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Abstract  

Adjustability in ejector geometry is desirable to extend the operating range of ejectors at 

different working conditions. Current approaches to geometric adjustability in the throat sizes 

of conventional axial ejectors have the disadvantage of blocking the flow path by positioning 

additional components in the high-speed flow.  Furthermore, a viable mechanical system is not 

available for altering the diameters of the nozzle and ejector throat while providing gas-tight 

seals and a smooth surface throughout. An alternative concept, the radial ejector, has been 

created which makes possible a practical ejector that can readily achieve variable geometry 

without introducing additional flow blockage in the center of the high-speed flow. Such a radial 

configuration allows geometry adjustment during operation to achieve optimum performance 

at a range of different operating conditions without additional pressure losses from high-speed 

flow blockage. The radial ejector conceived, designed, commissioned and evaluated in this 

thesis was formed from two disk-like surfaces for both the primary nozzle and the ejector body 

enabling the radial ejector to operate with different flow areas by simply changing the 

separation of the ejector duct walls or the nozzle plates. Conventional axial flow ejector design 

procedures were adapted in the design process, and benchmarking against an experimental axial 

ejector was also performed. Air was employed as the working fluid to improve fabrication 

options and allow experiments to be performed with an open system. The radial ejector has a 

nozzle throat area of 8.8 mm2 and a nozzle exit area of 180 mm2, giving a nozzle area ratio of 

20.4, and an ejector physical throat area of 520 mm2, giving the ejector area ratio of 59. 

Experimental results show that the radial ejector produced entrainment ratios between 0.95 and 

0.24 and critical pressure lift ratios around 1.5 for expansion ratios between 50 and 139. The 

relationships between the entrainment ratio and critical exit pressure and primary, secondary 

and exit pressures were similar to conventional axial ejectors. Similarly, trends observed in the 

measurements of wall pressure for the radial ejector configuration were generally consistent 
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with those for axial flow ejectors. Based on the experimental data from the critical mode ejector 

operation and based on an isentropic flow calculation, a secondary stream Mach number of 

around 0.7 was determined at the physical throat of the ejector. When ejector operation 

transitioned from the critical to the subcritical mode, wall pressures in the throat and at locations 

upstream of the throat increased, leading to a peak in pressure prior to the final pressure rise in 

the diffuser. Comparing the experimental results with the simulations show that the entrainment 

ratio achieved from the radial ejector prototype agreed well. The entrainment ratio performance 

also closely matched that of a quasi-one-dimensional gas dynamic model with an error level 

less than 10%. Computational Fluid Dynamic (CFD) analysis based on the k-epsilon standard 

turbulence model showed that simulations of entrainment ratio and critical back pressure were 

in reasonable agreement with the experimental results with an average discrepancy of less than 

16%. Using the k-omega SST turbulence model, it was demonstrated that adjustability in the 

radial ejector is viable and by increasing the separation of the ejector duct walls from 2.2 mm 

to 3 mm, an increase of 34% in entrainment ratio can be achieved. A critical back pressure 

increase of 40% was achieved by reducing the separation of the ejector duct walls from 3 mm 

to 2.2 mm. However, as there are systematic differences between the measurements and the 

computational simulations using either the k-omega SST or the k-epsilon standard model, the 

overall reliability of the CFD simulations is questionable.  The main issue for the current 

prototype radial ejector is the low critical exit pressure relative to expected performance from 

an equivalent axial flow ejector.  More experiments and simulation are required to improve this 

aspect of the radial ejector performance. The radial ejector geometry is required to be optimized 

and many different flow features need extensive investigation to identify ways to achieve better 

performance and expand the adjustability options in the radial ejector. 
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1 Chapter 1                                                                                              

Introduction 

   

1.1  Ejector Theory and Application  

Ejectors are simple devices that use a high pressure source to raise the pressure of a low pressure 

fluid; ejectors are effectively pumps without moving parts. Sir Charles Parsons invented an 

ejector for removing air from steam engine condensers around 1901 and Maurice Leblanc was 

the first user of a steam ejector in a jet refrigeration system in 1910 [1]. In its simplest form, the 

ejector (or jet-pump) refrigerator has the same basic components as a conventional vapour 

compression unit, but the vapour-compressor is replaced by a pump, a boiler and an ejector [2]. 

Figure 1-1 depicts a block diagram of a basic steam ejector refrigerator. A boiler, evaporator, 

condenser, expansion valve, and pump are the main parts of this system [3]. Industrial 

applications for pumping take advantage of ejectors’ long service life, resistance to wear and 

capability to pump from low pressures. Ejector systems typically have low maintenance costs. 

 

Figure 1-1: Block diagram of a steam jet refrigerator cycle. 

 

 

Pump 

Expansion    

valve 

Boiler 

Evaporator 

Condenser 

Ejector 
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Ejectors consist of four main parts: the nozzle, mixing chamber, throat and diffuser. Motive high-

pressure fluid or primary flow is supplied to the nozzle, producing a high velocity flow. In the 

case of gas or vapour-driven ejectors, the nozzle makes use of a converging/diverging profile to 

convert the high pressure and low velocity fluid into a very high velocity stream with low static 

pressure.  Figure 1-2 shows the cross section of a typical ejector and its main parts.  

 

Figure 1-2: Typical ejector cross section showing flow directions. 

 

Ejectors employ a jet of high pressure primary fluid, making use of mixing and pressure effects 

to induce a low pressure secondary flow in order to compress it to a higher pressure. Industries 

with low quality heat sources can readily make use of ejectors.  As the primary fluid is expanded 

through the nozzle, a partial vacuum motivates the secondary flow, which is entrained by mixing 

with the primary flow, and when the mixed flow decelerates, the pressure of the mixture is raised 

to that of the exit flow [4]. Imparting momentum from the primary flow to the secondary flow 

occurs by two mechanisms: (1) shear stresses between the two flows as a result of turbulence and 

viscosity; and (2) in the case of unsteady flow fields, pressure exchange due to interface pressure 

forces applying between the primary and secondary fluids [5].   

Ejector design is not a new field of research. For many years, different types of ejectors have 

been developed for different applications. The majority of ejectors have been designed with a 

similar axial flow pattern in which the primary (motive) and secondary (propelled) fluid enter a 

shaped pipe and move in the direction of the ejector axis.  

A conventional jet pump (a typical ejector) cross-section with pressure and velocity profiles for 

the case of a steam ejector is shown in Figure 1-3. As the primary and secondary streams mix in 
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the mixing area, they pass through the throat, experiencing a thermodynamic shock process [6] 

which suddenly increases the pressure [7].  

 
Figure 1-3: A typical cross-section, pressure and velocity profile of a steam ejector [7]. 

 

1.2  Ejector Performance   

To quantify a system in terms of the energy consumption and effectiveness, a measure of 

performance is required. Ejector performance is evaluated in different terms in the literature. One 

important term is entrainment ratio (𝐸𝑅 = ω  =
�̇�𝑠

�̇�𝑝
) where �̇�𝑠 and �̇�𝑝 are secondary and 

primary mass flow rates, respectively. For an ejector in a refrigeration system, 𝜔 is related to the 

coefficient of performance (COP) of a cooling cycle through the enthalpy change in the 

evaporator and generator as [8]:  

𝐶𝑂𝑃 =
𝑄𝑒

𝑄𝑔
= ω ×

∆ℎ𝑒

∆ℎ𝑔
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Figure 1-4 shows a model axial ejector performance curve. The axial ejector characteristic curve 

(entrainment ratio vs outlet pressure) is often divided by researchers into critical, subcritical and 

malfunction modes [9] and [10]. If the ejector outlet pressure is less than the critical pressure, the 

entrainment ratio remains constant and increasing the outlet pressure does not have any effect on 

the entrainment ratio. As the outlet pressure increases beyond the critical pressure, entrainment 

ratio linearly decreases, according to the model, to reach zero when outlet pressure reaches the 

malfunction or back flow pressure. Any increase beyond the malfunction pressure causes back 

flow to the ejector secondary inlet resulting in no useful function.  

 

 

Figure 1-4: A model axial ejector characteristic curve [9]. 

 

The ejector performance is influenced by the mixing process, friction and flow separation [4], 

[11], [12]. Many studies have focused on the optimisation of the ejector geometry and operating 

conditions to achieve higher performance.  

 

1.3  Objectives of the Thesis  

For many years, different ejector arrangements and designs have been developed for different 

applications. The majority of designed ejectors follow a similar concept: the primary (motive) 

and secondary (propelled) fluid move axially in an axisymmetric arrangement. The author of this 

thesis suggests a new concept: a radial flow pattern for ejector applications. In this new radial 

configuration, the primary supply expands in the supersonic radial flow nozzle, and this 
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expanding disk of primary flow entrains the secondary flow from the inlets positioned on either 

side of the expanding primary flow. The objective of this study is to investigate this new radial 

flow ejector concept through experiments, a quasi-one-dimensional gas dynamic model, and 

computational simulations using Ansys-Fluent software.  

  

1.4 Scope of the Thesis  

The scope of the project has been limited to the design and evaluation of a prototype radial flow 

ejector. The performance of the ejector has been targeted close to the ejector system designed by 

[13]. As the radial flow ejector is a new concept, to simplify fabrication, the design has been 

based on using air as the working fluid and operates as an open system. The system development 

has been limited to prototyping the radial nozzle, radial ejector, motive, exhaust and suction flow 

piping systems. Other components normally used in a steam refrigeration system such as 

evaporator, condenser, and generator have not been in the scope of this project.    

 

1.5 Overview of the Thesis  

The present introduction to the research area is followed by a literature review. The main body 

of the thesis is composed of 5 discrete pieces of work, two of which have been published as 

conference papers, and three of which are prepared in the format of papers and are in the 

processes of being prepared for publication.   Following the main body of the thesis, a concluding 

chapter is presented where the general findings are summarised and recommendations have been 

made for future studies.  
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1.5.1 Chapter 2: Literature Review  

The literature review focusses on methods employed for ejector performance improvement. It 

includes the effects of operating conditions on ejector performance, and the effects of geometry 

and flow characteristic in ejectors.  The use of CFD in ejector design is also reviewed.  

 

1.5.2 Chapter 3: Investigation of Radial Flow Ejector Concept Through CFD 

Analysis  

The basis of this chapter is a conference paper: 

Rahimi, H., Malpress, R. and Buttsworth, D., Investigation of radial flow ejector concept 

through CFD analysis. 20th Australian Fluid Mechanics Conference, Perth, Australia, 5-8 

December 2016. 

This chapter discusses a CFD analysis of the radial ejector and compares this concept with an 

equivalent axial ejector. The same operating conditions and CFD settings were used for the 

simulation of the ejector performance in both cases. A k-omega SST turbulence model was 

employed in this study.  

 

1.5.3 Chapter 4: CFD Study of a Variable Flow Geometry Radial Ejector 

The basis of this chapter is a conference paper: 

Rahimi, H., Buttsworth, D. and Malpress, R., CFD study of variable flow geometry radial 

ejector. 4th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT'17). 

Toronto, Canada, 22-23 August 2017.  

This chapter discusses a CFD study of a variable geometry radial ejector in which the ejector 

throat size was changed by adjusting the separation of the plates forming the ejector duct. Three 

different ejectors with different throat separations were compared in terms of entrainment ratio 

variation with ejector outlet pressure. A k-omega SST turbulence model was used in this study.   
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1.5.4 Chapter 5: Radial Ejector: a New Concept in Ejector Design  

The work presented in this chapter is intended to introduce the radial ejector concept to a wider 

audience than can be reached through the conference publications presented in Chapters 3 and 4.  

The main methods of design, fabrication and evaluation of the prototype are discussed. 

Experimental results are appraised and compared with a quasi-one-dimensional model previously 

calibrated to axial flow ejector results.   

 

1.5.5 Chapter 6: Experimental Investigation of Radial Ejector Performance 

Work in Chapter 5 demonstrated the radial ejector has comparable performance to an equivalent 

axial flow ejector in terms of entrainment ratio, but the critical back pressure for the radial ejector 

was low relative to the equivalent axial flow ejector. However, the computational simulation 

work reported in Chapter 3 indicated that radial ejector should have critical back pressures that 

are comparable to the equivalent axial flow ejectors.  Therefore, an understanding of the flow 

within the radial ejector is sought by presenting and analysing static pressure measurements 

within the radial ejector duct over the different operating conditions.   

 

1.5.6 Chapter 7: CFD Simulation of Radial Flow Air Ejector Experiments   

This chapter presents CFD analysis of the radial flow air ejector using Ansys Fluent software. 

The computational simulations are compared with experimental data for entrainment ratio, 

critical back pressure, and static pressure measured in the radial flow ejector. The computational 

simulations presented in Chapters 3 and 4 used the k-omega SST turbulence model, but generated 

critical pressures results that did not accurately reflect experimental data presented in Chapter 5.  

Therefore, the k-epsilon turbulence model was used in this work to further explore the reason for 

the discrepancy in the critical back pressure.  
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1.5.7 Chapter 8: Conclusion   

The last chapter presents the overall conclusions and outcomes of this research study and 

recommendations for future works. 
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2 Chapter 2                                                                                                  

Literature Review 

 

 

2.1 Scope of Review 

The primary goal of research in the area of ejectors is to improve their performance and efficiency 

and different approaches have been adopted in pursuit of this goal [14], [15].  Among the 

findings, working condition optimization, geometry optimization, variable geometry [16], [17], 

[8], and oscillatory primary stream pressure [18], [19] are identified as potential methods to 

improve performance and efficiency. Most existing ejectors have an axisymmetric and axial flow 

path, and the general arrangement is illustrated in Figure 1-2.   

The limits of improving axial ejector performance by optimising nozzle and duct shapes and the 

position of the nozzle have probably been reached. Little work has been completed on 

implementing the concept of variable geometry because the inherent form of axial ejectors 

impedes the effective, efficient and practical application of most variable geometry concepts. 

Radial ejectors could offer the capacity to easily alter the nozzle and ejector throat areas by 

simply changing the separation of the nozzle surfaces and/or the duct walls. Such ejectors have 

not been studied extensively. Consequently, the vast majority of existing literature on ejectors 

does not:  

1- Provide reliable analytical design tools for radial ejectors 

2- Experimentally investigate radial ejector performance in the context of analytical design 

strategies  

3- Numerically investigate radial ejector performance using CFD 
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As such, the review of the literature relevant to the concept of a radial ejector focusses on 

analytical, experimental, and computational work that contributes to a general understanding of 

axial flow ejector performance, the need for improved performance from ejectors, and how the 

performance of such ejectors may be augmented.  

 

2.2 Ejector Operating Conditions  

The operating condition needs to be carefully defined in order to design a suitable ejector. The 

entrainment ratio is the ratio of mass flow rate in the secondary stream to that in the primary 

stream, and normally the designer seeks to maximise this parameter, but the design is constrained 

by the necessary operating conditions. The expansion ratio, which is the ratio of the primary 

pressure to the secondary pressure, is a key parameter in designing the ejector.  Another key 

parameter is the compression ratio (also known as the pressure lift ratio), which is the ratio of the 

pressure at the outlet of the ejector to the secondary pressure [14].  Normally this compression 

ratio is defined in terms of the critical value because the pressure that is imposed at the outlet of 

the ejector significantly influences the ejector entrainment ratio for pressures higher than the 

critical values [8].  

Eames et al. [2] experimentally investigated a steam ejector refrigeration system, demonstrating 

that that COP is dependent on the temperatures of the boiler and evaporator and independent of 

condenser temperature until a certain condenser temperature is reached and COP decreases 

dramatically thereafter [2]. Figure 2-1 shows the variation of COP with condenser pressure from 

their work.  
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Figure 2-1: COP variations with condenser pressure over a range of boiler pressure at the 

evaporator temperature of 10 oC in a steam ejector refrigeration system [2]. 

 

Yapici and Yetisen  [20] experimentally investigated an ejector refrigeration system powered by 

low-grade heat with R11 as the working fluid. A range of temperatures from 88.5 to 102oC was 

used for the vapour generator and a range of 0 to 16oC for the evaporator. A COP up to 0.25 was 

achieved. The cooling capacity and COP increase with evaporator temperature at constant vapour 

generator temperature and condenser pressure in a fixed area ejector as illustrated in Figure 2-2.  
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Figure 2-2: Cooling capacity and COP variation with evaporator temperature [20]. 

