 
measures of IQ or to standard components of IQ such as 
verbal and spatial factors. 
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