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Abstract

The TESS mission produces a large amount of time series data, only a small fraction of which contain detectable
exoplanetary transit signals. Deep-learning techniques such as neural networks have proved effective at
differentiating promising astrophysical eclipsing candidates from other phenomena such as stellar variability and
systematic instrumental effects in an efficient, unbiased, and sustainable manner. This paper presents a high-quality
data set containing light curves from the Primary Mission and 1st Extended Mission full-frame images and periodic
signals detected via box least-squares. The data set was curated using a thorough manual review process then used
to train a neural network called Astronet-Triage-v2. On our test set, for transiting/eclipsing events, we
achieve a 99.6% recall (true positives over all data with positive labels) at a precision of 75.7% (true positives over
all predicted positives). Since 90% of our training data is from the Primary Mission, we also test our ability to
generalize on held-out 1st Extended Mission data. Here, we find an area under the precision-recall curve of 0.965, a
4% improvement over Astronet-Triage. On the TESS object of interest (TOI) Catalog through 2022 April, a
shortlist of planets and planet candidates, Astronet-Triage-v2 is able to recover 3577 out of 4140 TOIs,
while Astronet-Triage only recovers 3349 targets at an equal level of precision. In other words, upgrading to
Astronet-Triage-v2 helps save at least 200 planet candidates from being lost. The new model is currently
used for planet candidate triage in the Quick-Look Pipeline.

Unified Astronomy Thesaurus concepts: Neural networks (1933); Transit photometry (1709); Exoplanet detection
methods (489); Exoplanet catalogs (488)

Supporting material: machine-readable table

1. Introduction

For three decades, human judgment has played a critical role in
the exoplanet revolution that has yielded the discovery of more
than 5000 planets outside of the solar system.11 Exoplanets are
typically much cooler, smaller, and fainter than their host stars,
so detecting them usually requires extremely precise observa-
tions. At the level of sensitivity required to detect exoplanets,
numerous other systematic effects can be present in data that
can mimic planetary signals. Separating out these “false-
positive” signals from true exoplanets has been a major
challenge (Jacob 1855; van de Kamp 1963; Bailes et al. 1991)
since before the discovery of the first exoplanets in the 1980s
and 1990s (Campbell et al. 1988; Latham et al. 1989;
Wolszczan & Frail 1992; Mayor & Queloz 1995). Historically,

classifying possible planet signals as either false positives or
viable planet candidates has most often been carried out by a
human inspecting and making a judgment on each signal.
Humans are quite well suited for this type of work; we can
learn how to distinguish planet candidates and false positives
with high accuracy, even after looking at a relatively small
number of examples, and often without the benefit of a priori
knowledge of the “ground truth” of any signal’s true
classification.
However, relying on human judgment to separate viable planet

candidates from false positives has two main disadvantages. First,
humans are slow, both in terms of training time and actual
classifications. It often takes months or years of practice for a
human to become adept at classifying planets and false positives,
and once fully trained, it may take an experienced human several
minutes to review all of the information needed to make one
classification. At these speeds, even classifying a modest number
of possible planet signals (∼102–103) may take days. Given the
rapid increase in the volume of astronomical data available for
analysis, it will soon be impractical to rely on human
classifications to identify viable planet candidates. Second,
humans are inconsistent. Differences in external factors (mood,
fatigue, hunger, etc.) may cause a human to judge the same signal
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differently on two different occasions. This makes characterizing
and quantifying the biases introduced by human classification
challenging and inexact. An alternative system capable of quickly,
accurately, and repeatably identifying planet candidates would be
highly attractive to planet hunters.

In this paper, we focus on improving a deep neural network
classifier used to identify viable planet candidates in data from
the Transiting Exoplanet Survey Satellite (TESS) mission
(Ricker et al. 2015). TESS identifies exoplanets by searching
for “transits,” or slight periodic dimmings of the apparent
brightness of a star as its planet passes between the star and our
vantage point in the solar system. Transit surveys like TESS
produce copious numbers (106 so far) of false-positive
signals that must be separated from viable planet candidates to
enable discoveries.

Machine learning (ML) has become a popular tool for
identifying promising planet candidates from transiting exoplanets.
Some work has focused on using machine learning to perform the
actual planet detection (Pearson et al. 2018; Zucker & Giryes 2018;
Cui et al. 2022), but more often, efforts have focused on using
machine learning to classify the large number of possible transit-
like signals returned by existing planet detection pipelines. A push
early in the Kepler mission (Borucki et al. 2010; Koch et al. 2010)
led to the development of two automated systems: a decision tree
called the Robovetter (Coughlin et al. 2016; Thompson et al. 2018)
and a random forest classifier called the Autovetter (McCauliff
et al. 2015). In that initial work, the Robovetter proved more robust
and easily extensible to new regimes and data sets and, therefore,
was used in the production of fully automated planet candidate
catalogs from the Kepler mission.

More recently, Shallue & Vanderburg (2018) introduced a
convolutional neural network for vetting planet candidates from
the Kepler mission called Astronet. Since then, Astronet
and other similar architectures have been demonstrated on other
data sets like K2 (Dattilo et al. 2019), TESS (Yu et al. 2019;
Osborn et al. 2020), WASP (Schanche et al. 2019), and NGTS
(Armstrong et al. 2018; Chaushev et al. 2019). New tweaks to the
methodology including new input information and tweaks to the
data representation (Ansdell et al. 2018; Jara-Maldonado et al.
2020; Valizadegan et al. 2021) have yielded improvements in
classification performance.

Our work is largely based upon the convolutional neural
network originally introduced by Shallue & Vanderburg (2018)
and adapted to TESS by Yu et al. (2019), known as
Astronet-Triage. Starting in 2019, Astronet-Triage
had been used in the TESS Quick-Look Pipeline (QLP;
Guerrero et al. 2021) to triage planet candidates and remove
clear false positives. However, our internal tests revealed that
this step resulted in the loss of a fairly large number of viable
planet candidates (i.e., “false negatives”). This paper describes
our work to improve the performance of Astronet-Triage
by introducing Astronet-Triage-v2 to reduce the
number of lost planet candidates while throwing out a higher
number of false positives.

Our paper is organized as follows: In Section 2, we describe
the input transit signals and corresponding light curves that
were used for training and testing our classifier, and the labels
assigned to each signal. In Section 3, we describe how we
processed the data before it is input to our neural network
classifier. In Section 4, we describe the architecture of the
neural network and the training process. We quantify and
present the results of our classifier in Section 5, and we discuss

the implications of these results in Section 6. Finally, we
conclude in Section 7.

