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Abstract: Linseed is a dietary source of plant-based ω–3 fatty acids along with fiber as well as
lignans including secoisolariciresinol diglucoside (SDG). We investigated the reversal of signs of
metabolic syndrome following addition of whole linseed (5%), defatted linseed (3%), or SDG (0.03%)
to either a high-carbohydrate, high-fat or corn starch diet for rats for the final eight weeks of a
16–week protocol. All interventions reduced plasma insulin, systolic blood pressure, inflammatory
cell infiltration in heart, ventricular collagen deposition, and diastolic stiffness but had no effect on
plasma total cholesterol, nonesterified fatty acids, or triglycerides. Whole linseed did not change the
body weight or abdominal fat in obese rats while SDG and defatted linseed decreased abdominal fat
and defatted linseed increased lean mass. Defatted linseed and SDG, but not whole linseed, improved
heart and liver structure, decreased fat vacuoles in liver, and decreased plasma leptin concentrations.
These results show that the individual components of linseed produce greater potential therapeutic
responses in rats with metabolic syndrome than whole linseed. We suggest that the reduced responses
indicate reduced oral bioavailability of the whole seeds compared to the components.

Keywords: linseed; secoisolariciresinol diglucoside; obesity; blood pressure; high-carbohydrate;
high-fat diet

1. Introduction

Linseed or flax (Linum usitatissimum L.) has widely reported health benefits from studies with
many forms including whole or ground seeds, oil, defatted meal, and mucilage extracts [1,2]. Linseed
and its components, especially α–linolenic acid (ALA, C18:3n–3) and the lignan, secoisolariciresinol
diglucoside (SDG), may protect against metabolic syndrome and cardiovascular disease by lowering
blood pressure, reducing blood glucose concentrations, delaying postprandial glucose absorption,
and decreasing oxidative stress and inflammation [3–5]. However, the health benefits of introducing
linseed into the diet have not been fully defined [6]. In addition, processing including dehusking,
crushing, milling, and defatting may increase bioavailability of individual components such as lignans
and ALA [7–9]. Furthermore, no studies have compared physiological responses to whole linseed or
linseed components using the same animal model or humans.

Linseed has a hard outer layer which may allow the seeds to pass unchanged through the gut and
reduce absorption of useful nutrients by the body [10]. Thus, it may be more beneficial to consume
ground linseeds over whole linseeds. This implied difference in oral bioavailability could markedly
alter the choice of linseed preparations as functional foods, since both whole linseeds and ground
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linseed flour are readily available. In humans fed muffins with either 30 g whole or ground linseed, or
flaxseed oil with 6 g ALA, plasma ALA concentrations were 0.024 mg/mL with whole linseed (not
significantly different from control) but increased to 0.031 mg/mL with ground linseed and 0.055 mg/mL
with linseed oil, suggesting reduced absorption from whole linseeds [11]. In a randomized, crossover
study involving 12 healthy subjects, the bioavailability of enterolignans formed as lignan metabolites
in the liver more than tripled after feeding on crushed linseed relative to whole linseed and further
increased with milled linseed [8]. In rats following oral administration, SDG was metabolized in the
gastrointestinal tract and not absorbed while the oral bioavailability of secoisolariciresinol was about
25% with a half–life within the body following intravenous administration of 4 h [12].

In this study, we evaluated the cardiovascular, liver, and metabolic responses of whole linseed, and
two of its components, defatted ground linseed, and SDG–enriched fraction, by using an established
model of high-carbohydrate, high-fat diet-fed rats mimicking the human metabolic syndrome [13]. We
have compared these results with our earlier study on 3% linseed oil containing ALA, which normalized
systolic blood pressure, and improved heart function and glucose tolerance [14]. Measurements
included body weight, systolic blood pressure, oral glucose tolerance test, left ventricular diastolic
stiffness, histology of the heart and liver, and plasma biochemistry. Doses of the linseed components
were chosen so as to be similar to the proportion in whole linseed. Our hypothesis was that whole
linseeds and the isolated components would improve cardiovascular, metabolic, and liver changes in
diet-induced metabolic syndrome in rats.

2. Materials and Methods

2.1. Rats and Diet

All experimental protocols were approved by the University of Southern Queensland Animal
Ethics Committee under the guidelines of the National Health and Medical Research Council of
Australia. Male Wistar rats were purchased from Animal Resource Centre, Murdoch, WA, Australia.
Rats were housed individually in temperature-controlled, 12 h light/dark conditions in the animal
house facility of the University of Southern Queensland. The rats were acclimatized and given free
access to water and standard rat powdered food prior to initiation of the protocol diets.

Rats (8–9 weeks old, weighing 330–340 g, n = 96) were randomly divided into 8 experimental
groups: corn starch diet-fed rats (C; n = 12), corn starch diet-fed rats treated with 5% whole linseed
in food (CW; n = 12), corn starch diet-fed rats treated with 3% defatted ground linseed in food (CD;
n = 12), corn starch diet-fed rats treated with 0.03% SDG in food (CS; n = 12), high-carbohydrate,
high-fat diet-fed rats (H; n = 12), high-carbohydrate, high-fat diet-fed rats treated with 5% whole
linseed in food (HW; n = 12), high-carbohydrate, high-fat diet-fed rats treated with 3% defatted ground
linseed in food (HD; n = 12), and high-carbohydrate, high-fat diet-fed rats treated with 0.03% SDG
in food (HS; n = 12). Preparation of C and H diets has been described previously [13]. The energy
densities of C and H diets were 11.23 kJ/g and 17.83 kJ/g, respectively, with an additional 3.85 kJ/mL in
drinking water for fructose intake in high-carbohydrate, high-fat diet-fed rats [13].

Whole linseed- and defatted linseed–supplemented diets were prepared by replacing 5% water
with 5% whole linseed (not ground) and 3% water with 3% defatted linseed, respectively, in C and H
diets. The whole linseed dose replicated our previous study which used 5% chia seeds in food [15],
as the oil composition of chia seed and linseed are similar. Since the oil content of linseed is about
40% [16], the non-oil component, defined here as defatted linseed, is 60% so defatted linseed flour was
added at 3% in the food. The SDG-supplemented diets were prepared by adding 0.03% SDG (0.3 g of
SDG/kg food) in C and H diets.