 

Chunnanond et al. [21] studied the effect of operating condition on the ejector performance for a 

steam ejector. They observed that for a constant evaporator condition, the primary flow 

conditions influenced the COP and critical back pressure and related these changes to a so-called 

effective area in the mixing chamber: by increasing the primary pressure, the effective area 

available for the secondary stream is reduced and therefore a lower COP is obtained [21]. Figure 

2-3 illustrates the concept of the effective area for a typical ejector.   
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Figure 2-3: Effect of the operating conditions on the available flow cross sectional area for the 

secondary stream [21]: (a) low primary pressure; (b) high primary pressure. 

 

Chunnanond and Aphornratana [21] stated that many factors can affect the COP including 

operating conditions, size and position of the nozzle. They conducted experiments using boiler 

temperatures 110-150oC, evaporator temperatures 5-15oC, and condenser pressures 25-60 mbar 

and demonstrated that COP increases as the boiler pressure decreases. The COP can increase 

along with the critical condenser pressure for the case of the system operating at a higher 

evaporator temperature [21].  A summary of the COP variation with operating condition reported 

in the literature is presented in Table 2-1.  
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Table 2-1: Summary of results regarding COP variation with operating conditions 

Conclusion  Achieved COP Reference 

As the boiler pressure decreases, COP increases and critical 

back pressure decreases  

As the evaporator pressure increases, COP and critical back 

pressure increases  

0.28 to 0.48 [21] 

Every ejector with a specific geometry and configuration 

works best (achives a maximum COP) at an optimum boiler 

temperature for given condenser and evaporator 

temperatures 

0.03 to 0.16 [22] 

Increasing ejector area ratio and expansion ratio and 

decreasing compression ratio leads to increase in COP  

0.12 to 0.29 [23] 

Increasing generator temperature beyond a specific limit 

results in diminished COP  

0.12 to 0.39 [24] 

 

 

For convenience, many researchers use air as the working fluid in their ejector studies. In most 

air ejectors, the temperature of primary, secondary and exit are very close to the ambient 

conditions [9], [25], [26].  Figure 2-4 presents typical characteristic curves for an air ejector 

operating with primary pressures ranging from 1 to 5 bar and a secondary pressure of 1 bar [9]. 

This figure clearly shows the effect of different primary pressures on the performance of the air 

ejector. For a constant secondary pressure, the entrainment ratio decreases with increasing 

primary pressure. Similar results are achieved by other researchers [25], [26].  
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Figure 2-4: Air ejector characteristic curves for primary pressures ranging from 1.5 to 5 bar and 

secondary pressure of 1 bar over a range of outlet pressures [9].  

 

 In another study [27], Bartosiewicz et al. investigated different expansion ratios (the ratio of 

primary to secondary pressure) on the behavior of an ejector. It was concluded that, the best 

pressure ratio for their ejector was between 7 and 8. Figure 2-5 shows the sonic lines for different 

expansion ratio cases from computational simulations. The higher expansion ratios lead to under-

expansion of the primary flow and limits the available flow cross sectional area for the secondary 

flow. Low expansion ratios leads to a large separation and the secondary flow not being choked.    
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Figure 2-5: Sonic lines for (a) Pp/Ps=5, (b) Pp/Ps =6, (c) Pp/Ps =7, (d) Pp/Ps =8 and (e) Pp/Ps 

=10 for air ejector by CFD analysis [27]. 

 

2.3 Motivation for Variable Geometry   

Working fluid properties, operating conditions and the ejector geometry are the main factors 

influencing the ejector performance. The influence of geometrical parameters has been 

investigated experimentally [28], [29] and numerically [8], [30], [31], [32]. It has been stated that 

the optimal ejector geometry is significantly dependent on the operating conditions. An ejector 

with a fixed geometry works best in a narrow range of operating condition [8]. Having 

adjustability in the ejector throat size during operation is a solution for extending the range of 

operating conditions. This becomes more important for ejectors driven by variable thermal 

energy sources.  For example, if using solar energy to drive ejector systems, or in vehicle fuel 

cell applications for recirculating hydrogen, the ejector input energy sources will not be constant 
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for long periods of time, or even if the ejector energy input is a constant for a modest period of 

time, it is possible that different outputs are required for optimal system performance. In the case 

of the solar ejector systems, the solar heat input varies throughout the day and is also dependent 

on the daily or seasonal radiation [33], [34]. In vehicle fuel cell systems, if the ejector is used to 

control the mass flow rate, it might be necessary to have a constant output mass flow rate while 

the primary stream condition is fluctuating [35]. Therefore ejectors used in such systems need to 

be adjustable to have optimum performance for different situations.  

Existing technical solutions for adjusting the ejector area ratio mostly involve inserting shaped 

blockages upstream [17], [8], [36] or downstream [35]  of the nozzle. This provides a convenient 

adjustment in the physical throat size of the nozzle or ejector in axisymmetric, axial flow ejectors. 

Many papers employed such flow blockage features on the ejector centreline [8], [37], [38], [39], 

[40].  However, the major drawback resulting from such methods in axial ejectors is the loss of 

total pressure that arises due the blockage of the high speed primary stream.   

To design an ejector with the capacity to independently adjust both the primary nozzle throat and 

the ejector throat areas without introducing blockage on the centre line of the nozzle, a new 

configuration is needed.  

 

2.4 Geometric Modifications for Enhanced Performance   

With respect to ejector geometry, the parameters which need consideration are the area ratio (area 

of the ejector throat to the primary nozzle throat area), nozzle exit position, primary nozzle throat 

and exit diameter, ejector duct throat area and diffuser geometries  [14].   
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2.4.1 Basic Ejector Geometric Features  

2.4.1.1 Primary Nozzle 

The primary nozzle is a supersonic nozzle which consists of an inlet, converging section, throat 

and diverging section  [41]. The design of a supersonic nozzle has a signifcant influence on its 

performance. The major parameters for a nozzle are the design mass flow rate, ṁp, the exit area 

and the divergent angle. The nozzle area expansion ratio, the ratio of exit area to throat area, 

𝐴/𝐴∗ essentially dictates the exit Mach number of the nozzle [42], and nozzle area ratios  between 

7 and 144 are reported  for different ejector applications [43], [16] and [28].  

The inlet section of a supersonic nozzle is important for creating uniform flow. It has been 

determined by [41] that the length of the inlet section should be more than 10 times the throat 

diameter, and while larger inlet diameters are also beneficial, limitations of manufacturing 

techniques and the particular nozzle application should also be considered.  

The speed of the flow at the nozzle throat is sonic (Mach number equal to 1). With increases in 

the  stagnation pressure, the flow velocity remains constant but the mass flow through the throat 

increases [41]. 

The effect of different nozzle divergent angles on the shock phenomena has been numerically 

investigated in [44]: the authors compare different divergent angles including 4, 7, 10, 13, and 

15o,  and demonstrate that oblique shocks appear in the nozzles with lower divergent angles. As 

the divergent angle is increased, the position of the oblique shocks moves toward the nozzle exit 

and the shock is completely eleminated with the divergent angle of 15o  [44].  

Eight different primary nozzles with different throat diameters between 1.4 and 2.6 mm have 

been used in an experimental study [16]. Some results which are presented in Figure 2-6 show 

that the nozzle with the largest throat diameter obviously supplies more fluid mass flow rate, 

resulting in less secondary fluid being moved because of less flow area being available for the 
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secondary flow in the mixing chamber. Larger nozzle throat diameter can also lead to a higher 

exit pressure, so the critical condenser pressure increases [16].  

 

Figure 2-6: Variation of the minimum suction pressure and the entrainment ratio with the 

nozzle’s throat diameter [16]. 

 

 

2.4.1.2 Ejector Duct 

The length of ejectors is an important parameter for ejector design [12]. The length of an ejector 

can influence both COP and the pressure lift ratio. There are many suggestions regarding the 

appropriate ejector throat length ranging from 4 to 14 times throat diameter. A throat length 

between 7 to 9 times the throat diameter is reported to be the optimum [11]. Sun [39] stated that 

the optimum length of the ejector is influenced by operating conditions and argued that if the 

condenser temperature increases the lengh of the ejector should be increased. Sun also claimed 
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that different condenser temperatures need different nozzle and diffuser diameters to achieve 

optimum performance. The critical exit pressure decreases with decreasing throat length [45], 

but there is not complete agreement between researchers regarding the effect of ejector length on 

ejector performance. In the work of  [46], it is claimed that a larger compression ratio is achieved 

by using a smaller ejector [46].  

It has been identified that the contour of the convergent section of a constant pressure ejector 

should be changed so the total pressure in this section remains constant [47]. This means that for 

different operating conditions, it is necessary to have different contours. Not working at optimum 

operating conditions potentially leads to low efficiency [47].   

The total mixing chamber and throat length, which is the distance from the nozzle exit to the start 

of the  diffuser should be in the range of 5 to 10 times the ejector throat diameter [48], [49], [50]. 

The convergent half angle of the duct is recommended to be between 2 and 10 degrees [48], [49], 

[50]. It was also concluded that the optimum ejector area ratio depends on operating conditions 

for a steam ejector [32], [51]. The optimum area ratio is related to the type of working fluid as 

well [52]. The influence of the area ratio on COP has been the topic of many research studies 

[16], [53], [54].  

 

2.4.2  Constant Rate of Momentum Change Ejector Design 

Eames [55] introduced the so-called constant rate of momentum change (CRMC) method for 

designing an ejector, noting that the thermodynamic shock, which occurs in the diffuser,  brings 

about a sudden decrease in total pressure and as a result, affects the achievable compression ratio. 

The aim of the CRMC method was to produce a diffuser without a thermodynamic shock 

occurring, or at least to minimize the pressure losses associated with such a compression process. 

According to the theory, as the momentum of the flow changes at a constant rate while passing 

through the diffuser, the static pressure can rise gradually from the entry to the exit. The author 
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argued that this method can lead to a higher performance in comparison to conventional designs 

[55]. Figure 2-7 shows typical cross sections of the conventional and CRMC ejectors.  

 

Figure 2-7: Comparison between profiles of conventional and CRMC ejectors [55]. 

 

Chandra and Ahmed [3] conducted an experimental and CFD study based on the CRMC design 

theory. They compared the design based on CRMC method with a conventional ejector with a 

constant area throat section. They concluded that the CRMC ejector had better performance in 

comparison to the conventional ejector used in the study. However, due to not chocking the 

secondary flow, this improvement has not been realized in all operating conditions [3]. They 

supposed that the shock compression process had been removed by the CRMC design and 

proceeded to conclude that by removing the shock process in the variable area ejector, the lift 

ratio can be increased significantly. 

 

2.4.3  Primary Nozzle Position and Design 

2.4.3.1 Primary Nozzle Position 

The position of the primary nozzle influences ejector performance. Chunnanond et al. [21] 

improved ejector performance by using a smaller nozzle and retracting the nozzle upstream of 

the mixing chamber. Smaller primary nozzles positioned upstream of the mixing chamber will 

increase the distance over which jet mixing can occur prior to the diffuser  thereby improving the 
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COP and cooling capacity. Figure 2-8 shows the effects of the primary nozzle position on the 

ejector performance.   

 

Figure 2-8: Effect of primary nozzle position on the performance and static pressure along the 

ejector [21]. 

 

Chunnanond et al. [21] conclude that two main parameters influence the COP. The first is the 

amount of secondary fluid which is related to the COP and cooling capacity, and the second is 

the momentum of the mixed stream, which has an impact on the maximum achievable condenser 

pressure. Lower boiler pressure, smaller nozzles and a larger nozzle distance from the mixing 

chamber can lead to less expansion of the primary jet and as a result, a larger amount of secondary 

fluid can be entrained and higher COP can be achieved [21].  
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Eames et al. [43] designed and evaluated a jet pump chiller for air conditioning and industrial 

applications based on two different ejector designs: one based on the original constant rate of 

momentum change (CRMC) design method, and the other optimized using  CFD results. The 

main difference between the two ejectors is the area ratio between the diffuser and primary nozzle 

throats. Both designs have employed the same primary nozzles, the position of which can be 

adjusted axially [43]. The authors have demonstrated that the position of the primary nozzle is 

very important and determined the optimum positions for both designs experimentally [43]. 

Figure 2-9 shows the effect of nozzle exit position on the COP for the ejector.  

 

Figure 2-9: Variation in COP for different nozzle exit positions for the ejector designed using 

CRMC method [43]. 

 

 

2.4.3.2 Primary Nozzle Shape 

The shape of the primary nozzle also affects ejector performance.  Chang and Chen [56] used a 

petal nozzle in a steam-jet refrigeration system to increase the performance of the system. They 

applied different operating conditions including generator, evaporator and condenser 

temperatures for investigating the nozzle behaviour. They also evaluated the area ratio on the 

ejector performance. A conical nozzle with the same Mach number was also used for comparison, 

as illustrated in Figure 2-10. The findings show that the performance of a petal nozzle is better 
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than a conical nozzle: the ejector with petal nozzle can work at a higher critical back pressure 

[56].  

Different nozzle geometries have been investigated in [57]: two circular, two elliptical, a square, 

and two exotic nozzles were used. It was concluded that each nozzle shape works most effectively 

at different but specific Mach numbers [57]. Figure 2-11 shows different nozzle shapes employed 

in ejector systems in various studies in order to improve ejector performance.  

 

Figure 2-10: Conical and petal nozzle geometry used by [56]. 

 

 

Figure 2-11: Samples of supersonic nozzle shapes employed by researchers in attempts to 

improve ejector performance [58, 59, 60, 61, 62, 63]. 
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2.4.3.3 Nozzle and Ejector Centre Body Inserts 

Various studies have investigated options for centre body inserts both upstream and downstream 

of the nozzle.   For example, a conical insert shown in Figure 2-12 which moves axially in the 

ejector and changes the flow area of the nozzle exit and adjusts the ejector area ratio has been 

studied [35]. The secondary mass flow rate and the critical pressure lift ratio are both strongly 

affected by the ejector throat area ratio [35]. As the cone-cylinder shape was positioned in the 

centre and downstream of the primary nozzle, the passage of the high speed flow into the ejector 

throat was blocked to some degree and additional frictional losses are expected.  The losses 

associated with the deflection and blockage of the primary flow by the cone-cylinder were not 

reported in the work.   

 

 

Figure 2-12: Variable nozzle-ejector configuration [35]. 

 

Ejector nozzles with pintle adjustment from upstream of the primary nozzle throat have been 

investigated by other researchers [17], [8] and [36] and this configuration avoids the high speed 

flow deflection and blockage that occurs with the arrangement of [35].  Moving a spindle located 

upsteam of the nozzle has shown good results in controlling the primary mass flow rate [17], [8] 
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and [36] and hence influenced the entrainment ratio and critical back pressure. By increasing the 

mass flow rate, higher critical back pressure was achieved and by decreasing the primary mass 

flow rate, the entrainment ratio increased [17], [8].  

 

2.4.4  Unsteady Flow Ejectors  

The net rate of energy acquired by a fluid particle while traversing a flow field is the summation 

of the energy transfer via heat transfer, the work of shear forces (laminar and turbulent), and  the 

work of pressure forces [64]. The energy that is directly exchanged between the primary and 

secondary flows is potentially improved in unsteady flow ejectors because the pressure exchange 

mode of energy transfer is only available in unsteady flows. 

Different methods have been used in order to create unsteady behaviour in the primary flow. In 

the work of [18], ejector performance with a pulsating primary flow established using a synthetic 

jet generator based on two loud speakers has been investigated, as illustrated in Figure 2-13. The 

synthetic jet system was employed in the primary flow supply line just before the nozzle and it 

was found that higher compression ratio and efficiency were achieve using this system.  

 

Figure 2-13: A synthetic jet system for generating oscillation of the primary flow [18]. 

 

In another study focussed on mixing augmentation of jets in supersonic flows [65], a wall-

mounted cavity was used, as illustrated in Figure 2-14, for creating unsteady behaviour in the 
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flow.  The growth rate of the mixing layers in compressible flows is low in comparison to 

equivalent subsonic mixing layers [65]. The experimental and theoretical data show that this 

cavity is helpful for mixing enhancement of supersonic flows [65].  

 

 

Figure 2-14: A wall-mounted cavity system for mixing enhancement in supersonic flow [65]. 

 

Thrust augmentation of a supersonic ejector through unsteady flow was studied in [66] and 

Figure 2-15 shows a rotary valve system used for generating flow pulsation in the ejector system.  

