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ABSTRACT A computationally efficient artificial intelligence (AI) model called Extreme Learning
Machines (ELM) is adopted to analyze patterns embedded in continuous assessment to model the weighted
score (WS) and the examination (EX) score in engineering mathematics courses at an Australian regional
university. The student performance data taken over a six-year period in multiple courses ranging from the
mid- to the advanced level and a diverse course offering mode (i.e., on-campus, ONC, and online, ONL) are
modelled by ELM and further benchmarked against competing models: random forest (RF) and Volterra.
With the assessments and examination marks as key predictors of WS (leading to a grade in the mid-level
course), ELM (with respect to RF and Volterra) outperformed its counterpart models both for the ONC and
the ONL offer. This generated relative prediction error in the testing phase, of only 0.74%, compared to about
3.12% and 1.06%, respectively, while for the ONL offer, the prediction errors were only 0.51% compared to
about 3.05% and 0.70%. In modelling the student performance in advanced engineering mathematics course,
ELM registered slightly larger errors: 0.77% (vs. 22.23% and 1.87%) for ONC and 0.54% (vs. 4.08% and
1.31%) for the ONL offer. This study advocates a pioneer implementation of a robust AI methodology to
uncover relationships among student learning variables, developing teaching and learning intervention and
course health checks to address issues related to graduate outcomes, and student learning attributes in the
higher education sector.

INDEX TERMS Education decision-making, extreme learning machine, student performance modelling,
AI in higher education, engineering mathematics.

I. INTRODUCTION
Over last three decades enormous growth in modelling and
computational technologies has occurred, improving data
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analytics and computing resources to produce significant
innovations [1]. Many statistical and mathematical modelling
tools, including the autoregressive integrated moving aver-
age, linear regression and the partial and ordinary differential
equations have long been the standard to understand causal
inference and the relationships among variables. However,
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data-driven models, focusing on artificial intelligence (AI)
have recently been developed and are adopted in a wide
range of fields, e.g., education, medical sciences, healthcare,
business intelligence, engineering, climate and environmen-
tal studies [2]–[5]. Investigators in many of these fields are
constantly attempting to employ contemporary AI modelling
approaches to develop, evaluate and implement modern-day
decision systems.

Generally, AI falls in sub-category of smart algorithms
implemented either in standalone models or within an inte-
grated (hybridized) computer systems model [6]. They can
demonstrate quite efficiently a human-like systems-thinking
approach for practical decision-making processes. AI algo-
rithms typically have a self-learning ability that enables them
to capture and disseminate data patterns, synthesize infor-
mation, self-correct and impute missing data and automati-
cally perform an analysis of concealed patterns in complex
variables [7]. These skills include feature extraction and the
modelling the non-linear (and largely complex) relationships
within relatively large and inter-related datasets. AI tech-
niques are suited to the analysis of complex patterns existent
between multivariate predictors and an objective variable.
While recent studies showing their relevance in teaching and
learning [8]–[11] and recent acceleration in their applications,
the adoption of such techniques in education sector has been
rather slow. This is despite recent studies showing their rele-
vance in teaching and learning space [12], [13].

Similar to several sub-sectors in education, most uni-
versities today are under significant pressure to adopt
evidence-based approaches in developing strategic measures
to reduce failure and drop rates and improve progression
rates, with their consequential benefits to improve graduate
attributes and the quality of teaching and learning [14], [15].
On 1 January 2018, the Australian Government implemented
key performance metrics to make the funding to univer-
sities contingent on their teaching performances [16]. The
Government also requires greater transparency and report-
ing benchmarks on student experiences and demands more
accountability of universities for the students they enroll.
Accordingly, the effectiveness of operational decisions in
the education sector could then be enhanced through a
well-augmented, evidence-based practice. This would per-
haps include investigating how the historical student learn-
ing datasets can be modelled with some sort of automated
intelligent system to further support the key institutional
decision-making processes.

Until recently, universities have predominantly employed
manual reporting methods (e.g., surveys) to collect evidence
of student satisfaction and their performance outputs. A hand-
ful of universities in Australia have also developed strategies
for the effective use of data, such as the University of New
England’s Early Alert Program, to track student learning,
with the purpose of improving their retention and success
rates [17]. Many other institutions are only beginning to
consider the use of more sophisticated analytical method-
ologies to support and improve their learning and teaching

outcomes [18]. A relatively new field in evidence-based prac-
tice is the ‘learning analytics’, which involves the measure-
ment, collection, analysis and reporting of datasets about
learners and their learning contexts to enhance one’s under-
standing of these processes, and to also optimise the environ-
ments in which they occur [19].

Wheremany universities are still at the stage of considering
costly integrations linking multiple datasets, incorporation of
AI technologies as an ancillary modelling tool represents an
advanced learning analytic methodology capable of bypass-
ing the procedural and policy barriers of traditional learn-
ing analytics tools [20]. AI enables the implementation of
data-driven decisions for operational purpose to address the
challenges related to teaching and learning. When applied
by educational practitioners to the student performance data,
AI offers an objective methodology to collate and model such
information and develop intelligent management systems that
rapidly and efficiently assess student success. Such systems
aim to identify possible indicators of student failure and attri-
tion [21]. This system, where human biases are potentially
eliminated from the decisions we make by considering the
weighted risks and likelihoods, can be used to notify learning
processes to the Faculty, course examiners and students, as a
proactive forewarning tool of possible failures [22]–[24].

Measurement of student performance is expressed numer-
ically based on assessments (e.g., quiz marks) and the exami-
nation scores (EX), which are assigned a final weighted score
(WS) to generate a student’s grade. Continuous assessments
are typically adopted as ongoing indicators of learning with
the feedback in teaching activities (e.g., quizzes) providing
an early indication of the effectiveness of teaching and the
improvements that are necessary to design a responsive teach-
ing platform. The examination, in an undergraduate course,
is often allotted a large proportion of a WS, to generate a
final grade. It is therefore somewhat logical to construe that a
predictive model, via a data mining approach, incorporating
the assessments relative to the examination results or a grade,
may aid in improving the course outcomes and such data
can be utilized to design actionable insights to improve stu-
dent learning [25]. The credibility of conventional methods
to classify and grade academic performance is questionable
given the nonlinear dependence of student performance on
the assessments and the EX. That is, predictive models that
employ mathematical and statistical techniques on student
performance where the assumptions (e.g., linearity, data dis-
tribution and model inputs) are forced may not be an opti-
mal way to evaluate encapsulate human knowledge, skills
acquired through a learning process or the most desirable
learning outcomes (e.g., the grade).

Studies are adopting AI-based learning analytics to model
student performances. Gokmen et al., (2010) used a fuzzy
logic model to evaluate a laboratory course, reporting the
model’s advantages to be automation, flexibility, and a larger
number of performance evaluation options relative to a classi-
cal approach adhering to the static mathematical calculations.
Yadav and Singh proposed a fuzzy system for academic
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evaluation, reporting its flexibility and reliability, including
the suitability not only for laboratory applications, but also in
theoretical lessons, and in online and distance education [25].
In another study, authors used assessments comprised of
six components (i.e., interface module, domain knowledge,
inference engine, student module, mentor module, and ped-
agogical module) where an inference engine modelled the
students’ group classification from on-line pre-test examina-
tions before starting a practical worksheet [26]. Their model
was used as a flexible automated tool to classify learning
groups based on the objectives of subjects and real-time
performances compared to their t-scores. To study student
performances in engineering, Bhatt and Bhatt developed
a fuzzy model where practical components and results were
compared to the outputs of classical methods [27]. Hwang
and Yang used a fuzzy logic to assess student attentive-
ness, showing the model’s ability to prevent erroneous
judgments [28].

Another popular algorithm used to model student perfor-
mance is the artificial neural network (ANN) [29]. An ANN
model has the ability to handle complex data, analyze interre-
lated variables, learn nonlinear relationships between inputs
and controlled or uncontrolled targets and check for patterns
using nonlinear regressions [30]. Naik&Ragothaman, (2004)
modelled student success for a Master of Business Admin-
istration program using neural networks. Gorr, Nagin, &
Szczypula, (1994) compared ANNs to statistical models in
their ability to predict grade point averages. The study of
Naser et al., applied ANNs to model the performances
in courses for a Faculty of Engineering and Information
Technology [29]. Huang and Fang predicted academic per-
formances in engineering dynamics where four types of
mathematical models served as a basis for comparison [33].
Stevens et al., studying the performance of ANN-based
modelling included a combinational incremental ensemble
classifier to predict student performances in distance educa-
tion [34]. A suite of ANN models was adopted to predict
student performances with the data from Moodle logs [35].