The whole linseed, defatted linseed, and SDG diets were administered for 8 weeks starting 8 weeks
after the initiation of C or H diet. H, HW, HD, and HS groups were given 25% fructose in drinking
water along with the diets for the 16-week duration of the study. Normal drinking water without any
supplementation was given to C, CW, CD, and CS rats. Rats were monitored daily for body weight
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and food and water intakes. Energy intake and food conversion efficiency were calculated based on
the food intake and body weight gain [14,15].

Whole linseed was a gift from AustGrains (Moree, NSW, Australia) and was also ground and
extracted with n-hexane to produce defatted linseed. SDG (40% purity) was a gift from the Archer
Daniels Midland Company (Chicago, IL, USA). The analysis of SDG content was conducted by
St. Boniface Hospital Research, Winnipeg, MB, Canada. Total gross energy content of whole linseed,
defatted linseed, and SDG samples were measured by bomb calorimetry (XRY-1A Oxygen Bomb
calorimeter, Shanghai Changji Geological Instrument Co. Ltd., Shanghai, China) in triplicate. One
gram of whole linseed, defatted linseed, or SDG were burnt in compressed oxygen (25 kg/cm2) in the
calorimetric bomb immersed in water. The energy densities for whole linseed, defatted linseed, and
SDG were 23.76 kJ/g, 16.98 kJ/g, and 17.48 kJ/g, respectively.

2.2. Measurements in Live Rats

Systolic blood pressure was measured at the end of the protocol under light sedation by
intraperitoneal injection with Zoletil (tiletamine 10 mg/kg, zolazepam 10 mg/kg; Virbac, Peakhurst,
NSW, Australia). Measurements were performed using an MLT1010 Piezo-Electric Pulse Transducer
(ADInstruments, Sydney, NSW, Australia) and an inflatable tail-cuff connected to an MLT844
Physiological Pressure Transducer (ADInstruments) connected to a PowerLab data acquisition unit
(ADInstruments) [13].

Oral glucose tolerance tests were performed at the end of the protocol on rats after overnight
(12 h) food deprivation. During this time, fructose-supplemented drinking water in H, HW, HD, and
HS rats was replaced with tap water. Basal blood glucose concentrations were determined in tail vein
blood using Medisense Precision Q.I.D. glucometer (Abbott Laboratories, Bedford, MA, USA). The rats
were given 2 g/kg body weight of glucose as a 40% (w/v) aqueous glucose solution via oral gavage.
Tail vein blood samples were taken at 30, 60, 90, and 120 min following glucose administration [13].

Dual-energy X-ray absorptiometry (DXA) was performed on all rats after 16 weeks of feeding using
a Norland XR36 DXA instrument (Norland Corp., Fort Atkinson, WI, USA). Rats were anesthetized
using intraperitoneal injection of Zoletil (tiletamine 10 mg/kg and zolazepam 10 mg/kg) and Ilium
Xylazil (xylazine 6 mg/kg; Troy Laboratories, Smithfield, NSW, Australia). Scans were analyzed using
the manufacturer’s recommended software for use in laboratory animals (Small Subject Analysis
Software, version 2.5.3/1.3.1; Norland Corp.) [13]. Visceral adiposity index (%) was calculated based on
the abdominal fat content obtained during terminal experiments [15].

2.3. Measurements after Euthanasia

Terminal euthanasia was induced by intraperitoneal injection of Lethabarb (pentobarbitone
sodium, 100 mg/kg; Virbac) and ~6 mL blood was immediately drawn from the abdominal aorta,
collected into heparinized tubes, and centrifuged for plasma [13]. Hearts (n = 8–10) were separated
into right ventricle and left ventricle with septum for weighing. Liver and abdominal fat pads
(retroperitoneal, epididymal, and omental) were isolated and weighed (n = 8–10). Organ weights were
normalized to the tibial length and presented in mg of tissue/mm of tibial length [13].

A portion of the heart, liver, small intestine, and large intestine was collected and fixed in 10%
neutral buffered formalin for 3 days. Standard histological procedures were followed to process tissues
for staining with hematoxylin and eosin or picrosirius red staining [13]. Two slides were prepared per
tissue specimen and two random, non-overlapping fields per slide were taken to avoid biased analysis.
To examine collagen distribution in the heart, the tissue was stained with picrosirius red stain and
imaged using EVOS FL Color Imaging System (version 1.4 (Rev 26059); Advanced Microscopy Group,
Bothwell, WA, USA) [14]. Small and large intestine sections were stained with periodic acid-Schiff
stain to identify goblet cells [17]. Left ventricular collagen deposition was estimated by analysis with
NIH ImageJ software (https://imagej.nih.gov/ij/).

https://imagej.nih.gov/ij/
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Plasma samples collected during terminal experiments were used to test plasma activities of
alanine transaminase and aspartate transaminase, and plasma concentrations of total cholesterol,
triglycerides, and nonesterified fatty acids [13].

2.4. Statistical Analysis

All data are presented as mean ± standard error of the mean (SEM). Group data were tested
for variance using Bartlett’s test. Variables that were not normally distributed were transformed
(using log 10 function) prior to statistical analysis. Groups were tested for effects of diet, treatment,
and their interactions using two-way analysis of variance. When interaction and/or the main effects
were significant, means were compared using Newman-Keuls multiple-comparison post hoc test.
All statistical analyses were performed using Prism version 6.00 for Windows (GraphPad Software,
San Diego, CA, USA). p-value of < 0.05 was considered as statistically significant.