Thrust augmentation, φ, is defined as φ=TE / (TN + JT), where TE is ejector thrust, TN is the nozzle 

thrust and JT is the steady-state momentum flux due to the secondary flow. Experimental data 

shows that the thrust augmentation was influenced by L/d (the length of the ejector to the diameter 

of the nozzle), frequency, secondary flow Mach number and pulse strength. Both frequency and 

pulse strength have a positive effect on thrust augmentation.   
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Figure 2-15: Pulse valve mechanism used for generating oscillatory behaviour in primary flow 

[66]. 

 

A rotor-vane ejector using pressure-exchange concepts was investigated under both rotating and 

non-rotating conditions by Hong et al. [5], as illustrated in Figure 2-16. The pressure exchange 

process in which momentum from the primary flow is imparted to the secondary flow, is only 

available in an oscillatory (unsteady) flow, and  in contrast to the work of turbulent shear stresses 

of conventional steady flow ejectors, pressure exchange can theoretically be reversible, isentropic 



 

29 
 

and inherently non-dissipative [5]. Because the rotary vane was installed at the nozzle exit in an 

area of supersonic flow, shock losses will be present in this arrangement. The authors state that 

as this configuration is a new design, the mechanics of flow in this ejector is unknown. They 

fabricated 22 different vanes to evaluate different features of the flow in this ejector. They 

discussed opportunities to decrease limitations and achieve enhanced ejector performance. 

However, they recommended that many other parameters have to be investigated to obtain a 

suitable vane geometry.     

 

 

Figure 2-16: Rotor-vane pulsation system for a pressure-exchange ejector [5]. 

 

Earlier development of the pressure-exchange ejector concept was performed by Garris et al.  

[67] who introduced a radial arrangement and implemented a rotary nozzle as illustrated in  

Figure 2-17. The pressure exchange ejector configuration was intended to work on an entirely 

different principal relative to steady flow ejectors [67]. The authors sought to improve the COP 

by reducing the entropy rise normally associated with the dissipative shocks in the compression 

process of a conventional ejector through the use of a rotary nozzle radial ejector [67]. The 



 

30 
 

authors could not confirm their findings because the earlier concepts were not successful because 

of mechanical failure [67], [69] due to very high rotary speed (about 50000 rpm). Work on the 

rotary nozzle radial ejector concept exposed many problems with this concept, including 

mechanical failures, vibration, and a requirement of high precision components resulting in high 

costs. 

 

 

 

Figure 2-17: The rotary nozzle radial ejector concept of Garris et al. [67]. 

 

The Mach number effects of an unsteady ejector using the radial flow diffuser on fluid-to-fluid 

interactions have been investigated by Ababneh et al. [68] who argued that previous experimental 

studies on a similar configuration did not give meaningful data because of mechanical problems 

including failures in thrust bearings, seals and vibration and instabilities. In the study by Ababneh 

et al. [68], numerical simulations were performed on a configuration with 8 nozzles and a spin 
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angle of 10o from the meridian plane as illustrated in Figure 2-18, however, they did not support 

their findings with experimental data.  

 

 

Figure 2-18: The radial flow pressure-exchange ejector of Ababneh et al. [68]. 

 

 

2.4.5 Earlier Radial Ejector without Rotary Parts  

A radial ejector without rotary parts was designed and evaluated by [69]. In this concept, the flow 

is sandwiched between two flat plates. The primary flow enters the ejector duct from one side of 

the radial ejector and secondary flow from the other side. This concept is  shown in Figure 2-19. 

As it can be seen from this figure, at any selected separation of the diffuser plates, the spool 

location controls the primary and secondary mass flow rates. By moving the spool and adjusting 

the separation of the diffuser plates, the ejector worked as a variable geometry ejector and this 

concept has been successful in acting similarly to an ejector and working as a variable geometry 

ejector. The performance of the ejector is highly dependent on the spool position and the diffuser 

plate separation. Having the high speed primary flow adjacent to one of the diffuser plates is 

likely to induce relatively high frictional losses. The momentum dissipated through such 

frictional losses is therefore not available to be transferred into the acceleration of the secondary 
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stream, potentially resulting in compromised performance relative to a configuration in which 

the primary flow is not in direct contact with the diffuser plate. 

 

 

 

 

Figure 2-19: Sketch of variable geometry radial ejector [69]. 
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2.5 Computational Fluid Dynamics  

Computational Fluid Dynamics (CFD) has been proven as a successful tool in ejector flow 

analysis and performance improvement. This is achieved by the ability of CFD to simulate the 

flow field inside complex geometries.  

Many researchers have performed CFD simulations [26],  and have reported that the CFD 

analysis can predict the ejector performance with acceptable accuracy. Most of the studies 

achieved results showing an average error level of less than 10% [17], [26].  However, in some 

cases, larger discrepancies were reported [17] where the simulated entrainment ratio was not 

within 20% of experimental data. Ansys Fluent has been widely used for CFD simulation by 

researchers for ejector analysis. Table 2-2 shows a summary of the literature review regarding 

the use of Fluent in ejector simulations. 
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Table 2-2: Summary of literature review regarding the use of Fluent 

Researcher Fluent 

package 

Number of 

elements 

Turbulent model Model 

Varga et al. (2013)  Ansys 

Fluent 12 

26889 to 20080 RNG  k-ɛ 2 D 

Kim et al. (2006)  Fluent 3781 and 3858 to 

11200 

k-omega 2 D 

Chandra and Ahmed 

(2014)  

Fluent - realizable k-ɛ 2D 

Ababneh et al. (2009)  Fluent 

6.2.16 

- - 2D - 3D 

Sharifi et al. (2013)  Fluent 6.0 25780 - 2 D 

Yazdani et al. (2012) Fluent 12 80000 k-ɛ and Shear Stress 

(SST) 

2D 

Yen et al. (2013) Fluent 6.3 50000 realizable k-ɛ 

turbulence 

2D 

Zhu et al. (2009) Fluent 6.2 20000-54000 - 2D 

Yadav and Patwardhan 

(2008) 

Fluent 6.2. - standard k-ɛ 

turbulence k=ɛ=0.1 

2D 

 

As seen from the table, different turbulence models have been used in the literature. Bartosiewicz 

et al. [27] compared k-ω, k-ω SST and RNG turbulence models and concluded that k-ω SST 

performed better in comparison to other models. They argue that each turbulence model might 

have a different prediction of flow features and this finding may not be applicable to other cases. 

Hemidi et al. [26] concluded that over a range of operating conditions, the overall results show 

that k-ω model agreed better with ejector experimental data in comparison with k-ω SST model.   

Application of CFD in analysing radial ejectors is limited. A rotary nozzle semi-radial ejector 

consisting of 8 nozzles with spine angle of 10o was investigated by the Fluent package and 

although there was the lack of experimental data on the actual configuration, validation of the 
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results of the CFD simulations was achieved by comparing the CFD results with a proven 

analytical solution and conducting a mesh dependency analysis [67].    

 

2.6 Conclusion 

Many attempts have been made to improve supersonic ejector performance. Different approaches 

have been adopted in pursuit of this goal.  Among the findings, variable geometry and oscillatory 

primary stream pressure are identified as potential methods to improve performance and 

efficiency. It is also concluded that operating conditions significantly affect the ejector 

performance in terms of entrainment ratio and pressure lift.  

Most existing ejectors have an axisymmetric and axial flow path. Many researchers have adjusted 

the location of the primary nozzle and even altered the primary nozzle throat area but the form 

of axial ejectors impedes the effective, efficient and practical application of variable geometry 

concepts.  

Radial ejector concepts have previously appeared in the literature, but primarily in the context of 

unsteady flow ejectors relying on pressure work to achieve the compression effect. One aim of 

such work has been to remove the strong normal shock in the diffuser section of typical ejectors. 

Researchers continued working on rotary concepts to achieve a positive effect from the 

oscillatory behaviour in the primary flow. The earlier concepts were not successful because of 

mechanical failure from the very high rotary speeds.  

The radial ejector concept proposed in this thesis is similar to the axial flow ejector but 

transformed into a radial arrangement.  The concept does not employ a rotary nozzle. The design 

of the radial flow ejector adopts certain geometric characteristics of a conventional ejector 

arrangement and an existing physical axial flow ejector was used as a benchmark. The radial 

ejector introduced herein offers the capacity to easily alter the nozzle and ejector throat areas by 

simply changing the separation of the nozzle surfaces and/or the duct walls.  



 

36 
 

Computational Fluid Dynamic (CFD) simulation has been proven as a successful tool in ejector 

flow analysis and performance improvement. Many researchers have used CFD models and 

reported that the CFD analysis can predict the ejector performance with acceptable accuracy. 

Ansys Fluent has been widely used by researchers for ejector analysis. This CFD tool has been 

used in this study in order to analyse the radial ejector performance and flow features inside the 

radial ejector.    
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3 Chapter 3                                                                                             

Investigation of Radial Flow Ejector Concept through CFD Analysis 

 

 

To achieve higher performance from ejectors at some working conditions, it may be possible to 

develop practical ejectors that use variable geometry.  However, most existing ejectors typically 

use an axisymmetric and axial flow path and this form restricts the practical implementation of 

variable geometry. A new ejector configuration that employs a radial flow path potentially allows 

for a variable geometry ejector in a practical configuration.  For such a radial flow configuration, 

it is conceivable that geometric adjustment of the ejector could be made during operation in order 

to optimize performance over a range of different conditions. This radial flow ejector concept 

has been investigated using Computational Fluid Dynamic (CFD) analysis with Ansys Fluent 

software. Two dimensional (axisymmetric) CFD models were generated to compare the radial 

flow concept and an equivalent axial flow configuration. The CFD results reveal that the radial 

flow configuration is viable and can produce comparable performance to axial flow ejectors.  

 

3.1 Introduction  

To improve ejector performance through simulation of ejector flow behaviour, Computational 

Fluid Dynamics (CFD) has been widely employed in recent decades. Many researchers have 

reported the validation of CFD models using experimental data [26], [30], [70]. It has been 

claimed that CFD analysis can predict ejector performance with an acceptable error [71]; 

representative average error levels in some of the simulations are reported to be less than 10% 

[17], [26], although, higher magnitudes of error have been reported in [17] where the simulated 
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entrainment ratio was only within 20% of the experimental data. CFD simulation using 

commercial software such as Fluent should at least be sufficiently reliable to determine the 

viability of the radial flow ejector concept.  

The idea of a radial ejector was first introduced by Ng and Otis [69] in 1979 and in their ejector 

arrangement, the secondary flow entered the radial diffuser from below, and the primary flow 

entered the radial diffuser from above such that the high speed primary flow was adjacent to the 

upper diffuser plate.  In an other radial ejector concept introduced in 2009, an ejector was 

arranged with eight rotary nozzles and a radial diffuser. Although there was lack of experimental 

data on the actual configuration, validation of the results of the CFD simulations were achieved 

by comparing the CFD results with a proven analytical solution and conducting a mesh 

dependency analysis  [72], [18].  

The radial ejector concept proposed in this paper is similar to the axial flow ejector, but 

transformed into a radial arrangement.  The concept does not employ a rotary nozzle and unlike 

prior radial ejector work, the primary nozzle is centred within the ejector duct so that secondary 

flow is entrained from both sides. The design of the radial flow ejector adopts certain geometric 

characteristics of a conventional ejector arrangement and an existing physical axial flow ejector 

was used as a benchmark. The radial ejector introduced herein offers the capacity to easily alter 

the nozzle and ejector throat areas by simply changing the separation of the nozzle surfaces 

and/or the duct walls. This paper introduces this radial ejector arrangement and presents a 

comparative CFD analysis of the radial ejector concept and an equivalent axial concept.  

 

3.2 Methodology  

Established axial flow ejector design procedures based on empirical results and one-dimensional 

gas dynamic relations were adopted where possible during the design of the radial flow path, but 
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significant departures from these established strategies have been necessary to achieve the 

desired performance in the radial configuration.  In the radial configuration, the primary supply 

expands in the supersonic radial flow nozzle, and this expanding disk of primary flow entrains 

the secondary flow from the inlets positioned on either side of the expanding primary flow.  An 

illustration showing flow paths in the radial ejector is presented in Figure 3-1.   

 

Figure 3-1: Illustration of flow inlets and outlets within a radial ejector. 

 

The design of the radial ejector in this work loosely follows the semi-empirical design method 

for axial flow ejectors specified in [50] with necessary modifications to accommodate the radial 

nature of the flow.  

Table 3-1 presents the geometric characteristics of the axial and radial ejector designed for this 

work.  The target was to design a radial ejector equivalent to a benchmark axial ejector, which in 

the present work was the steam ejector design in [13]. However, some of the radial ejector 

features could not be completely equivalent to the axial flow benchmark case.  
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Table 3-1: Geometric characteristics of the radial ejector and the equivalent axial ejector. 

Characteristic Radial flow Axial flow 

Nozzle throat area (mm2) 8.792 8.54 

Nozzle exit area (mm2) 179 154 

Nozzle area ratio 20 18 

Divergent part length (mm) 9.5 59.5 

Divergent half angle 5o 5o 

Ejector throat area (mm2) 498 506 

Ejector area ratio 58.24 59 

Ejector convergent half angle 9o 10o 

Ejector divergent half angle 0o 3.5o 

 

3.3 CFD Model Arrangement and Validation  

Two CFD models were created, one for the axial benchmark configuration and the other for the 

radial design that was intended to produce similar performance. Ansys Fluent 14.5 was used for 

the CFD simulation. A mesh independence analysis was performed for both cases. CFD 

simulations in the benchmark axial ejector configuration have previously been validated, 

including an assessment of mesh independence [13]. In the work of  [13], the performance of 

course, medium and fine meshes was examined and the medium mesh with 19832 elements 

showed differences in static pressure and mass flow rate of less than 0.5% in comparison with 

the fine mesh. A similar mesh arrangement was also used in this paper for the axial ejector. For 

the radial design, different meshes of between 30000 and 80000 elements were produced. Based 

on the mesh independence analysis, the number of elements chosen for the simulations reported 

in this chapter was 51451, because static pressure results and entrainment ratio results are in 

agreement with results from the mesh with 79979 elements to within 0.45 %. As the radial ejector 
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has a complicated shape and there was no experimental or numerical background for this design, 

a relatively fine mesh was applied. 

Ansys Fluent 14.5 employs a finite volume technique in order to convert all governing equations 

to algebraic forms and the resulting equations of mass, momentum and energy are solved in this 

CFD model. The k-ω SST turbulence model has been very effective in other ejector simulations 

[15] and was employed in this work.  All of the applied equations are reported in [73].  The CFD 

analysis was conducted using 2D models with air treated as an ideal gas in a compressible steady-

state axisymmetric model. The primary and secondary inlets were set as ‘pressure-inlet’. The 

ejector exit was set as ‘pressure-outlet’. Primary pressures of 160, 200 and 250 kPa were selected 

for the motive fluid conditions. The secondary pressures of 1.8, 2.5 and 3.2 kPa were used for 

the secondary inlet condition. Different outlet pressures ranging from 2 to 7 kPa were used. A 

density-based implicit solver was chosen. This solver has been shown to be a suitable solver for 

supersonic flow fields [74], [75]. A second order upwind scheme was selected to discretise the 

equations to achieve higher accuracy at cell faces [73]. To define convergence of the solution, 

all residuals for calculations must fall to a specific level [75], which, for the present work was 

specified as less than 10-5.   

CFD simulations of the axial flow ejector configuration have been validated experimentally in 

the case of steam flows by [13] and [73]. The same CFD modelling has been used for the axial 

and radial configurations in the present work: the choice of solver, the turbulence model, the 

working fluid, the boundary conditions and convergence criteria were the same for both 

configurations. Furthermore, similar levels of mesh independence have been demonstrated for 

both the axial and radial configurations.  Therefore it is expected that simulation results from the 

radial flow ejector configuration will reflect the real flow through such an ejector to a degree 

similar to that achieved with the axial flow ejector simulations.  
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3.4 Results and Discussion  

Figure 3-2 shows the Mach number contours of axial and radial patterns obtained by the CFD 

analysis. The primary pressure, secondary pressure and exit pressure were set at 160, 1.8 and 2.5 

kPa respectively. The simulation results produce the expected features including the sonic 

velocity at the nozzle throat and supersonic flow in the divergent section of the nozzle.  The 

nozzle exit Mach number is slightly higher than 4.9 for the axial ejector and about 4.4 for radial 

ejector.  The nozzle for the radial ejector actually had a slightly higher area ratio than the axial 

ejector, yet the nozzle exit Mach number is lower.  The origin of this difference appears to be 

flow separation from the nozzle wall towards the exit of the radial nozzle that does not occur to 

the same extent in the case of the axial nozzle as illustrated in Figure 3-2, generally consistent 

with analytical results based on the geometric area ratio for the nozzles.  