Despite the widespread of ANN model in educa-
tion sector, one of its drawbacks is the need for itera-
tive tuning of hyper-parameters, its slow response based
on the gradient learning algorithm and a relatively
lower accuracy compared to some of the other modern
AI algorithms [36], [37]. Hence, the enthusiasm to explore
more advanced and reliable AI models for student’s perfor-
mance prediction is an ongoing research endeavor. Recently,
in an effort to improve the ANN model, the newer ver-
sion demoted as Extreme Learning Machines (ELM) that
has a Single Hidden Layer of Feedforward Neural Net-
work (SLFN) was proposed [38] and later, the purely ran-
domized neuronal hidden layers were also formulated in this
method [39]. Importantly, the ELM model has significant
merits, producing greater accuracy and a faster learning
speed than the ANN or the fuzzy logic model [39]. The
ELM model also proved to be easier to implement given its
randomized single hidden layers, and has thus attracted the

attention of many researchers [40], [41]. Based on reported
literature, the potential of using ELM model is yet to be
explored, especially in modelling engineering mathematics
student performances or its general application in the higher
education sector.

In this paper, the skill of AI-based models, compared to
the conventional modelling approaches, was investigated by
developing a novel ELMmethod drawing upon the indicators
of teaching and learning success and also exploring for the
first time, its efficacy in predicting student performances
in engineering mathematics courses. The objectives of the
present study are as follows.

i. To construct an ELM model trained with multivariate
predictors (e.g., continuous assessments) from mid-
to advanced-mathematics courses in an Australian
regional university, and assess its efficacy in the predic-
tion of aWS versus teaching and learning indicators;

ii. To test the sensitivity of using continuous assessment
marks on the relative contributions to the EX and
the WS;

iii. To evaluate the model’s accuracy versus the competing
models, e.g., random forest and Volterra models.

To satisfy these objectives, student performance records span-
ning over six years (2013-2018) for a first-year engineering
mathematics course and over five-years (2014-2018) for a
second-year engineering mathematics course were drawn.
To ensure credibility of all modelling data adopted to develop
the proposed ELM model, the results were acquired from the
Official Examiner Return repositories, stored in Faculty of
Health, Engineering and Sciences under School of Sciences
examination results, at University of Southern Queensland
(USQ), Australia.

II. MATERIALS AND MODELS
In this section, the context of student performance data, the
study, including the approach used in model design and the
performance evaluation criteria are presented.

A. DATA AND STUDY CONTEXT
To design the proposed artificial intelligence models
(i.e., ELM, RF and Volterra) for student performance predic-
tion, we take the specific case of engineering mathematics
student performance in Australian regional university. The
present study employs independently analyzed and mod-
elled data from both a first and second year engineering
mathematics course, to provide a comparative platform for
ELMmodelling methodology. Data comprised of continuous
internal assessments (i.e., quizzes & assignments), the final
examination score (EX) and the weighted score (WS) (i.e.,
overall mark out of 100% necessary to attain a passing grade).
These were for ENM1600 Engineering Mathematics and
ENM2600 Advanced Engineering Mathematics the courses
taught and administered by School of Sciences under Faculty
of Health, Engineering and Science at University of Southern
Queensland. Both courses are important service components

VOLUME 8, 2020 136699



R. C. Deo et al.: Modern Artificial Intelligence Model Development for Undergraduate Student Performance Prediction

of Bachelor of Engineering as well as a number of other
programs, such as the Master of Science, Graduate Diploma
and Graduate Certificate coursework programs majoring in
mathematics, data science, statistics, and computer science.
ENM1600 (but not ENM2600) is also a core course in sur-
veying programs at undergraduate level, providing a diverse
range of data where the prescribed ELM model was devel-
oped and tested for its ability to model examination marks
and weighted scores.

Considering that USQ is a global leader in distance and
online education and operates autonomously as an on-campus
and a face to face teaching and research institution, the
engineering mathematics student performance data from
two different modes of course offering, ONL (online) and
ONC (on-campus), were considered. The relevant data for
the period 2013–2018 for ENM1600 and 2014-2018 for
ENM2600, representing the total available data for these
courses given their respective initial offers in 2013 and 2014,
was acquired. Both ENM1600 and ENM2600 were
developed as part of a major update and revision of previ-
ous mathematics syllabus to meet the program accreditation
requirements under Engineers Australia. Therefore, the inclu-
sion of ENM1600 and ENM2600 data in developing and
evaluating ELM model is expected to make a significant
contribution to future decision-making in these, and other
courses and programs.

Prior to gaining access to, or processing student
performance data, the relevant Human Ethics approval
(#H18REA236) was promulgated, in strict accordance with
requirements of Australian Code for Responsible Conduct of
Research, 2018, and National Statement on Ethical Conduct
in Human Research, 2007. Ethical application required dis-
closure of all relevant details about the proposed project to
Ethics Committee and the perceived benefits and risk. As the
project was purely quantitative and data-driven models did
not draw upon any of student’s personal record (i.e., name,
gender, socio-economic status) an expedited ethical approval
marked this project as a ‘low risk’ teaching and learning
investigation. Following this ethical approval, all student
performance data were accessed from Examiner Returns,
which are the official results provided to the Faculty after
moderation process to facilitate grade release to students.
In accordance with ethical standards, any form of student
attributes such as names, gender and other personal attribute
or identifiers were removed prior to data processing.

Since AI models are purely data-driven, they can face chal-
lenges with respect to the use of fragmented (or missing) data
when used as an input for any predictive model. Accordingly,
a preliminary quality checking procedure was undertaken.
Any incomplete record, where for a given row of data a
particular continuous assessment item or a WS was missing,
was deleted entirely. Similarly, if a student’s mark for at least
one assessment piece (e.g., Assignment 1) was missing the
data for that student was considered incomplete, and thus dis-
carded. Despite loss of some data from the original records,
that may affect the ability of any model to predict a failing

grade, this procedure ensured that the biases were reduced by
using the records where every internal assessment data point
(per student) used to construct a model had a corresponding
WS value.
In Table 1 we report basic statistics of first and sec-

ond year engineering mathematics data used to construct
AI models. It is important to note that the two levels of
courses have a different number of continuous assessments
(i.e., ENM1600 with three Assignments and two Quizzes;
ENM2600 with only two Assignments and two Quizzes).

B. DESCRIPTION OF THE MODELING FRAMEWORK
In this sub-section, theoretical details of AImodels developed
for prediction of student performance are described.

1) THE OBJECTIVE MODEL: EXTREME LEARNING MACHINES
The Extreme Learning Machines (ELM) model consists of a
single hidden layer feed-forward neural network. It has three
distinct phases: input, where predictors and target variable are
incorporated into the algorithm, learning, where data features
are extracted and modelled nonlinearly to generate weights
and biases, and output, where modelled data are transformed
to their corresponding real values [41], [42]. In the learn-
ing phase, ELM adopts a least square approach, relying on
weights and biases, to obtain a closed form of solution to the
problem of interest.

One remarkable feature of ELM compared with the other
AI models such as fuzzy logic, Support Vector Machines
and ANN, is its ability to randomly generate weights and
biases for a pre-defined dataset and a sufficiently large neural
network [40]. Through its generally simplified modelling
framework, ELMcan lead to a highly accurate solutionwithin
a relatively short model execution time, albeit, also producing
greater accuracy [41]. In hidden layer, a matrix pseudoinverse
(i.e., the Moore-Penrose inverse) is employed to generate the
objective solution, avoiding the iterative training process as
with the case of ANNs. This forces the solution to collapse to
a local, rather than a global minimum [38]. Consistent with
the universal approximation theory, this enables the ELM
model to converge quickly, and exhibit a superior general-
ization. The modelling system also resolves issues of local
minima and has a negligible over-fitting problem as separate
training, validation, and testing datasets are employed [39].