3. Results

3.1. Dietary Intakes

Food and water intakes were lower in H rats than in C rats but energy intakes were higher in H
rats than in C rats (Table 1). There were no differences between food intakes of C, CW, CD, and CS or
between H, HW, HD, and HS groups (Table 1). Water intake was unchanged among C, CW, CD, and
CS groups and there was no difference in water intake among H, HW, HD, and HS rats (Table 1). Doses
of SDG were 31.9 ± 1.3 mg/kg/day and 15.9 ± 0.3 mg/kg/day for CS and HS rats, respectively. Intakes
of whole linseed were 4.36 ± 0.14 g/kg/day and 2.51 ± 0.16 g/kg/day for CW and HW rats, respectively,
while intakes of defatted linseed were 2.64 ± 0.09 g/kg/day and 1.57 ± 0.04 g/kg/day for CD and HD
rats, respectively.

3.2. Body Composition and Organ Weights

Body weight was higher in H rats than in C rats and whole linseed, defatted linseed and SDG did
not change body weight in HW, HD, and HS rats, whereas the body weight was higher in CW rats than
in C rats, and CS and CD rats had intermediate body weights to C and CW rats (Figure 1A and Table 1).
Body weight gain was lower in HS rats compared to H, HW, and HD rats, whereas body weight gain
was in the order C=CS>CD>CW among the C diet groups (Table 1). Feed conversion efficiency was
higher in H rats than in C rats. Interventions did not change feed conversion efficiency in H diet-fed
rats (HW, HD, and HS rats), whereas whole linseed increased the feed conversion efficiency in CW rats
with no change in CS and CD rats (Table 1). Bone mineral content was higher in H rats than in C rats.
None of the interventions changed bone mineral content in C diet groups (CW, CD, and CS), whereas
HD rats showed reduction in this parameter compared to H, HW, and HS rats (Table 1). Lean mass did
not differ between C and H rats. CW, CD, and HD rats had higher lean mass; CS, H, and HS rats had
lower lean mass, whereas C and HW had intermediate lean mass (Table 1). H rats had higher fat mass
compared to all C diet groups (C, CW, CD, and CS rats). HD rats had lower fat mass compared to
H and HW rats, whereas HS rats had fat mass intermediate to H and HD rats (Table 1). Abdominal
circumference and visceral adiposity index were unchanged in CW, CD, and CS rats compared to C
rats, whereas these parameters were increased in H rats compared to C rats (Table 1). HD rats had
lower abdominal circumference compared to H and HW rats, whereas visceral adiposity index was
higher in HW rats compared to HS and HD rats (Table 1).
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Table 1. Dietary intakes, body composition, and organ wet weights.

Variables C CW CD CS H HW HD HS
p Value

Diet Treatment Interaction

Food intake, g/day 35.0 ± 0.6 a 34.6 ± 1.2 a 33.9 ± 1.2 a 35.5 ± 0.8 a 25.2 ± 0.6 b 23.4 ± 0.6 b 24.4 ± 0.4 b 26.3 ± 0.4 b <0.0001 0.06 0.59

Water intake, mL/day 28.7 ± 1.8 a 30.7 ± 2.1 a 32.7 ± 0.9 a 30.4 ± 2.7 a 25.6 ± 1.0 b 26.9 ± 0.4 ab 25.7 ± 1.1 b 25.2 ± 1.0 b <0.0001 0.54 0.61

Energy intake, kJ/day 392 ± 7 b 433 ± 14 b 397 ± 14 b 420 ± 13 b 552 ± 13 a 561 ± 14 a 542 ± 9 a 555 ± 8 a <0.0001 0.11 0.37

Body weight gained
(week 8–16), % 7.4 ± 1.0 d 18.2 ± 0.8 b 13.2 ± 1.6 c 9.1 ± 1.7 d 23.3 ± 0.9 a 23.4 ± 0.6 a 22.7 ± 1.4 a 18.9 ± 1.3 b <0.0001 <0.0001 0.0006

Final body weight (week 16) 375 ± 4 a 432 ± 6 b 400 ± 5 a 392 ± 10 a 526 ± 10 c 539 ± 10 c 521 ± 8 c 519 ± 11 c < 0.0001 0.0004 0.06

Feed conversion efficiency, % 1.8 ± 0.2 c 4.9 ± 0.3 b 3.2 ± 0.4 c 2.6 ± 0.5 c 9.6 ± 0.6 a 9.2 ± 0.6 a 9.0 ± 0.6 a 8.1 ± 0.7 a <0.0001 0.004 0.005

Bone mineral content, g 12.0 ± 0.4 c 12.1 ± 0.2 c 11.9 ± 0.2 c 13.2 ± 0.6 c 16.5 ± 0.4 a 17.3 ± 0.7 a 15.3 ± 0.6 b 16.8 ± 0.4 a <0.0001 0.024 0.20

Total fat mass, g 98 ± 16 c 103 ± 7 c 77 ± 6 c 122 ± 16 c 256 ± 21 a 253 ± 21 a 189 ± 22 b 227 ± 7 ab <0.0001 0.014 0.25

Total lean mass, g 276 ± 14 ab 317 ± 7 a 309 ± 5 a 267 ± 9 b 268 ± 14 b 277 ± 11 ab 312 ± 15 a 246 ± 7 b 0.035 <0.0001 0.24

Abdominal circumference, cm 18.4 ± 0.2 c 19.1 ± 0.2 c 19.1 ± 0.1 c 18.9 ± 0.2 c 23.0 ± 0.2 a 23.6 ± 0.4 a 21.2 ± 0.2 b 22.7 ± 0.2 a <0.0001 0.016 0.19

Visceral adiposity index, % 4.9 ± 0.4 d 4.7 ± 0.3 d 4.2 ± 0.1 d 4.8 ± 0.6 d 9.6 ± 0.7 ab 10.4 ± 0.9 a 7.3 ± 0.5 c 8.5 ± 0.4 bc <0.0001 0.007 0.09

Retroperitoneal fat, mg/mm * 189 ± 18 c 179 ± 18 c 151 ± 20 c 194 ± 31 c 531 ± 41 a 554 ± 59 a 407 ± 31 b 469 ± 31 ab <0.0001 0.55 0.34

Epididymal fat, mg/mm * 89 ± 10 d 98 ± 8 d 74 ± 5 d 112 ± 20 cd 259 ± 17 a 278 ± 28 a 154 ± 16 c 211 ± 11 b <0.0001 0.29 0.037