 

 

Figure 3-2: Contours of Mach number in the radial and axial configurations for primary pressure 

of 160 kPa, secondary pressure of 1.8 kPa and exit pressure of 2.5 kPa.  The physical scale of the 

radial ejector illustrated here is approximately 7 times that of the axial ejector shown. 
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To evaluate the exit pressure effects, the primary pressure and secondary pressure were 

maintained at 160 kPa and 1.8 kPa while the ejector exit pressure was varied from 1.8 to 5 kPa. 

The performance of the ejectors in terms of the entrainment ratio was defined from these 

simulations.  The ejector entrainment ratio is the mass flow rate of the secondary stream divided 

by the mass flow rate of the primary stream. Figure 3-3 shows the characteristic curves 

(entrainment ratio versus exit pressure) for axial and radial configurations for primary and 

secondary pressures of 160 and 1.8 kPa, respectively.  At this working condition, the maximum 

entrainment ratio of the radial configuration was about 2% lower than the axial configuration. 

The critical pressure (where the entrainment ratio starts to decrease) and the malfunction pressure 

(where the entrainment ratio drops to zero) for the radial configuration were both slightly lower 

than axial configuration. It was shown that the total length of the ejector plays an important role 

in establishing the critical and malfunction pressures [50], [49], [48]. The radial ejector has a 

short flow path compared to the axial configuration, possibly contributing to the lower critical 

and malfunction pressures at this operating condition.  

 

Figure 3-3: Characteristic curves for axial and radial configurations for primary and secondary 

pressures of 160 and 1.8 kPa respectively. 



 

44 
 

 

Figure 3-4 shows the contours of Mach number for the exit pressure of 3.5 kPa. By comparing 

contours of Mach numbers for exit pressures of 3.5 kPa (Figure 3-4) and 2.5 kPa (Figure 3-2), it 

is observed that increasing the exit pressure moves the position of the shock structures upstream. 

This effect is also reported elsewhere [74], [75].  

 

Figure 3-4: Contours of Mach number in the radial and axial configurations for primary pressure 

of 160 kPa, secondary pressure of 1.8 kPa and exit pressure of 3.5 kPa. The physical scale of the 

radial ejector illustrated here is approximately 7 times that of the axial ejector shown. 

 

To determine the effect of primary pressure on both ejector configurations, CFD simulations 

were performed for higher primary pressures of 200 and 250 kPa. Figure 3-5 shows that by 

increasing primary pressure, both ejector configurations can achieve higher critical pressures. 

However, the entrainment ratio decreases with increasing primary pressure. One explanation for 

this effect is that increasing primary pressure leads to an under-expanded condition for the 

primary jet at the nozzle exit resulting in further expansion of the primary flow downstream of 

the nozzle, and resulting in a smaller effective flow area available for the secondary stream [75]. 
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At higher primary pressure, the difference between the entrainment ratio for the axial and radial 

configurations approaches zero. The difference in exit pressure at malfunction also decreases and 

at higher primary flow pressures, the radial ejector actually shows a slightly better performance.  

 

Figure 3-5: Characteristic curves for axial and radial configurations for different primary 

pressures and for the secondary pressure fixed at 1.8 kPa. 

 

Figure 3-6 shows the contours of Mach number for the primary, secondary and exit pressure of 

250, 1.8 and 3.5 kPa, respectively. By comparing contours of Mach number for primary pressures 

of 160 kPa (Figure 3-2) and 250 kPa (Figure 3-6), it is observed that increasing the primary 

pressure moves the position of the shock structures downstream. This effect is also mentioned 

elsewhere [74], [75].  
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Figure 3-6: Contours of Mach number in the radial and axial configurations for primary pressure 

of 250 kPa, secondary pressure of 1.8 kPa and back pressure of 3.5 kPa. The physical scale of 

the radial ejector illustrated here is approximately 7 times that of the axial ejector shown. 

 

Figure 3-7 shows the static wall pressure along the ejector for axial and radial configurations for 

primary and secondary pressures of 250 and 1.8 kPa respectively and different back pressures. 

The overall trend in the static pressure distribution is similar. However, there are some 

differences. The axial configuration shows a gradual reduction in the pressure as the location of 

the minimum pressure is approached, whereas the radial pattern shows a relatively sharp decrease 

in the pressure.  

By increasing the back pressure in both configurations, the position of the compression moves 

upstream. In the radial ejector, by increasing back pressure, the static wall pressure on the upper 

and lower walls become slightly different. It seems the flow inside the radial duct is not 

completely symmetric across the centre-plane of the duct and these asymmetries are amplified 

by increased back pressure – compare the different line types in part (b) of Figure 3-7. 
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Figure 3-7: Static wall pressure within (a) the axial, and (b) the radial configurations. 

 

3.5 Conclusion  

CFD simulations using Ansys Fluent have been performed for a supersonic radial ejector 

configuration working with air.  The radial ejector simulations have been compared with an 

equivalent, conventional axial configuration. The radial ejector produces similar performance to 

the axial configuration. For lower primary pressures, the axial configuration shows slightly better 

performance than the radial configuration. At higher primary pressures, the radial configuration 

has comparable performance to the axial configuration and at some operating conditions, the 

radial configuration is actually more effective.  
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Results from the CFD simulations of the radial ejector configuration are encouraging.  To 

progress the radial ejector concept towards a physical solution, experiments on a prototype 

configuration are required.  Further simulations using validation data from such a prototype 

would also be warranted in order to confidently use the CFD as a design and optimisation tool 

for the radial configuration.  

The primary appeal of the radial ejector configuration is that it provides convenient access for 

adjustment of the nozzle and ejector throat sizes with prospects for practical implementation.  

Because it appears that a radial ejector can achieve similar performance to a conventional axial 

ejector, the radial concept warrants further work and shows potential for application in systems 

where varying operating conditions exist. 

 

 

  

 



 

49 
 

 

 

4 Chapter 4                                                                                                           

CFD Study of a Variable Flow Geometry Radial Ejector  

  

 

 

 Tuning the flow rates of axisymmetric axial flow ejectors to match required operating conditions 

is difficult because altering a cylindrical throat size without introducing flow losses from 

blockage effects is difficult.  However, the geometric adjustment of a radial ejector could be 

made by simply changing the separation of the radial ejector duct walls and/or the separation of 

the nozzle walls in order to optimize performance over a range of different conditions. The effects 

of such changes on the performance of a radial ejector have been investigated using a 

Computational Fluid Dynamic (CFD) analysis with Ansys Fluent software. Axisymmetric CFD 

models were generated to assess performance for a primary nozzle throat area of 8.792 mm2 and 

for ejector throat separations of 2.2 mm, 2.4 mm and 3.0 mm, corresponding to ejector throat 

areas of 497, 543 and 678 mm2, respectively. The CFD analysis reveals that changes in ejector 

performance can be achieved by changing the ejector duct’s separation. An increase of 34% in 

entrainment ratio can be achieved by increasing the ejector throat separation from 2.2 mm to 3.0 

mm at fixed primary and secondary pressures of 160 kPa and 1.8 kPa, respectively. If an increase 

in the ejector critical back pressure is needed, it could be achieved by decreasing the ejector duct 

separation. An increase in the critical back pressure in excess of 40% can be achieved by 

decreasing the ejector throat separation from 3.0 mm to 2.2 mm at primary and secondary 

pressures of 250 and 1.8 kPa, respectively. 
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4.1 Introduction 

Traditionally, ejectors are configured as cylindrical pipes with conical transitions between the 

pipes of different diameters.  Such ejector configurations are well-established and can be 

integrated with existing pipe-work through the use of standard flanges and fittings.  However, 

the cylindrical pipe arrangement makes it difficult to change the throat size of such ejectors to 

match the performance of the ejector to the necessary operating condition for the ejector. 

Although the radial configuration of [76] was introduced as a simple approach to achieve 

geometric variability in the ejector, no analysis has yet been reported to demonstrate the 

effectiveness of the concept.  This chapter presents CFD simulations that quantify the sensitivity 

of radial flow ejector performance to geometry variations that can be achieved by altering the 

separation of the plates that form the walls of the ejector duct.   

 

4.2 Approach 

The design of a radial ejector by adapting axial flow ejector design methods [50], [13] to suit the 

radial configuration was presented in [76]. The radial ejector described in [76] forms the basis 

for the present work.  Figure 4-1 provides a schematic illustration the ejector primary nozzle and 

the plates that form the ejector duct showing the separation of the ducts (h). The separation is the 

minimum distance between the upper and lower ejector plates. By changing the separation, the 

ejector area is changed.  
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Figure 4-1:  The radial ejector duct showing the radial ejector duct separation. 

 

Figure 4-2 shows the radial ejector flow cross sectional areas for ejector duct separations of 2.2, 

2.4 and 3.0 mm. The ejector throat areas for separation of 2.2, 2.4 and 3 mm are 497, 543 and 

678 mm2 respectively and the corresponding ejector area ratios are 56.5, 61.8 and 77.  

 

Figure 4-2: Variation of the radial ejector cross-sectional flow area with distance from the 

primary throat. 

h: Ejector 
Separation 
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Three axisymmetric (two dimensional) CFD models were created for this study and Ansys Fluent 

14.5 was used for the simulations. A mesh independence analysis was performed for the model 

in previous work [76] and based on those results, the total number of elements chosen for the 

simulations in this study were 51451, 53126 and 59324 for the 2.2, 2.4 and 3.0 mm throat 

separations respectively. The details of mesh independence analysis and validation strategy has 

been reported in [76].   

The working fluid for the simulations was air, treated as an ideal gas.  The primary and secondary 

inlets were set as ‘pressure-inlet’ and the ejector exit was set as a ‘pressure-outlet’. Primary 

pressures of 160, 200 and 250 kPa were selected for the motive fluid conditions and the secondary 

pressures of 1.8, 2.5 and 3.2 kPa were used for the secondary inlet condition. Different outlet 

pressures ranging from 2 to 7 kPa were applied. The k-ω SST turbulence model has shown 

consistent results in other ejector simulations [15] and has been used in this study as well.   

The density-based implicit solver, which has been verified as a suitable solver for supersonic 

flow fields [74], [75], has been employed in this study. A second order upwind scheme was 

selected to discretise the equations to achieve higher accuracy at cell faces [73]. To define 

convergence of the solution, all residuals for calculations must fall to a specific level [75], which, 

for the present work was specified as less than 10−5.  Essentially the same CFD modelling has 

been used for the three different separations of the plates that form the ejector duct in the present 

work: the choice of solver, the turbulence model, the working fluid, the boundary conditions and 

convergence criteria were the same for all simulations.  Therefore, it is expected that simulation 

results from the three different ejectors will reflect the real flow with similar accuracy to that 

achieved with the previous study [76].  
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4.3 Results and Discussion 

Figure 4-3 shows the Mach number contours for the three separations of 2.2, 2.4 and 3.0 mm at 

the primary pressure of 160 kPa, secondary pressure of 1.8 kPa and exit pressure of 2.5 kPa. For 

all three cases, the expected flow features – such as sonic velocity at the primary nozzle throat 

and supersonic flow in the divergent part – have been obtain by CFD simulations. 

The effects of exit pressure have been evaluated using CFD for the primary and secondary 

pressure of 160 kPa and 1.8 kPa respectively and different ejector exit pressure values from 1.8 

to 5 kPa. The ejector performance in terms of entrainment ratio (ER) is presented in Figure 4-4 

for separations of 2.2, 2.4 and 3.0 mm.  At this working condition, the maximum entrainment 

ratio of 0.82 was obtained for a separation of 3.0 mm. Entrainment ratios of 0.67 and 0.61 were 

obtained for separations of 2.4 and 2.2 mm respectively. By analogy to axial flow ejector cases 

such as discussed in [75], an explanation for this effect is that a larger effective secondary flow 

area is available for larger plate separations.  

The critical pressure (where the entrainment ratio starts to decrease with increasing exit pressure) 

and the malfunction pressure (where the entrainment ratio drops to zero) are also affected by the 

duct separations. The lowest malfunction pressure occurred for a plate separation of 3 mm for 

this working condition. The critical pressure was increased by about 15 % when the separation 

was decreased from 3 mm to 2.4 mm.  The malfunction pressure was likewise increased by about 

7 % when the separation was decreased from 3 mm to 2.4 mm.  However, further reductions in 

the plate separation from 2.4 mm to 2.2 mm did not yield a significant change in either the critical 

pressure or the malfunction pressure.  Previous work has shown that the total length of the ejector 

plays an important role in the critical and malfunction pressures [50], [49], [48], however, the 

total length of all three ejectors with different duct separations are the same in the present work. 
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Figure 4-3: Contours of Mach number for primary pressure of 160 kPa, secondary pressure of 

1.8 kPa and exit pressure of 2.5 kPa for minimum plate separations of (a) 2.2 mm; (b) 2.4 mm; 

and (c) 3.0 mm. 

 

 

 

Figure 4-4: Characteristic curves for radial ejector for 2.2, 2.4 and 3mm separations at primary 

and secondary pressures of 160 and 1.8 kPa respectively. 

 

Figure 4-5 presents the contours of Mach number for the exit pressure of 4.5 kPa. By comparing 

contours of Mach numbers for exit pressures of 4.5 kPa (Figure 4-5) and 2.5 kPa (Figure 4-3), it 

is observed that increasing the exit pressure moves the position of the shock structures upstream. 

This effect is also reported elsewhere [76], [75], [74]. Figure 4-5 show that for the 3 mm 

(a) 2.2 mm  

(b) 2.4 mm  

(c) 3.0 mm  
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separation, asymmetric flow in the ejector occurs with an exit pressure of 4.5 kPa. A similar  

behaviour is shown for separation of 2.2 mm, but for the intermediate separation of 2.4 mm, the 

flow is also un-choked but retains a higher degree of symmetry than for the 2.2 and 3.0 mm 

separation cases. 

To find the effect of primary pressure on the radial ejector with different separations, higher 

primary pressures of 200 and 250 kPa were analysed by CFD model. Figure 4-6 shows the radial 

ejector entrainment ratios for primary pressures of 200 and 250 kPa. It can be seen that, similar 

to primary pressure of 160 kPa shown in Figure 4-4, by increasing the ejector duct separation, 

the entrainment ratio increases.  These results show that at the low primary pressure of 160 kPa, 

increasing the separation has largest effects on the maximum entrainment ratios. At this working 

condition, by increasing separation from 2.2 to 3 mm, the maximum entrainment ratio increases 

about 34% while at both higher primary pressures of 200 and 250 kPa the maximum entrainment 

ratio increase is about 29%. The effects of ejector duct separation on the critical back pressure 

and malfunction pressure are more significant at the higher primary stream pressures. By 

decreasing the separation from 3 to 2.4 mm, the critical back pressure increases by approximately 

15%, 30%, and 40% for primary stream pressures of 160, 200, and 250 kPa, respectively.    
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Figure 4-5: Contours of Mach number for primary pressure of 160 kPa, secondary pressure of 

1.8 kPa and exit pressure of 4.5 kPa with throat separations of (a) 2.2 mm; (b) 2.4 mm; and (c) 3 

mm. 

 

  

(a) 2.2 mm  

(b) 2.4 mm  

(c) 3.0 mm  
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Figure 4-6: Characteristic curves for separations of 2.2, 2.4 and 3 mm for the secondary pressure 

fixed at 1.8 kPa and for primary pressures of (a) 200 kPa and (b) 250 kPa. 

 

Figure 4-7 shows the static wall pressure along the ejector for separations of 2.2, 2.4 and 3 mm 

for primary and secondary pressures of 160 and 1.8 kPa respectively and back pressures of 2.5 

and 4.0 kPa. The overall trend of the static pressure distribution is similar to the distributions 

reported by [76]. Higher ejector exit pressures tend to move the location of the pressure rise 

upstream.  At the primary pressure of 160 kPa, by increasing the ejector duct separation, the 

minimum static pressure along the wall of the ejector decreases and the location of the pressure 

(a) 

(b) 
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rise tends to move downstream.  For the higher back pressure case of 4 kPa, ejectors with 

separations of 2.2 and 2.4 experience a pressure rise that is initiated in the mixing section, but by 

increasing the separation to 3 mm, the location of the pressure rise shifts downstream.  

