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Abstract: Traumatic Brain Injury (TBI) is a devastating and life-threatening medical condition that
can result in long-term physical and mental disabilities and even death. Early and accurate detec-
tion of Intracranial Hemorrhage (ICH) in TBI is crucial for analysis and treatment, as the condition
can deteriorate significantly with time. Hence, a rapid, reliable, and cost-effective computer-aided
approach that can initially capture the hematoma features is highly relevant for real-time clinical
diagnostics. In this study, the Gray Level Occurrence Matrix (GLCM), the Gray Level Run Length
Matrix (GLRLM), and Hu moments are used to generate the texture features. The best set of discrimi-
nating features are obtained using various meta-heuristic algorithms, and these optimal features are
subjected to different classifiers. The synthetic samples are generated using ADASYN to compensate
for the data imbalance. The proposed CAD system attained 95.74% accuracy, 96.93% sensitivity,
and 94.67% specificity using statistical and GLRLM features along with KNN classifier. Thus, the
developed automated system can enhance the accuracy of hematoma detection, aid clinicians in the
fast interpretation of CT images, and streamline triage workflow.

Keywords: traumatic brain injury (TBI); intracranial hematoma; computed tomography; CAD;
meta-heuristic algorithms

1. Introduction

Traumatic Brain Injury (TBI) is a neurological disorder with high rates of disability
and mortality worldwide. TBI includes both primary and secondary injuries, which can
progressively deteriorate brain function. Hence, most TBI survivors suffer from physical
and mental disabilities that require long-term support and medical attention [1–3]. TBI
can cause accumulation of blood (hemorrhage) inside the cranium leading to increased
intracranial pressure. The global annual frequency of TBI occurrence and mortality are
predicted to be 369 and 20, respectively, among 100,000 subjects. Approximately, 5–10%
of mortality is due to injuries, and 40% of the mortality can be attributed to TBI. There

Informatics 2022, 9, 4. https://doi.org/10.3390/informatics9010004 https://www.mdpi.com/journal/informatics

https://doi.org/10.3390/informatics9010004
https://doi.org/10.3390/informatics9010004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/informatics
https://www.mdpi.com
https://orcid.org/0000-0002-1124-089X
https://orcid.org/0000-0001-6970-2260
https://orcid.org/0000-0002-0293-3280
https://orcid.org/0000-0003-2689-8552
https://doi.org/10.3390/informatics9010004
https://www.mdpi.com/journal/informatics
https://www.mdpi.com/article/10.3390/informatics9010004?type=check_update&version=1


Informatics 2022, 9, 4 2 of 14

was an 8.4% increase in the age-standardized prevalence of TBI between 1990 and 2016 [4].
Therefore, early identification and diagnosis of hemorrhage is crucial for TBI severity
detection and patient management.

Computed Tomography (CT) is the gold-standard used for hematoma detection due
to its high speed, wide availability, low cost, and high sensitivity [5,6]. However, rapid
and accurate manual diagnosis of Intracranial Hemorrhage (ICH) is a tedious and labori-
ous task due to the inherent limitations present in CT grayscale images including noise,
artefacts, uneven boundaries, variations in pixel-wise intensities, and poor tissue contrast.
Existing research studies shows that the occurrence of significant misinterpretations and
discrepancies is a major problem in the detection of hematoma, especially by resident
doctors without input from expert radiologists [7,8]. Manual quantification of hematoma is
also subjected to observer variabilities and may introduce estimation errors, particularly
for large, irregular, and acute hematoma cases [9,10]. Manual inspection and estimation
is a hectic and daunting process that may generate inadvertent delays and errors in the
detection process, particularly in a large clinical set-up environment [11,12]. Therefore,
automated techniques for fast, reliable, and accurate detection of ICH using Computer
Aided Diagnosis (CAD) systems can facilitate better clinical care and patient outcome.

2. Related Work

CAD systems offer more reliable, reproducible, and accurate clinical features, which
can aid clinicians in appropriate treatment, planning, and strategic decision-making [13,14].
Computer-assisted techniques can significantly reduce human error and enable quick and
cost-effective detection and evaluation of hematoma.