Omental fat, mg/mm * 114 ± 15 c 124 ± 9 c 102 ± 7 c 102 ± 13 c 240 ± 25 ab 280 ± 18 a 198 ± 14 b 207 ± 8 b <0.0001 0.013 0.26

Total abdominal fat, mg/mm * 392 ± 39 d 401 ± 35 d 308 ± 36 d 408 ± 63 d 1031 ± 79 ab 1113 ± 105 a 683 ± 92 c 887 ± 45 b <0.0001 0.23 0.18

Liver, mg/mm * 201 ± 5 b 213 ± 12 b 216 ± 7 b 213 ± 8 b 327 ± 12 a 337 ± 15 a 310 ± 8 a 306 ± 9 a <0.0001 0.32 0.22

Values are expressed as mean ± SEM, n = 8–12. Means with different superscripts (a, b, c, or d) differ, p < 0.05. C, corn starch diet-fed rats; CW, corn starch diet-fed rats treated with whole
linseed; CD, corn starch diet-fed rats treated with defatted linseed; CS, corn starch diet-fed rats treated with secoisolariciresinol diglucoside (SDG); H, high-carbohydrate, high-fat diet-fed
rats; HW, high-carbohydrate, high-fat diet-fed rats treated with whole linseed; HD, high-carbohydrate, high-fat diet-fed rats treated with defatted linseed; and HS, high-carbohydrate,
high-fat diet-fed rats treated with SDG. * Denotes the values that were normalized against tibial length and presented as tissue weight in mg/mm of tibial length.
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means with different letters (a, b, c, or d) are significantly different, p < 0.05. C, corn starch diet-fed 
rats; CW, corn starch diet-fed rats treated with whole linseed; CD, corn starch diet-fed rats treated 
with defatted linseed; CS, corn starch diet-fed rats treated with SDG; H, high-carbohydrate, high-fat 
diet-fed rats; HW, high-carbohydrate, high-fat diet-fed rats treated with whole linseed; HD, high-
carbohydrate, high-fat diet-fed rats treated with defatted linseed; HS, high-carbohydrate, high-fat 
diet-fed rats treated with SDG. 
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and CS rats had no difference in these fat pads and total abdominal fat compared to C rats. SDG 
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compared to H rats, whereas defatted linseed lowered retroperitoneal, epididymal, and total 
abdominal fat in HD rats compared to H rats (Table 1). Liver wet weights were higher in H rats than 
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compared to C or H rats (Table 1). 
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their diet respective controls (Table 2). Plasma insulin concentrations were higher in H rats compared 
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change in plasma leptin concentrations compared to C rats. Whole linseed did not change plasma 
leptin concentrations, whereas both SDG and defatted linseed decreased plasma leptin 
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Figure 1. Effects of whole linseed, defatted linseed, and secoisolariciresinol diglucoside (SDG) on
(A) body weight and (B) oral glucose tolerance test. The vertical dotted grid line in (A) at week 8
represents the start of treatment for rats. Data are presented as mean ± SEM, n = 10–12. End-point
means with different letters (a, b, c, or d) are significantly different, p < 0.05. C, corn starch diet-fed
rats; CW, corn starch diet-fed rats treated with whole linseed; CD, corn starch diet-fed rats treated with
defatted linseed; CS, corn starch diet-fed rats treated with SDG; H, high-carbohydrate, high-fat diet-fed
rats; HW, high-carbohydrate, high-fat diet-fed rats treated with whole linseed; HD, high-carbohydrate,
high-fat diet-fed rats treated with defatted linseed; HS, high-carbohydrate, high-fat diet-fed rats treated
with SDG.

Retroperitoneal, epididymal, and omental fat pads were higher in H rats than in C rats. CW,
CD, and CS rats had no difference in these fat pads and total abdominal fat compared to C rats. SDG
decreased epididymal fat in HS rats, whereas retroperitoneal, omental, and total abdominal fats were
unchanged compared to H rats. Whole linseed did not change the individual fat pads in HW rats
compared to H rats, whereas defatted linseed lowered retroperitoneal, epididymal, and total abdominal
fat in HD rats compared to H rats (Table 1). Liver wet weights were higher in H rats than in C rats.
Whole linseed, defatted linseed, and SDG treatment did not change liver wet weight compared to C or
H rats (Table 1).

3.3. Metabolic Parameters

During oral glucose tolerance test, H rats showed higher basal blood glucose concentrations than
C rats. Similarly, H rats showed higher 120 min glucose concentration (Figure 1B). Area under the
curve for glucose tolerance test was higher in H rats compared to C, CW, CD, and CS rats. HW, HD,
and HS rats were similar to H rats in area under the curve for glucose tolerance test (Table 2). Plasma
total cholesterol concentrations were not different among all groups (Table 2). Plasma nonesterified
fatty acids and triglyceride concentrations were higher in H rats compared to C rats, and these were
unchanged with whole linseed, defatted linseed, or SDG treatment in any of the groups compared to
their diet respective controls (Table 2). Plasma insulin concentrations were higher in H rats compared
to C rats. HW, HD, and HS rats had lower plasma insulin concentrations compared to H rats, whereas
plasma insulin concentrations were higher in CW, CD, and CS rats compared to C rats (Table 2).
Plasma leptin concentrations were higher in H rats compared to C rats. CW, CD, and CS rats had no
change in plasma leptin concentrations compared to C rats. Whole linseed did not change plasma
leptin concentrations, whereas both SDG and defatted linseed decreased plasma leptin concentrations
(Table 2).
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Table 2. Metabolic, cardiovascular, and liver parameters.