2. Data

For training and testing our model, we use approximately
25,000 human vetted transit signals detected by the QLP
(Huang et al. 2020a, 2020b; Kunimoto et al. 2021) across
Sectors 1–39.12

2.1. TCEs from TESS FFIs

During its Prime Mission (2018 July 25–2020 July 4), TESS
collected full-frame images (FFIs) every 30 minutes for 2 yr
covering 70% of the entire sky (Guerrero et al. 2021). The FFI
cadence was updated to 10 minutes for the 1st Extended
Mission (2020 July 4–2022 September 1). QLP produces light
curves from these images for all observed targets in the TESS
Input Catalog (TIC; Stassun et al. 2018, 2019; Paegert et al.
2021) with TESS-band magnitude (T) brighter than 13.5. Flux
time series (raw light curves) from five different sized circular
apertures are extracted for each star.
These raw light curves are then filtered to remove low-

frequency variability originating from stellar activity or
instrument noise. Primarily, this is done by dividing the light
curve from each separate orbit by a basis spline (following
Vanderburg & Johnson 2014) fit using a break-point spacing
between 0.3 day and 1.5 days, selected as described by Shallue
& Vanderburg (2018). Finally, these detrended light curves are
merged with previous TESS sectors using a shared median
value. At this point, an optimal aperture is selected for target
star based on its TESS magnitude—fainter stars getting smaller
aperture sizes. All subsequent processes use these multisector
“best”-aperture detrended light curves.
QLP searches these light curves for transit signals using the

box least-squares (BLS) algorithm (Kovács et al. 2002;
Hartman 2012). Because BLS spectra feature a rising trend
toward lower frequencies (longer periods), QLP subtracts the
low-frequency baseline before selecting the highest peak as the
detection. For each detected signal, the BLS implementation
computes characteristic parameters (orbital period, transit
center, transit depth, and the full transit duration) by
performing a least-square trapezoid fit for the transit. These
parameters are used later in the input process for Astronet-
Triage-v2.
Transit signals with signal-to-pink-noise >9 and BLS peak

significance >5 (for stars with T< 12 mag) or >9 (for stars
with T> 12 mag) are labeled threshold-crossing events (TCEs).
These filters give slightly different perspectives on transit
significance: (1) signal-to-pink-noise compares the transit depth
to pink noise in the light curve (Pont et al. 2006), while (2)
BLS peak significance compares the BLS spectrum’s peak
height to its noise. In combination, these checks help filter out
events that are clearly not transit-like.
In addition, we filter out instances where the planet would

orbit “inside the star.” For each signal we compute the expected
semimajor axis to stellar radius ratio assuming a Keplerian
orbit.13 If the ratio <1, the signal is labeled as inside the star.

12 QLP data can be found at 10.17909/t9-r086-e880.
13 When computing the semimajor axis, we use two times the detected BLS
period in case the detected period is half the true period, which often happens
for eclipsing binaries. If the star has an estimate for its mass in the TIC, we use
that value; if not, we assume a mass of 1 Me. We also assume a circular orbit.
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Typically, these signals signify stellar variability or blended
signals from a smaller nearby star.

2.2. Assembling a Set of Signals to Label

Even with filters described in the previous subsection,
manually labeling every TCE would take an enormous amount
of time, so we select a subset of TCEs for training/testing.
Over time, we gradually accumulated three batches of labeled
TCEs from the first 2 yr of the TESS Primary Mission
(observed with 30 minutes cadence) and the first year of the
TESS 1st Extended Mission (observed with 10 minutes
cadence).

The year 1 (Y1) TESS observations for the southern
hemisphere went through significant changes in noise property
due to the spacecraft pointing strategy change in Sector 4,14

and the subsequent tweaking of the momentum dump
frequency. We selected 8992 TCEs detected in Sector 13 (the
last sector of Y1) for the labeling. This was not an intentional
choice, but after spending hundreds of person-hours labeling
these TCEs, we opted to make use of them regardless.
Fortunately, despite the fact that our Y1 TCEs came only
from Sector 13, the observations that led to these detections
still included a diversity of spacecraft pointing control
strategies and data artifacts (for example, detector warm-ups
following instrument anomaly events15). In particular, stars
observed in Sector 13 have been observed by TESS in Y1
between 1–13 sectors and cover a variety of prior sectors.

For the year 2 (Y2) TESS observations in the northern
hemisphere, the data has more uniform characteristics includ-
ing a consistent momentum dump frequency of every 4.4 days
starting in Sector 14.16 We sorted TCEs by their target’s TESS
magnitude, and then took the 13,372 brightest TCEs detected
from Sectors 14–26.

In year 3 (Y3), TESS returned to observe the southern
hemisphere, with faster cadence and a further improved
momentum dump strategy (only once each orbit).17 We added
an additional 2588 TCEs from Sectors 27–39, which increased
the sky coverage and brightness range for our Southern
Hemisphere labels.

We note that TCEs around stars only observed in one of the
CCDs in Sector 13 Camera 1, and Cameras 1 and 2 for Sector
24 and 25 are not included in our sample due to temporary
unavailability of the data at the time of vetting.

Altogether, these TCEs create a broad sample of transit-like
events detected in the first three years of TESS observation.
The final TCE distribution across the sky is shown in Figure 1,
and across TESS magnitude (Tmag) in Figure 2. Due to the
different selection criteria of the TCEs from three different
years, they have somewhat different data characteristics. As
discussed in Section Section 5.2, these differences do not
significantly impact our results.

2.3. Labels and their Definitions

For each TCE we assigned one of the following five labels:

1. “E” denotes a periodic eclipsing signal. This includes
both planetary transits and noncontact eclipsing binaries.
In the triage process, we do not take into account
information that would distinguish an eclipsing signal
from background stars from an eclipsing signal on the
target star. Both cases would be labeled as “E” if they
satisfy all of the other criteria.

2. “S” denotes events containing only a single transit or
events where an incorrect period or period alias is
assessed to be reported from BLS.

3. “B” denotes contact eclipsing binaries. They are
distinguishable from noncontact binaries through their
continuous ingress/egress slope.

4. “J” denotes junk. This includes other astrophysical
phenomena like stellar variability as well as instrumental
phenomena like scattered light (due to the Earth or the
Moon approaching the field of view and reflecting light
into the camera) or artifacts introduced at the times of
spacecraft momentum dumps (when the spacecraft’s
reaction wheels correct for the spacecraft’s speed).

5. “N” denotes not sure. No conclusive label decision could
be made for these TCEs. Often an “N” label was given
when a weak signal bordered on being an “E” or “J.”

These labels are not necessarily mutually exclusive. We
detail the rules we use in labeling when resolving marginal/
ambiguous cases:

1. E versus S: If there is ambiguity in the period (e.g., both
the reported period and the double period are consistent
with the data) or the period is only slightly off, we default
to an E label. Only if the period is explicitly incorrect (e.g
there are flat light-curve segments during expected
transits, or there are multiple regular transits outside of
expected transit times) do we choose an S label. If there is
only one regular transit outside the expected transit time,
i.e., it might represent a secondary eclipse, we use an E
label, and if the reported period potentially includes the
secondary eclipse, we also use an E label.