Several CAD systems proposed for brain related classification work are given be-
low. The Probabilistic Neural Network (PNN) classifier combined with entropy features
has obtained a classification accuracy of 97.37% [15]. The SVM with wavelets, GLCM,
and statistical features yielded an accuracy of 80% [16]. The hierarchical classification
approach with handcrafted features have been used for multiclass labelling [17]. An auto-
mated model using shape-based features and a logistic classifier yielded an accuracy of
92% [18]. A hematoma classification technique employed the C4.5 algorithm to a set of
features extracted based on the axes of the major hyperdense areas in CT slices [19]. The
SVM-based pathological slice detection algorithm compared the texture and histogram
features extracted from both the brain hemispheres and yielded an accuracy of 90% [20].
The subarachnoid hematoma (SAH) detection model applied a Bayesian classifier with
distance features obtained from different anatomical landmarks and yielded a sensitivity of
100% [21]. An automated model extracted features pertaining to position, shape, and size
for classification on segmented blood clusters. The authors have reported a sensitivity of
98% [22]. A bleed area detection approach that used information about the location and
intensity features in CT slices reported a sensitivity of 82.5% [23]. The random classifier
with handcrafted intensity features was able to predict the voxel level ICH probability with
a DSI of 0.899 [24]. A symmetry-based detection approach was able to diagnose acute ICH
in three-dimensional CT images with an accuracy of 80.6% [25]. A hematoma detection
technique involving adaptive thresholding, case-based reasoning, and a genetic algorithm
was proposed in [26].

From the above literature, it is evident that the existing CAD systems have utilized
various features and machine learning algorithms for hematoma classification. However,
only a handful of studies include the removal of noisy and redundant features, which is an
important step for significantly improving classification performance, especially for large
and challenging heterogeneous datasets. The majority of the reported systems involve
complex engineering techniques such as image registration and skull stripping in the initial
phases of automation. These methods require specific rules and selection or adjustment
of control parameters to obtain maximum performance. Some of these methods are time
consuming, expensive, and require manual involvement at various levels. Hence, there is a
need for a fast, accurate, efficient, and fully automated CAD system for hematoma detection
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that will lead to improved patient outcome and quality of care. The main objective of this
research study is to develop a simple, rapid, and efficient CAD system for identification of
hematoma with significant and discerning sets of textural features.

3. Materials

We used the publicly available CQ500 database to conduct this study. The CQ500
dataset [27] includes CT scans of 491 subjects that were employed to construct a Convolu-
tional Neural Network (CNN)-based model for the classification of hematoma subtypes,
calvarial fractures, and midline shift in a fully automated fashion. We used a total of
1831 CT images, of which 1000 are healthy and 831 are with hematoma. The CT images
were initially converted to JPG format with a 512 × 512 dimension. A sample set of normal
and abnormal axial CT images is shown in Figure 1.
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4. Proposed Research Framework

Our novel approach can automatically classify normal and ICH images with a minimal
set of powerful features and supervised classifiers. The proposed automated classification
technique consists of four major steps. Initially, pre-processing is carried out to remove
noise and artefact present in the CT images and to extract the brain region in the image for
further processing. Secondly, various textural features are extracted from the pre-processed
images using several methods, which are detailed in Section 4.2. Thereafter, the essential
and powerful discriminating features are selected using different meta-heuristic algorithms.
Finally, the set of refined features are presented to various classifiers to predict normal
versus hematoma imagery. The outline of the proposed technique is illustrated in Figure 2.
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4.1. Preprocessing

Pre-processing is performed as a fundamental step to enhance the quality of the input
images, which aids in the subsequent stages of image analysis. Pre-processing facilitates
the removal of noise, unwanted areas in the input images (such as the skull and scalp), and
the extraction of the intracranial region of the brain in the image. Contrast Limited Adap-
tive Histogram Equalization (CLAHE) [28] is used, followed by Otsu’s thresholding [29],
in order to obtain binarized image data. The largest connected component is selected as the
skull mask, and the region of interest (ROI) is extracted by masking the enhanced images.
Sample images after pre-processing are shown in Figure 3.
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4.2. Feature Extraction

Features are unique characteristics that can help differentiate various input patterns.
Hence, the identification of discriminant features is very important in order to identify
normal versus abnormal CT imagery. In the proposed technique, various features that will
help describe the texture and intensity variations are used. The texture features in each
image are extracted using several techniques, namely, the Gray Level Co-occurrence Matrix
(GLCM) and the Gray Level Run Length Matrix (GLRLM). Features related to first-order
statistics such as kurtosis, skewness, and variance are also extracted to obtain the pixel-level
details present in the input imagery. Seven Hu’s invariant moments are also utilized for the
extraction of features.