Figure 4-8 shows the static wall pressure along the ejector for separations of 2.2, 2.4 and 3 mm 

for primary and secondary pressures of 250 and 1.8 kPa respectively and back pressures of 3.5 

and 5.5 kPa. As was the case for the 160 kPa primary pressure, increasing the exit pressure in the 

250 kPa primary pressure simulations tends to move the location of the pressure rise within the 

ejector duct upstream.  However, in contrast to the results at the primary pressure of 160 kPa, 

increasing the duct separation in the case of the primary pressure of 250 kPa actually tends to 

cause the location of the pressure rise within the ejector to move upstream.   

 

 

Figure 4-7: Static wall pressure for primary pressure of 160 kPa and exit pressures of 2.5 and 

4 kPa. 
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Figure 4-8: Static wall pressure for primary pressure of 250 kPa and exit pressures of 3.5 and 5.5 

kPa. 

 

 

4.4 Conclusion 

CFD simulations using Ansys-Fluent have been performed for an adjustable geometry supersonic 

radial ejector configuration working with air.  Three different ejector flow areas were created by 

changing the separation of the radial ejector ducts; separations of 2.2 mm, 2.4 mm, and 3 mm 

were simulated. The CFD results reveal that by simply changing the separation of ejector ducts, 

different ejector performance in terms of entrainment ratio and critical back pressure could be 

achieved.  

Higher entrainment ratios can be achieved by increasing the radial ejector separation. In the 

current configuration, an entrainment ratio increase of 34% was achieved by increasing the 

ejector duct separation from 2.2 mm to 3 mm, but increasing the separation typically reduces the 

critical back pressure that can be achieved.  By decreasing the ejector duct separation from 3 mm 

to 2.2 mm, increases in the critical back pressure of in excess of 40% were achieved at the highest 

primary pressure condition.  
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Results from the CFD simulations suggest that a variable area ejector can be achieved through 

the radial ejector configuration.  To progress the variable radial ejector concept towards a 

physical solution, experiments on a prototype are required.  Further simulations using validation 

data from such a prototype would also be warranted in order to confidently use the CFD as a 

design and optimization tool for the radial configuration.  
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5 Chapter 5                                                                                                          

Experimental Evaluation of a New Radial Ejector Design  

 

 

A radial flow ejector that produces comparable performance to an axial flow ejector potentially 

offers a broader operating envelope through adjustable throat sizes. Design of a radial ejector 

was undertaken and the process was informed by empirical axial flow ejector design procedures. 

Experiments on a prototype configuration have quantified the ejector performance. The prototype 

radial flow ejector area ratio was 59 and when operating with air in both motive and suction 

streams, the ejector produced entrainment ratios between 0.95 and 0.24 for expansion ratios 

between 50 and 139.  Critical pressure lift ratios around 1.5 were obtained across this range of 

working conditions. The entrainment ratio achieved in the prototype radial ejector agreed well 

with those from a quasi-one-dimensional gas dynamic model that was tuned to match previously 

published, axial flow ejector data, the average error being less than 10%. However, the pressure 

lift ratios obtained from the tuned quasi-one-dimensional model overestimate the pressure lift 

ratios of the prototype. Radial flow ejectors deserve further attention, with more extensive 

modelling and prototype testing to optimise performance.   

 

5.1 Introduction 

Ejectors have many applications including refrigeration and air conditioning. Many industrial 

applications for pumping take advantage of ejectors’ long service life, resistance to wear and 

ability to pump from low pressures. Ejectors employ a jet of high pressure primary fluid to induce 

a low pressure secondary flow and to compress the secondary flow to a higher pressure.  In the 

case of gas or vapour ejectors, as the primary flow is expanded through the nozzle, a partial 
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vacuum is created which induces the secondary flow and mixing occurs between the primary and 

secondary flows downstream of the nozzle [29]. The transfer of momentum from the primary to 

the secondary flow enables the static pressure of secondary flow in the diffuser to reach a higher 

value than it had at the secondary inlet [4], [6]. Figure 5-1 presents an axisymmetric ejector 

schematic showing the general flow directions which are predominantly in the axial direction.  

 

 

Figure 5-1: Illustration of an axisymmetric ejector with a predominantly axial flow path. 

 

An important area of study in ejector performance improvement is employing unsteady primary 

flow.  The design of, and additions to, the primary nozzle for the purpose of producing unsteady 

primary flow might improve the system performance [68]. Variability of the nozzle throat cross-

sectional area could be a method for generating unsteady primary flow at the nozzle, and using 

loud speakers [18], and ‘novel wall-mounted cavities’  [65] are examples of other pulsation 

systems used for mixing enhancement in ejectors.  

The radial flow ejector concept was introduced by Ng and Otis [69] and in their arrangement, 

disks with an ajustable separation formed the upper and lower boundaries of the diffuser, the 

primary flow entered the ejector adjacent to the upper disk, and the secondary flow entered 

adjacent to the lower disk.  A spool was used to adjust the relative flow areas available for entry 

of the primary and secondary streams to the ejector.  Since the introductory work of [69], the 
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concept of radial flow ejectors has been revisited, but in the context of pressure exchange devices: 

a rotary nozzle radial ejector was introduced by Garris et al. [67].  Because of this identified 

benefit and the positive effect of the oscillatory behaviour of the primary flow, other rotary 

concepts have also been investigated [66]. The earlier concepts were not successful because of 

mechanical failure [64] due to very high rotary speed which was about 50000 rpm. Work on the 

rotary nozzle radial ejector concept exposed many problems with this concept, including 

mechanical failures, vibration, and a requirment of high precision components resulting in high 

costs.  

The concept for a radial ejector proposed in this paper does not use a rotary nozzle. The proposed 

ejector does not have rotating parts, so the issue of mechanical failure resulting from high rotary 

speeds is not relevant.  The radial ejector investigated in this paper is also different from the 

original device of Ng and Otis [69] in that the primary flow enters the ejector through a centrally-

positioned nozzle so that the high speed flow does not enter the diffuser adjacent to one of the 

diffuser disks. 

The main difference between traditional ejector designs and the proposed radial ejector is the 

pattern of fluid flow. In the traditional axial ejector arrangement, the working fluid enters the 

nozzle and passes through the ejector in an axial direction as illustrated in Figure 5-1; the nozzle 

and suction chamber, the throat and diffuser are all co-axial in a traditional ejector arrangement. 

The new radial ejector generates radial flow patterns as illustrated in Figure 5-2: the primary and 

secondary flows are accelerated principally in the radial direction and deceleration in the diffuser 

also occurs in the radial direction; the flow is sandwiched between disk-like surfaces that form 

the primary nozzle and the ejector duct.  

Axial flow ejectors typically have primary nozzles and ejector ducts that are circular in cross 

section which inhibits changes in throat area in a mechanically reliable and aerodynamically 

efficient manner.  The introduction of a contoured centre-body that can be traversed along the 
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axis of the primary nozzle and/or the ejector duct can be used to alter the throat areas in an axial 

flow ejector but aerodynamic losses will accompany such configurations.  In contrast, the radial 

ejector is a promising solution that enables variability in the throat sizes without introducing large 

pressure loss, as the geometry change is simply achieved by changing the separation of the nozzle 

surfaces and/or the duct walls.  The work discussed below presents experimental evaluation of a 

prototype radial ejector.  

 

5.2 Radial Ejector Design  

5.2.1 Overall Configuration 

The design of the radial ejector followed traditional axial-flow ejector design rules [50], [49], 

interpreted in the context of the new radial ejector geometry. An axial flow ejector designed by 

Al-Doori [13] was also used as a benchmark arrangement, and the design targets for the radial 

flow ejector were chosen to match Al-Doori’s system. The general arrangement of the radial 

ejector is illustrated in Figure 5-2. 

 

Figure 5-2:  Illustration of an ejector with a predominantly radial flow path: the radial ejector. 
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5.2.2 Supersonic Nozzle 

The supersonic nozzle is a critical part of gas or vapour ejector systems, so special consideration 

has been given to the design of the radial supersonic nozzle. This supersonic nozzle is similar to 

an axial  nozzle in that it has 4 different sections: (1) uniform cross-sectional area inlet; (2) 

convergent section; (3) throat; and (4) divergent section. Figure 5-3 part (a) shows the radial 

nozzle cross section and in part (b) the axial nozzle cross section is shown.  Figure 5-3 presents 

the geometric characteristics of the benchmark axial flow supersonic nozzle and the radial flow 

supersonic nozzle. The discussion that follows describes the design decisions that led to the 

specifications in Table 5-1. 

 

Figure 5-3:  Illustration showing cross sections of primary nozzle features in the case of (a) radial 

flow supersonic nozzle; and (b) axial flow supersonic nozzle. 

 

In supersonic axial nozzles, the length of the uniform cross-sectional area inlet is recommended 

to be more than 10 times the throat diameter [41]. In the proposed radial configuration, the 

separation of the nozzle at the throat was specified as 0.4 mm at a radius of 3.5 mm, giving an 

equivalent axisymmetric throat diameter was 3.35 mm.  The length of the uniform cross-sectional 

area inlet upstream of the subsonic contraction was set to 30 mm, in an effort to accommodate 

the uniform cross-sectional area inlet requirement, but this length was also limited by fabrication 

constraints.  

For choked primary nozzle operating conditions, the mass flow rate through the supersonic 

nozzle is essentially proporational to the nozzle throat area [77]. The nozzle throat area of the 
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radial ejector was chosen as 8.8 mm2, a value that is 9% larger than that of the axial flow 

benchmark nozzle. A larger throat area was selected for the radial nozzle to accommodate the 

slightly lower discharge coefficient of the radial nozzle anticipated due to the sharp flow direction 

changes and the increased surface area in the convergent part of the radial nozzle. Fabrication 

restrictions based on achievable strength and machinability of the stem of the lower portion of 

the radial nozzle also constrained the radial supersonic nozzle throat size.  

The required nozzle exit Mach number was defined based on the benchmark axial flow nozzle, 

which itself was designed using traditional ejector design procedures.  The exit area of the radial 

nozzle was chosen as 180 mm2 which is about 2.4% larger than the axial flow nozzle, and resulted 

in an area ratio for the radial nozzle of 20.4, whereas the area ratio of the benchmark conical 

nozzle was 18.1, as indicated in Table 5-1.   

Convergent and divergent angles and the nozzle area ratio (A/A*) have a strong impact on the 

uniformity of the nozzle exit flow and its Mach number [44], [46]. To improve the uniformity of 

the flow at the nozzle exit, the divergent angle should be small, but to create the desired nozzle 

area ratio with low friction losses, a larger angle is required [78]. Therefore, a compromise in the 

selection of the divergent angle is required.  The divergent angle of the radial nozzle was chosen 

as 5o which is equal to the axial benchmark.  The radial length of the divergent section of radial 

supersonic nozzle was therefore determined to be 9.5 mm, which is significantly less than the 

axial benchmark. Figure 5-4 illustrates the variation in cross sectional flow area for the radial 

and axial ejectors; the cross sectional area variation for the supersonic nozzle in each case follows 

a very similar profile, although the flow path length of the radial nozzle is much shorter than the 

axial nozzle. 

The difference in supersonic nozzle length, in combination with the other characteristics of the 

radial nozzle, creates a very low contact area (the ‘wetted surface’) between the flow and nozzle 

body in the divergent section, relative to that in the axial supersonic nozzle, as illustrated in 
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Figure 5-5. The wetted area reported in Table 5-1 and illustrated in Figure 5-5 for both nozzles 

refers to the area downstream of the nozzle throat. For given flow conditions, a lower wetted area 

will decrease frictional losses between the flow and the nozzle surface.   
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Table 5-1: Fundamental dimensions and derived geometric parameters of the axial and radial 

ejectors 
Axial ejector  Radial ejector 

dimensions  values  dimensions  values  

d* (mm) 3.2 R* (mm) 3.5 

Lexit (mm) 59.5 h* (mm) 0.4 

dexit (mm) 13.6 Rexit (mm) 13 

L0 (mm) 59.5 hexit (mm) 2.2 

d0 (mm) 37 Ɵ 9o 

Lt1 (mm) 214.5 Rt (mm) 36 

dt (mm) 25.4 ht (mm) 2.3 

Lt2 (mm) 289.5 Rd (mm) 72 

Ld (mm) 499.5 Valve stem diameter (mm) 1.8 

dd (mm) 50 - - 

Nozzle throat area (mm2) 8.04 Nozzle throat area (mm2) 8.8 

Nozzle exit area (mm2) 145 Nozzle exit area (mm2) 180  

Nozzle area ratio  18.1  Nozzle area ratio  20.4 

Divergent part length (mm) 59.5 Divergent part length (mm) 9.50 

Divergent half angle (degree) 5 Divergent half angle (degree) 5 

Nozzle wetted area (mm2) 1590  Nozzle wetted area (mm2) 990 

Ejector throat area (mm2) 507 Ejector throat area (mm2) 520 

Ejector Diffuser exit area (mm2) 1960 Ejector Diffuser exit area (mm2) 1040 

Ejector area ratio 63 Ejector area ratio 59 

Ejector flow length  500 Ejector flow length  68.5 

Ejector wetted area (mm2) 92500 Ejector wetted area (mm2) 31800 
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5.2.3 Ejector Duct 

In an axial ejector configuration, the secondary flow is propelled into an annular space between 

the ejector body and supersonic nozzle. The secondary stream moves to the mixing chamber and 

later passes through the diffuser section. Based on the type of mixing chamber (constant area or 

constant pressure), different mixing chamber profiles can be created [50]. The ejector area ratio, 

ejector convergent angle, diffuser half angle and lengths of the convergent part, constant area 

part and diffuser can be selected based on semi-empirical design  procedures for axial flow 

ejectors. This was the approach adopted in the design of benchmark axial ejector [13]. The radial 

ejector area ratio and the radial ejector throat area were specified as 59 and 520 mm2 respectively, 

values that are in close agreement with the corresponding values of 63 and 507 mm2 respectively 

for the benchmark axial ejector. Figure 5-4 shows the variation of flow cross sectional area for 

the radial and axial ejectors, and Figure 5-5 shows variation of wetted area for the axial and radial 

ejectors.  

 
Figure 5-4: Variation of flow cross sectional area for the radial and axial ejectors. 
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Figure 5-5: Variation of wetted area for the radial and axial ejectors. 

 

 

 

 

The lengths of the mixing chamber, constant area section, and diffuser are suggested in the 

traditional (semi-empirical) procedures for axisymmetric ejectors based on the ejector throat 

diameter. For example, it is recommended to choose the length of mixing chamber between 5 

and 10 times that of the throat diameter [48], [49], [50]. The benchmark ejector has a mixing 

chamber length of 9 times of the throat diameter. Other recommendations include: the convergent 

half angle of the ejector should be between 2o and 10o; the diffuser half angle should be in range 

of 3o to 4o and no more than 7o; and the area ratio of the ejector outlet and ejector throat should 

not be more than 5 [50]. In the benchmark ejector, the convergent half angle, the divergent half 

angle and the ejector exit area ratio were specified as 10o, 3.3o and 4 respectively.  
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The radial ejector is inherently different from an axial ejector. Therefore, the traditional 

recommendations could not be adopted directly. For simplicity, the radial ejector diffuser for the 

present work consisted of two parrallel plates, and thus a length of constant area throat was not 

generated in the radial ejector, as illustrated in Figure 5-4.  The distance between the two parallel 

plates was chosen  to generate a throat area, at a single radial location, approximately the same 

as the throat area of the reference axisymmetric ejector. The length of mixing chamber was 

choosen as 10 times the distance between the parrallel plates. To create a convergent contour, a 

convergent half angle of 9o was choosen based on the fabrication capability and geometrical 

arrangement of the secondary inlets and ejector ducts. This positioned the throat of the radial 

ejector at the a radial location half way between the centre of the radial ejector and its exit. A 

zero divergence angle was specified in the diffuser of the radial ejector because a higher amount 

leads to decrease in the diffuser length if the ejector exit area ratio is the design constraint. 

 

5.3 Experiment Hardware 

A radial air ejector prototype was constructed in order to investigate the concept’s performance. 