The present study capitalizes on the relatively successful
implementation of ELM model in science, arts and eco-
nomics [43] and argues this model as a potentially new
contribution for implementation in higher education sector.
The ELM model is designed to train a multi-dimensional
dataset with N pairs of training data (Xi, Yi) with Xi
(i.e., predictors = continuous internal assessment marks,
including Assignments marks and Quiz scores) of dimension
D (i.e., the number of predictors) and the 1-dimensional Yi
(i.e., the target variable denoted as the EX or WS).

Figure 1 shows a basic topological structure of ELM.
Mathematically, ELM is written as follows.
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TABLE 1. Statistics of first and second year engineering mathematics course data (2013–2018). The predictors (model’s input) variables are:
A1 Assignment 1, A2 Assignment 2, A3 Assignment 3, Q1 Quiz 1, Q2 Quiz 2, while the target (weighted score, WS) represents the overall
percentage score used to determine course grade attained at the University of Southern Queensland.

For i = 1, 2 . . .N , where N represents the student perfor-
mance data the single feedforward hidden layer designated
with L hidden neurons, �L (x), can be expressed as [39]:

�L(x) =
∑L

i=1
hi(x).ωi (1)

In Eq. (1), ω = [ω1, ω2 . . . ωL]T is a weighted vector (or
matrix) connecting the hidden layer with the output layer,
hi(x) is the hidden neurons representing randomized hidden
layer features based on how well target (i.e., Grade) is related
(linearly or nonlinearly) to each predictor (e.g., Assignment),
and h(xi) is the ith hidden neuron.
The feature space, that encloses the hidden neurons hi(x),

can be defined as:

hi (x) = 8(ai, bi,X) and ai ∈ Rd , bi ∈ R (2)

The nonlinear piecewise-continuous activation function hi (x)
is defined using neuron parameters (a, b) that satisfy universal
approximation theorem: 8(ai, bi,X). In the present paper,
an optimal ELM model was designed by evaluating a set of
popular hidden layer activation functions (as feature estima-
tion strategy) to fit the predictors to target variable [39]. These
functions are as follows:

Tangent Sigmoid:

8(a, b,X) =
2

1+ exp (−2 (−aX + b))
(3)

Logarithmic Sigmoid:

8(a, b,X) =
2

1+ exp (−aX + b)
(4)

Hard Limit:

8(a, b,X) = 1 if aX+ b > 0 (5)

Triangular Basis:

8(a, b,X) = 1− | − aX + b|

if −1 ≤ −aX+ b ≤ 1, or 0 otherwise (6)

Radial Basis:

8(a, b,X) = exp
(
− (−aX + b)2

)
(7)

In feature space (i.e., the hidden layer), the ELM model
approximation error is minimized when solving for the input
weights that connect the hidden layer, using a least square
method [39]:

minimize
ω∈RL×M

‖Hω − T‖2 (8)
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FIGURE 1. Schematic view of an extreme learning machine (ELM) model designed to predict weighted scores using continuous internal
assessment and exam scores.

In Eq. (8) || || is the Frobenius (Euclidean) norm deduced as
the sum square of absolute squares of the elements therein
and H is the hidden layer output matrix [39]:

H =

 q (x1)
...

q (xM )

 =
 q1 (a1x1 + b) · · · qL (aLx1 + bL)

...

q1 (aMxM + b) · · · qL (aLxM + bL)


(9)

The term T is a target matrix (i.e., predicted EX orWS) in the
training dataset.

T =

 t
T
1
...

tTN

 =
 t11 · · · t1m

...

qN1 · · · tNm

 (10)

By solving a system of linear equations the ELM model
generates an optimal solution for the output space [39]:

ω = H+T (11)

where H+ is the matrix pseudoinverse or the Moore-Penrose
generalized inverse function (+).

For details on the ELM model and its variants, readers can
consult a recent review [39]. It is worth to mention, the input
weights, output weights and bias of hidden neurons for the
EX and WS, were tabulated in the Appendix A.

2) BASELINE MODEL 1: RANDOM FOREST
To evaluate the relative utility and statistical accuracy of
ELM as a predictive modelling tool for student performance,
a random forest (RF) algorithm that has the ability to generate
accurate predictionswithminimal overfitting, was developed.

RF is a novel learning algorithm that relies on model aggre-
gation principles [44], and is fundamentally different from
a neuronal-based ELM system. It combines binary decision
trees built with bootstrapped training samples from learning
sample D, where a subset of explanatory variable X is chosen
randomly at each node of a designated tree.

In an RF-based predictive model, the aggregation of model
trees, typically exceeding 2,000, is facilitatedwhere a training
matrix is generated from bootstrapped samples on two thirds
of the overall sample whereas one third of the training sample
is left for validation purposes (or the ‘out-of-bag’ predic-
tions). The branching of a random forest (or its trees) is per-
formed on a randomized predictive framework with a mean
outcome represented by an aggregated predictive model [45].
Since RF uses out of bag training samples to determine the
model’s error and is associated with independent observa-
tions to grow the decision tree, no cross-validation data are
required [46]. The key steps are as follows:

i. Suppose N is a multi-dimensional training matrix with
continuous assessments, (predictors) and aWS (target).
To grow trees in random forest, a sample of these
training cases is drawn with replacement.

ii. Depending on ζ predictors, RF considers n < ζ

samples, which are drawn with replacement out of
the ζ dataset and the best number of splits are
adopted, fixing n as a constant as the forest evolves in
size.

iii. The trees are split with oblique hyperplanes for better
accuracy to enable them to grow without suffering
from overtraining (by trees randomly restricted to be
sensitive to only selected feature dimensions).
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iv. The new (test) data are independently predicted by
aggregating predictions of all trees where a mean is
determined for a regression problem.

In RF the ‘out of bag estimate’ of generalization error is
considerably low as long as a relatively large number of
decision trees are grown [47].

3) BASELINE MODEL 2: SECOND ORDER VOLTERRA
The mathematical rule-based Volterra model, is a higher
order extension of linear impulse response model built on
Taylor series expansion for nonlinear, autonomous and causal
systems [48]. If X (i) is a target variable (e.g., WS) where
i represents the label of student performance data, the second
order Volterra model is expressed as [49]:

Z (i)=
∫ τ=i

τ=0
k1(τ1)X (τ − τ1)dτ1

+

∫ τ2=i

τ2=0

∫ τ1=i

τ1=0
k2(τ1τ2)X (τ−τ1)X (τ−τ2)dτ1dτ2 (12)

where, k1 (τ1) and k2 (τ1, τ2) are the Volterra kernel functions
that can be condensed into the form:

Z (t) = K1[x(i)]+ K2[x(i)] (13)

where K1 [x (i)] and K2 [x (i)] are the 1st and 2nd order
Volterra operators, respectively.

In this paper, the prediction of WS is driven by the multi-
ple predictors drawn from internal assessment data. Hence,
Volterra series expansion for multiple inputs vs. a single
output (MISO approach) is written as:

Z (i) =
∑D

n=1

∑E

δ=1
k (n)1 δxn(t − δ)

+

D∑
n=1

E∑
κ=1

E∑
δ=1

k (n)2s (κ, δ)xn(t − κ)xn(t − δ)

+

∑D

n=1

∑n1−1

n2=1

∑E

κ=1

∑E

δ=1
k (n1.n2)2× (κ, δ)

× xn1(t − κ)xn2(t − δ) (14)

where, D is the number of predictor (input) variables, E is
the memory length of each significant lagged input, k(n)1 are
the first order kernels; k(n)2s is the second order self kernel and
k(n1,n2)2× is the second order cross-kernel.

In final step, the prediction of Volterra kernel is achieved
by an orthogonal least squares (OLS) method that can handle
collinearity amongst predictors [50], [51].

