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ABSTRACT 
Airborne LiDAR data have advantages over passive remote 
sensing data in detailed description of vertical forest structure. 
LiDAR-derived information can potentially be used to solve such 
problems as forest type classification and forest boundary 
determination. Forest boundaries were usually represented as 
sharp lines that attempt to distinguish areas with different forest 
types. In reality, however, forest boundaries are rarely sharp or 
crisp, especially in the forest area with multiple canopy layers 
where species compositions change gradually. Fuzzy analysis 
offers great potential for characterising the transition zones and 
determining realistic forest boundaries. This study developed 
ways of using fuzzy analysis of airborne LiDAR data for 
determining rainforest boundaries. LiDAR variables were derived 
and used to define and calculate membership function values for 
both rainforest and non-rainforest. The confusion index values 
were then derived to illustrate the transition zones. Finally, the 
rainforest boundaries were successfully determined in the study 
area. The results demonstrated the success of proposed method 
for rainforest boundary determination. 
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1 INTRODUCTION 
Fuzzy set theory developed by Zadeh [1] has been widely adapted 
to deal with natural phenomena with gradual changes. Fuzziness 
is often a concomitant of complexity, deal with ambiguity, 
vagueness, and ambivalence. Fuzz analysis can be used to 
characterise classes that cannot have or do not have sharply 

defined boundaries [2]. For example, the forest boundaries were 
usually represented as sharp lines that attempt to distinguish 
areas with different forest types. In reality, however, forest 
boundaries are rarely sharp or crisp, especially in the forest area 
with multiple canopy layers where species compositions change 
gradually. Therefore, the forest boundaries should be more 
realistically described as transition zones rather than boundaries 
with abrupt changes [3]. Fuzzy analysis offers a great potential for 
characterising the transition zones and determining realistic 
forest boundaries within the transition zones. 
     Application of fuzzy analysis into the forest can include 
information about the nature of the forest boundaries [2]. The 
nature information of the boundary can be used to describe the 
spatial changes of some important natural phenomena. For 
example, ecotone which describes a transitional area between 
different vegetation types or ecological communities [4, 5] is of 
significant importance in biogeographical investigations, 
especially in monitoring environmental change [6]. 
     Forest type classification is a prerequisite for sustainable forest 
management and native forest conservation. Remotely sensed 
data have been widely explored for forest applications. However, 
passive remote sensing techniques are limited in their ability to 
capture forest structure complexity. It has been shown that active 
remote sensing techniques via airborne LiDAR (Light Detection 
and Ranging) with capability of canopy penetration yields such 
high-density sampling that detailed description of the forest 
structure in three dimensions can be obtained. Accordingly, much 
interest is attached to exploring the application of this approach 
for identifying the distribution of designated vegetation 
communities [7]. 
     Rainforests in Victoria, Australia are protected from the 
impacts of timber harvesting through the imposition of buffers 
appropriate to the maintenance of their key environmental 
parameters. Boundaries between rainforest and adjacent forests 
must be well positioned and monitored for effective rainforest 
conservation and protection. In our study area, the ecotone is the 
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zone where the rainforest and sclerophyll forest overlap [8], 
forming a transition zone with mixed forest types. In this 
transition zone, Mountain Ash dominates the higher storey of the 
canopy while the rainforest dominates the lower storeys. The 
boundary between the rainforest and surrounding non-rainforest 
must be somewhere within this transition zone. 
     Traditional methods for rainforest boundary determination in 
an area similar to our study area were based on the interpretation 
of aerial photographs or field work. These methods are labour 
intensive and time consuming. In addition, aerial photographs 
(and even the satellite images) are only able to provide 
information on horizontal forest extent. The LiDAR data have 
advantages over these traditional remote sensing data in that 
vertical forest structure (or the interior of the canopy and 
understorey vegetation) can be delineated in much detail [7]. 
However, there is still considerable scope for developing 
advanced methodology to take maximum advantage of the 
information extracted from the LiDAR data for effective 
determination of rainforest boundaries. Therefore, the overall 
objective of this study is to develop a fuzzy logic model using 
airborne LiDAR data for determining the boundary between cool 
temperate rainforest and adjacent forests in the study area. Fuzzy 
analysis of LiDAR-derived variables will be performed to 
determine fuzzy membership values describing degrees to which 
each area belongs to a certain forest type in the study area, and 
the confusion index values will also be calculated to illustrate the 
transition zones (or ecotone areas) and determine the boundaries 
between the rainforest and non-rainforest. 
     To our best knowledge, this is the first time applying fuzzy 
analysis to the airborne LiDAR data in Australian cool temperate 
rainforest environment. This study contributes to the knowledge 
and understanding of the development of fuzzy logic model using 
the airborne LiDAR data for effective rainforest boundary 
determination. The results from this study will strongly warrant 
the operational adoption of the fuzzy analysis of the airborne 
LiDAR data in the management of forestry resources. The 
remainder of this paper is organised as follows. Next section 
describes the study area and data used. Section 3 presents the 
fuzzy logical model development in detail. It is followed by two 
sections presenting the results and discussion. The final section 
draws the conclusions. 