Figure 5-6 shows supply, control and instrumentation on the radial ejector system.  

 

 



 

72 
 

 
Figure 5-6: Illustration showing supply, control and instrumentation for the primary and 

secondary streams, and for the mixed stream. 

 

 Figure 5-7 depicts the radial air ejector as a sectioned 3D solid model. The compressed air from 

the motive supply inlet expands in the supersonic radial flow nozzle, induces the secondary flow 

and passes through the ejector diffuser formed by the duct’s parallel surfaces.   

 

 

Figure 5-7: Illustration of a sectioned 3D model of the radial ejector developed for the 

experiments. The position of this part of the apparatus is shown in the dashed circle of Figure 

5-8. 
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Figure 5-8 shows the hardware for delivery of the primary and secondary streams and for the 

receipt of the mixed stream. The air discharged from the ejector is collected by the local receiving 

tank and exhausted to a large volume vacuum chamber. Both secondary inlets are connected 

together and a mass flow controller (Omega FMA-2600A) was used to adjust  the secondary air 

flow rate so that the set point for the pressure of the secondary flow was maintained while the 

pressure in the local receiving tank increased. Although the FMA-2600A has in-built control 

capability, it was more convenient to achieve control using an external PLC. The PLC was 

programmed to drive the Omega flow controller so as to vary the secondary mass flow in such a 

way that the prescribed secondary pressure was maintained constant as the ejector back pressure 

increased due to the finite volume of the receiving tank.  Another ball valve and a pressure 

regulator controls the flow rate and pressure of the primary flow. Four pressure transducers (Wika 

model 10-A) were used in this apparatus, in high and low pressure ranges for the primary stream 

pressure, the secondary and exit stream pressures, respectively. The pressure transducers were 

calibrated using a dead weight tester [13]. Signals from all transducers were recorded using a 

National Instruments Compact Data Acquisition (cDAQ) system. Details of the interfaces via the 

NI-cDAQ drivers is available in [13].  The mass flow of the primary stream was calibrated 

separately as a function of the primary pressure with the aid of the mass flow meter (the Omega 

FMA-2600A device) that was installed in the primary line for this purpose.  During the 

experiments, the one mass flow meter was installed on the secondary stream delivery line to 

enable direct measurement of the secondary stream flow rate only; the flow rate of the primary 

stream was deduced from the prior pressure-mass flow calibration. 
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Figure 5-8: Illustration showing hardware for delivery of the primary and secondary streams, and 

for the receipt of the mixed stream. The dashed circle encloses the detail shown in Figure 5-7. 

 

5.4 Quasi One-Dimensional Gas Dynamic Simulation 

Quasi one-dimensional gas dynamic modelling has worked reasonably well for axial ejectors. In 

this work, a model previously calibrated using data for axial flow ejectors [79] was applied to 

the simulation of the radial ejector performance.  In the model, the primary and secondary streams 

are assumed to enter a control volume at a matched pressure condition that is defined by the 

Mach number of the secondary stream.  For fully choked operation of the ejector, the Mach 

number of the secondary stream entering the control volume is specified as unity.  Heat transfer 

and frictional effects between the fluid and the ejector walls are neglected.  Furthermore, 

discharge coefficients and isentropic coefficients that are commonly applied in other ejector 

models are not used to tune results to the observed ejector performance.  Instead, ejector overall 

performance is defined from the model in terms of the entrainment ratio and the critical pressure 
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lift ratio and these values are compared directly to values achieved by actual ejectors working 

with air, R141b, and steam, in order to calibrate the model. 

The entrainment ratio of the ejector is defined in terms of the ratio of mass flow rates in the 

secondary and primary streams,  

𝜔 =
�̇�2

�̇�1
 

 

 The model assumes that complete mixing between the primary and secondary streams is 

achieved and the critical pressure lift ratio 
𝑝𝑐𝑟𝑖𝑡

𝑝𝑠
 is then determined by assuming the flow is 

decelerated to rest by a single normal shock followed by isentropic compression. All relevant 

equations are reported in [79].  

For axial flow ejectors in which the primary nozzle position has been tuned to maximize the 

entrainment ratio, the model typically underestimates the maximum achievable values of 𝜔 

according to [79]. However, across the spectrum of ejector sizes, operating conditions and 

working fluids reported in [79], there is substantial variability in observed ejector entrainment 

ratios relative to the model.   Therefore, to assess the radial ejector performance in the present 

work, reference entrainment ratio values are taken directly from the model without any 

calibration adjustment.  In the case of the critical pressure, the model always over estimates 

performance by a substantial margin [79] and an adjustment to the values from the theoretical 

model according to 

∆𝑝𝑐𝑟𝑖𝑡

𝑝𝑠
= −4.61 × 10−3

𝑝𝑝

𝑝𝑠
− 0.397 

was sufficient to bring the model into agreement with the experimental data from the axial flow 

ejectors with a representative uncertainty of around ±20%.   
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5.5 Results and Discussion 

The primary nozzle performance was evaluated for primary pressures of 160, 200 and 250 kPa. 

Table 5-2 shows the primary nozzle performance results from the mass flow rate measurements 

in the experiments. Theoretical mass flow rates through the primary nozzle for the 3 primary 

nozzle working pressures are also reported in Table 5-2 based on the ideal gas, isentropic flow 

relationship 

�̇�𝑝,𝑡ℎ𝑒𝑜𝑟𝑦 = √𝛾

𝑅
 (

2

𝛾+1
)

(𝛾+1)/(𝛾−1) 𝑝𝑝

√𝑇𝑝
𝐴∗    

and for the application of this equation,  values for air are taken as 𝛾 = 1.4 and 𝑅 = 287 J/kgK, 

and the nozzle throat was 𝐴∗ = 8.8 mm2, corresponding to a cylindrical throat area with a radius 

of 3.5 mm and a height of 0.4 mm.  In each case, the primary pressures 𝑝𝑝 were taken as the 

stagnation values as reported in Table 5-2 and the temperature 𝑇𝑝 was taken as 27 °C, also 

corresponding to the ambient condition during the experiments.  

 

 

Table 5-2: Primary nozzle mass flow characteristics 

𝑝𝑝 (kPa) �̇�𝑝,𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡  (g/s) �̇�𝑝,𝑡ℎ𝑒𝑜𝑟𝑦  (g/s) 

160 3.84 3.286 

200 4.78 4.107 

250 5.97 5.134 

  

As it can be seen from Table 5-2, the actual mass flow rate of the primary nozzle is about 16.5% 

larger than the theoretical estimates, implying a discharge coefficient larger than unity.  

Assembly of the prototype radial flow ejector posed a number of challenges and the uncertainty 

in achieving the target dimension of ℎ∗ = 0.4 mm separation on the primary nozzle throat was 

estimated to be around ±30%. Therefore it seems likely that the actual separation of the primary 
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nozzle disks during the experiments was at least 16.5% larger than the design value, giving a best 

estimate for the throat dimension of ℎ∗ = 0.47 mm.  

The prototype radial ejector performance was evaluated in terms of entrainment ratio and the 

critical pressure lift ratio achieved relative to the results from the quasi one-dimensional gas 

dynamic model. Measurements were performed  for a primary pressure of 𝑝𝑝 = 200 kPa, 

secondary pressures 𝑝𝑠 of 1.8, 2.5 and 3.2 kPa, and a variety of diffuser exit pressures 𝑝𝑑 in each 

case.  Illustrative results are presented in Figure 5-9 showing that the radial ejector  has 

performance characteristics similar to axisymmetric ejectors in that a critical diffuser exit 

pressure 𝑝𝑐𝑟𝑖𝑡 (denoted with the open symbol) can be defined in for each operating condition.  

For diffuser exit pressures lower than 𝑝𝑐𝑟𝑖𝑡, the ejector operates in a choked mode with the 

entrainment ratio maintaining its maximum value 𝜔𝑚𝑎𝑥, largely independent of the diffuser exit 

pressure.  For diffuser exit pressures higher than 𝑝𝑐𝑟𝑖𝑡, the entrainment ratio decreases with 

increasing diffuser exit pressure.  For the three operating conditions illustrated in Figure 5-9, the 

performance curves are slightly rounded in the vicinity of 𝑝𝑐𝑟𝑖𝑡 so the critical point in each case 

has been defined by the intersection of the two straight lines that have been fitted to the data.  

Values of 𝑝𝑐𝑟𝑖𝑡 obtained in this manner are presented in Table 5-3 along with the other relevant 

ejector operating parameters. 
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Figure 5-9: Experimental data showing the variation of entrainment ratio with ejector exit 

pressure for a primary pressure of 200 kPa and secondary pressures of 1.8, 2.5, and 3.2 kPa 
 

Table 5-3: Experimental results from the radial ejector 

𝑝𝑝 (kPa) 𝑝𝑠 (kPa) 𝑝𝑐𝑟𝑖𝑡 (kPa) 𝑝𝑝

𝑝𝑠
 

𝑝𝑐𝑟𝑖𝑡

𝑝𝑠
 𝜔𝑚𝑎𝑥 

160 1.8 2.72 88.9 1.51 0.37 

200 1.8 2.84 111.1 1.58 0.286 

250 1.8 2.87 138.9 1.59 0.24 

160 2.5 3.75 64.0 1.50 0.61 

200 2.5 4.11 80.0 1.64 0.444 

250 2.5 3.90 100.0 1.56 0.33 

160 3.2 4.55 50.0 1.42 0.95 

200 3.2 4.88 62.5 1.53 0.709 

250 3.2 5.49 78.1 1.72 0.55 

 

The variation of the radial ejector entrainment ratio with the expansion ratio 𝑝𝑝/𝑝𝑠 from the 

experiments and the quasi one-dimensional gas dynamic model is illustrated in Figure 5-10.  The 

error bars presented with the data in Figure 5-10 are representative of the uncertainties associated 
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with the measurement of the primary and secondary pressures, and the measurement of primary 

and secondary mass flow rates. The estimated uncertainty in the entrainment ratio 𝜔 and 
𝑝𝑝

𝑝𝑠
  are 

±3% and ±2% respectively. For the gas dynamic model simulations, the primary nozzle throat 

size was specified as ℎ∗ = 0.47 mm, the value deduced from mass flow rate calibrations of the 

primary nozzle. Estimated uncertainties in the ejector throat size give  ℎ𝑡 = 2.3 ± 0.6 mm or a 

relative uncertainty in the throat height or area of about ±26%.  The trend and the magnitude of 

the entrainment ratio data for the radial ejector agrees well with the simulations from the gas 

dynamic model. The discrepancy between the simulation entrainment ratio and the experiments 

is less than 10%, which is a relatively small margin within the context of the observed variability 

in the axial flow ejector data [80], and the uncertainty in the ejector throat dimension.  

 

 

 
Figure 5-10: Variation of radial ejector entrainment ratio with the expansion ratio – comparison 

of experimental data and gas dynamic model. 
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The critical pressure ratio data for the radial ejector are compared to the results from the 

calibrated gas dynamic model in Figure 5-11.  The error bars presented in Figure 5-11 represent 

the uncertainties associated with measuring primary, secondary and exit pressures. The critical 

pressures achieved in the prototype radial ejector are significantly lower than the simulations 

from the calibrated model, even when the uncertainties in the model results due to the 

uncertainties in the ejector area ratio of around ±26% are taken into account, as shown in Figure 

5-11. The critical pressure lift ratio data 𝑝𝑐𝑟𝑖𝑡/𝑝𝑠 presented in Figure 5-11 show very little 

variation with the expansion ratio 𝑝𝑝/𝑝𝑠, whereas the calibrated model demonstrates significant 

sensitivity to the expansion ratio. There appears to be some additional loss process operating in 

the case of the prototype radial ejector that is not accommodated by the calibrated axial flow 

ejector model.   

As illustrated in Figure 5-4, the radial ejector prototype has a very short flow path length, relative 

to the reference axial flow ejector. The effect of the ejector length was investigated by [80] using 

numerical simulations and departures from the optimum length caused a significant decrease in 

the critical back pressure achieved by the ejector, although the entrainment ratio was largely 

unaffected. Sufficient opportunity for mixing between primary and secondary streams is needed 

for the primary stream to impart momentum to the secondary stream prior to deceleration in the 

diffuser, otherwise, recovery of the dynamic pressure in the diffuser is compromised.  Although 

the radial ejector flow path length is relatively short, it was anticipated that the radial ejector 

design did provide sufficient opportunity for mixing, based on estimates of the contact area 

between  the primary and secondary streams.  In the case of the benchmark axial flow ejector, 

the contact area between the primary and secondary streams was estimated as 6630 mm2, based 

on the surface area of a cylinder equal in diameter to the primary nozzle exit having a length 

from the primary nozzle exit to the start of the ejector throat.  In the case of the radial ejector, the 

contact area was slightly larger, estimated as 7080 mm2, based on the area of two disks from the 
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primary nozzle exit to the ejector throat.  A more precise assessment of mixing efficiency in the 

radial flow ejector is necessary. 

The other major contributor to the pressure lift performance in the ejector is the rate of pressure 

rise in the diffuser.  For axial flow ejectors, small diffuser half-angles are recommended to 

minimize the adverse pressure gradient which tends to separate the diffuser boundary layers.  For 

a given momentum flux in subsonic flow, the value of 
1

𝐴

𝑑𝐴

𝑑𝑥
 is indicative of the magnitude of the 

pressure gradient. In the case of the benchmark axial flow ejector, at the start of the diffuser  

1

𝐴

𝑑𝐴

𝑑𝑥
= 9.27 m-1 whereas the corresponding value at the start of the diffuser in the radial flow 

ejector is 27.8 m-1.  Thus the adverse pressure gradient in the present radial flow diffuser may 

exceed reasonable limits for optimal pressure recovery.  The diffuser in the present radial flow 

ejector currently consists of two parallel disks, so to reduce the adverse pressure gradient in 

future, it will be necessary to have a profile in which the separation of the disks reduces with 

increasing radius. 

 

Figure 5-11: Variation of radial ejector critical back pressure with the expansion ratio – 

comparison of experimental data and gas dynamic model. 
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5.6 Conclusion  

In this study, a new radial ejector was designed and experiments were conducted to investigate 

the performance of the prototype. Measurements were performed for  primary pressures of 160, 

200, and 250 kPa and secondary pressures of 1.8, 2.5 and 3.2 kPa.  Values of entrainment ratio 

and critical pressure lift ratio achieved in the radial ejector prototype were compared to expected 

values for a conventional, axial flow ejector with the same area ratios derived from a calibration 

quasi one-dimensional model.  The entrainment ratio values achieved in the radial ejector were 

in good agreement with the model.  However, the critical pressure lift ratios achieved in the radial 

ejector were lower than would be expected for an axial flow ejector having the same area ratios 

as the radial ejector. Candidate explanations for the short-fall in critical pressure lift performance 

of the radial ejector include possible departure of the ejector duct separation from the nominal 

design value, the relatively short flow path of the radial ejector, and the relatively high adverse 

pressure gradient in the radial flow diffuser.  Further analysis is required for definitive 

explanations.  Nevertheless, the concept has demonstrated sufficient potential to warrant further 

attention. 
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6 Chapter 6                                                                                              

Experimental Investigation of Radial Ejector Performance 

  

 

A prototype radial flow ejector has been designed and constructed to operate with air and 

experiments have been conducted at three different primary pressures of 160, 200 and 250 kPa 

and three secondary pressures of 1.8, 2.5 and 3.2 kPa.  A range of exit pressures were applied to 

the ejector, and ejector performance and local ejector wall pressures were measured.  The 

maximum entrainment ratio achieved was 0.98 for an expansion ratio of 50 at primary pressures 

of 160 kPa and secondary pressure of 3.2 kPa, and the pressure lift ratio of 1.42 was achieved at 

this condition. Trends observed in the measurements of entrainment ratio for the radial ejector 

configuration are generally consistent with those for axial flow ejectors: for a constant secondary 

pressure, increasing the primary pressure leads to a decrease in the entrainment ratio and an 

increase in the lift ratio, and for a constant primary pressure, increasing the secondary pressure 

leads to an increase in both the entrainment ratio and critical exit pressure but the pressure lift 

ratio decreases.  Similarly, trends observed in the measurements of wall pressure for the radial 

ejector configuration are generally consistent with those for axial flow ejectors.  The distribution 

of static pressure in the mixing region (upstream of the ejector throat) is largely unaffected by 

changes in the ejector exit pressures in the critical mode of ejector operation.  Secondary stream 

Mach numbers of around 0.7 in the ejector throat are deduced from an isentropic flow calculation 

for the ejector operating in the critical mode.  For ejector operation in the subcritical mode, wall 

pressures in the throat and at locations upstream of the throat increase, leading to a peak in 

pressure prior to the final pressure increase in the diffuser.      
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6.1 Introduction 

In some ejector applications, variability in the primary flow operating conditions and the required 

ejector exit pressure make it difficult for a fixed geometry ejector to successfully operate. One 

such example occurs with solar-assisted heat pumping  that operates with reduced effectiveness 

at off-design conditions as the solar input changes and/or the ambient temperature changes [40]. 