III. DEVELOPMENT OF THE MODELING FRAMEWORK
A. INPUT VARIABLE SENSITIVITY ASSESSMENT AND
PREDICTIVE MODEL DEVELOPMENT
MATLAB (2017b) software running on Intel(R) Core
i7-4770 CPU 3.4 GHz, Windows 10 platform was adopted in
modelling student performance datasets. To predict WS and
EX using an appropriate combination of input variables for
engineering mathematics courses, the ELM model incorpo-
rated 6 predictors, X = [Q1, A3, A2, Q2, A1, EX] for the case
of ENM1600, and 5 predictor variables, X = [Q2, Q1, A2,

A1, EX] for the case of ENM2600. Note that for the latter
course, it comprised of only two assignments and two quizzes
as its internal assessment dataset. In each case, the target
variable was set to eitherWS or EX, and the performance was
compared against RF and Volterra designed with the same
predictors.
As a pivotal part of ELM model design the relation-

ship between all possible predictors (i.e., continuous inter-
nal assessment) vs WS was explored with cross-correlation
between Xi and Yi in the training data where Pearson corre-
lation coefficient (rcross) was recorded to measure the simi-
larity and covariance. A bar graph of rcross of each variable
organized in order of their magnitudes on the principal axis
(Figure 2) shows interesting patterns in terms of the relative
strength of each internal assessment used to predictWS. This
further indicates a clear distinction between two courses,
ENM1600 and ENM2600. While, as expected, EX remains
the most significant contributor towards WS, the importance
of each variable in terms of its correlation with WS follows
a different order for ENM2600. For instance, considering
the ONC offer, the importance of Q1 and Q2 appears to be
the weakest for ENM2600 (with rcross ≈ 0.300 & 0.205,
respectively) whereas for ENM1600 the role of Q2 appears
quite significant (rcross ≈ 0.557) and that for Q1 is 0.495,
although they are not particularly high. In fact, the correlation
between continuous internal assessments and WS seems to
be more evenly distributed with rcross between 0.495–0.569,
and 0.547–0.613, whereas for ENM2600, rcross lies between
0.205–0.547 and 0.382–0.604 for ONC and ONL offers,
respectively, which again, remains much lower.
Based on the above, the most appropriate order of input

variables was identified for ELM (and its counterpart) mod-
els, and input variables were added successively, to the pre-
dictor matrix from the lowest to the highest rcross (Figure 2).
This resulted in the ELM model’s input orders as follows.
â Q1, A3, A2, Q2, A1, EX to predictWS for ONC, and
â A2, A1, Q1, A3, Q2, EX to predict WS for ONL for

ENM1600.
â Q2, Q1, A2, A1, EX to predictWS for ONC, and
â Q1,Q2,A2,A1,EX to predictWS for ONL, for ENM2600
For more details, readers should consult Table 3(a–c).
While no specific rule exists for dividing the data for

calibration and validation of an AI model, the majority of
data are normally employed in the former with a reasonable
amount of remainder data employed to validate and test the
final results [52]. Accordingly, after data were normalized
to be bounded by [0, 1], they were partitioned into training
(60%), validation (20%) and testing (20%) sets with n = 486,
162, 162 (ONC) and n = 767, 256, 255 (ONL) for ENM1600,
and n = 455, 149, 149 (ONC) and n = 429, 143, 143 (ONL)
for ENM2600 (Table 2). Notably, the training data provided
key features from the continuous internal assessments vs. the
target variable; the validation set ensured that the optimal
model was selected, and the testing data provided the inde-
pendent data of training and validation to evaluate the selected
model.
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FIGURE 2. Cross correlation analysis of continuous internal assessment
as a predictor variable for a weighted score (WS) in ENM1600 Engineering
Mathematics and ENM2600 Advanced Engineering Mathematics
on-campus (ONC) and the online course offers (ONL). Note that predictor
variables are presented in order of their importance in respect to
predicting WS. Notations: EX = final exam mark, A1 = Assignment 1,
A2 = Assignment 2, A3 = Assignment 3, Q1 = Quiz 1, Q2 = Quiz 2.

In accordance with theoretical framework (Section 2.1) a
three-layer neuronal network was constructed to define an
input layer (where continuous internal assessment data were
fed), a hidden layer (where model-extracted input features
regressed against the WS or the EX for data mining) and the
output layer (where the predicted WS or EX was generated).
In the first step the ELMmodel was assigned hidden neurons
following a rule 1 to n + 1 (increments of 1; n = size of
predictor data) with cross-validation optimisations used to
deduce the optimal number of hidden neurons. To ensure
optimal feature weights to be generated from predictor data,
5 different activation functions (Eq. 3–7) were tested. The
objective criterion: mean square error (MSE) was monitored
in each trial and each neuronal architecture was evaluated on
a validation set (20% of the entire data). After the optimal
number of hidden neurons were determined for each input
combination (that was not surprisingly unique for every pre-
dictor variable), the ELM model was executed 1,000 times
to generate an optimal neuronal layer, predictions with the
smallest MSE generated for the validation set, and the final
model runs on independent test set.

Table 3(a) displays the model’s design parameters includ-
ing the training and the validation errors attained by the opti-
mal ELM model. To explore the credibility of the objective
model (i.e., ELMpredictions), an RFmodel executedwith the
same inputs and target data was designed, where an ensem-
ble decision tree was developed to regress the exploratory
(i.e., predictor) and the response (target) relationships.
A sufficiently large number of (T = 800) trees, with leaf
size 5 and Fboot set to 1 were used, out-of-bag (OOB)
permuted change in error (EDD) was monitored for each
predictor regressed against target, and the model with the
lowest error was selected. An ensemble result was recorded
for the model applied in the testing phase. As a comparative
tool a second order Volterra model was also constructed using
orthogonal least squares approach. Table 3 (b–c) shows the
optimal RF and the Volterra model’s training and validation
parameters.

B. MODEL PERFORMANCE CRITERIA
We adopted an appropriate combination of visual and
descriptive statistics (i.e., observed & predicted test data) to
cross-check the discrepancies in terms of minimum, maxi-
mum, mean, variance, skewness and kurtosis, as well as the
standardized performance metrics, were employed to com-
prehensively evaluate the credibility of ELM for the pre-
diction of WS and EX in engineering mathematics courses.
In this study we adopt metrics for the AI model evaluation
that are recommended by the American Society for Civil
Engineers [53], namely: the mean absolute error (MAE),
mean absolute percentage error (MAPE; %), rootmean square
error (RMSE), relative root mean square error (RRMSE, %),
correlation coefficient (r), Legate & McCabe’s Index (LM),
Nash Sutcliffe’s Coefficient (NS), Willmott’s Index (d), and
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TABLE 2. Details of data used in designing artificial intelligence models for two engineering mathematics courses and their modes of offer at the
University of Southern Queensland.

the relative prediction error (%), given mathematically as fol-
lows [54], [55], (15)–(22), as shown at the bottom of the page,
whereWSObs andWSPred were the observed and the predicted
ith value of WS; WSObs and WSPred were the observed and
forecasted mean WS in testing phase; and N was the number
of datum points in the test set. Note that alternatively, theWS
would revert to the EX (as a target) when examination scores
were predicted using continuous internal assessments data as
the predictor variable(s).

IV. MODELING RESULTS
In this section the results generated from AI models
(i.e., ELM & RF) and the second order Volterra model
(a mathematical-based nonlinear extension of a lin-
ear convolution model) designed to predict engineering
mathematics student performances at USQ, an Australian

regional university, are appraised. In all predictive models,
the official data from Examiner Returns for on-campus
and online courses in ENM1600 and ENM2600, are mod-
elled [56], [57]. In particular, the results are used to
ascertain whether the optimized ELM model was able to
accomplish an acceptable level of accuracy in predicting
the WS and the EX, both of which are the key measures
used to determine an overall passing grade and the grade
point average (GPA) in the program of study. For effective
feature extraction process drawn on historical student per-
formance data, a total of five years (ENM2600) and six
years (ENM1600), spanning back to a period when these
courses were first introduced, were considered in terms of
ELM model’s training, model selection (validation), and
final testing phases, performed through a rigorous approach
(Section 3.2).