Variables C CW CD CS H HW HD HS
p Value

Diet Treatment Interaction

Area under the curve, mmol/L×min 636 ± 19 bc 625 ± 14 c 680 ± 14 b 687 ± 20 b 794 ± 13 a 735 ± 17 ab 770 ± 17 a 765 ± 25 a <0.0001 0.037 0.09

Plasma total cholesterol, mmol/L 1.5 ± 0.05 a 1.3 ± 0.10 a 1.4 ± 0.10 a 1.6 ± 0.06 a 1.6 ± 0.04 a 1.5 ± 0.10 a 1.6 ± 0.10 a 1.6 ± 0.06 a 0.09 0.023 0.39

Plasma nonesterified fatty acids,
mmol/L 0.9 ± 0.2 b 1.5 ± 0.2 b 1.5 ± 0.2 b 1.4 ± 0.2 b 4.3 ± 0.6 a 4.0 ± 0.3 a 3.7 ± 0.4 a 3.7 ± 0.5 a <0.0001 0.86 0.31

Plasma triglycerides, mmol/L 0.4 ± 0.06 b 0.4 ± 0.10 b 0.5 ± 0.01 b 0.4 ± 0.06 b 1.6 ± 0.30 a 1.5 ± 0.20 a 1.3 ± 0.20 a 1.3 ± 0.20 a <0.0001 0.68 0.68

Plasma insulin, µmol/L 1.3 ± 0.01 e 2.9 ± 0.05 c 1.7 ± 0.05 d 1.7 ± 0.01 d 7.7 ± 0.09 a 5.9 ± 0.12 b 5.8 ± 0.04 b 6.0 ± 0.11 b <0.0001 <0.0001 <0.0001

Plasma leptin, µmol/L 3.2 ± 0.40 d 4.2 ± 0.06 d 3.9 ± 0.03 d 2.1 ± 0.62 d 12.3 ± 1.54 a 13.1 ± 0.03 a 10.2 ± 0.08 b 6.3 ± 0.97 c <0.0001 <0.0001 0.005

Heart, mg/mm * 22.0 ± 1.0 c 25.4 ± 0.7 bc 25.3 ± 0.9 bc 21.5 ± 0.4 c 26.8 ± 1.1 b 31.5 ± 2.1 a 26.9 ± 0.9 b 23.6 ± 0.9 bc <0.0001 <0.0001 0.18

Left ventricle + septum, mg/mm * 18.1 ± 0.7 b 21.6 ± 0.6 b 20.8 ± 0.8 b 17.2 ± 0.3 b 20.8 ± 0.8 b 27.1 ± 1.8 a 22.3 ± 0.8 b 18.5 ± 0.8 b 0.0002 <0.0001 0.09

Right ventricle, mg/mm * 4.0 ± 0.4 4.5 ± 0.4 4.5 ± 0.3 4.4 ± 0.2 6.3 ± 1.7 5.8 ± 0.4 4.7 ± 0.2 5.0 ± 0.1 0.03 0.79 0.53

Systolic blood pressure, mmHg 128 ± 3 bc 129 ± 2 bc 120 ± 3 c 133 ± 2 b 148 ± 2 a 134 ± 2 b 129 ± 5 bc 133 ± 3 b <0.0001 0.026 0.0004

Diastolic stiffness constant (κ) 23.0 ± 0.4 bc 24.2 ± 0.7 abc 21.9 ± 0.3 c 23.0 ± 0.8 bc 26.6 ± 0.9 a 25.1 ± 0.5 ab 23.7 ± 1.3 bc 22.0 ± 0.5 c 0.034 0.001 0.004

Plasma alanine transaminase, U/L 26.8 ± 2.5 b 30.9 ± 3.8 b 28.3 ± 2.0 b 23.2 ± 1.6 b 33.7 ± 1.5 a 27.8 ± 2.5 ab 33.8 ± 1.5 a 33.6 ± 1.7 a 0.017 0.74 0.017

Plasma aspartate transaminase, U/L 64.6 ± 4.6 a 66.4 ± 5.9 a 66.3 ± 2.8 a 61.6 ± 1.8 a 68.8 ± 2.6 a 61.6 ± 3.7 a 67.5 ± 2.9 a 69.6 ± 6.8 a 0.52 0.84 0.38

Left ventricle collagen deposition, % 6.51 ± 1.0 b 6.57 ± 1.1 b 5.29 ± 0.2 b 4.96 ± 0.5 b 16.1 ± 3.7 a 13.9 ± 1.3 a 8.2 ± 0.5 b 8.3 ± 1.0 b <0.0001 <0.0001 <0.0001

Left ventricle inflammatory cells, n 9.0 ± 2.5 b 7.5 ± 1.2 b 10.5 ± 1.6 b 12.3 ± 1.1 b 60.0 ± 4.0 a 10.8 ± 1.4 b 12.3 ± 1.1 b 10.8 ± 1.1 b <0.0001 <0.0001 <0.0001

Liver fat vacuoles, n 4.0 ± 0.6 c 10.8 ± 1.6 c 4.0 ± 1.2c 3.5 ± 1.0 c 75.0 ± 4.6 a 39.7 ± 4.4 b 3.5 ± 1.0 c 1.5 ± 0.9 c <0.0001 <0.0001 <0.0001

Ileum goblet cells, n 91.5 ± 6.0 c 82.3 ± 6.1 d 107.3 ± 2.1 abc 100.3 ± 2.5 cd 124.3 ± 3.4 ab 118.3 ± 8.6 ab 94.8 ± 3.4 bc 110.8 ± 4.4 ab 0.0005 0.3224 0.0004

Colon goblet cells, n 97.5 ± 2.9 c 42 ± 5.1 d 84.5 ± 2.6 c 90.8 ± 5.2 c 78.8 ± 3.9 c 135.3 ± 2.3 b 203.8 ± 14.5 a 131.3 ± 7.3 b <0.0001 <0.0001 <0.0001

Values are expressed as mean ± SEM, n = 8–12. Means with different superscripts (a, b, c, d, or e) differ, p < 0.05. C, corn starch diet-fed rats; CW, corn starch diet-fed rats treated with whole
linseed; CD, corn starch diet-fed rats treated with defatted linseed; CS, corn starch diet-fed rats treated with secoisolariciresinol diglucoside (SDG); H, high-carbohydrate, high-fat diet-fed
rats; HW, high-carbohydrate, high-fat diet-fed rats treated with whole linseed; HD, high-carbohydrate, high-fat diet-fed rats treated with defatted linseed; and HS, high-carbohydrate,
high-fat diet-fed rats treated with SDG. For histological scoring, values are expressed as mean ± SEM, n = 4. * Denotes the values that were normalized against tibial length and presented
as tissue weight in mg/mm of tibial length.
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3.4. Cardiovascular, Liver, and Gut Parameters