2. B versus S: If we have a contact binary with the incorrect
period, we default to a B label.

We choose these labels first because they mirror astro-
physical phenomena. This means the labeled TCEs provide
good targets for follow up (e.g., “E”s will be good candidates
for exoplanet and binary star detection). Second, we expect
similarities in light-curve morphology within a label. This
should help our model learn labels more accurately.
For the purposes of finding exoplanets, we are particularly

interested in high precision and recall metrics for E labels. S
and N labels may also be important candidates for further
investigation.

2.4. Labeling Process

All TCEs were manually assigned labels based on human-
visual representations (see Figure 3) similar to the model
input representations described in Section 3. On a weekly
basis, batches of targets were independently vetted by three
to seven of the authors. At the end of the week, targets with
conflicting labels where at least one human chose an E or S
were discussed in order to reach a consensus on the target’s
final label. If a target had only B, J, or N votes, we assigned
weights to each label based on the number of votes.

14 https://archive.stsci.edu/missions/tess/doc/tess_drn/tess_sector_04_
drn05_v04.pdf
15 https://archive.stsci.edu/missions/tess/doc/tess_drn/tess_sector_08_
drn10_v02.pdf
16 https://archive.stsci.edu/missions/tess/doc/tess_drn/tess_sector_14_
drn19_v02.pdf
17 https://archive.stsci.edu/missions/tess/doc/tess_drn/tess_sector_27_
drn38_v02.pdf
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Altogether, this process took over 2 yr. We expect the
multiplicity of vetters to reduce the number of label errors,
giving us a very high-quality data set.

Table A1 contains examples of signal data along with
individually assigned labels and their consensus dispositions.
The full table (and accompanying light-curve data) can be
found in Tey et al. (2022).

Following common practice in ML, we randomly separate
the data set into a training, validation, and test set. The model is
initially fit on the training set, a set of examples used to fit the
parameters of the model. Next, the validation set provides a
measure of predictive accuracy and model fit. The validation
set consists of examples that the model has not seen in the
training set and allows for optimization of the architecture and
hyperparameters. Lastly, after the model architecture and
hyperparameters are finalized, the test set is used as one last
objective test of the model accuracy and fit.

1. Training set (19919 targets): used for model training
(15414 J + 2102 E + 1681 B + 224 S + 498 N).

2. Validation set (2491 targets): used to calculate precision,
recall, detection threshold for binary classification, and
model debugging (1945 J + 261 E + 198 B + 17 S +
70 N).

3. Test set (2516 targets): hold-out set used for final
evaluation; this set was never used for training or
debugging, or any other evaluation (1970 J + 250 E +
200 B + 34 S + 62 N).

2.5. Distribution of the Labels

Figure 4 shows the distribution of labels in our training set.
Out of the total 24,926 labels, the majority are J labels

Figure 1. Sky map showing the locations of the 24,926 TCEs presented here (black starred data points) compared to the coverage of each TESS Prime Mission sector
(colored data points). The black and red labels are the Prime Mission sector numbers in the southern and northern ecliptic hemispheres, respectively. Note that we also
include 2588 TCEs from the 1st Extended Mission, for which sector coverage is not shown here. The under- and overdensities of TCEs are due to the selection criteria
as described in the text.

Figure 2. Distribution of Tmag across our data set. Both Y1 and Y2 portions of
the data set focused on the brightest TCEs, while Y3 added TCEs more
uniformly across magnitudes. More details on TCE selection can be found in
Section 2.1.
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(19,329). The amount of signals identified as eclipsing objects
(E, 2613) is comparable to that identified by contact binaries
(B, 2079).

We examine the distribution of the fundamental transit
parameters (i.e., orbital period, transit depth, estimated planet

radius, and transit duration) of the labels in Figures 5, 6, and
7. Specifically, we compare the parameter spaces resided by
the E labels to the other labels. The comparison reveals the
following characteristics: (1) a majority number of the TCEs
with period smaller than ∼0.5 days are not caused by

Figure 3. Six example visual representations used for human labeling with labels in red. The different figures within each representation were made to mirror the
information described in Section 3. Each image was individually labeled by at least three individual vetters. Conflicting labels were discussed and resolved each week.
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Figure 3. (Continued.)
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eclipses; (2) a majority of the shallow events with period
longer than 10 days are not caused by eclipses; (3) there is
clear pile-up of TCEs at the TESS orbital period and its alias,
which are not caused by eclipses; (4) a majority of TCEs with
extremely short/long transit duration are not caused by
eclipses.

3. Model Input Representations

For each TCE, we pass the raw flux time series leading to
the detection and all of the relevant information describing
the detected periodic signal and target star to the neural
network.

Figure 3. (Continued.)
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3.1. Time Series Data

We preprocess the raw flux time series into different input
representations before passing them to Astronet-Triage-
v2. We use the same basis spline techniques used in QLP;
however, the transit signals are masked out based on the BLS-
detected period, epoch, and duration before the optimal spline
is computed. This approach will often prevent overfitting of the
transit signals during the detrending process. To account for
different timescales of the stellar variability, we adopt multiple
detrending settings to provide Astronet-Triage-v2 a
more complete view of the light-curve noise characteristics.
Unlike in QLP, which only uses one set of splines with spacing

between 0.3 and 1.5 days to create the final detrended light
curves, we use three different settings (0.3, 5.0, and a value that
minimizes the Bayesian Information Criterion; Schwarz 1978)
to create three different sets of detrended light curves. The light
curves detrended with larger spacing are also less likely to
over-fit the transit signals with long transit duration.
For each detrended light curve, we generate seven different

plots or views (see Figure 8). Each view is binned using a
robust binning technique to de-weight outliers. During this
binning, we also account for the change in exposure time
between the Primary and 1st Extended Mission by weighing

Figure 4. Distribution of labels across our data set (see Section 2.3 for
descriptions of each type). As described in Section 2.4, some TCEs were
assigned fractional B and J labels, so these counts have been rounded to the
nearest integer.

Figure 5. Scatterplot of transit depth vs. orbital period for our data set. TCEs
with E labels are shown in blue. Red lines mark 13.7 and 27.4, the orbital
period and twice the orbital period of TESS.

Figure 6. Scatterplot of planet radii vs. orbital period for our data set. TCEs
with E labels are shown in blue. Red lines mark 13.7 and 27.4, the orbital
period and twice the orbital period of TESS.

Figure 7. Scatterplot of transit duration vs. orbital period for our data set. TCEs
with E labels are shown in blue. Red lines mark 13.7 and 27.4, the orbital
period and twice the orbital period of TESS.
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points according to their exposure time in a given bin. After
this, we normalize the binned data so that the minimum value is
−1 and the median value is 0. The complete list of views can
be found in the source code.18 A detailed description of each
view type is below:

1. Global View: The global view uses the full light curve
folded on the reported period with 201 bins. In addition to
the median values, the view also includes the standard
deviations for each bin, a mask indicating whether the bin
was empty, and a mask indicating whether the bin falls
inside the detected transit.