2 MATERIALS 

2.1 Study Area 
The study area is in the eastern Strzelecki Ranges, southeast 
Victoria, Australia. The Strzelecki Ranges are an isolated series of 
mountains in the southern section of the Gippsland region that 
are surrounded by the Gippsland Plain. Before European 
settlement, the Strzelecki Ranges were densely vegetated by wet 
forest (or wet sclerophyll forest) and cool temperate rainforest. 
Wet forest is most commonly dominated by Mountain Ash 
(Eucalyptus regnans) [9], characterised by a tall eucalypt 
overstorey, a broad-leaved shrubby understorey and a moist, 
shaded, fern-rich ground layer that is usually dominated by tree-
ferns [10]. In eucalypt-free areas, Silver Wattle (Acacia dealbata) 
may be locally dominant [9]. Cool temperate rainforest is defined 
as a closed, non-eucalypt forest, which occurs in high rainfall 
areas and within wet forest areas which have not been exposed to 

fire [11]. Myrtle Beech (Nothofagus cunninghamii) is the dominant 
species of cool temperate rainforest in the study area. The 
understorey is characterised by tree ferns and a rich epiphytic 
flora. The ground layer is dominated by a diversity of ground ferns 
such as Mother Shield-fern, Hard Water-fern, and Leathery 
Shield-fern [10]. 

These forests have experienced widespread land clearing 
since European settlement. Subsequent agricultural abandonment 
and a significant fire history have resulted in severe landscape 
disturbance in the Strzelecki Ranges. There was extensive 
regeneration of eucalypt forest following catastrophic wildfires in 
1939 and 1944. Currently, areas bordering patches of cool 
temperate rainforest in the eastern Strzeleckis are a mosaic of 
different land use histories involving both natural and human 
disturbances, and so a very complex forest structure in the 
remnant patches of cool temperate rainforest and adjacent forests 
including wet sclerophyll and plantation forests prevails [7]. This 
study focuses on an area with cool temperate rainforest 
distribution in the Eastern Strzeleckis, which covers an area of 25 
hectares. 

2.2 Data 
Airborne LiDAR data were collected using an Optech ALTM 
Gemini LiDAR system at a flying height of 1,100 m above ground 
between 11 and 23 October 2009 (for the whole Strzelecki Ranges). 
The laser pulse repetition frequency is 70 kHz. The wavelength of 
the LiDAR laser is 1.064 μm. The laser scanner was configured to 
record up to 4 returns for one laser pulse. The average point 
density was 4 points per square metre, and the laser footprint 
diameter was 0.3 m. The LiDAR data used for this project was 
documented as 0.20 m for vertical accuracy and 0.25 m for 
horizontal accuracy. The LiDAR data were classified into ground 
and non-ground points by the vendor and were delivered in 
binary LAS 1.2 file format. The EVCs (Ecological Vegetation 
Classes) data in the region provided by the HVP Plantations Pty 
Ltd were used as reference data in this study. 

3 MODEL DEVELOPMENT 

3.1 Normalising LiDAR Data 
A digital elevation model (DEM) with two-metre horizontal 
resolution (grid size) was generated using the LiDAR ground data. 
The height of laser returns above the ground is calculated from 
the difference between the laser returns (including those from tree 
canopy and understorey vegetation) and the corresponding DEM 
value. It is these normalised laser returns that provide an effective 
way to depict the vertical structure of the forests throughout the 
whole canopy structure. The structural differences will affect the 
distribution of the laser returns from the forests [12, 13]. 
Therefore, the variables or metrics derived from the LiDAR data 
can be used for tree species identification and forest type 
classification. 

3.2 Deriving LiDAR Variables 
A grid of square columns with 4×4 m horizontal resolution (grid 
size) covering the study area were generated to quantitatively 
describe the height distribution of LiDAR data. The none-ground 
LiDAR points within each of these square columns were extracted 
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to quantify the vertical distribution of LiDAR points by 
calculating height variables as listed in Table 1. 

Table 1: LiDAR-derived variables in each of the columns. 