4.2.1. Gray Level Co-Occurrence Matrix (GLCM)

The Gray Level Co-occurrence Matrix considers the spatial relationships among pairs
of pixels using co-occurrence matrices. An entry P (i, j |d, θ) in the GLCM matrix indicates
the number of occurrences of pixel intensity pairs [i, j] in the image at a distance d in the
direction θ [30,31]. Haralick et al. [30] proposed various second-order statistical features
using GLCM to characterize the texture present in an image. The computed set of GLCM
features include homogeneity, entropy, contrast, correlation, energy, angular second-order
moments, inverse difference moments, and their variants [30–32].

4.2.2. Gray Level Run Length Matrix (GLRLM)

The Gray Level Run Length Matrix characterizes textural features using the run length
of the intensity values present in the image. Run length indicates the number of occurrences
of successive pixels with the identical intensity value in a definite course of direction. Hence,
each entry P (i, j | θ) in GLRLM denotes the frequency of which the intensity value i appears
in the image with run length j [33]. The various texture features that are computed based
on GLRLM include run percentage, gray-level non-uniformity, short-run emphasis, run
length non-uniformity, long-run emphasis, and different variants [33,34].



Informatics 2022, 9, 4 5 of 14

4.2.3. Hu’s Invariant Moments

Hu proposed seven invariant moments that remain insensitive to parallel projection
and image geometrical transformation, namely, translation, scaling, and rotation [35,36].
The moment of (p + q) order for a two-dimensional function f (x, y) is given as

mpq =
∫ +∞

−∞

∫ +∞

−∞
xpyq f (x, y)dxdy (1)

where p = 0, 1, 2, . . . and q = 0, 1, 2 . . .
The central moments can be defined as [35,36]

µpq =
∫ +∞

−∞

∫ +∞

−∞
(x − x)p(y − y)q f (x, y)dxdy (2)

where x and y are the centroids of the image that can be computed as

x =
m10

m00
, y =

m01

m00

The central moments are further normalized to make them insensitive to scale, which
can be defined as

ηpq=
µpq

µ
(1+ p+q

2 )

00

(3)

4.3. Synthetic Sample Generation

Learning from imbalanced data adversely affects the performance of the classification
model. Synthetic data generation techniques can be used to balance the normal and
abnormal classes in the dataset. In this work, we used Adaptive Synthetic Sampling
(ADASYN) to generate the artificial samples of the abnormal hematoma class. ADASYN
utilizes a weighted distribution to decide the amount of artificial samples that need to be
generated, which are also difficult to learn [37]. The quantity of majority and minority class
samples is utilized to estimate the number of synthetic samples that should be generated
for each minority sample [37]. The current study included 831 hematoma images and
1000 normal images. ADASYN was applied to generate synthetic samples for different
subsets of extracted features as shown in Table 1.

Table 1. Amount of samples before and after applying ADASYN.

Feature Extraction Scheme No. of Samples
before ADASYN

No. of Samples after
ADASYN

GLRLM + statistical features 831 946
GLCM 831 831

Hu’s invariant moments 831 831
GLRLM+ statistical features + GLCM 831 831

GLRLM + statistical features + Hu’s invariant moments 831 831
GLCM + Hu’s invariant moments 831 831

GLRLM + statistical features + GLCM + Hu’s invariant moments 831 831

4.4. Feature Optimization

Feature optimization is the process of generating feature subsets from high-dimensional
datasets, which are less redundant and possess great discriminative power, thereby leading
to high classification accuracy. Traditional optimization techniques are less efficient, partic-
ularly in the case of high-dimensional datasets, as they generate one local optimal solution
as the final subset [38–40]. Meta-heuristic algorithms are applied to obtain efficient and
effective solutions while preserving the accuracy of classification [38,39]. Numerous nature-
inspired meta-heuristic algorithms are popular as they use the knowledge of previous
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iterations from the population to deliver near-optimal solutions [39,40]. In this paper, the
Bat Algorithm (BA), Grey Wolf Optimization (GWO), and Whale Optimization Algorithm
(WOA) were selected to generate the best set of features.