2. Local View: The local view uses points within two transit
durations of the transit center (for a full time span of four
transit durations), again folded on the reported period.
The local view uses 61 bins, and includes standard
deviation and mask values like the global view. In
addition, we also record the scale factor used in
normalization, as a scalar feature.

3. Secondary View: The secondary view is similar to the
local view, but is centered around the most significant
secondary transit, determined by performing a grid
search19 on the out-of-transit portion of the phase-folded
view, for a duration equal to the primary transit duration,
and selecting the region with the highest signal-to-noise
ratio. This view is accompanied by two scalar features:
the normalization scale factor, and the phase of the
secondary transit’s center.

4. Local Half-period View: Similar to the local view, but
folded at half the detected period. This view only contains
the standard deviation value, since the median value can

appear very noisy when folding a transit over a
nontransit.

5. Global Double-period View: Similar to the global view,
but folded at twice the period of the global view.

6. Sample Global Segments: This view contains the entire
period (similar to the global view), but showing up to
seven of the folds that contain the most points (ties are
broken at random). Each fold is accompanied by a mask
indicating whether the bin contains any points. If the light
curve contains fewer transits, the extra views remain
empty. Each fold is independently binned with 201 bins.

7. Sample Local Segments: Similar to the sample global
segments, this view contains the transit center of up to
four of the folds that contain the most points (ties are
broken at random), for a total of eight folds. Each fold is
independently binned with 61 bins.

3.2. Scalar Data

We also use scalar values that describe characteristics of the
transit, host star, and the light curve itself. Transit features include
period in days (P), transit duration in days (Tdur), transit depth (δ),
and the number of full periods observed in the flux time series
(nfolds), while host star features include TESS magnitude (Tmag),
mass in Me, and radius in Re. The host star features are directly
extracted from the TIC v8.2 (Paegert et al. 2021).
For TCEs without stellar radii in the catalog, we perform a

rough estimate using a Bayesian estimate of the distance (Bailer-
Jones et al. 2021), apparent magnitude (either Gaia G, Bp, and Rp,
or Gaia G and the Two Micron All Sky Survey K if Bp and Rp
are unavailable), and color/temperature and color/bolometric
corrections from MIST models (Choi et al. 2016). In brief, we
estimate the temperature and bolometric correction from either the
target’s Bp-Rp or G-K colors, use the bolometric correction to
estimate the target’s apparent bolometric magnitude, use the
estimated distance to the target to convert to an absolute

Figure 8. Astronet-Triage-v2 neural network architecture.

18 https://github.com/mdanatg/Astronet-Triage/blob/
e4ec517b175b2a3dfb74cf6c6e3f5273dd8749c7/astronet/astro_cnn_model/
configurations.py##L2254
19 https://github.com/mdanatg/Astronet-Triage/blob/
e4ec517b175b2a3dfb74cf6c6e3f5273dd8749c7/light_curve_util/find_
secondary.py##L62
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magnitude, convert to bolometric luminosity, and solve for the
stellar radius from the temperature and luminosity via the Stefan
Boltzmann Law. In our testing, we were able to determine radii
within about 10% of the TIC values when present, and provided
radius estimates for ∼2400 from the ∼2800 TCEs missing stellar
radii in our data set.

Light-curve features include the total number of points. Each
scalar value is normalized to be zero mean and unit variance
across the data set, except for nfolds, which is truncated to a
maximum value of 100 and a log-scaled to fit between 0 and 1.
In addition, we also include as scalar inputs the detected phase
of the secondary eclipse, as well as the calculated scaling factor
when normalizing the global, local, and secondary views.

4. Neural Network Architecture

Our model uses a convolutional neural network architecture
derived from Astronet. The high level architecture is shown
in Figure 8.

Each time series feature is grouped together with similar
features and then passed through a separate convolutional tower.
For example, the global view flux is grouped together with the
standard deviation of the global view, so that they form a two-
channel, one-dimensional image. The structure of a convolutional
tower is shown in Figure 9. Each tower consists of convolutional
layers with Rectified Linear Unit activation, alternating with
pooling layers. The pooling layers aggregate neighboring pixels,
in effect increasing the field of view of the subsequent
convolutional layer.

The output of each convolutional tower is flattened into a
vector shape. The flattened outputs from all towers are
concatenated together with the auxiliary inputs to form the input
into the next section of the network, the fully connected tower,
whose structure is shown in Figure 10. The fully connected tower
is composed of several fully connected neural network layers,
alternating with dropout layers. The dropout layers randomly set
inputs to zero, and serve a role of regularization, to mitigate
overfitting. The dropout layers are only active during training. The
final layer has five outputs, and uses a sigmoid activation function,
so that its output is in the interval [0..1]. Each of the five outputs
corresponds to one of the five labels.

The various hyperparameters of each network can be found
in the configuration file included with the source code.20 The

hyperparameters are tuned using Vizier (Golovin et al. 2017;
Song et al. 2022) by minimizing the loss on the validation set.

4.1. Training

We train the model using the Adam, a popular variant of
stochastic gradient descent optimization (Kingma & Ba 2014),
for 20,000 steps. The complete set of training parameters can
be found in the code.21

For the loss function, we use binary cross-entropy loss.22

Notably, this means that the model is not trained to choose
between the five labels exclusively. Instead, it produces
independent scores for each label, so a model is free to assign
high scores for both “E” and “J” labels, for instance. This loss
function enables us to assign weighted labels to uncertain
examples (e.g., 50% “B” and 50% “J”). The weight is
determined as follows: if a target had a single label (as
resulting from the group resolution, or if the vote was
unanimous), the weight is 1.0; if the target had multiple votes,
the weight is the maximum number of votes for any label
divided by the total number of votes. This means targets for
which a label did not receive a majority of votes are
weighted less.
We do not apply data augmentation, although that is

something we intend to do in future work (see Section 6.4.2).

4.2. Prediction and Ensembling

As a multiclass classifier, our model outputs a prediction
score for each label. Predictions where the “E” label score
exceeds a threshold chosen beforehand are considered to
predict the label “E.” Otherwise, the model is considered to
predict the label with the highest prediction score.
We then construct an ensemble of 10 models trained

separately (hence with different initial weight values, and
different shuffling of the input data). The compound prediction
of the ensemble is constructed as follows:

1. If any of the models predict “E,” then the ensemble
prediction is also “E.”

Figure 9. Structure of a convolutional neural network tower. Each convolution
tower has one to four blocks. Each block has one to four layers.

Figure 10. Structure of the fully connected tower.

20 https://github.com/mdanatg/Astronet-Triage/blob/
e4ec517b175b2a3dfb74cf6c6e3f5273dd8749c7/astronet/astro_cnn_model/
configurations.py

21 https://github.com/mdanatg/Astronet-Triage/blob/
e4ec517b175b2a3dfb74cf6c6e3f5273dd8749c7/astronet/astro_cnn_model/
configurations.py##L2254
22 See https://www.tensorflow.org/api_docs/python/tf/keras/losses/Binary
Crossentropy for the implementation and Good (1952) and Shallue &
Vanderburg (2018) for more information.
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2. Otherwise, the ensemble prediction is the label predicted
by a majority of models, with ties broken at random.