MAE =
1
N

∑N

i=1

∣∣(WSpred,i −WSObs,i)∣∣ (15)

MAPE =
1
N

∑N

i=1

∣∣∣∣∣
(
WSpred,i −WSObs,i

)
WSObs,i

∣∣∣∣∣× 100 (16)

RMSE =

√
1
N

∑N

i=1

(
WSpred,i −WSObs,i

)2 (17)

RRMSE =

√
1
N

∑N
i=1

(
WSpred,i −WSObs,i

)2
1
N

∑N
i=1

(
WSObs,i

) × 100 (18)

r =

 ∑N
i=1

(
WSpred,i −WSObs,i

) (
WSpred,i −WSObs,i

)√∑N
i=1

(
WSpred,i −WSObs,i

)2√∑N
i=1

(
WSpred,i −WSObs,i

)2
 (19)

LM = 1−

[∑N
i=1 |WSObs,i −WSpred,i|∑N
i=1 |WSObs,i −WSObs,i|

]
, 0 ≤ LM ≤ 1 (20)

NS = 1−

[∑N
i=1

(
WSObs,i −WSpred,i

)2∑N
i=1

(
WSObs,i −WSObs,i

)2
]
, −∞ ≤ NS ≤ 1 (21)

d = 1−

[ ∑N
i=1

(
WSpred,i −WSObs,i

)2∑N
i=1

(∣∣WSpred,i −WSObs,i∣∣+ ∣∣WSObs,i −WSpred,i∣∣)2
]
, 0 ≤ d ≤ 1 (22)
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TABLE 3. (a) The optimal training parameters of extreme learning machine (ELM) model designed to predict the weighted scores (WS) and the exam
scores (EX). Acronyms for model inputs are as per Table 1, and the input order was determined by cross correlation analysis of each predictor variable
against WS.
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TABLE 3. (Continued.) (a) The optimal training parameters of extreme learning machine (ELM) model designed to predict the weighted scores (WS) and
the exam scores (EX). Acronyms for model inputs are as per Table 1, and the input order was determined by cross correlation analysis of each predictor
variable against WS.

Using performance metrics in Table 4 the three tested
models’ accuracies in predicting WS using single inter-
nal assessments, including Quiz 1 (Q1), Quiz 2 (Q2),
Assignment 1 (A1), Assignment 2 (A2), or alternatively,
Assignment 3 (A3) data as the predictor variables were
assessed. Except for ENM1600 for ONC (that had used A1
or Q1 as the predictors), the metrics point out a better predic-
tive capacity of the ELM than either the RF or the Volterra
model when single input variables were used. For ENM1600
ONC-based model that used A1 to predict the WS, the Nash-
Sutcliffe and the Legates &McCabe’s Index were the highest
for the case of ELM (i.e., 0.361 & 0.212, respectively) com-
pared to the RF and the Volterra model, although the r-values,
RMSE, and MAE indicated the RF to be the best model used
to predictWS using a single predictor variable.
When single predictor variable based models for

ENM1600, ONL were considered, ELM consistently outper-
formed the RF and the Volterra model, yielding the highest
r values between the predicted and observed WS values
in the testing phase, the smallest RMSE, MAE, and their
relative percentage errors, as well as the largest Willmott’s,
Nash-Sutcliffe and Legate & McCabe’s indices. Interesting
patterns emerge when the model accuracies utilizing the Quiz
and Assignment (as the model’s predictors) were examined,
where among the Quizzes, Q1 led to a more accurate ELM
model compared to Q2, but among the Assignments, A3
generated a more accurate model relative to A1 as a single
predictor variable.

The internal assessment Q1, assigned to the students prior
to Q2 during the teaching semester seemed to provide a
greater weight towards the model development whereas A3,

the last internal assessment prior to the examination period
provided a greater weight towards modelling the WS relative
to A1 or A2. While the exact reason for this not clear yet, this
does indicate that an ELM model for student performance
prediction is more likely to be influenced by Q1 and A3 than
other internal assessment pieces (i.e., Q2, A1, A2). In terms
of the overall contributory influence of Assignments and
Quizzes in predicting theWS for ENM1600ONL, the greatest
contribution to the ELM model came from Q1 (with LM ≈
0.231) and the smallest contribution from A1 (LM ≈ 0.174),
while EX remains the most significant contributor to predict
WS (LM ≈ 0.770 and relative RMSE ≈ 5.915%). However,
comparing the online and on-campus offers of engineering
mathematics courses, ELM model registered a better per-
formance metric for ENM1600 ONL than ENM1600 ONC
offer (i.e., LM ≈ 0.770 vs. 0.732; relative RRMSE ≈
5.915% vs. 8.51%).

Comparing student performance predictions for advanced
engineering mathematics, significant differences among the
models trained to predict the student performance using sin-
gle predictor variables exemplify their individual contribu-
tory influence (Table 5). With respect to the influence of
Quizzes on prediction of WS, Q1 was observed to be a much
better predictor of student performance for ENM2600 ONC,
whereas Q2 was a better predictor for its ONL equivalent
offer. That is, for ENM2600 ONC, the ELM model gener-
ated an RRMSE of 27.79% vs. 28.68% for a model trained
with Q1 vs. Q2, respectively, whereas for ENM2600 ONL,
the corresponding RRMSE values were 24.73% vs. 24.11%,
respectively. These also concurred with other performance
metrics such as LM, NS, and d . In terms of the contributory
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TABLE 4. Influence of each predictor (i.e. continuous assessment) incorporated to predict weighted score (WS) by ELM vs. RF and Volterra models in
ENM1600 Engineering Mathematics in the testing phase. The optimal model is red/boldfaced. [A1 = assignment 1; A2 = assignment 2; Q1 = Quiz 1;
Q2 = Quiz 2; EX = exam score, r = correlation coefficient, RMSE root mean square error, MAE mean absolute error, d Willmott’s Index, NS Nash-Sutcliffe’s
coefficient, LM Legate & McCabe’s Index].
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TABLE 5. Influence of each predictor (i.e. continuous assessment) incorporated to predict weighted score (WS) by ELM vs. RF and Volterra models in
ENM2600 Advanced Engineering Mathematics in the testing phase. The optimal model is blue/boldfaced. [A1 = assignment 1; A2 = assignment 2;
Q1 = Quiz 1; Q2 = Quiz 2; EX = exam score, r = correlation coefficient, RMSE root mean square error, MAE mean absolute error,
d Willmott’s Index, NS Nash-Sutcliffe’s coefficient, LM Legate & McCabe’s Index].

VOLUME 8, 2020 136709



R. C. Deo et al.: Modern Artificial Intelligence Model Development for Undergraduate Student Performance Prediction

FIGURE 3. Scatterplots of the predicted vs. the observed weighted score (WS) generated by ELM model in the testing phase (with all predictor variables:
Q1, Q2, A1, A2, A3 and the exam score) relative to the RF and Volterra models for ENM1600 Engineering Mathematics course. Least square linear
regression line with the coefficient of determination (R2) and sum of square errors (SSE) is also included in each sub-panel.

influence of twoAssignments inmodellingWS, similar trends
were evident where A1 was the better predictor for ONC, but
A2 was the better predictor for ONL (LM≈ 0.197 vs. 0.141 for
ONC & 0.134 vs. 0.147 for ONL).

In spite of the differences for different offers of the same
course, for example, ONC & ONL, for both versions of
the course the final examination remained the best predic-
tor of weighted score, although the accuracy of ELM was
superior for ENM2600 ONC relative to ENM2600 ONL.
This concurred with the results obtained for ENM1600,
where the predictive model for online offer of the course
was more accurate. Importantly, the ELM model’s accu-
racy in predicting WS (with examination results as a pre-
dictor variable) was greater for the lower level ENM1600
(5.915% ≤ RRMSE ≤ 8.910%) than for the higher level
course ENM2600 (8.72 ≤ RRMSE ≤ 10.11%) when exam-
ination scores are incorporated into the model for prediction
of the weighted score. Clearly, this ascertains a fundamen-
tal difference between the two level of courses in terms of
the artificial intelligence models’ ability to predict a final
grade.

For each case, the influence of multivariate predictors
incorporated in the optimal ELM model is shown using
test phase accuracy statistics (Tables 6 and 7). Equivalent

statistics for the RF and Volterra model are also presented.
The order of addition of model inputs was based on lowest
to highest cross-correlation (and covariance) between the
respective predictors and target variable. This approach was
implemented to enable the study any improvements in the
model’s ability to generate WS, as the interactive influence
of each predictor, from the weakest to the strongest, was
considered.