Changes in ejector performance arising from variation in working conditions and the advantages 

of adjustability in the geometry for another ejector-based system were discussed by [39].  In the 

work of [16], by changing the nozzle throat size or by using different nozzle area ratios, the 

possibility of successfully operating at different boiler or condenser temperature was 

demonstrated. Although different approaches to performance and efficiency improvement have 

been employed in the literature [15], the need for a mechanically-convenient solution for 

adjustment of the ejector throat size that is achieved without compromising ejector performance 

is evident.  

A movable cone attached to a cylinder positioned downstream of the primary nozzle was used 

by [35] to adjust the size of the ejector throat and the primary nozzle throat. The cone-cylinder 

arrangement was inserted into the ejector from the downstream end and longitudinal adjustment 

to its position was also achieved from the downstream end of the ejector. This method 

demonstrates a mechanically-convenient approach for changing the ejector and nozzle throat 

sizes, however the cone-cylinder shape was positioned in the centre of the primary nozzle which 

therefore blocked the passage of the high speed flow into the ejector throat. The losses associated 

with the deflection and blockage of the primary flow by the cone-cylinder were not reported in 

the work [35]. Ejector nozzles with pintle adjustment from upstream of the primary nozzle throat 

have been investigated by other researchers [17], [8] and [36] and this configuration avoids the 

high speed flow deflection and blockage that occurs with the arrangement of [35].  However, 
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pintle adjustment from upsteam of the primary nozzle cannot alter the ejector thoat size and hence 

such adjustable ejectors cannot meet the target of a fully-variable geometry ejector.   

It may be possible to relax the requirements for variability in ejector throat size for ejectors if on-

design ejector performance could be enhanced to the extent that off-design performance is still 

satisfactory. Establishing oscillations in primary pressure may achieve increases in ejector 

performance under some working conditions [18], [19]. An ejector concept drawing on flow 

pulsation methods is that of the radial ejector with rotating components which was suggested by 

[67], [81], [74]. Application of rotary nozzles or other ejector components has also been studied 

in the literature [66], [64]. However, the majority of rotary concepts have not progressed beyond 

the prototype stage due to mechanical failures and limitations associated with experimental 

validation [64], [68].  

In the radial ejector configuration both nozzle and ejector throat areas can be conveniently 

adjusted.  The proposed radial ejector configuration [76] has some similarities with an earlier 

radial arrangement [69]; the principle point of differentiation between the arrangements is the 

location at which the primary flow which enters the duct.  In the case of the earlier arrangement, 

the primary flow enters adjacent to one of the duct surfaces, but in the new configuration, the 

primary flow enters the duct aligned with the central plane.    

Computational simulations suggest that new radial ejector concept is viable and should be 

capable of achieving similar performance to that of axial ejectors [76].  Further CFD analysis by 

[82] demonstrated that an increase in the ejector throat size achieved by increasing the separation 

between the ejector plates should induce an increase in the entrainment ratio during operation. A 

successful prototype of the new radial ejector concept has been experimentally investigated and 

compared with a quasi one-dimensional model in Chapter 5. The results demonstrated that the 

radial ejector entrainment ratio was within 10% of the model with a standard deviation of about 

11%, but the critical back pressure was significantly lower than simulated by the model. It was 
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speculated that part of under-performance of the radial ejector is related to the shape of the radial 

ejector with relatively high adverse pressure gradients in the diffuser of the ejector.   

To provide further insight into the flow within the prototype radial ejector, this following work 

analyses static wall pressure measurement at different primary, secondary and exit conditions.  

 

6.2 Methodology  

The radial ejector evaluated in this work is illustrated in Figure 6-1 and it consists of two shaped 

discs forming the ejector duct, and two shaped discs forming the primary nozzle. Both the 

primary flow and secondary flow have a predominantly radial flow pattern; the flow enters the 

components from near the axis of the ejector and then spreads radially, ultimately being collected 

in a large pipe enclosing the ejector assembly. The primary flow passing out of the nozzle induces 

the secondary flow from both sides of the ejector duct.   Static pressures were measured on the 

upper side of the duct along different radial lines and at the radial locations shown in Figure 6-1.  

The arrangement illustrated allowed for more closely spaced wall pressure measurements than 

could be achieved if the pressure tappings were placed in one radial line. The symmetry of the 

radial ejector suggets that the pressure at a specified radial distances should be independent of 

the angular postion at which it is measured. 
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Figure 6-1: Sketch showing dimensions and pressure measurement locations on the radial ejector. 

 

The experimental arrangement details are presented in Chapter 5. Eleven Wika 10-A transducers 

were used to measure wall pressure on the ejector duct at the locations shown in Figure 6-1 and 

each of these transducers was connected to the duct via flexible tubing with an inner diameter of 

1.0 mm.  Three other similar transducers were used in the secondary stream piping system, and 
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another Wika transducer, but with a higher pressure range, was employed to measure the primary 

pressure. Details of the pressure transducers and their calibration method has been reported by 

[13].  

The operating pressures used in the experiments were: primary pressures of 160, 200 and 250 

kPa, secondary  pressures of 1.8, 2.5 and 3.2 kPa and a range of exit pressures between 1.8 and 

almost 7 kPa.  The temperature of the air used in the experiments was approximately 20 ºC, 

reflecting the fact that the compressed air in the primary reservoir had been stagnant for a 

sufficient period to cool to the ambient temperature, and that the secondary air flow was drawn 

from laboratory air at the ambient temperature.   

 Based on the manufacturer’s data, the accuracy of the low and high-pressure range transducers 

is 0.5%. Considering the calibration of the transducers, the noise of the electrical and data 

acquisition systems and the repeatability of the measurements, the uncertainty of the primary, 

secondary and exit pressure is estimated to be ±1.5%. For measuring the secondary mass flow, 

the mass flow meter has an accuracy of 0.5%. Considering the calibration, repeatability and 

system noise, the uncertainty of the mass flow measurements is estimated to be ±2.5% for the 

primary stream, and ±1.5% for the secondary stream. As the entrainment ratio is calculated from 

the ratio of secondary and primary mass flow rates, the uncertainty in the entrainment ratio is 

estimated to be ±4%.  

An illustrative performance curve showing the variation of the radial ejector entrainment ratio 

with back pressure is presented in Figure 6-2 for a primary pressures of 200 kPa and a secondary 

pressure of 1.8 kPa.  The radial ejector has similar characteristics to conventional axial flow path 

ejectors in that the radial flow ejector operates in a choked mode with the entrainment ratio close 

to the maximum entrainment ratio 𝜔𝑚𝑎𝑥 for diffuser exit pressures lower than some critical value, 

𝑝𝑐𝑟𝑖𝑡.  If the  diffuser exit pressure is increased beyond 𝑝𝑐𝑟𝑖𝑡  a decrease in the entrainment ratio 

results. A critical diffuser exit pressure 𝑝𝑐𝑟𝑖𝑡 was identified from the experimental data for each 
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operating condition by first fitting a straight line to entrainment ratio results at diffuser exit 

pressures substantially higher than 𝑝𝑐𝑟𝑖𝑡.  This fitted line representing the decline of entrainment 

ratio for pressures in excess of 𝑝𝑐𝑟𝑖𝑡 was then extrapolated back to a horizontal line representing 

the value of 𝜔𝑚𝑎𝑥 as illustrated in Figure 6-2.  The intersection of these two lines is interpreted 

as specifying the critical pressure 𝑝𝑐𝑟𝑖𝑡  for each operating condition.  The ejector performance 

actually declines gradually as the exit pressure approaches 𝑝𝑐𝑟𝑖𝑡: in practice a sudden decline in 

the entrainment ratio is not initiated precisely at this pressure.  Nevertheless, defining the critical 

pressure in this manner provides a consistent basis for assessment of the radial ejector 

performance and for comparison with other ejectors. 

The ejector characteristic curve is modelled in the bilinear form with the intersection at 𝑝𝑐𝑟𝑖𝑡 

being defined as the critical point can be divided into critical, subcritical and malfunction modes 

as has been done elsewhere [9], [10]. If the diffuser exit pressure is less than critical pressure, in 

the bilinear model the entrainment ratio 𝜔𝑚𝑎𝑥  remains constant and increasing exit pressure does 

not have any effect on the entrainment ratio. As the exit pressure increases beyond the critical 

pressure, according to the bilinear model the entrainment ratio decreases linearly with increasing 

exit pressure and reaches zero at a pressure defined as the malfunction pressure 𝑝𝑚𝑎𝑙. Any 

increase beyond the malfunction pressure causes back flow into the secondary inlet resulting in 

no useful function from the ejector. Modest departures from the bilinear model for ejector 

operation are observed in Figure 6-2 for the prototype radial flow ejector considered in the 

present work, in the vicinity of 𝑝𝑐𝑟𝑖𝑡 and 𝑝𝑚𝑎𝑙: there is actually a gradual transition between the 

critical and subcritical modes, and some entrainment does occur for pressures higher than 𝑝𝑚𝑎𝑙. 
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Figure 6-2: Entrainment ratio variation with exit pressure for primary pressure 200 kPa and 

secondary pressures of 1.8 kPa   

 

6.3 Results and Discussion 

To evaluate the prototype radial ejector performance, mass flow rates were measured for primary 

pressures of 160, 200 and 250 kPa, secondary pressures of 1.8, 2.5 and 3.2 kPa, and different exit 

pressures. Table 6-1 presents a summary of results obtained from the experiments.   
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Table 6-1: Experimental values of mass flow rates, entrainment ratio and critical back pressure.   

Primary 

pressure 

(kPa) 

Secondary 

pressure 

(kPa) 

Expansion 

ratio  

Primary 

mass flow 

rate (g/s) 

Secondary 

mass flow 

rate (g/s)  

Entrainment 

ratio 

Critical 

exit  

pressure 

(kPa) 

160±2.40 1.8±0.027 88.9±2.67 3.88±0.097 1.4356±0.022 0.37±0.015 2.72±0.041 

160±2.40 2.5±0.037 64.0±1.92 3.87±0.097 2.3607±0.035 0.61±0.024 3.75±0.056 

160±2.40 3.2±0.048 50.0±1.50 3.83±0.096 3.6385±0.055 0.95±0.038 4.55±0.068 

200±3.00 1.8±0.027 111.1±3.33 4.78±0.120 1.3862±0.021 0.29±0.012 2.84±0.043 

200±3.00 2.5±0.037 80.0±2.40 4.82±0.121 2.169±0.033 0.45±0.018 4.11±0.062 

200±3.00 3.2±0.048 62.5±1.87 4.75±0.119 3.325±0.050 0.70±0.028 4.88±0.073 

250±3.75 1.8±0.027 138.9±4.17 5.97±0.149 1.4328±0.021 0.24±0.010 2.87±0.043 

250±3.75 2.5±0.037 100.0±3.00 5.99±0.150 1.9767±0.030 0.33±0.013 3.90±0.059 

250±3.75 3.2±0.048 78.1±2.34 6.02±0.151 3.311±0.050 0.55±0.022 5.49±0.082 

 

 

Figure 6-3 presents the prototype radial ejector characteristic curves for all of the operating 

conditions and shows that these curves for  the radial ejector have similar trends to axial ejectors 

that can be observed in many recent works: at a fixed secondary pressure, increasing in the 

primary pressure reduces the maximum entrainment ratio but increases the critical back pressure. 

The subcritical mode of the radial ejector has a slightly different trend in some working 

conditions compared to typical axial ejector performance curves presented in the literature in that 

the rate at which the entrainment ratio decreases with increasing exit pressure is not particularly 

constant in the case of the radial ejector. An audible change in noise generated within the ejector 

was found to accompany the changes in the slope of the entrainment ratio curve in the subcritical 

region, suggesting that the features may be related to some form of  oscillatory flow behaviour. 
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Figure 6-3: Entrainment ratio versus exit pressure at primary pressures 160, 200 and 250 kPa and 

constant secondary pressure of: (a) 1.8 kPa; (b) 2.5 kPa; and (c) 3.2 kPa.  

 

a 

b 
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Figure 6-4 presents the relationship between entrainment ratio and critical exit pressures obtained 

from the radial ejector characteristic curves. The fitted line for each secondary pressure is shown 

in this figure in the dashed form. The ejector only works under this fitted line for each secondary 

pressure [83].  For fixed values of secondary pressure, increasing the primary pressure caused  a 

decrease in entrainment ratio and an increase in critical exit pressure in all cases except for the  

secondary pressure of 2.5 kPa when increasing the primary pressure from 200 kPa to 250 kPa. It 

can be seen that by increasing the secondary pressure, higher entrainment ratio and critical back 

pressure are achieved. This figure clearly shows that the radial ejector performance is 

significantly influenced by operating conditions. 

The dashed contour map shown in Figure 6-4 represents corresponding data calculated from 

quasi one-dimensional model presented  in Chapter 5, and based on the experimentally measured 

values for the primary mass flow rate.  Comparing the experimental map contour and the map 

contour from the quasi one-dimensional model shows that the radial ejector is significantly 

underperforming in terms of critical back pressure. By increasing primary pressure from 200 to 

250 kPa, it is expected that the critical back pressure significantly increases but at secondary 

pressures of 1.8 and 2.5 kPa, this simulated increase did not occur in the experiments.  

 
Figure 6-4: Entrainment ratio versus critical back pressure over the range of conditions tested.   
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Figure 6-5 to Figure 6-7 show the wall pressure results from the experiments at the different 

working conditions.  Static pressure results for exit pressure values above 𝑝𝑐𝑟𝑖𝑡 (corresponding 

to the subcritical mode) are shown in dashed lines, and for exit pressure values below 𝑝𝑐𝑟𝑖𝑡 

(corresponding to the critical mode) results are shown in the solid lines. The location of the 

physical throat of the ejector is also shown in all figures, and the choked secondary stream static 

pressure for each case is indicated by a horizontal line. The choked secondary stream static 

pressure was determinded from the secondary stream stagnation pressure (either 1.8 kPa, 2.5 kPa, 

or 3.2 kPa) and the isentropic equation  

𝑝0

𝑝
= (1 +

𝛾 − 1

2
𝑀2)

𝛾
𝛾−1

  

with 𝑀 = 1, and the ratio of specific heats 𝛾 = 1.4. 

The measurements at the physical throat show that the wall pressure for the secondary pressure 

of 1.8 kPa is between 1.25 and 1.30 kPa for the different primary pressures, when the ejector is 

operating in the critical mode. For the secondary pressure of 2.5 kPa, corresponding throat 

pressure data for choked ejector operation show the wall pressure is between 1.75 and 1.87 kPa, 

and for the secondary pressure of 3.2 kPa, the throat wall pressure is between 2.25 and 2.30 kPa 

for different primary pressures. Using the isentropic pressure relationship for the secondary flow, 

the secondary stream Mach number at the physical throat of the ejector operating in the critical 

mode is estimated to be 0.70 to 0.74 for the secondary pressure of 1.8 kPa, and 0.66 to 0.73 for 

secondary pressure of 2.5 kPa, and 0.70 to 0.73 for secondary pressure of 3.2 kPa.  Thus, for 

critical ejector operating conditions, the Mach number of the secondary stream at the throat, 

assuming isentropic acceleration, is approximately 0.7. Therefore, the secondary stream is not 

choked through an isentropic acceleration process at the physical throat of the ejector in any case.   