Although the model predicts five different labels, we are
primarily interested in the “E” label. The other labels are
mainly used at training, to encourage the network to learn
natural representations. We found that the extra labels greatly
help understand a model’s predictions, as well as validate
whether the model does indeed create correct internal
representations.

5. Results

Here we report the results of our ML activity predictions.
First we discuss the metrics we used to evaluate the
performance, and then we summarize how the different models
performed on each data set.

The two primary metrics we use to evaluate our performance
are precision and recall. The precision, or reliability, of a model
on a labeled data set is the number of true positives divided by
the number of true positives and false positives. Recall, or
completeness, is the number of true positives divided by the
number of true positives and false negatives. As we are
interested in “E” labels as potential planet candidates, they
generally are used as the “positive” class. In this context, a high
precision means our model outputs fewer false positives;
meanwhile, a high recall means successful recovery of more
planet candidates (fewer potential planets lost by Astronet-
Triage-v2). Since labels are determined by comparing
output prediction scores against a chosen threshold, each
specific threshold yields its own precision and recall. When
plotted over many different thresholds, we can form a
precision-recall curve (see Figure 11). By taking the area
under the precision-recall curve (AUC-PR), also known as the
average precision, we can characterize our model’s overall
performance and compare against other models, with the
highest achievable value being a 1.

5.1. Performance on Validation and Test Sets

On the validation data set, we obtained an AUC-PR value
of 0.977. The model achieves 100% recall at 41% precision, at
a prediction threshold of 0.0105. If we increase the threshold to
0.215, we obtain 96.9% recall at 79.8% precision.

On the test set, we obtained an AUC-PR value of 0.965. The
model achieves 100% recall at 15% precision, at a prediction
threshold of 0.0005. This suggests the test set contains more
difficult examples (possibly incorrect ones). With the thresh-
olds suggested by the validation set, we obtain 99.6% recall at
39.7% precision for the 0.0105 threshold, and, respectively,
97.2% recall at 75.7% precision for the 0.215 threshold.

5.2. Generalizing to TESS 1st Extended Mission Data

We explore the adaptability of our network, and the
generalization of training on nonuniform data sets in this
section. In practice, models like Astronet-Triage-v2 are
trained on previously observed sectors with a goal of
classifying new observations taken by TESS in the future.
Since noise characteristics and TESS observation strategy can
change sector to sector, it is important that our models
generalize well to new data.

Nearly 90% of our total training data set comes from the
TESS Primary Mission, so we use QLP data from TESS 1st

Extended Mission (Sector 33, observed during Year 3 from UT
2020 December 17–UT 2021 January 13) to test how our
model generalizes to unseen or out-of-distribution data.
Following the QLP convention, we ran a BLS search and

Astronet-Triage-v2 on the full multisector light curves
(including both Primary Mission and 1st Extended Mission
data) for each star. Of the discovered TCEs, we selected a
random sample of 759 targets with Tmag< 11 from camera 1
and 590 targets with 11< Tmag< 13.5 from camera 2. Due to
the TESS pointing strategy, we focus on these cameras because
their light curves have roughly equal amounts of Primary
versus 1st Extended Mission observations. The magnitude
ranges also allow us to compare performance on stars in
different brightness bins.
One of our vetters (C.H.) independently labeled all 1349

TCEs before evaluation, among which 255 TCEs were
assigned an E label.
To better understand our ability to generalize, we apply the

following models to the Sector 33 data set: Astronet-
Triage, the fully trained Astronet-Triage-v2, and
three independent instances of the Astronet-Triage-v2
architecture trained on different subsets of our original TCE
data set (Section 2).
These three separate training sets were formed by splitting

our original training set on observation year, meaning roughly
40% went into training the Y1 model, 50% into the Y2 model,
and 10% into the Y3 model. The differences between these data
sets are described in Section 2.1, but briefly. Both the Y1 and
Y2 data sets feature brighter stars, but the Y1 data set was only
taken from Sector 13, so it covers a small region of the southern

Figure 11. Precision vs. recall for 1315 TCEs selected from Sector 33 of the
1st Extended Mission. Since Astronet-Triage (Yu et al. 2019) only
distinguished between transit-like and nontransit-like, it gives high scores to
TCEs we either consider to have E or S labels. For a more direct comparison to
Astronet-Triage-v2, we choose to ignore all S-labeled TCEs when
calculating precision and recall. We see that across all levels of recall,
Astronet-Triage-v2 provides higher precision even when trained only
on Primary Mission data taken during Y1 or Y2. Although the Y3 data set
bears the most resemblance to the S33 evaluation set here, the size of the Y3
data set is only ∼2500, so the Y3-trained model does not quite reach the
performance of the other models.
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ecliptic hemisphere. The Y2 data set, on the other hand, was
selected more uniformly and covers most of the northern
ecliptic hemisphere. Neither has much overlap in sky coverage
with the evaluation set (the 1349 Sector 33 TCEs)—Y1 having
little overlap and Y2 having none. Both data sets also have
much shorter observation baselines than the evaluation set, and
finally, due to the change in TESS momentum dump strategy,
the Y1 data set also differs from the evaluation set in noise
characteristics. The Y3 data set bears the most similarity to the
evaluation set in terms of data characteristic. It is, however,
much smaller than the other data sets. Altogether, these
different data sets and models provide useful views of our
ability to generalize to data that can be fairly different from the
training data.

Since Astronet-Triage only distinguishes between
transit-like and nontransit-like, it is trained to give high scores
to TCEs we consider E- or S-labeled. As Astronet-
Triage-v2 provides independent E and S scores, we choose
to remove all S-labeled data from precision and recall
calculations for a simple direct performance comparison with
Astronet-Triage. This leaves us with 1315 TCEs.

Precision and recall numbers that are split across Astro-
net-Triage and Astronet-Triage-v2 for each camera
can be seen in Table 1. In both cameras we see that for similar
(or better) levels of precision, Astronet-Triage-v2
provides better recall than Astronet-Triage, with a
slightly more pronounced effect in camera 2 (fainter targets).
In other words, for the same amount of human vetting time,
Astronet-Triage-v2 would recover more potential
planets than Astronet-Triage.

The full precision-recall curves across all TCEs (ignoring
S-labeled TCEs) are shown in Figure 11. Across the board, we
see that Astronet-Triage-v2 (trained on the full training
set) improves on Astronet-Triage with AUC-PR scores
of 0.961 and 0.927. We also see that the models trained only on
Y1, Y2, and Y3 data perform similarly to Astronet-
Triage with AUC-PR scores of 0.954, 0.960, and 0.917,
respectively. Even though the Y1 and Y2 versions of the
models do not use any 1st Extended Mission training data, we
see they are still able to perform highly in S33 (which occurred
during Y3). This supports Astronet-Triage-v2ʼs ability
to generalize to future sectors.