Variables Description 

Max Maximum height in the column 

Mean Mean height in the column 

StdDev Standard deviation of height 

Variance Variance of height 

Skewness Skewness of height 

AAD Average absolute deviation from mean 

P30 30th percentile of height 

P60 60th percentile of height 

P90 90th percentile of height 

L2 The second L-moment 

 

3.3 Defining Fuzzy Membership Functions 
Let X be a set, with a generic element of X denoted by x: X ={x}. A 
fuzzy set A in X is characterised by a membership function MF(x) 
which associates with each element x ∈ X a real number in [0, 1]. 
The value of MF(x) at x represents the grade of membership of x 
in A.  The closer the value of MF(x) to 1, the higher the degree to 
which the x belongs to A [1]. In other words, the MF(x) of x in A 
specifies the extent to which x can be regarded as belonging to A 
[2]. Using the fuzzy set, each forest area can be assigned a 
membership grade for every forest property value to indicate the 
degree to which it is associated with the different forest types [3].  
     After the LiDAR variables have been derived from normalised 
LiDAR data in each square column, 4 typical rainforest areas and 
4 typical non-rainforest areas in the study area were selected, 
called rainforest training area and non-rainforest training area. 
The mean μ and standard deviation σ of each variable were then 
calculated from rainforest training area and non-rainforest 
training area respectively. Both rainforest and non-rainforest 
training areas have 10 pairs of mean and standard deviation values 
which will be used to form the membership functions for fuzzy 
analysis. 
     In order to define the fuzzy membership functions and 
calculate the membership function values for each of the 
variables, the mean value of a variable was selected as the centre 
of the fuzzy set. The membership value is 1 at the centre of the set 
and it falls off in a way through the fuzzy boundaries to the region 
outside the set, where the membership value takes the value 0. 
Here, the width of the fuzzy set was defined by two times of the 
standard deviation value of the variable, so-called two-sigma rule. 
The values of the variable less than two times of the standard 
deviation value away from the mean accounting for 95% of the 
values were used for fuzzy analysis here. Therefore, the fuzzy 
membership function for the rainforest was defined by: 

𝑀𝐹(𝑥) =  1   if 𝑥 <  𝜇                                         (1.a) 
          

𝑀𝐹(𝑥) =  
(𝜇+2𝜎)−𝑥

2𝜎
    if  𝜇 ≤ 𝑥 ≤  (𝜇 + 2𝜎)                       (1.b)  

 
        𝑀𝐹(𝑥) = 0   if  𝑥 > (𝜇 + 2𝜎)                               (1.c) 

 
 

The fuzzy membership function for the non-rainforest was 
defined by: 
 

𝑀𝐹(𝑥) =  0     if 𝑥 < 𝜇 − 2𝜎                                  (2.a) 
        

𝑀𝐹(𝑥) =  
𝑥−(𝜇−2𝜎)

2𝜎
      if  𝜇 − 2𝜎 ≤ 𝑥 ≤  𝜇                          (2.b) 

            
𝑀𝐹(𝑥) = 1    if   𝑥 > 𝜇                                         (2.c) 

 
     For example, if the mean and standard deviation for the 
variable of maximum height in the rainforest training area were 
calculated as being 18.94 and 7.01, the membership value is 1 if the 
variable values are less than μ (= 18.94 here). The membership 
values are between 0 and 1 in the region defined by μ and (μ+2σ), 
here between 18.94 and 32.96. The membership values take 0 if the 
values of the variable are greater than (μ+2σ). The first set of 
rainforest membership function values for individual square 
columns over the study area were calculated using the 
membership function formulae 1.a to 1.c and the mean and 
standard deviation values of this variable. Similarly, other 9 set of 
rainforest membership function values can be calculated using 
other 9 variables. In same way, 10 set of non-rainforest 
membership function values were also calculated using the 
formulae 2.a to 2.c.  

3.4 Computing Integrated Membership 
Function Values 

Once the membership values were calculated for the whole study 
area, there were 20 membership function values in each square 
column, with 10 rainforest membership function values 
representing the degree to which this column belongs to 
rainforest and the other 10 non-rainforest membership function 
values representing the degree to which this column belongs to 
non-rainforest. 20 raster images (10 for rainforest and 10 for non-
rainforest) with 2×2 m horizontal resolution (grid or cell size) 
were then created using these membership values, called 
rainforest membership images and non-rainforest membership 
images respectively. A raster image of combined or integrated 
rainforest membership function value (MFVRF) was generated by 
averaging the 10 rainforest membership images. Similarly, a raster 
image of combined non-rainforest membership function value 
(MFVNRF) was also created by averaging the 10 non-rainforest 
membership images.  