The Bat Algorithm uses the echolocation behavior of microbats to find the obstacles,
the type of prey, their distance, and also to hunt in complete darkness [41]. The algorithm is
simple to implement and generates near-optimal solutions rapidly. The swarm intelligence
combined with echolocation makes its more powerful and effective as compared to other
optimization algorithms [42]. The Grey Wolf Optimization (GWO) algorithm imitates the
four-level hierarchy and hunting features of grey wolves [43,44]. The optimal solution is
based on the solutions offered by alpha, beta, and delta wolves instead of one solution.
Hence, GWO significantly reduces the chance of generating sub-optimal solutions with
superior precision and speed [44]. The Whale Optimization Algorithm (WOA) mimics the
bubble-net hunting behavior of humpback whales [45,46]. The most powerful characteristic
of WOA is its ability to balance the exploration and exploitation phases in the search process.
The algorithm requires less operators for its implementation and provides high flexibility,
simplicity, and convergence speed [45,46]. A brief explanation of the three meta-heuristic
algorithms is included in the subsections below.

4.4.1. Bat Algorithm

The Bat Algorithm uses the behavior of microbats based on echolocation to detect
prey [41]. The entire group of bats is assigned with a constant frequency fmin, loudness A0,
and wavelength λ. Each bat in the population is initialized with a position xi and velocity
vi, and the bats can modify the pulse emission rate in the range of [0, 1] based on their
proximity to the target. The frequency is adjusted to generate a new solution, and the
position and velocity of each bat is updated in each iteration. The solutions proposed by all
the bats in each iteration are compared to obtain the global solution [41,47]. Each bat also
generates a local solution based on the current global solution by random flying. The pulse
emission rate and the loudness are updated in every iteration, and as each bat is nearing its
target, it will reduce its loudness and increase the rate of emitting pulses. Once the bat is
successful in detecting its prey, the loudness is reduced to zero [41,47].

4.4.2. Grey Wolf Optimization

The grey wolf optimization algorithm models the leadership and hunting character-
istics of grey wolves [43]. A four-level hierarchy is followed, which includes alpha, beta,
delta, and omega wolves, respectively. The alpha wolf may be a male or female and plays
the leading role in the pack, i.e., the decision maker for hunting, discipline, sleep, and
wake-up time. The beta wolf is the best candidate for the alpha wolf and supports the
alpha wolf in making decisions and various other activities [37,40]. The delta wolves are
superior to omega wolves, which include the elderly, caretakers, sentinels, and scouts. The
omega wolves are responsible for maintaining the hierarchical structure. The algorithm
begins with a random number of wolves in the search space, and the position of the wolf
can be updated with respect to the prey by adjusting the parameters a and C [37,40]. The
parameter a, which is initialized with 2, will be reduced to 0 at the end of all iterations so
that the wolf will be near to its prey. It is assumed that the alpha, beta, and delta wolves
have a superior assessment of the location of the prey, and the rest of the wolves have to
update their positions accordingly. The location of the alpha wolf is considered as the best
optimal solution at the end of all iterations [40,43].

4.4.3. Whale Optimization

The Whale Optimization Algorithm models the unique hunting strategy of humpback
whales, called the bubble-net feeding technique [45]. The algorithm begins with a set of n
whales, which are distributed randomly in the d-dimensional search space, and the best
solution is decided. Then, the rest of the whales update their positions based on the current
best solution. Further, each whale encircles the prey with a spiral-shaped network of
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bubbles and follows a movement along a spiral trajectory to attack the prey [45,48]. There
exists a 50% probability of choosing the encircling mechanism or following a spiral path in
each iteration [45]. Moreover, each whale can update its position with respect to a random
one, thus facilitating a global search. The best solution is obtained once all of the iterations
are completed and the termination criteria are satisfied.

4.5. Classification

Classification is the final task of categorizing input images based on extracted features
and assigning class labels to them. Supervised classifiers are initially trained on a labelled
set of data and then used to predict the class of the unknown data. In this work, we used
fine, weighted, and ensemble subspace k-Nearest Neighbor (KNN) [49]; wide and medium
Neural Network (NN) [50]; and Cubic Support Vector Machine (SVM) [50]. Various
performance metrics such as accuracy, sensitivity, and specificity were calculated based on
a 5-, 7-, and 10-fold cross-validation framework to evaluate the proposed research work.