5.3. Performance on the TOI Catalog

The TESS objects of interest (TOI) catalog (Guerrero et al.
2021), which lists the planetary candidates detected by TESS,
is a useful benchmark for high-confidence E or S labels. A
good model should label all TOI entries as E or S, since
humans have inspected each entry and considered them to be
high-probability planetary candidates (allowing for single-
transit events).

On 2022 April 21, we downloaded the TOI catalog with
light-curve data through Sector 47. We also use information
from TESS Follow-up Observing Program subgroups 1 and 2,
which use ground-based photometry and reconnaissance
spectroscopy to follow up on TOIs and help filter out false
positives. After keeping only planet candidates (PCs; meaning
TOIs that were not ruled out as false positives with follow up
observations) and validated/confirmed/known planets (Ps), we
have a data set of 4140 targets.
After evaluating all TOI signals with Astronet-

Triage-v2, Figure 12 shows the distribution of E scores.
Figure 13 shows the recall rate at different cutoff threshold
levels. We see that 93% of the TOIs have E scores >0.0105,
and as we increase the cutoff to 0.215, Astronet-Triage-
v2 passes 86% of the TOIs. We also see improved
Astronet-Triage-v2 performance on known, confirmed,
or validated planets compared to the PCs across the board.
For comparison, we also ran Astronet-Triage on all

TOI signals. Using a threshold of 0.09, as was originally used
in QLP, Astronet-Triage recovers 3349 TOIs. Using the
data set from Section 5.2, we find a precision-matching
threshold of 0.2 for Astronet-Triage-v2. By finding the
threshold of equal precision, we can compare TOI recovery at a
constant rate of human vetter work. At this threshold, 3577
TOIs are recovered. In other words, at least 200 TOIs are saved
by using Astronet-Triage-v2 in place of Astronet-
Triage without introducing more false positives to human
vetters.
Some important caveats to note:

1. The TOI catalog does include single-transit events.
Astronet-Triage-v2 is trained to give these S
rather than E labels. Rather than keeping separate cutoffs

Table 1
Performance on Previously Unseen S33 Data

Model Cam Threshold Precision Recall

Astronet-Triage-v2 1 0.0105 0.64 0.98
Astronet-Triage-v2 2 0.0105 0.53 1.00
Astronet-Triage-v2 1 0.215 0.89 0.91
Astronet-Triage-v2 2 0.215 0.84 0.99
Astronet-Triage 1 0.08 0.89 0.85
Astronet-Triage 2 0.08 0.82 0.90

Figure 12. Top: distribution of E score between this work and Astronet-
Triage (Yu et al. 2019) on the whole TOI data set. Bottom: distribution of E
scores from this work when the data set is separated into planets (P; validated,
confirmed, and known planets) and planet candidates (PCs; TOIs that are not
validated, confirmed, or known planets, and were also not identified as false
positives with follow-up observations).
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for S and E scores, for simplicity we choose to focus on E
scores in reported recalls. This gives it a slight
disadvantage in terms of recovery numbers, though we
leave them in the data set for fairer comparison to
Astronet-Triage, which gives a score for transit-
like (periodic or single-transit) versus not transit-like.

2. TOIs can also come from the SPOC pipeline, which
processes 2 minute cadence light curves. For both
Astronet-Triage-v2 and Astronet-Triage,
QLP light curves are binned down to 30 or 10 minutes,
so some signals may not be detectable (e.g., due to low
signal-to-noise in the binned light curve) and should be
assigned J labels. This contributes partially to the lower
recall numbers seen at the cutoffs from Section 5.1.

3. Only 130 TOI host stars appear in our data set of
∼25,000—100 of which were in the training set. We also
conducted this analysis with those TOIs removed and saw
similar results.

6. Discussion

6.1. Use in Producing the TOI Catalog

A large part of the motivation for this work has been
improving on Astronet-Triage so fewer planet candidates
are lost when searching for TOIs via QLP. After signal
detection via BLS, Astronet is one of the finals triage steps
before candidates are passed along to human TOI vetters and
potentially promoted to TOIs (Guerrero et al. 2021). Based on
the results in Section 5, we expect Astronet-Triage-v2
to save many planet candidates that would otherwise be lost

without adding false positives and increasing the hours needed
for human TOI vetting. Starting in Sector 34, early versions of
Astronet-Triage-v2 officially replaced Astronet-
Triage within QLP. While Astronet-Triage-v2 takes
step toward a more automated process, it is still not developed
enough for population statistics (for a deeper discussion, see
Section 6.4.1).

6.2. What Is Limiting Our Precision?

In our tests, we found a common source of false negatives
stemming from patterns with borderline label assessments. The
most common source is eclipsing binaries that are noncontact
but still close enough to resemble the pattern of a contact
binary, due to, for example, tidal distortion. Hence, it is unclear
whether the label should be “E” or “B” (Figure 14). Other
instances of ambiguous patterns are represented by very noisy
transits, or transits on a background of high stellar variability,
where the distinction between “E” and “J” is more subtle
(Figure 15).
One particular element of sensitivity for the neural network

is on the correctness of the period and duration values
estimated by BLS. Errors in these values can lead to detrending
distortions, which can make phase-folded views deviate from a
transit-like light-curve shape. Examples containing multiyear
observations can be particularly sensitive, as even slight
variations in the detected period can lead to a blurring of the
transit in the phase-folded view (Figures 16 and 17).
We also note that the phase folding and binning processes

are inherently lossy (similar to how compressing an image is a
lossy process). While we have not ascertained the impact of
such loss of information, it is to be expected that it causes some
loss of precision.

6.3. Comparison to Other Works

Our work is largely based on the original TESS Astro-
net-Triage classifier described by Yu et al. (2019), which
was used for QLP planet candidate triage from Sectors 6–33.
The following summarizes the major differences in develop-
ment and implementation between classifiers:

1. Astronet-Triage was trained and tested on QLP
light curves from only TESS Sectors 1–5, while
Astronet-Triage-v2 was trained and tested on
Sectors 1–39.

2. Astronet-Triage was developed using 16,516
labeled TCEs (493 planet candidates, 2155 eclipsing
binaries, and 13,868 noise/systematic signals), which is
roughly two-thirds the size of our labeled set
(24,926 TCEs).

3. Astronet-Triage used labels that were assigned by
only a single vetter who visually inspected all TCEs,
while three to five vetters independently inspected each of
the TCEs for Astronet-Triage-v2, and group
discussions resolved labeling disagreements. As a result,
our labels should be more reliable.

4. Astronet-Triage only labels signals as either
“planet” (for all eclipsing signals, including planets and
eclipsing binaries) and “nonplanet” (for other false
positives, including pulsating variables, noise, and
systematics). The five-label model used by Astro-
net-Triage-v2 (E, S, B, J, and N) is more flexible
and informative.