With successive addition of internal assessment input data,
the ELM model continued to improve for both engineer-
ing mathematics courses and for both offerings. However,
the role of continuous internal assessments on the prediction
ofWS remained much greater for ENM1600 than ENM2600,
i.e., with Assignments and Quizzes as predictors (excluding
the final examination). The ELM models developed for the
on-campus and online versions of ENM1600 attained LM
values of 0.295 and 0.397, respectively, whereas the same
model attained LM values of 0.206 and 0.197, respectively,
for ENM2600. This result was producedwhen the final exam-
ination mark was excluded as a predictor variable, generating
an RRMSE of about 19.51% and 14.59% for ENM1600 ONC
& ONL, respectively compared to 22.88% and 20.68%
for ENM2600 ONC & ONL, respectively. This indicated
that the final examination mark was expected to play a
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FIGURE 4. Scatterplots of the predicted vs. the observed weighted score (WS) generated by ELM model in the testing phase (with all predictor variables:
Q1, Q2, A1, A2, and the exam score) relative to the RF and Volterra models for ENM2600 Advanced Engineering Mathematics course.. Least square linear
regression line with the coefficient of determination (R2) and sum of square errors (SSE) is also included in each sub-panel.

more significant role in modelling the WS for the higher-
level (i.e., ENM2600) compared to the lower level course
(i.e., ENM1600).

Similar deductions were corroborated when other per-
formance measures (e.g., r) are checked, indicating the
challenge faced by ELM in predicting student perfor-
mance in advanced engineering mathematics data. Addi-
tionally, it is evident that for both courses investigated
(including on-campus and online offers), the quality of per-
formance of multivariate-based ELM model far exceeds that
of either the RF or the Volterra model.

The scatterplots produced in the testing phase that rep-
resented the predicted versus the observed WS (i.e., WSpred
vs. WSObs), including the sum of square errors (SSE), the
coefficient of determination (R2, a measure of estimated
covariance) and a 1:1 line of best fit, were developed for
all three predictive models. These drew upon all possi-
ble predictor variables, i.e., Q1, Q2, A1, A2, A3 includ-
ing the examination score (for ENM1600; Figure 3), and
Q1, Q2, A1, A2 and the examination score (for ENM2600;
Figure 4). For both engineering mathematics courses and
also for both modes of offer, the ELM and Volterra models

showed the greatest accuracy in predicting WS (Tables 6–7).
However, the ELM model showed lower SSE values for the
ENM1600 ONC and ENM1600 ONL courses (33.33% and
35.57%, respectively), than did the Volterra model (63.16%
and 74.89%, respectively). Similarly, for the ENM2600 ONC
and ENM2600 ONL courses the SSE values for ELM
(33.08% and 17.08%, respectively) showed better perfor-
mance than for the Volterra model (193.99% and 96.96%,
respectively). For both engineering mathematics courses and
modes of the course offer, RF model showed a much greater
degree of scatter betweenWSpred andWSObs data in the testing
phase that did the ELM or the Volterra model.

To explore the role of continuous assessments and the
manner in which they lead to a WS, examination marks
(EX) was excluded from predictor variables, thus modelling
only the influence of Quizzes and Assignments on WS
(Figures 5 and 6). Very interesting features emerged,
especially between two levels of engineering mathematics
courses. The extent of scattering between WSpred and WSObs
was much greater for ENM2600 than ENM1600, as was
confirmed by the larger SSE and lower R2 value for the
latter course. All three predictive models failed to provide a
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TABLE 6. Influence of multivariate predictor variables (i.e. internal assessment) adopted to predict weighted scores (WS) as the target variable based on
ELM and the equivalent comparative counterpart models for ENM1600 Engineering Mathematics in the testing phase. The optimal model is
red/boldfaced.

TABLE 7. Influence of multivariate predictor variables (i.e. internal assessment) adopted to predict weighted scores (WS) as the target variable based on
ELM and the equivalent comparative counterpart models for ENM2600 Advanced Engineering Mathematics in the testing phase.

reasonable prediction of theWS for ENM2600 when consid-
ering only the continuous internal assessment data. This also
indicates that the examination score is likely to influence the
student outcome in a much greater degree in the advanced

engineeringmathematics course and to a lesser degree, for the
mid-level engineering mathematics course (i.e., ENM1600).

The plots of RMSE for the ELM model (Figure 7a–7b)
illustrate the ELM’s capability to generated two kinds of

136712 VOLUME 8, 2020



R. C. Deo et al.: Modern Artificial Intelligence Model Development for Undergraduate Student Performance Prediction

FIGURE 5. Prediction of weighted score (WS) based on continuous internal assessment (i.e. Q1, Q2, A1, A2 and A3) as predictor variables for
ENM1600 Engineering Mathematics course in the testing phase. Exam score has been excluded from predictor variables to check the influence of only
continuous internal assessments on predicted WS.

model results: (i) prediction of the WS (as a target) and EX
(as the single predictor variable) and (ii) prediction of EX
(as a target) and continuous internal assessment data (as a
suite of predictor variables). For both types of predictive
model scenarios and the relevant course levels in engineering
mathematics that were modelled, based on its lower RMSE
the online version of the course results was more accurately
predicted than those of the on-campus versions of the course.
When theWS was modelled using the EX, the relative perfor-
mance for both the ONC and ONL versions of ENM1600 was
dramatically better than for ENM2600 (Figure 7a), concur-
ring with earlier results (e.g., Figure 5-6; Table 6-7). A sim-
ilar deduction could be made from Figure 7(b) where the
WS was modelled from continuous internal assessment data
(excluding the EX). However, for both courses and modes of
offer, the ELM model showed significantly greater relative
percentage errors when the EX was excluded from the matrix
of predictor variables for both courses and all modes of
offer.

A very important aspect of the predictive model evalua-
tion process is to check the distribution of errors encoun-
tered in the testing phase. Figure 8 represents a boxplot
with distribution of absolute value of prediction error gen-
erated in modelling WS where both the continuous internal

assessments and examination scores for each course and the
relevant modes of offer are incorporated as the predictor
variables. There appears to be an undisputed quantitative
evidence that the ELM model’s performance accuracy far
exceeds that of the RF in all modelling scenarios given the
widely spread errors and large outliers indicating large error
magnitudes. However, differences between ELMandVolterra
models are less conspicuous, although the outliers in boxplots
clearly depict extreme errors for Volterra that are encountered
in prediction of student’sWS values.

Since the edge of the boxplot denotes the upper and
the lower quartile errors, and the central margin shows the
median value of the error, Figure 8 reaffirms the relative
success of the ELM vs. its two counterparts’ models, as the
former’s quartiles andmedians are significantly smaller. Con-
sistent with the results presented earlier (i.e., Figures 3–7;
Tables 6–7), the distribution of errors showed the ELM
model to have a lower accuracy when predicting the WS
for ENM2600 than for ENM1600; however, the trends for
ONC and ONL versions of the course were quite different.
For the ONC versions of the courses, the ENM1600 out-
liers showed a relatively smaller error value than those for
ENM2600, confirming that model performance for student
success predictions for the online version of the course
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FIGURE 6. Prediction of weighted score (WS) based on continuous internal assessment (i.e. Q1, Q2, A1, A2) as predictor variables for ENM2600 Advanced
Engineering Mathematics course in the testing phase. Exam score has been excluded from predictor variables to check the influence of only continuous
internal assessments on predicted WS.

was more feasible for ENM2600 than ENM1600, at least
with the current data and under the present the modelling
context.

The mean prediction error of ELM, relative to the RF
and the Volterra model, computed over the entire range of
observed WS data used in the respective grade allocation
processes are shown in Figure 9. Note that the allocation of
grades follows the threshold: Fail (F), WS < 50%; C, 50 ≤
WS < 64; B, 65 ≤ WS < 74; A, 75 ≤ WS < 84, High Dis-
tinction, WS≥ 85, so for each modelling scenario, the testing
phase data were extracted within these categories and further
analysed. In spite of somewhat mixed results for certain grade
categories, the ELM models were generally more successful
in matching letter grades than either the RF or Volterra mod-
els. In particular, the ELM model registers a much smaller
error in predicting a Fail grade for ENM1600 ONC and
ONL, and ENM2600 ONL test data. For ENM1600 ONL the
error for the ELM was approximately 0.695% compared to
0.980% for the Volterra and 6.406% for the RF model, while
for the ENM1600 ONC, the errors were 0.321% compared
to 0.664% and 3.563%, and for ENM2600 ONL they were
0.297%, 1.159%, and 2.942%. For all other grades spanning
C to HD, the ELM performance exceeded the comparative

models for both engineering mathematics courses and modes
of offer.