5. Results

The non-contrast axial CT images are initially pre-processed to remove the unwanted
regions and to extract the brain tissue for further analysis. Each image is subdivided into
blocks of 128 × 28, and the features are obtained from each sub block using the various
feature extraction schemes described earlier. The different feature extraction schemes and
the total number of extracted features are given in Table 2.

Table 2. Number of features extracted using various feature extraction schemes.

Feature Extraction Scheme No. of Extracted Features

GLRLM + statistical features 224
GLCM 368

Hu’s invariant moments 112
GLRLM+ statistical features + GLCM 592

GLRLM + statistical features + Hu’s invariant moments 336
GLCM + Hu’s invariant moments 480

GLRLM + statistical features + GLCM + Hu invariant moments 704

The synthetic samples for the features obtained using each of the feature extraction
schemes are generated using ADASYN as shown in Table 1. The subsets of features are
then subjected to different meta-heuristic algorithms for the selection of optimal feature
sets. Finally, different classifiers are used to test the efficiency of optimal subset of features.
Tables 3–9 present the best performances obtained by using 5-, 7-, and 10-fold cross-
validation schemes. The proposed technique achieved an optimum performance of 95.74%
accuracy, a sensitivity of 96.93%, and a specificity of 94.67% using a combination of GLRLM
and statistical features along with the Grey Wolf Optimization technique. Table 10 shows
the best performance of each classifier in the proposed model. Figure 4 shows the boxplots
that were obtained before and after applying Grey Wolf Optimization for GLCM and Hu
moments, as well as GLRLM and statistical features, respectively. The ROC curve for
various classifiers used in the approach is shown in Figure 5. The entire proposed technique
was executed and tested in MATLAB environment with a system configuration of Core i5
7200U (2.50 GHz) with 4GB RAM.
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Table 3. Performance of various classifiers using GLRLM and statistical features.

Classifiers
Optimization

Technique Fold
Results Confusion Matrix Parameters

Accuracy Error Rate Sensitivity Specificity tn fp fn tp

Wide NN Grey Wolf Version 1 10 90.60% 9.40% 90.80% 90.40% 904 96 87 859

Fine KNN Grey Wolf Version 1 10 95.07% 4.93% 97.57% 92.70% 927 73 23 923

Weighted KNN Grey Wolf Version 1 10 92.14% 7.86% 95.77% 88.70% 887 113 40 906

Optimizable KNN Grey Wolf Version 1 7 95.74% 4.26% 96.93% 94.67% 994 56 29 917

Cubic SVM Grey Wolf Version 1 10 92.29% 7.71% 92.49% 92.10% 921 79 71 875

Table 4. Performance of various classifiers using GLCM features.

Classifiers
Optimization

Technique Fold
Results Confusion Matrix Parameters

Accuracy Error Rate Sensitivity Specificity tn fp fn tp

Wide NN Bat 10 90.11% 9.89% 89.17% 90.90% 909 91 90 741

Fine KNN Whale 10 92.30% 7.70% 91.34% 93.10% 931 69 72 759

Weighted KNN Grey Wolf Version 2 10 88.97% 11.03% 84.96% 92.30% 923 77 125 706

Optimizable KNN Whale 10 92.57% 7.43% 91.34% 93.60% 936 64 72 759

Cubic SVM Bat 10 90.88% 9.12% 88.57% 92.80% 928 72 95 736

Table 5. Performance of various classifiers using Hu’s invariant moments.

Classifiers
Optimization

Technique Fold
Results Confusion Matrix Parameters

Accuracy Error Rate Sensitivity Specificity tn fp fn tp

Wide NN Grey Wolf Version 1 10 83.23% 16.77% 80.99% 85.10% 851 149 158 673

Fine KNN Whale 10 85.69% 14.31% 83.15% 87.80% 878 122 140 691

Weighted KNN Whale 5 80.23% 19.77% 71.00% 87.90% 879 121 241 590

Optimizable KNN Whale 10 89.13% 10.87% 87.36% 90.60% 906 94 105 726

Cubic SVM Whale 10 76.84% 23.16% 59.69% 91.10% 911 89 335 496

Table 6. Performance of various classifiers using GLRLM, statistical features, and Hu’s invariant moments.