3.5 Calculating Confusion Indices 
A confusion index (CI) which is a measure of the confusion of two 
membership function values in a specific location  was computed 
using the MFVRF and the MFVNRF for each cell as below [14]: 

 
𝐶𝐼 = 1 − |𝑀𝐹𝑉𝑅𝐹 −𝑀𝐹𝑉𝑁𝑅𝐹|                        (3) 
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 Calculations using Formula 3 which is a modified formula 
from Burrough [14] resulted in a raster image showing the 
confusion index values in individual cells. If the two membership 
function values in a cell are significantly different, the confusion 
index will be very close to zero, indicating less confusion, i.e., 
either the rainforest or the non-rainforest is the dominant in the 
cell. On the other hand, however, the closer the two membership 
function values in a cell, the bigger the confusion about to which 
forest type the cell belongs. These confusion cells indicate the 
mixed areas or transition zones between the rainforest and non-
rainforest in the study area. 

3.6 Determining Rainforest Boundary 
The confusion index image created from the above step illustrated 
the similarity and/or difference between the rainforest 
membership function values and the non-rainforest membership 
function values. The boundary between the rainforest and the 
non-rainforest must occur in the transition zone where the 
maximum confusion index values were presented. Next we used 
low pass filtering and reclassification to the confusion index 
image to extract the boundaries. Finally, the raster image was 
converted to vector to determine the boundary polygon.   

4 RESULTS  
The raster image of the integrated rainforest membership function 
values was shown in Fig. 1. The cells with darker colour got bigger 
membership function values for the rainforest, indicating to a 
greater extent the cells belong to the rainforest. On the other 
hand, the cells with brighter colour have smaller membership 
function values, implying a lesser extent to which the cells belong 
to the rainforest. 
 

 
      
Figure 1: Integrated rainforest membership function 
values. 

 
 
Figure 2: Integrated non-rainforest membership function 
values. 
 
     The Image in Fig. 2 shows the integrated membership function 
values for the non-rainforest. The cells with darker colour exhibit 
a greater extent to which the cells belong to the non-rainforest 
while the cells with brighter colour present a lesser extent to 
which the cells belong to the non-rainforest. Both Figure 1 and 
Fig. 2 show consistent presence of the rainforest and the non-
rainforest in the study area. 
 

 
 
 Figure 3: Confusion index values. 
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Fig. 3 shows the confusion index values calculated from the 
rainforest membership function values and the non-rainforest 
membership function values. Some cells exhibit very bright colour 
where the two membership function values are very similar. 
Therefore, there exist bigger confusion index values, representing 
the transition zone between the rainforest and the non-rainforest. 
The cells with the brightest tone indicate the presence of the 
possible boundaries. 
 

 
 
Figure 4: Boundaries between rainforest and non-
rainforest. 
  
     The boundaries between the rainforest and the non-rainforest 
extracted from the confusion index image are shown in Fig. 4. It 
was compared with EVCs, which describe the spatial extent of 
vegetation species in the study area and were used as ground 
reference data in this study. Results show the boundaries 
determined using the way developed from this study have an 
overall 85% consistent with the boundary described from the 
EVCs. 

5 DISCUSSION 
A prerequisite for rainforest conservation and protection is the 
determination and monitoring of the boundaries between 
rainforest and adjacent forests. There has been increasing interest 
in the application of airborne LiDAR for the analysis of forest 
structures and related applications over the last decade. However, 
there have been very few studies attempting to determine the 
rainforest boundary using the airborne LiDAR data. Based on 
previous research [15], column-based LiDAR variables were 
derived for vertical description of the forest structure. Unlike the 
interpretation of airborne or satellite images which see forests 
only from above the top of canopy, the airborne LiDAR data 
provide detailed information not only from the top of the canopy, 
but also through the interior of the canopy and the ground 
because of the LiDAR penetration of forest canopies [7]. However, 

an effective way was required to make full use of the valuable 
LiDAR-derived information for effective determination of the 
forest boundaries.  
     This study demonstrated the success of using fuzzy analysis of 
the LiDAR data for rainforest boundary determination. In a mixed 
forest area, the forest types change gradually. Therefore, it is 
difficult to determine a crisp forest boundary. It is demonstrated 
here that fuzzy analysis of LiDAR-derived variables is an effective 
way to determine the transition zone and the boundaries between 
the rainforest and the non-rainforest. Furthermore, the 
determination of the transition zone (or ecotone) is of significant 
importance in ecological communities. 