Of particular interest to this study was how the WS in
the model’s testing phase (considering all possible predictor
variables) were distributed for the engineering mathematics
course and different course offering modes when predicted
results were allocated in their respective grading categories.
A plot of observed vs. predicted grades generated by all three
models using ENM1600 as an example (Figure 9) shows
unambiguous evidence that the ELMmodel’s predicted grade
distribution more closely matches the real (observed) grade
distribution than do the grade distributions predicted by the
two benchmark models. This proved to be true for all five
categories of allocated grades. While the difference between
the ELM and Volterra model appear to be somewhat marginal
in some cases, there is a clear distinction with respect to the
RF model, which fails to generate a reasonable degree of
accuracy.

The percentage frequency of predicted errors inWS, for the
ENM2600 course pooled across the on-campus and online
course offers (Figure 11), shows the greater efficacy of the
ELM model compared to the other two models, where, for
the ELM about 99% of all predictive errors are located
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FIGURE 7. The relative (%) root mean square error generated by the
ELM model for ENM1600 and ENM2600 for on-campus (ONC) and
online (ONL) offers. (a) Prediction of weighted score (WS) using the exam
(EX) as a predictor variable. (b) Prediction of exam score (EX) using
continuous internal assessments as predictor variables.

in ± 1% range, compared to only 43% and 88% of all
errors for the RF and Volterra models, respectively. Given
the smaller proportion of errors in ±1% magnitude range
for the RF and Volterra models compared to the ELM, the
frequency of the former models’ errors was distributed to a
greater extent in ranges of greater error magnitude. For exam-
ple, for the RF and Volterra models approximately 27% and
9%, respectively, of all errors were distributed in ±(1–2)%
bracket, whereas for the ELM this bracket only included 1%
of all errors. In fact, the frequency of errors exceeding ±2%
for the ELMmodel was zero, whereas for the RF and Volterra
models 27% and 4% were in exceedance, respectively).

For real-life and practical implementation of predictive
models that enable important decisions in course manage-
ment to be undertaken by examiners, a model’s accuracy
in predicting individual grades is critical and should be of
primary interest. Figure 12 displays the modelled results for

ENM2600 where on-campus and online datasets have been
pooled, and the respective frequency of prediction errors in
different error brackets are plotted across the 5 categories of
grades.

For the entire category of grades, the ELMmodel was seen
to outperform both the RF and Volterra models, especially
for ‘C’ or ‘F’ grades. That is, in modelling an ‘F’ grade,
approximately 78% of predictive errors were within a±0.5%
error margin for the ELM model compared to only 14%
and 27% for RF and Volterra, respectively. This led to a
redistribution of error into larger error brackets to which the
ELM model contributed only 18%, whereas RF and Volterra
models contributed 22% and 35%, respectively. Likewise,
for modelling a ‘C’ grade in ENM2600, approximately 93%
of all errors were recorded within ±1% by the ELM model
compared to only 25% and 59% by the RF and Volterra
models, respectively, resulting in a redistribution of errors
into the larger error brackets. While the capacity of the ELM
model to predict ‘HD’, ‘A’ and ‘B’ grades appeared to match
that of the Volterra model, there were differences that indicate
the ELM could be the preferred model for prediction of
individual grades. Similar results were obtained for the case
of ELM1600 (not shown here).

In accordance with the results for engineering mathemat-
ics performances modelled in this study, clear differences
in model accuracy between ENM1600 and ENM2600 were
evident. These are perhaps attributable to the nature of the
courses rather than an influence of the model itself. In partic-
ular, ENM1600 provides a solid foundation in single variable
Calculus, Matrix and Vector Algebra and is the prerequisite
course for ENM2600, whereas Advanced Engineering Math-
ematics includes topics in Complex Numbers, Multivariable
Calculus, Differential Equations and Eigenvalues and Eigen-
vectors [56], [57]. These topics, other than the Complex
Numbers topic, are likely to require a firm understanding
and proficiency of the topics in ENM1600. The lack of a
firm grasp of these basic topics could possibly lead students
to struggle in ENM2600, and would likely have a particu-
lar impact on students who only take ENM2600 as part of
the Master of Engineering program without the prerequisite
knowledge and skills from ENM1600.

An additional issue relevant to the present discussion
may be that differences in course content and learning
evaluation, e.g., the different structure of ENM1600 and
ENM2600 quizzes, could explain differences in model per-
formances. For example, in ENM1600 the Semester 1 quiz
questions are randomly chosen whilst in ENM2600 they
are identical for all students. Randomness in quizzes would
likely decrease the sharing of answers and leading to a
more independent attempt by each student. This is more
likely to affect the results of the on-campus cohort than the
online cohort given that sharing is less likely in the latter
cohort. That said, the questions are predominantly multiple
choice and so there is still the possibility of randomly chosen
answers. As such, the quizzes alone may not be reliable
predictors of student’s understanding, but it rather depends
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FIGURE 8. Boxplots showing the distribution of absolute prediction error in the weighted score (WS, %) generated by ELM
relative to the RF and Volterra models in the testing phase. Here, the continuous internal assessments and exam score for
each course/offer has been used the predictor variables.

upon how the options to the multiple-choice questions are
structured. In ENM1600, the incorrect options are chosen
based upon common errors made by students. This could
explain some of the differences between the modelled results
for ENM1600 and ENM2600 but a further study may be
required to achieve more conclusive results.

V. DISCUSSION, LIMITATIONS AND OPPORTUNITY FOR
FUTURE WORK
Supported by a diverse range of quantitative metrics and
visual (predicted vs. observed) results, the greater accuracy
of ELM (vs. RF and Volterra) models, was evident, although
model performance was largely scaled according to the
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FIGURE 9. The mean prediction error (%) computed over entire range of observed weighted scores that are used in respective grade allocation
process in testing phase of ELM (and its comparative counterpart) models.

specific engineeringmathematics course level (i.e., whether it
was ENM1600 or ENM2600) and whether the teaching mode
was on-campus or online. Nonetheless, built on the success
of the proposed methodology, which yielded an acceptable
accuracy in the modelling of WS and EX, further exploration
of the ELM-based model is encouraged to ascertain the via-
bility of its practical adoption as a decision support tool in
student performance prediction for the higher education sec-
tor. As a unique study employing ELM model for engineer-
ing mathematics performance evaluation, this investigation
exemplifies the significant merits of the intelligent algorithm,
such as a fast, accurate and efficient artificial intelligence
platform where training, validation, and testing process are
achieved in a relatively short model execution time com-
pared to RF and Volterra models, without compromising the
model’s overall predictive accuracy. Practically, this is highly
essential from the evaluators ‘‘lecturers’’ point of view to
have a reliable technique that can assist the educational sector.

In spite of these merits, the ELM model does carry limita-
tions, and therefore, this work sets a new pathway for follow-
up research that could improve the model’s versatility in
predicting student performances. For example, in this study,
the ELM was executed largely in a batch mode, and was
designed with pre-defined training, validation, and testing
data partitioned sequentially from 5-6 years of examiner

returns. The model also had a validation set that enabled
a selection of best trained models, while the testing set
provided independent input data to simulate the WS. Tak-
ing this approach to further improve the methodology, one
could enhance the present model’s implementation by testing
improved variants of this algorithm. One such algorithm is the
online sequential ELM (OS-ELM) [58], [59]. With the added
advantage of greater speed, especially with big datasets, the
OS-ELM, based on recursive least-squares (RLS), can learn
data one-by-one or a chunk-by-chunk (i.e., a block of data)
approach, with a fixed or a varying chunk size [60]. This
could be significantly advantageous compared to a baseline
ELM, especially when a model needs to be implemented in
a large, university-based course management system where
new data arrives continuously (even if they are spaced with
long temporal delays). In this respect, the OS-ELMmodel can
offer a computationally less expensive modelling platform
than the normal batch learning model in maintaining the
model input up to date. Another variant of ELM, the variable
complexity (VC-OSELM) algorithm can also be explored
in a separate study, as that model can dynamically add
or remove hidden neurons based on received data, allow-
ing the model’s structural complexity to evolve, and vary
automatically as the online learning and modelling process
proceeds.
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FIGURE 10. Boxplots exploring the ability of ELM model to predict weighted scores (WS) in different observed categories of allocated
grades in the testing phase. Note that the official grade allocations typically follow: HD = High Distinction (≥ 85%), A (75% ≤ WS < 85%),
B (65% ≤ WS < 74%), C (50% ≤ WS < 65%), F (<50%).