Heart wet weights were higher in H rats compared to C rats. CW, CD, and CS rats showed no
difference in heart weight compared to C rats. HW rats had higher heart weight compared to H rats,
whereas HS and HD rats had similar heart weight to H rats (Table 2). H rats had higher systolic blood
pressure than C rats. Whole linseed, defatted linseed, and SDG reduced blood pressure in HW, HD,
and HS rats, respectively, compared to H rats, whereas these interventions did not change systolic
blood pressure in CW, CD, and CS rats compared to C rats (Table 2). H rats had higher ventricular
diastolic stiffness than C rats. SDG and defatted linseed reduced diastolic stiffness in HS and HD rats,
respectively, compared to H rats, whereas none of the interventions reduced diastolic stiffness in CW,
CD, or CS rats compared to C rats (Table 2).

H rats showed increased infiltration of inflammatory cells (Figure 2E) and greater interstitial
collagen deposition (Figure 3E) as compared to other groups (Figure 2; Figure 3; Table 2). HW, HD,
and HS rats had reduced infiltration of inflammatory cells (Figure 2F–H) and ventricular collagen
deposition (Figure 3F–H; Table 2) compared to H rats.
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Figure 2. Hematoxylin and eosin staining of left ventricle showing infiltration of inflammatory cells
(magnification ×20; shown by arrow) in rats fed corn starch diet-fed rats (A), corn starch diet-fed rats
treated with whole linseed (B), corn starch diet-fed rats treated with defatted linseed (C), corn starch
diet-fed rats treated with SDG (D), high-carbohydrate, high-fat diet-fed rats (E), high-carbohydrate,
high-fat diet-fed rats treated with whole linseed (F), high-carbohydrate, high-fat diet-fed rats treated with
defatted linseed (G), and high-carbohydrate, high-fat diet-fed rats treated with SDG (H). Inflammatory
cells are marked as “in”.

H rats had higher plasma alanine transaminase activity than C rats. None of the treatments in
this study changed the plasma activities of alanine transaminase or aspartate transaminase (Table 2).
Staining of liver sections showed increased lipid deposition and inflammatory cell infiltration in H rats
(Figure 4E) compared to C rats (Figure 4A). HW (Figure 4F), HD (Figure 4G), and HS (Figure 4H) rats
showed decreased inflammatory cell infiltration compared to H rats. HW rats showed some reduction
in liver lipid deposition (Figure 4F), whereas HD (Figure 4G) and HS (Figure 4H) rats showed minimal
lipid deposition (Table 2). CW (Figure 4B), CS (Figure 4C), and CD (Figure 4D) rats showed no changes
in the liver in inflammatory cell infiltration and lipid deposition compared to C rats (Figure 4A; Table 2).
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Figure 3. Picrosirius red staining of left ventricular interstitial collagen deposition (magnification ×20;
shown by arrows) in rats fed corn starch diet-fed rats (A), corn starch diet-fed rats treated with whole
linseed (B), corn starch diet-fed rats treated with defatted linseed (C), corn starch diet-fed rats treated
with SDG (D), high-carbohydrate, high-fat diet-fed rats (E), high-carbohydrate, high-fat diet-fed rats
treated with whole linseed (F), high-carbohydrate, high-fat diet-fed rats treated with defatted linseed
(G), and high-carbohydrate, high-fat diet-fed rats treated with SDG (H). Collagen deposition is marked
as “cd” and hypertrophied cardiomyocytes are marked as “hy”.
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Figure 4. Hematoxylin and eosin staining of liver showing fat vacuoles and infiltration of inflammatory
cells (magnification ×20; shown by arrows) in corn starch diet-fed rats (A), corn starch diet-fed rats
treated with whole linseed (B), corn starch diet-fed rats treated with defatted linseed (C), corn starch
diet-fed rats treated with SDG (D), high-carbohydrate, high-fat diet-fed rats (E), high-carbohydrate,
high-fat diet-fed rats treated with whole linseed (F), high-carbohydrate, high-fat diet-fed rats treated
with defatted linseed (G), and high-carbohydrate, high-fat diet-fed rats treated with SDG (H). Fat
vacuoles are marked as “fv” and inflammatory cells are marked as “in”.

Histological analyses of small intestine showed more goblet cells in H rats (Figure 5E) compared
to C rats (Figure 5A; Table 2). HW (Figure 5F) and HS (Figure 5H) rats showed no change in the
number of goblet cells in the small intestine, whereas HD rats (Figure 5G) showed reduction in the
number of goblet cells (Table 2) compared to H rats (Figure 5E). Colon from C rats (Figure 6A) and
H rats (Figure 6E) showed no difference in the number of goblet cells (Table 2). HW (Figure 6F),
HD (Figure 6G), and HS (Figure 6H) rats showed an increase in the number of goblet cells in colons
compared to H rats (Figure 6E; Table 2).
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Figure 5. Periodic acid-Schiff staining of ileum showing goblet cells (magnification ×20; shown by
arrows) in corn starch diet-fed rats (A), corn starch diet-fed rats treated with whole linseed (B), corn
starch diet-fed rats treated with defatted linseed (C), corn starch diet-fed rats treated with SDG (D),
high-carbohydrate, high-fat diet-fed rats (E), high-carbohydrate, high-fat diet-fed rats treated with
whole linseed (F), high-carbohydrate, high-fat diet-fed rats treated with defatted linseed (G), and
high-carbohydrate, high-fat diet-fed rats treated with SDG (H). Goblet cells are marked as “gc”.Nutrients 2019, 11, x FOR PEER REVIEW 10 of 15 
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with linseed products: young rats fed a linseed flour intervention for the first 90 days showed higher 
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Figure 6. Periodic acid-Schiff staining of colon showing goblet cells (magnification ×20; shown by
arrows) in corn starch diet-fed rats (A), corn starch diet-fed rats treated with whole linseed (B), corn
starch diet-fed rats treated with defatted linseed (C), corn starch diet-fed rats treated with SDG (D),
high-carbohydrate, high-fat diet-fed rats (E), high-carbohydrate, high-fat diet-fed rats treated with
whole linseed (F), high-carbohydrate, high-fat diet-fed rats treated with defatted linseed (G), and
high-carbohydrate, high-fat diet-fed rats treated with SDG (H). Goblet cells are marked as “gc”.