Figure 13. Top: recall as a function of cutoff threshold between this work and
Astronet-Triage (Yu et al. 2019). For Astronet-Triage-v2, we
choose to focus on just E scores even though some TOIs are true S labels.
Bottom: Astronet-Triage-v2 recall as a function of cutoff threshold
when the data set is separated into planets (P; validated, confirmed, and known
planets) and planet candidates (PCs; TOIs that are not validated, confirmed, or
known planets, and were also not identified as false positives with follow-up
observations).
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5. Astronet-Triage takes the light curves already
detrended by QLP, and bins the data into two views: a
“global” view, showing the full light-curve phase
diagram, and a “local” view, showing a close-up of the
transit in the phase diagram. As described in Section 3,
Astronet-Triage-v2 creates three sets of detrended
light curves from the raw QLP light curve, and generates
seven views for each one. In total, Astronet-
Triage-v2 uses 21 unique views to inform its
classification compared to the two used by Astro-
net-Triage.

These key differences result in improvements to our ability
to classify TESS signals in FFI data, as shown Sections 5.2
and 5.3.

To our knowledge, Yu et al. (2019) is the only truly
comparable work to ours, in that their source data set was the
TESS FFIs and not the preselected targets processed by the
SPOC pipeline, and, their goal was to perform triage by
identifying all eclipsing signals, rather than separating planet
candidates from eclipsing binaries and other false positives.
Some other groups have trained and tested neural networks on
TESS data from 2 minute postage stamps processed by the
SPOC pipeline (Osborn et al. 2020; Valizadegan et al. 2021;
Fiscale et al. 2021; Rao et al. 2021; Ofman et al. 2022), and
were successful in identifying planet candidates. However, in
general, these groups have found that the neural network
performance is worse on TESS data than a similar network on
Kepler data, likely due to TESS’s higher a priori TCE false-

positive fraction (due to the larger TESS pixels resulting in
more blending) and shorter observational baseline. The false-
positive rate for FFI targets is likely even higher because: (a)
the targets observed by QLP tend to be fainter than targets
observed in postage stamps and blending is more pronounced,
and (b) the targets observed in the FFIs are more often large,
luminous stars like red giants, which are difficult to find planets
around, and are photometrically noisy. Therefore, TCEs
detected by the QLP likely have an even higher a priori
false-positive probability than TCEs detected by TESS in
postage stamp data.

6.4. Future Work

6.4.1. Applications to Exoplanet Population Statistics

Planet catalogs can be used to characterize exoplanet
population statistics through the estimation of occurrence rates.
One of the key components of occurrence rate methodologies is
a characterization of catalog completeness, reflecting how
many planets from the underlying population were missed. A
second key component is an understanding of catalog reliability
(Bryson et al. 2020), reflecting how much of the catalog is
polluted with false positives. For these reasons, occurrence rate
studies require the ability to produce planet catalogs in a fully
automated, uniform, and reproducible way, rather than relying
on biased manual identification of planet candidates.
NASA’s Kepler mission has dominated the past decade of

demographics work in large part thanks to the fully
automated Kepler Robovetter pipeline, which enabled careful

Figure 14. Example of borderline pattern. The true label for this example is “E,” but the folded light curve appears very similar to a “B.”
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characterization of both completeness and reliability across
wide areas of exoplanet parameter space (Thompson et al.
2018; Christiansen et al. 2020). However, there is not yet a
fully automated TESS planet vetting pipeline. Most previous
work has also focused on 2 minute cadence observations
rather than FFIs, which will be less suitable for demographics
due to selection biases in 2 minute cadence target lists.
Astronet-Triage-v2 is an important step toward
uniformly vetted FFI planet catalogs, and it naturally allows
for a flexibility in balances between completeness and
reliability through the adjustment of prediction thresholds
for passing candidates. While the classifier is not yet able to
distinguish eclipsing binary false positives from planets
(labeling all such signals as “E”ʼs), it can be used as a first
round of automated and characterizable triage. Future
improvements to Astronet-Triage-v2 (Section 6.4.2)
are expected to improve the precision and recall, and
therefore the completeness and reliability, of any resulting
planet catalog. We have plans to extend Astronet-
Triage-v2 to be capable of all steps of the vetting process
in the future.

6.4.2. Further Improvements to the Neural Network

In future work, we suggest a number of additions to further
improve the performance of our classifier.

Over the past few decades, the performance of deep-learning
classifiers has seen unprecedented success. A large part of this

success has been attributed to the increasing size of training
data sets. In this work, the number of training examples is
relatively low, particularly for the S-labeled class, with a large
class-imbalance (see Figure 4).
A common technique for increasing training data sets,

without obtaining new labeled data, is data augmentation. This
typically involves applying slight transformations to the
training data to produce new data that mimics real observation.
Using a combination of a few data augmentation techniques
can magnify a training set by several-fold and helps reduce
overfitting. In future work, we suggest applying data
augmentation methods such as randomly reversing or clipping
light curves in time and applying random Gaussian noise to the
light curves or scalar features. We note that these methods were
applied in Ansdell et al. (2018), where they showed that the
main benefit to data augmentation on exoplanet classification
was alleviating model overfitting, with only a small improve-
ment to model performance. More complex augmentation
methods such as fitting a model (e.g., Gaussian process; see
Boone 2019) to the minority class light curves and generating
more synthetic data may also help to improve the limited data
for some classes.
Since Astronet-Triage-v2 is used in production for

QLP’s monthly planet search, another way to increase our
training data set is to use the existing human vetting work that
goes into producing the TOI catalog (Guerrero et al. 2021). As
this human vetting is the final step in the TOI release process,
there is a high level of quality control in the labels, and the

Figure 15. Example of borderline pattern. The very low signal-to-noise ratio of the transit signal is easily mistaken for a “J.”
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signals being vetted are often the most difficult to classify,
making them important examples for the model to learn.

7. Conclusion

We have presented Astronet-Triage-v2, a convolu-
tional neural network designed to distinguish astrophysical
eclipsing candidates from other phenomena such as stellar
variability and instrumental systematics in TESS FFI light
curves. The network assigns input signals for one of five labels,
namely “E” for eclipsing signals, “S” for single transits or
incorrect periods, “B” for contact binaries, “J” for signals due
to noise or systematics, and “N” for inconclusive cases. We
trained Astronet-Triage-v2 using ∼25,000 signals,
which were detected by QLP from TESS Sectors 1–39 and
human-labeled through manual review and group discussion.
We make this training set available to the community.