In this study, the most recent and relatively lengthy
student performance records from two levels of engineer-
ing mathematics courses (ENM1600 2013–2018; ENM2600
2014–2018), given under both online and on-campus modes
of offer, were incorporated to design an ELM model. While
continuous internal assessment data (described by quizzes
and assignments modelled in respect to possible WS and
grade) are likely to provide ongoing evaluation of student
learning and how the teaching approach may influence a
student’s grade, several other variables may also influence

the learning process. Such variables must be investigated in
a more rigorous, follow-up modelling study. For example,
data derived from informal study desk activities (e.g., viewing
of video snippets by students, spending sufficient time on
study desk and regularly engaging with recorded lectures and
tutorials posted online) could serve as ELM model inputs.
Such a model could help assess the influence of regularly
monitoring student participation patterns and the manner in
which such external predictor variables affect a student’s
learning journey, leading to a successful grade.
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FIGURE 11. Percentage frequency of predicted error in weighted score (WS) for ENM2600 Advanced
Engineering Mathematics with all tested data pooled for on-campus and online course offers. Each
bracket spanning a predictive error of ± 1% shows the respective occurrence frequency in the tested
data.

In particular, there is strong consensus in the existing lit-
erature that under-preparedness in mathematical content, par-
ticularly at pre-tertiary experience, has a significant influence
on students’ abilities to make a successful transition to a ter-
tiary level mathematics course [61]. Furthermore, the amount
of time spent on the Learning Management System (LMS)
appears to also be correlated with learning outcomes [62]. For
courses that are delivered in ‘online only mode’ with no face-
to-face or synchronous lectures and tutorials, the incorpora-
tion of time spent on study desk as a possible predictor for
student performance modelling is very important. To improve
the existing approach, one could also consider a revised ELM
algorithm by incorporating such potentially influential data
within a global course management and a decision-support
system. Such a versatile model based on these additional
datasets could help generate an effective guide for course
instructors in identifying their student’s learning needs and in
scaffolding the entire learning process [63]–[65]. While these
are interesting insights to improve the existing ELM model,
they were beyond the scope of the present investigation and
therefore, must await an independent research study.

While a number of continuous internal assessments
data were considered to model student performances, this
study has not considered the influence of other external
and inter-related factors. Some of these include the stu-
dent’s gender, age (i.e., whether mature aged), marital and
school leaver status, socio-economic status, and the proper

prerequisite knowledge to learn university mathematics,
when modelling the WS and the grade. There is significant
indication that these factors are related to student participa-
tion, access, retention, and overall success [66], [67]. Recent
studies are showing relevance of such causal factors with
respect to a successful attainment of knowledge and grade
at the university level [68].

Contini et al., considered gender differences in STEM
discipline to investigate gaps in mathematics scores, showing
that girls systematically underperformed boys [69]. Insights
can be drawn from Devlin and McKay where academic
success for students from low socioeconomic background
at regional universities was considered, showing that such
students lack confidence and self-esteem [70]. This can affect
their overall sense of belongingness to higher education sec-
tor. Bonneville-Roussy et al., investigated the effect of gender
differences using two sets of multi-groups for prospective
studies, particularly studying motivation and coping skills
with stresses of assessment [71]. Importantly, their results
showed that strong gender differences exist between coping
and academic outcomes for university students.

Based on exploratory studies that indicate the important
role played bymany exogenous variables on the overall learn-
ing journey of students in higher education, future research
could consider an improved ELM model where data such as
the gender, age, socio-economic status and the pre-requisite
knowledge are also incorporated to identify and develop
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FIGURE 12. Exploring the capability of the ELM model in predicting
different grades in ENM2600 Advanced Engineering Mathematics. Here,
all tested data have been pooled for the on-campus and online offers of
this course to determine the overall ability of ELM against RF and Volterra
models.

several modelling scenarios particularly in 1st year courses.
These scenarios must consider the influence of these data
as predictors for student’s WS and EX. While data such as
socio-economic status could be challenging to accumulate

FIGURE 12. (Contiued.) Exploring the capability of the ELM model in
predicting different grades in ENM2600 Advanced Engineering
Mathematics. Here, all tested data have been pooled for the on-campus
and online offers of this course to determine the overall ability of ELM
against RF and Volterra models.

and even to properly authenticate their relevance to student’s
performance predictions, they nevertheless may enrich the
conclusions drawn from this research study. More impor-
tantly, such exogenous data can also help performance edu-
cational performance modelers to segregate, identify and
incorporate important influences in modelling their student’s
grades based on a much diverse range of predictors for stu-
dent success for on-campus and online modes of courses in
engineering mathematics, or other subject areas.

VI. SYNTHESIS AND CONCLUSIONS
Modern educational decision support systems adopted for
student performance prediction and academic program
quality assurance implementation by means of practical,
responsive, user- and learner-friendly course management
platforms can promote a successful student learning jour-
ney including student retention and progression, by embrac-
ing evidence-based models, preferably through a scholarship
driven approach.
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TABLE 8. (Case 1: ENM1600 ONC). ELM Model Design Parameters in terms of the optimal input weights, optimal output weights and the bias value of
hidden neurons.

TABLE 9. Case 2: ENM1600 ONL.

Learning analytics, a rapidly evolving field in the higher
education sector, can be used to design student performance
management and modelling systems, and these types of deci-
sion systems can be supported by emerging digitalized tech-
nologies coupled with big data techniques. These tools can
employ historical evidence of student performance based on
their attainments in key learning tasks, to help examiners in
exploring possible drivers of, or hindrance to, student success
in a course. Such tools can also help determine possible
causes of attrition and learning challenges faced by students
in a teaching semester, and how the continuous internal
assessments and other learning activities may influence a
student’s overall satisfaction in a course or program of study.

This research, for the first time, employed artificial intelli-
gencemodels: Extreme LearningMachine and random forest,
together with mathematically-based second order Volterra
model, to investigate possible influence of continuous assess-
ments onWS, leading to a successful grade in a first and sec-
ond year engineering mathematics course at USQ, a global
leader in both on-campus and online and distance education.
To explore whether the mode of course offering registers a

different pattern of accuracy, the optimal ELM model was
also designed and evaluated with predictor datasets for both
on-campus and online modes of course offer.

By drawing relevant statistical and visual evidenced from
the prescribed data-driven model utilizing multivariate, con-
tinuous internal assessment data from 2013–2018 and includ-
ing quizzes and assignments that were modelled against a
WS, the ELM model was shown to be the most accurate pre-
dictive model. This yielded a relative error of 0.74%, 0.51%
(ENM1600 ONC & ONL), and 0.77%, 0.54% (ENM2600
ONC & ONL) in the testing phase. In terms of the possibility
of adopting ELM to simulate a WS and its respective grade
allocation, the frequency of errors attained revealed signifi-
cant benefits, such as yielding a much larger proportion of
tested data that fell within the smallest error bracket. Impor-
tantly, the capability of the ELM model to correctly generate
a ‘Fail’ grade WS was clearly evident as was its ability to
model other grades with a significantly lower prediction error
for levels of engineering mathematics and modes of course
offerings, as confirmed by boxplots of the distribution of
errors in the testing phase.
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TABLE 10. (Case 1: ENM2600 ONC). ELM Model Design Parameters in terms of the optimal input weights, optimal output weights and the bias value of
hidden neurons.

TABLE 11. Case 2: ENM2600 ONL.

While this study has set a clear foundation for educational
designers, course examiners, and higher educational institu-
tions to explore the utility of artificial intelligence models in
learning analytics for engineering mathematics performance
evaluation (and quite possibly, other courses in the higher
education sector), additional factors that can influence a stu-
dent’s success in a course should also be considered. These
factors could include gaps in a student’s educational history,
age, gender, socio-economic status, student’s dedicated time
and engagement on digital platforms such as the LMS and
informal learning activities. If included in a future learning
analytics model, these factors could enhance the capability
of artificial intelligence algorithms employed in extracting
patterns in such data that relate to a grade, and therefore, may
assist institutions to perform suitable course health checks,
early intervention strategies andmodify teaching and learning
practices to promote quality education and desired graduate
attributes.
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