4. Discussion

Metabolic syndrome, including obesity, hypertension, impaired glucose tolerance, insulin
resistance, dyslipidemia, and fatty liver, is a major risk factor for cardiovascular disease and type 2
diabetes, and may be attenuated by functional foods [18]. Many trials have been conducted to
determine the responses to linseed and its components in humans with obesity, hypertension, or
diabetes [19,20]. However, few trials have compared responses to individual components of linseed
in patients with metabolic syndrome or in appropriate rat models. Rats fed a diet with increased
content of fructose, sucrose, and saturated and trans fatty acids developed signs of metabolic syndrome
in humans, especially abdominal obesity, hypertension, impaired glucose and leptin, dyslipidemia,
and diminished cardiac function [13–15]. Using this rat model of diet-induced metabolic syndrome,
we have now compared responses to whole linseed, defatted linseed flour, and SDG and included
comparison with an earlier study on ALA from linseed oil with the same rat model [14].

Our results show that addition of defatted linseed or SDG improved metabolic parameters and the
structure and function of the heart and liver, as we previously showed with linseed oil [14]. In contrast,
the only metabolic parameter to be improved by whole linseed was plasma insulin concentration,
while body weight, abdominal fat pads, and liver parameters were unchanged. Although whole
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linseed decreased systolic blood pressure, left ventricular diastolic stiffness, infiltration of inflammatory
cells, and collagen deposition in the heart, these changes were to a lesser extent than defatted linseed,
showing reduced or absent responses in cardiovascular, hepatic structure and function, adiposity, lipid,
and glucose parameters. We suggest that the reason for these reduced responses to whole linseed
is that the oral bioavailability of ALA, fiber, and SDG when presented as whole linseed is reduced,
leading to reduced responses to the whole seeds, even though the components are effective when
given individually. This could be tested in further studies by measurement of the pharmacokinetics of
linseed components such as ALA, fiber, or SDG in rats fed an obesogenic diet.

In this study with whole linseeds and their components in rats, we were unable to show decreases
in body weight or abdominal circumference with whole linseed treatment in diet-induced obese rats.
In contrast, we showed decreased total fat and abdominal fat in rats treated with defatted linseed or
SDG. We have previously shown that ALA from linseed decreased obesity in the same diet-induced
rat model of metabolic syndrome [14]. Other studies also showed decreased obesity with linseed
products: young rats fed a linseed flour intervention for the first 90 days showed higher lean mass,
lower fat mas, and a smaller adipocyte area [21] and linseed dietary fiber reduced apparent energy and
fat digestibility leading to decreased abdominal fat and body weight [22]. Linseed contains 20 to 30%
globulin-rich proteins with a high content of arginine [23,24] which has been associated with increases
in lean mass [25,26] thereby providing a possible mechanism for lean mass increase as well as fat mass
decrease [27]. In high-fat diet-fed mice, SDG decreased abdominal fat and body weight by inducing
adiponectin expression at a much higher dose of 0.5 or 1% in diet [28] and inhibiting adipogenesis at a
dose of 50 mg/kg/day [29]. Furthermore, the SDG metabolites, enterolactone and enterodiol, induced
adiponectin expression, adipogenesis, and lipid uptake in 3T3-L1 adipocytes [28,30]. We are not aware
of any studies with whole linseeds in obese rats, but freshly ground flaxseed did not change body
weight or blood pressure in non-obese WKY or SHR rats and in cyclosporine-induced hypertensive
rats [31,32].

These rodent results translate to some extent to humans. Linseed products reduced human obesity
in randomized controlled trials, shown by a meta-analysis of 45 of these trials with 2561 subjects
aged 25.6–67.0 years including 21 trials on milled or ground linseed, one on defatted linseed, 18 on
linseed oil, and five on linseed lignan but none on whole linseeds [19]. This meta-analysis showed that
supplementation of linseed products for more than 12 weeks in individuals with a body mass index
higher than 27 kg/m2 reduced body weight by an average of 0.99 kg, body mass index by an average
of 0.30 kg/m2, and waist circumference by an average of 0.80 cm [19]. These changes are relatively
small, approximating 1% of these parameters in a 1.80 m tall person weighing 88 kg to give a body
mass index of 27 kg/m2 fitting the definition of obesity with waist circumference more than 94 cm.
Differences of around 1% as in the above meta-analysis on human trials would not be statistically
significant in our group of 12 rats treated for eight weeks. In addition, data from the US National
Health and Nutrition Examination Survey 2001-10 provided epidemiological evidence that urinary
enterolactone is inversely associated with obesity in adult males [33].