Astronet-Triage-v2 is the next in a line of Astro-
net architectures, which were first used for Kepler (Shallue
et al. 2019) and later extended to K2 (Astronet-K2; Dattilo
et al. 2019) and TESS (Astronet-Triage; Yu et al. 2019).
This iteration features significant improvements over Astro-
net-Triage, including a larger and more robust training set,
an expanded list of possible classifications, and more than 10
times the number of unique views used to analyze each signal.
As a result, we found Astronet-Triage-v2 is more
successful at correctly labeling known TOIs across almost all

cutoff values, with 86% recall at a cutoff of 0.215 compared to
82% recall by Astronet-Triage. When tested on a set of
new signals from Sector 33, Astronet-Triage-v2
provides better recall of E and S labels than Astronet-
Triage for similar (or better) levels of precision, especially
for fainter targets. Starting in Sector 34, Astronet-
Triage-v2 officially replaced Astronet-Triage
within QLP.
As both the TESS observing baseline and number of observed

stars continue to increase, automated TESS planet vetting tools
will become more important. This is especially true of tools
tuned for planet searches using FFIs, of which Astronet-
Triage-v2 is one of the few currently available. While
Astronet-Triage-v2 is not yet capable of distinguishing
between eclipsing binaries and transiting planets, it serves as an
effective first round of automated and characterizable triage. We
plan to continue to improve and extend the network into a fully
automated vetting tool in the future.

This paper includes data collected by the TESS mission.
Funding for the TESS mission is provided by the NASA’s
Science Mission Directorate.
This work has made use of data from the European Space

Agency (ESA) mission Gaia (https://www.cosmos.esa.int/
gaia), processed by the Gaia Data Processing and Analysis
Consortium (DPAC; https://www.cosmos.esa.int/web/gaia/
dpac/consortium). Funding for the DPAC has been provided

Figure 16. Example of incorrect BLS estimation. Although the phase and period are close, the transit duration is too small, causing the transit to be clipped by the
detrending process.
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by national institutions, in particular the institutions participat-
ing in the Gaia Multilateral Agreement.

This work was supported by an LSSTC Catalyst Fellowship
awarded by LSST Corporation to T.D. with funding from the
John Templeton Foundation grant ID No. 62192.

The Astronet-Triage-v2 model was trained and tuned
on Google Compute Engine.

Facilities: TESS, Gaia.
Software: numpy (Oliphant 2006), matplotlib (Hunter 2007),

pandas (WesMcKinney 2010; pandas development team 2020),
statsmodels (Seabold & Perktold 2010), pydl, astropy (Astropy
Collaboration et al. 2013; Price-Whelan et al. 2018), Tensor-
Flow (Abadi et al. 2016), Vizier (Golovin et al. 2017), Jupyter
(Kluyver et al. 2016).

Appendix
Example TCE Table

Shown in an example TCE table that is passed into
Astronet-Triage-v2 alongside raw light-curve data. All
data is available in Tey et al. (2022). This table contains
information about the signal detected from BLS (epoch, period,
duration, and depth), information about the host star from TIC 8.2
(TIC ID, M*, R*, and TMag). Est R* is described in Section 3.2,
and “year” describes the year the TCE was detected. MinT and
MaxT specify the time range used from the light curve for
both detection and input to Astronet-Triage-v2, and
Split specifies which data set (train, val, or test) the signal was
in. L1–L8 are labels assigned by individuals, and Consensus
Label is the label agreed upon by the group.

Figure 17. Example of incorrect BLS estimation. The detected period is close, but when the light curve contains a large number of folds, the error compounds and
leads to a blurring of the transit view. This is due to QLP searching the light curve with an undersampled BLS frequency grid (necessary due to the computational time
needed to run BLS on a large number of targets each sector), as discussed in M. Kunimoto et al. (2023, in preparation).
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Table A1
Example TCE Table

TIC ID Period Epoch Duration Depth TMag M* R* Est R* Year MinT MaxT Split Consensus L1 L2 L3
(days) (BTJD) (days) (ppm) Me Re Re BTJD BTJD Label

290603338 13.6725 1629.9162 0.212 380 8.51 15.62 16.00 1 1624.9693 1682.3443 train J N J
32092337 1.3228 1326.3441 0.219 110 9.82 1.41 2.43 2.43 1 1325.3226 1652.8639 train J J J J
278544052 11.2664 1600.6568 0.206 2350 11.51 1.36 1.99 2.06 1 1596.7819 1682.3445 train J J J J
380752037 0.5639 1657.5494 0.069 3970 11.29 1.96 2.28 2.18 1 1653.9262 1682.3430 train J J J J
259863095 14.3676 1338.8209 0.315 2660 9.56 0.82 2.71 2.50 1 1325.3233 1682.3429 train J J J J
272085506 42.3842 1328.3580 0.367 890 11.39 14.48 15.56 1 1325.3218 1652.8658 train J J J J
306897664 1.2464 1325.8091 0.175 140 10.15 3.08 3.58 3.78 1 1325.3214 1652.8661 train J N B
302988499 3.1638 1493.0635 0.085 17730 11.31 1.18 1.22 1.25 1 1491.6354 1682.3447 train E E E E
375033936 36.1461 1358.3632 0.552 230 9.47 32.66 29.77 1 1325.3209 1682.3446 train J J J J
177019341 19.7796 1326.1799 0.296 350 11.33 14.13 13.35 1 1325.3215 1682.3446 train J J J J
90921748 11.3622 1660.7688 0.163 3430 10.84 2.07 2.31 2.33 1 1653.9270 1682.3437 train J J E E
101738624 0.2269 1654.1432 0.045 2010 11.44 1.72 2.91 2.72 1 1653.9256 1682.3424 train J B B
260415628 31.0662 1353.6982 0.298 169 8.21 27.50 28.21 1 1325.3207 1682.3445 train J J J J
349095939 8.6985 1331.6535 0.152 380 10.15 9.53 10.57 1 1325.3211 1682.3449 train J N J
167344043 1.3041 1326.4449 0.188 350 11.30 0.97 1.00 1.00 1 1325.3217 1682.3445 val J J J J
339667988 3.0673 1384.2735 0.193 34030 9.40 2.41 2.22 2.15 1 1381.7181 1682.3452 train E E E E
340060373 12.9080 1393.7434 0.157 1790 11.07 1.19 1.20 1.22 1 1381.7179 1682.3454 val J J S J
340929171 1.0873 1654.4122 0.174 2560 11.25 1.81 1 1653.9260 1682.3428 train B J J
349647610 36.1689 1359.0938 0.587 300 4.86 41.18 42.82 1 1325.3211 1682.3450 train J J J J
340065079 16.5423 1396.2365 0.155 570 9.60 10.50 10.96 1 1381.7180 1682.3453 train J N J
119088593 0.3616 1654.1666 0.157 18550 10.82 1.72 1.85 1.94 1 1653.9273 1682.3439 train B B E B
143769346 0.8667 1655.7849 0.248 3720 8.99 1.65 1.65 1.66 1 1653.9264 1682.3432 train B B B B
320004264 1.0463 1654.3056 0.172 570 8.19 1.34 1.25 1.25 1 1653.9262 1682.3430 train J J J J
63343395 0.3958 1657.3129 0.039 199070 10.03 1.35 1.48 1.54 1 1653.9275 1682.3441 train B E B B
261543672 14.5671 1333.9494 0.359 630 10.56 1.03 1.75 1.76 1 1325.3244 1682.3430 train J J E J
L L L L L L L L L L L L L L L L L L

(This table is available in its entirety in machine-readable form.)
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