6 CONCLUSIONS 
It has been shown that the airborne LiDAR data have advantages 
over passive remote sensing data in detailed description of vertical 
forest structure, but there is still considerable scope for 
developing advanced models to take maximum advantage of 
LiDAR-derived information for forest applications. This study 
developed ways of using fuzzy analysis of the airborne LiDAR 
data for boundary determination between the rainforest and 
adjacent non-rainforest. Column-based LiDAR variables were 
derived and used to define and calculate membership function 
values for both rainforest and non-rainforest. These membership 
values were subsequently used to create integrated membership 
function values for rainforest and non-rainforest respectively. The 
raster images from both integrated membership function values 
showed consistent presence of the rainforest and the non-
rainforest in the study area. It is evident that derived confusion 
index values augmented the confusion of two integrated 
membership function values if two membership values are close 
in a location. The confusion index illustrated transition zones, 
indicating the presence of the boundary. This study demonstrated 
the success of the fuzzy analysis of the airborne LiDAR data for 
rainforest boundary determination. The results from this study 
will strongly warrant the operational adoption of the fuzzy 
analysis of the airborne LiDAR data in the management of 
forestry resources. 

ACKNOWLEDGMENTS 

We would like to thank HVP Plantations Pty Ltd for providing the 
LiDAR and EVC data for use in this study. 
 

REFERENCES 
[1] L. A. Zadeh. 1965. Fuzzy Sets. Information and control 8, 338-353. 
[2] P. A. Burrough, R. A. McDonnell, and C. D. Lloyd. 2015. Principles of 

geographical information systems, 3rd edition., Oxford, UK: Oxford 
University Press. 

[3] F. Wang. 1996. Fuzzy representation of geographical boundaries in 
GIS. International Journal of Geographical Information Science 10, 5, 
573-590. 

[4] J. J. Camarero, E. Gutiérrez, and M. J. Fortin. 2006. Spatial patterns of 
plant rechness across treeline ecotones in the Pyrenees reveal 
different locations for richness and tree cover boundaries. Global 
Ecology and Biogeography 15, 182-191. 

[5] K. Hufkens, P. Scheunders, and R. Ceulemans. 2009. Ecotones in 
vegetation ecology: methodologies and definitions revisited. 
Ecological Research 24, 5, 977-986. 

[6] G. M. Foody, and D. S. Boyd. 1999. Fuzzy mapping of tropical land 
cover along an environmental gradient from remotely sensed data 



ICTRS 2017, 6-7 November, Delft, The Netherlands Z. Zhang et al. 
 

6 

 

with an artificial neural network. Journal of Geographical Systems 1, 
23-35. 

[7] Z. Zhang, X. Liu, J. Peterson, and W. Wright. 2011. Cool temperate 
rainforest and adjacent forests classification using airborne LiDAR 
data. Area 43, 4, 438-448. 

[8] D. Cameron. 2008. A field guide to rainforest identification in Victoria: 
differential species keys for the delineation of rainforest boundaries, 
Melbourne, Australia: Victorian Department of Sustainability and 
Environment. 

[9] J. B. Davies, A. M. Oates, and A. V. Trumbull-Ward. 2002. Ecological 
vegetation class mapping at 1:25000 in Gippsland. Victorian 
Department of Natural Resources and Environment, Melbourne, 
Australia. 

[10] DSE. 2005. Native Vegetation Manage Policy. Department of 
Sustainability and Environment, Melbourne, Australia. 

[11] P. Adam. 1992. Australian Rainforests, Oxford, UK: Oxford University 
Press. 

[12] A. S. Antonarakis, K. S. Richards, and J. Brasington. 2008. Object-
based land cover classification using airborne LiDAR. Remote Sensing 
of Environment 112, 2988-2998. 

[13] H. O. Ørka, E. Næsset, and O. M. Bollandsås. 2009. Classifying 
species of individual trees by intensity and structure features derived 
from airborne laser scanner data. Remote Sensing of Environment 113, 
1163-1174. 

[14] P. A. Burrough. 1996. Natural objects with indeterminate boundaries. 
In Geographic objects with indeterminate boundaries, P. A. Burrough 
and A. U. Frank, (Eds.). London: Taylor & Francis. 3-28. 

[15]  Z. Zhang, and X. Liu. 2013. WorldView-2 satellite imagery and 
airborne LiDAR data for object-based forest species classification in 
a cool temperate rainforest environment. In Developments in 
multidimensional spatial data models, A. A. Rahman, P. Boguslawski, 
C. Gold and M. N. Said, (Eds.). Berlin: Springer. 103-122. 

 