Linseed products also reduced blood pressure in rodents. Both linseed oil and SDG prevented
the increase in systolic blood pressure in rats with metabolic syndrome induced by feeding with 30%
fructose, likely due to decreased oxidative stress [34]. In deoxycorticosterone acetate (DOCA)-salt
hypertensive rats, linseed lignan concentrate lowered blood pressure, and improved antioxidant status,
serum electrolytes, and lipid profiles [35]. A lignan-enriched linseed powder reduced blood pressure,
body weight, and fat accumulation, and improved lipid profiles in rats fed a high-fat and high-fructose
diet [36]. In humans with peripheral artery disease, ground linseed (30 g/day) for 12 months decreased
central systolic and diastolic blood pressure by 10 and 6 mmHg, respectively, with corresponding
changes in plasma oxylipins [37]. Meta-analysis of 15 randomized controlled trials with linseed
components on hypertension have shown reductions in both systolic and diastolic blood pressure of
3.10 and 2.62 mmHg, respectively, in a subset of trials of 12 weeks or longer, but there were no effects
with linseed oil or SDG on systolic blood pressure [20].
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Hyperlipidemia is a key component of metabolic syndrome. In rats fed a high-fat diet, a
lignan-enriched linseed powder improved the plasma lipid profile as well as decreasing body weight,
visceral fat accumulation, and blood pressure [36]. In rats fed with lard and cholic acid, treatment with
powdered linseed or defatted linseed for eight weeks did not change plasma cholesterol, low-density
lipoproteins (LDL) cholesterol, or triglyceride concentrations but decreased liver fat and cholesterol
and increased bacterial glycolytic activity in the distal intestine [38]. Intervention with linseed powder
(30 g/day for 40 days) produced small but significant decreases in body weight and decreased plasma
cholesterol, LDL, and triglyceride concentrations in 35 hyperlipidemic subjects [39]. Furthermore,
linseed may reduce plasma concentrations of the inflammatory marker, C-reactive protein, in subjects
with a body mass index (BMI) > 30 kg/m2 [40]; this meta-analysis included trials on ground linseed,
flour, oil, and ALA-enriched products, but there were no studies on whole linseeds.

The combination of ALA, dietary fiber, and lignans in linseed may be useful in preventing
and treating diabetes, especially in rodent models [41]. SDG and its enteric metabolite enterodiol
affected glucose transport and adipogenesis by regulating the transcription of adiponectin, leptin, and
peroxisome proliferator-activated receptor gamma (PPARγ) genes [28]. By altering the expression
profile of adiponectin and leptin, SDG may increase rates of fatty acid oxidation and mediate an
insulin-sensitizing effect [42]. Although these findings are consistent with the decrease in plasma
insulin and leptin observed in our study, it is not clear why glucose tolerance was only improved in
the whole linseed group.

Thus, our results are broadly consistent with both rodent and human studies on individual signs
of metabolic syndrome and individual components of linseeds. However, these literature studies do
not compare results in the range of signs in metabolic syndrome in the same subject groups or rodent
models, nor allow comparison of linseed components. Furthermore, no study has administered whole
linseeds, so the comparison between whole linseeds and components has not been previously made.

Gastrointestinal changes could play a role in the metabolic responses to ground or defatted linseed,
but studies on whole linseeds have not been reported. Linseed is a rich source of dietary fiber (35–45%)
consisting of soluble and insoluble fiber in ratios that vary between 1:4 and 2:3 [43]. Rats on a control
diet fed 10% dietary fiber from linseeds showed decreased body weight with decreased fat digestibility,
which was greater when the proportion of viscous dietary fiber was increased [22]. In obese rats fed a
high-fat diet with cholic acid, ground linseed prevented an increase in intestinal glucosidase activity
while defatted ground linseed increased mucosal disaccharidase activities; both forms decreased fat
absorption but only the defatted product decreased liver expression of PPARα, showing important
differences between defatted and whole ground linseed [38]. Fermentation of dietary fiber by colonic
microflora generates short-chain fatty acids such as acetate, propionate, and butyrate which decrease
signs of metabolic syndrome and other gastrointestinal disorders [44]. High-fermentable fiber of
milled whole linseed led to increased Enterobacteriaceae diversity in mice which was associated with
an increased body weight compared to milled defatted linseed [45]. In healthy, non-obese adult men
given 0.3 g/kg/day ground linseed for one week, enterolignan production was increased, but there
were no changes in fecal metabolome or dominant bacterial communities [46]. Thus, the responses to
defatted linseed in contrast to whole linseed could be produced by the increased bioavailable fiber
content acting on the colonic microflora and liver, and possibly on goblet cell function. Goblet cells
in the gastrointestinal tract are responsible for secretion of mucus, but the location of the goblet cells
determines whether secretion is continuous or upon stimulation to form the protective inner colonic
mucosal layer [47]. Mice fed a high-fat diet showed increased goblet cells in the duodenum [48]. Dietary
intervention with whole ground linseed increased goblet cells, mucus secretion, and concentrations of
short-chain fatty acids in healthy male mice which should be beneficial [49]. This increase could be
due to an increase in fiber [50], consistent with our results in rats fed defatted linseed. However, the
intervention with whole ground linseed worsened the damage by dextran sodium sulfate suggesting a
role for context in interventions [49], but similar studies in high-fat diet-fed rats are not available. The
different results in rats fed whole linseed, SDG, and defatted linseed suggest that these components of



Nutrients 2019, 11, 1677 13 of 16

linseed produce different responses in goblet cells in the colon, possibly due to different types of goblet
cells, requiring detailed research to define adequately.

The marked differences in responses between whole linseeds and the components of linseeds
could be due to toxic compounds present in the whole linseed, such as the cyanogenic glycosides,
leading to cyanide production by the activity of bacterial glucosidases in the large intestine [51].
However, ingestion of 30 g linseed by humans produced small and transient increases in plasma
thiocyanate concentrations, indicating a low bioavailability of the cyanide from cyanogenic glycosides
such as linustatin [52]. Thus, we suggest that a more likely explanation for the lower responses in
whole linseeds is a markedly reduced oral bioavailability of the bioactive components when whole
linseeds are given.

5. Conclusions

This study has highlighted the importance of using a single animal model to investigate the
bioactivities of individual functional foods contained in linseed. We hypothesized that whole linseeds
and the isolated components would improve cardiovascular, metabolic, and liver changes. We showed
that the responses to the whole linseeds were reduced compared to defatted linseed, SDG, and ALA. We
suggest that a markedly reduced bioavailability of these components from the whole linseeds underlies
the reduced responses. Thus, our hypothesis was substantiated by measurements of physiological
responses to the components of linseeds. However, ALA, defatted linseed, or SDG are likely to be
better therapeutic agents in metabolic syndrome than whole linseeds.
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