Classifiers
Optimization

Technique Fold
Results Confusion Matrix Parameters

Accuracy Error Rate Sensitivity Specificity tn fp fn tp

Wide NN Bat 10 89.46% 10.54% 87.97% 90.70% 907 93 100 731

Fine KNN Grey Wolf Version 2 10 93.06% 6.94% 91.22% 94.60% 946 54 73 758

Weighted KNN Whale 10 87.55% 12.45% 84.24% 91.00% 728 72 131 700

Optimizable KNN Grey Wolf Version 1 7 93.77% 6.23% 92.18% 95.10% 951 49 65 766

Cubic SVM Grey Wolf Version 1 7 91.26% 8.74% 88.93% 93.20% 932 68 92 739

Table 7. Performance of various classifiers using GLRLM, statistical features, and GLCM features.

Classifiers
Optimization

Technique Fold
Results Confusion Matrix Parameters

Accuracy Error Rate Sensitivity Specificity tn fp fn tp

Wide NN Grey Wolf Version 1 10 90.61% 9.39% 89.65% 91.40% 914 86 86 745

Fine KNN Whale 10 93.23% 6.77% 91.94% 94.30% 943 57 67 764

Weighted KNN Grey Wolf Version 1 10 90.39% 9.61% 85.68% 94.30% 943 57 119 712

Optimizable KNN Whale 10 93.66% 6.34% 91.46% 95.50% 955 45 71 760

Cubic SVM Grey Wolf Version 1 10 91.75% 8.25% 89.41% 93.70% 937 63 88 743
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Table 8. Performance of various classifiers using GLCM and Hu’s invariant moments.

Classifiers
Optimization

Technique Fold
Results Confusion Matrix Parameters

Accuracy Error Rate Sensitivity Specificity tn fp fn tp

Wide NN Grey Wolf Version 1 10 90.82% 9.18% 90.01% 91.50% 915 85 83 748

Fine KNN Bat 7 91.26% 8.74% 89.17% 93.00% 930 70 90 741

Weighted KNN Bat 10 89.68% 10.32% 84.48% 94.00% 940 60 129 702

Optimizable KNN Grey Wolf Version 1 7 92.63% 7.37% 91.10% 93.90% 939 61 74 757

Cubic SVM Bat 10 90.72% 9.28% 88.09% 92.90% 929 71 99 732

Table 9. Performance of various classifiers using GLRM, statistical features, GLCM, and Hu’s
invariant moments.

Classifiers.
Optimization

Technique Fold
Results Confusion Matrix Parameters

Accuracy Error Rate Sensitivity Specificity tn fp fn tp

Wide NN Grey Wolf Version 2 10 90.55% 9.45% 88.81% 92.00% 920 80 93 738

Fine KNN Bat 10 92.95% 7.05% 90.97% 94.60% 946 54 75 756

Weighted KNN Whale 10 90.01% 9.99% 85.56% 93.70% 937 63 120 711

Optimizable KNN Bat 10 93.56% 6.44% 91.82% 95.00% 950 50 68 763

Cubic SVM Whale 10 91.48% 8.52% 89.53% 93.10% 931 69 87 744

Table 10. The maximum performance of each classifier in our approach.

Classifiers Feature Extraction
Scheme

Optimization
Technique Fold

Results Confusion Matrix Parameters
Accuracy Error Rate Sensitivity Specificity tn fp fn tp

Wide NN GLCM + Hu’s
invariant moments

Grey Wolf
Version 1 10 90.82% 9.18% 90.01% 91.50% 915 85 83 748

Fine KNN GLRLM+
Statistical features

Grey Wolf
Version 1 10 95.07% 4.93% 97.57% 92.70% 927 73 23 923

Weighted KNN GLRLM+
Statistical features

Grey Wolf
Version 1 10 92.14% 7.86% 95.77% 88.70% 887 113 40 906

Optimizable KNN GLRLM+
Statistical features

Grey Wolf
Version 1 7 95.74% 4.26% 96.93% 94.67% 994 56 29 917

Cubic SVM GLRLM+
Statistical features

Grey Wolf
Version 1 10 92.29% 7.71% 92.49% 92.10% 921 79 71 875

6. Discussion

This paper presents a fully automated technique for the diagnosis of hematoma in
non-contrast CT images. The proposed research technique can clearly categorize normal
and hematoma classes with an accuracy of 95.74% using an optimizable KNN classifier.
It is observed that the combination of GLRLM and statistical features are powerful in
capturing the structural variations in the CT imagery. The proposed research model is
an initial attempt in hematoma classification using various meta-heuristic algorithms
for optimal feature selection. It is observed from Table 10 that the optimal classification
performance is achieved by using the Grey Wolf Optimization technique. Table 11 shows
the quantitative comparison of various CAD schemes for the classification of normal and
hematoma subjects using CT images. It is noted that the proposed approach handled
a larger number of images effectively using the optimized set of GLRLM and statistical
features. It is observed from Figure 4 that both sets of feature extraction schemes clearly
distinguish normal versus hematoma images using the first ranked feature. From Figure 5,
the area under the ROC curve ranges from 0.94 to 0.97, which shows that the classifiers
are highly adept in distinguishing healthy versus hematoma subjects. Another significant
characteristic of the proposed model is the use of multiple cross-validation schemes. It is
evident that the seven-fold cross-validation scheme achieved the optimal performance. The
optimizable KNN is able to distinguish normal versus pathological images with a specificity
of 94.67%. The proposed model also achieved a sensitivity of 96.93% in discerning the
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hematoma subjects. Hence, the developed fully automated model can assist attending
physicians in interpreting CT scans swiftly and accurately for effective decision making
and treatment. This, in turn, can help improve patient outcome. Figure 6 presents the
architecture for a futuristic ICH diagnosis model based on the Internet of Things (IoT)
cloud platform, wherein the remote diagnostic feedback and advice will reach the patient
swiftly through the doctor and facilitate quality patient care.
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Table 11. Performance comparison of different techniques.

Approaches CT Dataset Method Classifier Performance

Raghavendra et al. [15] 1603 Entropy-based non-linear features PNN Acc: 97.37%

Shahangian and
Pourghassem [17] 627 Modified Distance Regularized Level Set

Evolution (MDRLSE), texture and shape features Hierarchical structure Acc: 94.13%

Al-Ayyoub et al. [18] 76 Region growing Logistic Acc: 92%

Xiao et al. [19] 48
Multi-resolution thresholding+ region growing +
primary and derived features based on long and

short axes
C4.5 Acc: 0.975

Tong et al. [20] 450 LBP texture features and histogram features SVM Acc: 90%

Li et al. [21] 129 Distance features based on landmark Bayesian Sen: 100

Yuh et al. [22] 273
thresholding, spatial filtering, and cluster analysis

and classification based on location, size, and
shape of clusters

- Sen: 98

Zaki et al. [23] 720 FCM + multi-level thresholding + location and
intensity features - Sen: 82.5%

Muschelli et al. [24] 112 Intensity-based predictors Random forest classifier DSI: 0.899

Foo et al. [25] 108 Multiple thresholding and symmetry detection - Accuracy: 80.6

Zhang et al. [26] 426 Adaptive thresholding and case-based reasoning Genetic algorithm Detection rate:
94.9%

Our approach 1831 GLRLM and statistical features Optimizable KNN
Accuracy: 95.74%
Sensitivity:96.93%
Specificity:94.67%



Informatics 2022, 9, 4 12 of 14

The prominent characteristics of the proposed CAD model are as follows:

1. Achieved a classification accuracy of 95.74% in categorizing normal versus hematoma patients.
2. The features are selected using meta-heuristic algorithms, which will generate globally

optimal features to improve overall performance.
3. The system is highly robust, as the method is evaluated using 5-, 7-, and 10-fold

cross-validation schemes.
4. A relatively large dataset is used, which consists of 1831 non-axial CT images.

7. Conclusions

In this research study, a fully automated CAD system used to discern normal and
hematoma images is developed. With the aid of a fine KNN classifier, the proposed
method achieved a maximum accuracy of 95.74%, a sensitivity of 96.93%, and a specificity
of 94.67% using a combination of GLRLM and statistical features. The obtained results
show that the proposed technique is more accurate and robust, and may assist doctors
in strategic decision-making and treatment planning, particularly during critical and
emergency scenarios. The performance of the proposed technique should be validated
using larger and more diverse datasets for real-time applicability. Hence, our future work
aims to include more subjects and to perform classification of various types of hematoma.
Additionally, we would like to incorporate more features and deep CNN architectures to
design fast and powerful CAD schemes for hematoma diagnosis.
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