Figure 6-5 to Figure 6-7 demonstrate that for radial ejector operation in the critical mode with 

exit pressures substantially lower than 𝑝𝑐𝑟𝑖𝑡, the lowest wall pressures occur at locations between 
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50 and 60 mm from the axis of the ejector.  By increasing the ejector exit pressure, the ejector 

operating mode transitions from critical to sub-critical and the location of the minimum wall 

pressure within the radial ejector moves upstream. The further increase in exit pressure within 

the sub-critical operating mode leads to the development of an initial pressure rise at the ejector 

throat which then occurs further upstream in the mixing chamber as the malfunction pressure is 

approached. The location of the compression process inside axial ejectors varies with the exit 

pressure and secondary pressure: higher exit pressures cause the location of the compression 

process inside the ejector to move upstream while higher secondary pressure moves the position 

of the compression process downstream [74], [75]. Such trends are also apparent in the radial 

ejector results presented in Figure 6-5 to Figure 6-7. Prior to testing the radial ejector, it was 

anticipated that the minimum wall pressure of the radial ejector operating in the critical mode 

would be located somewhere in the mixing chamber or around the physical throat, however, the 

measurements indicate the minimum wall pressure in the critical mode occurs well downstream 

of the throat.   
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Figure 6-5: Static wall pressure along the radial ejector for secondary pressure of 1.8 kPa and 

various exit pressures and: (a) primary pressure of 160 kPa; (b) primary pressure of 200 kPa; and 

(c) primary pressure of 250 kPa.   

b 

c 
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Figure 6-6: Static wall pressure along the radial ejector for secondary pressure of 2.5 kPa and 

various exit pressures and: (a) primary pressure of 160 kPa; (b) primary pressure of 200 kPa; and 

(c) primary pressure of 250 kPa.  

a 

b 
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Figure 6-7: Static wall pressure along the radial ejector for secondary pressure of 3.2 kPa and 

various exit pressures and: (a) primary pressure of 160 kPa; (b) primary pressure of 200 kPa; and 

(c) primary pressure of 250 kPa. 

a 

b 
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As shown in Figure 6-5 to Figure 6-7, the wall pressure increases that occur in the region of  the 

physical throat are generated in cases where the ejector exit pressure is at about the point that the 

critical pressure is reached.  Further increases in the exit pressure beyond the critical pressure 

causes an increase in the severity of pressure rise in the vicinity of the throat.  When the flow 

static pressure rises above the secondary inlet pressure and there has been insufficient mixing 

with the primary flow, then recirculation / flow separation will occur.  For cases of sub-critical 

ejector operation where there is a peak wall pressure in the vicinity of the throat, the drop in wall 

pressure after the throat implies that the flow re-accelerates as it enters the diffuser.  A second 

wall pressure rise does occur, this time in the diffuser, implying a final deceleration of the flow 

prior to leaving the diffuser.  The key to reaching higher values of critical back pressure is perhaps 

the elimination of the appearance of the flow separation in the region ahead of the throat. 

Figure 6-8 shows the variation of wall pressure at the physical throat of the ejector with ejector 

exit pressure, for primary pressures of 160, 200 and 250 kPa and secondary pressures of 1.8, 2.5 

and 3.2 kPa. Critical pressures for each combination of primary and secondary pressures are 

marked on Figure 6-8 as the vertical lines.  The major feature in the wall pressure at this location 

is that for exit pressures lower than the critical pressure, the wall pressure remains almost 

constant, being independent of the changes in the ejector exit pressure.  However, a rapid increase 

in the pressure at the throat occurs with modest increases in the exit pressure, once the critical 

pressure is exceeded.  

For a constant primary pressure, the local wall pressure at the throat is related to the secondary 

pressure and exit pressure, as illustrated in Figure 6-8. Higher secondary pressure leads to higher 

local wall pressure at the measured position. When the primary pressure is held constant, the 

primary mass flow of the supersonic nozzle remains constant, independent of secondary and exit 

pressures for this range of operating conditions. Higher secondary pressure leads to more 
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secondary mass flow into the ejector, so the pressure inside the ejector increases. Higher 

secondary pressure also aids the radial ejector to continue working at higher exit pressures. For 

a given secondary pressure, the local wall pressure remains almost  independent of changes in 

the primary pressure for lower secondary pressures of 1.8 and 2.5 kPa. For the secondary pressure 

of 3.2 kPa, increases in the primary pressure lead to slight increases in the local wall pressure at 

the throat. Increasing the primary pressure also aids the ejector to work at higher exit pressures.  

The local wall pressure in the throat region of the prototype radial ejector is similar in many 

respects to the throat pressures observed in axial ejectors where the local wall pressure remain 

almost constant for exit pressures less than the critical exit pressure. At exit pressures close to 

the critical pressure, the local static wall pressure  rises gradually [25], [7] in the case of axial 

flow ejectors, and a similar effect is observed in the case of the radial ejector, Figure 6-8.  Once 

the exit pressure exceeds the critical pressure, the pressure at the throat increases more rapidly 

with the exit pressure, but further into the subcritical mode of the radial ejector, the rate of rise 

of wall pressure at the ejector throat often reduces before a very rapid pressure rises occurs, 

bringing the throat pressure up to the exit pressure, at which point ejector malfunction is reached.  

Such variations in the wall pressure at the throat reflect the observed variations in entrainment 

ratio with increasing exit pressure as presented in Figure 6-3: in the subcritical mode, the 

entrainment ratio generally reduces with increasing exit pressure but it is not a monotonic 

reduction. In the subcritical mode, the observed variations in the rate at which entrainment ratio 

decreases and the rate at which the throat pressure increases could be related to some form of 

oscillatory flow behaviour, because an audible tone accompanied ejector operation within these 

regions of the subcritical mode.   
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Figure 6-8: Local wall pressure changes at the physical throat of the ejector versus exit pressure 

for primary pressures of 160, 200 and 250 kPa and secondary pressures of 1.8, 2.5 and 3.2 kPa.  

 

6.4 Conclusion  

In this study, the performance of a prototype radial ejector operating with air as the working fluid 

at different conditions was experimentally investigated. The characteristic curves and 

measurements of local ejector wall pressures were analysed for primary pressures of 160, 200 

and 250 kPa and secondary pressures of 1.8, 2.5 and 3.2 kPa.  The effects of different primary 

and secondary pressure on the radial ejector performance is consistent with expectations for 

conventional, axial flow ejector performance.   Increasing the primary flow pressure leads to a 

decrease in the entrainment ratio and an increase in the pressure lift ratio.  Increasing the 

secondary flow pressure leads to an increase in both the entrainment ratio and the critical exit 

pressure. The overall minimum and maximum entrainment ratios achieved were 0.24 and 0.98 

for corresponding expansion ratios of 139 and 50 respectively.  The overall minimum and 

maximum lift ratios achieved were 1.42 and 1.72 for corresponding expansion ratios of 50 and 

100.  Higher pressure lift ratio is achieved with higher expansion ratios.  
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Wall pressure measurements demonstrate that the location of the compression process inside 

axial ejectors varies with the exit pressure and secondary pressure. Higher exit pressure moves 

the location of the compression process upstream while higher secondary pressure moves the 

compression process downstream. At exit pressures much lower than the critical pressure, the 

wall pressure reaches a mimimum value close to the isentropic choking static pressure for the 

secondary stream, and this occurs at a location well downstream of the physical throat of the 

ejector.  For the radial ejector operating in the critical mode, the measured static pressure at the 

physical throat of the ejector is always higher than the value corresponding to isentropic choking 

of the secondary stream.  When operating in the critical mode, the Mach number in the unmixed 

portion of the secondary stream at the ejector throat is calculated to be around 0.7, based on the 

measured static pressure.   

When the ejector exit pressure increases and approaches the critical pressure, the static pressure 

at the physical throat of the ejector gradually increases. With further increases in exit pressure, 

the ejector enters the subcritical mode and the throat pressure increases more rapidly with exit 

pressure, and a point is reached where the measured throat pressure exceeds the secondary inlet 

pressure.  At this point it is likely that a region of separated flow will have formed near the throat. 

In the subcritical operating mode, the rate of entrainment ratio decrease with increasing exit 

pressure is not particularly constant compared to typical axial ejector performance curves. The 

same is true for the rate of change on the wall pressure at the throat of the ejector in the subcritical 

mode: the rate of change of throat pressure is not constant with increases in exit pressure. An 

audible noise was detected within the radial ejector at conditions where the changes in the slope 

of the entrainment ratio curve and the throat static pressure were observed, so it is speculated that 

some form of oscillatory flow might be responsible for these features. 
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7 Chapter 7                                                                                                           

CFD Simulation of Radial Flow Air Ejector Experiments  

 

 

Radial ejectors employ a radial flow path facilitating options for variable geometry. 

Computational Fluid Dynamic (CFD) analysis of a radial ejector is performed using a two 

dimensional (axisymmetric) model, and the simulated performance is compared with 

experimental measurements of entrainment ratio, critical exit pressure, and wall pressure data 

from a prototype ejector.  Results from the k-epsilon standard turbulence model demonstrate that 

the simulated entrainment ratio and the critical pressure are in reasonable agreement with the 

experimental results with an average discrepancy between the simulations and the physical data 

being less than 16% for the entrainment ratio and critical pressure across the variety of working 

conditions.  However, there are systematic differences between the measurements and the 

computational simulations: the k-epsilon standard model underestimates the entrainment ratio at 

expansion ratios less than 78, and overestimates the entrainment ratio at higher expansion ratios.  

The k-epsilon standard model also underestimates the critical back pressure at low expansion 

ratios and at higher expansion ratios, the discrepancy between the k-epsilon standard model and 

experimental data approaches zero.  There are also significant discrepancies between simulations 

obtained using the k-epsilon standard and k-omega SST model: the k-omega SST model 

significantly overestimates both entrainment ratio and critical back pressure at all conditions.  

Comparisions between the simulations and measurements of the pressure on the ejector wall 

demonstrate that the k-omega SST model provides a pressure distribution that reflects the 

physical results more accurately than the k-epsilon standard model.  However, in the critical 

mode of ejector operation, both the k-omega SST and k-epsilon standard models simulate a 
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pressure peak in the throat region that is not observed in the experimental data.  Efforts to improve 

the simulated ejector performance through altered duct shape were largely uncessessful, but did 

demonstrate that performance of the radial ejector is likely to be very sensitive to duct shape.  

Therefore, good prospects remain for optimising radial ejector performance through CFD 

simulation.    

 

7.1 Introduction  

Adjustment of the physical throat size of a nozzle or ejector can be achieved in an axisymmetric, 

axial flow arrangement by introducing blockage in the flow path and many papers have 

considered such flow blockage features on the centreline [37], [38], [39], [8], [40].  However, 

the major drawback resulting from such methods in axial ejectors is the  loss of total pressure 

that arises due the blockage of the high speed primary stream.   

 In the work of  [76] the radial flow ejector concept was investigated through a CFD study using 

the k-omega SST turbulence model; the results suggested that the radial ejector has comparable 

performance to an equivalent axial configuration with essentially the same primary nozzle throat 

and ejector throat size.  Over the reported working conditions, the simulated radial ejector 

entrainment ratio was less than 2% smaller than the simulated axial ejector results. The simulated 

critical exit pressure for the radial ejector was about 10% lower than that of the axial ejector for 

relatively low primary pressure conditions, but at higher primary pressures, the difference in 

simulated critical exit pressures for the radial and axial ejector configurations approached zero.  

Further CFD analysis using the k-omega SST turbulence model was performed in [82] to assess 

the performance of this concept over a range of working conditions when the ejector throat size 

was altered.   An increase of up to 34% in the entrainment ratio was simulated when the 

separation of radial ejector duct’s surfaces was increased by up to 0.8 mm. If increasing the 

ejector critical exit pressure, a decrease in the ejector duct separation could be applicable, and 
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according to the simulations, about a 40% increase in the critical exit pressure can be achieved 

by decreasing the ejector throat separation from 3.0 mm to 2.2 mm at a primary and secondary 

pressure of 250 and 1.8 kPa, respectively. Experimental results from a prototype of this radial 

ejector concept have also been compared with results from a quasi one-dimensional gas dynamic 

model tuned to match published data on high-performance, axial ejectors (Chapter 5) and the 

results show that the physical entrainment ratio of the radial ejector was in good agreement with 

values from the quasi one-dimensional gas dynamic model, but that the critical exit pressure for 

the radial ejector prototype was significantly lower than the model results. Therefore, the CFD 

simulations performed using the k-omega SST model on this radial ejector configuration have 

over-estimated the critical back pressures across the different working conditions.    

Although research such as [26], [30], [70] has reported that CFD analysis can simulate 

axisymmetric axial ejector performance with acceptable accuracy [71] showing an average 

discrepency with experiments of less than 10% [17], [26],  larger discrepencies have also been 

reported [17] where the simulated entrainment ratio was not within 20% of experimental data.  

The production of CFD simulations of variable fidelity might result from the inadequacies in the 

turbulence modelling; the a priori identification of the most appropriate turbulence model not 

being compeletly understood [30]. In this study, a k-epsilon standard turbulence model (as 

implemented within Ansys Fluent was employed to simulate the radial ejector performance in 

terms of its entrainment ratio and critical back pressure. The results from these simulations are 

compared to experimental data on the prototype radial ejector reported in Chapter 6 and other 

simulations performed using the k-omega SST turbulence model in an effort to identify a 

satisfactory simulation strategy for probing the radial ejector performance.  Possible departures 

of the nozzle plates separation or the ejector ducts separation from the designed values, other 

radial ejector geometric limitations, and high adverse pressure gradients in the ejector have 

previously been identified as potential reasons for underperformance of the radial ejector relative 
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to theoretical expectations. The present work investigates the contribution that such features have 

on the apparent radial ejector performance shortfall through the computational simulations.  

 

7.2 Methodology  

7.2.1 Hardware 

A schematic diagram of the radial ejector system is shown in Figure 5-6. The system consists of: 

two plates forming the radial ejector duct; the radial supersonic nozzle assembly; two secondary 

inlet pipes, one from either side of the ejector; the primary inlet pipe connecting the compressed 

air source feeding the primary nozzle; the local receiving tank for collecting the outlet flow and 

exhausting it to a large vacuum chamber. Measurement and control systems were also required 

to operate the experiment.  For further details of the arrangement of the hardware, refer to 

Chapters 5 and 6.  

Figure 6-1 shows the key dimensions and geometry of the radial ejector. The radial ejector has a 

nominal throat separation of 0.4 mm giving a nozzle throat area of 8.8 mm2 and a nozzle exit 

area of 180 mm2, giving a nozzle area ratio of 20.4. The ejector itself has a nominal throat 

separation of 2.3 mm giving a physical throat area of 520 mm2, and an ejector area ratio of 59. 

The experiments were performed for primary pressures 𝑝𝑝 of 160, 200 and 250 kPa and 

secondary pressures 𝑝𝑠 of 1.8, 2.5 and 3.2 kPa, and a variety of exit pressures 𝑝𝑑 in each case; 

computational simulations were performed matching these pressure boundary conditions.  

 

 

Illustrative performance curves showing the variation of the radial ejector entrainment ratio with 

exit pressure from the experiments are presented in Figure 7-1 for primary pressures of 200 kPa.  

The radial ejector has similar characteristics to convential axial flow path ejectors in that the 

radial flow ejector operates in a choked mode with a maximum entrainment ratio 𝜔𝑚𝑎𝑥 for 
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diffuser exit pressures lower than some critical value, 𝑝𝑐𝑟𝑖𝑡.  If the  diffuser exit pressure is 

increased beyond 𝑝𝑐𝑟𝑖𝑡 a decrease in the entrainment ratio results. A critical diffuser exit pressure 

𝑝𝑐𝑟𝑖𝑡 was identified from the experimental data for each operating condition by first fitting a 

straight line to entrainment ratio results at diffuser exit pressures substantially higher than 𝑝𝑐𝑟𝑖𝑡.  

This fitted line representing the decline of entrainment ratio for pressures in excess of 𝑝𝑐𝑟𝑖𝑡 was 

then extrapolated back to a horizontal line representing the value of 𝜔𝑚𝑎𝑥 as illustrated in Figure 

7-1.  The intersection of these two lines is interpreted as specifying the critical pressure 𝑝𝑐𝑟𝑖𝑡  for 

each operating condition.   
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Figure 7-1: Entrainment ratio variation with back pressure for primary pressure 200 kPa and secondary 

pressures of: (a) 1.8 kPa; (b) 2.5 kPa; and and (c) 3.2 kPa.   

 

 

 

b 

c 
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7.2.2 Simulation  

The computational simulation technique involved specification of the computational domain and 

boundary conditions, and the solution of the algebraic, finite volume forms of the relevant 

compressible flow equations using Ansys Fluent 16.1. All dimensions of the computational 

domain were taken from the physical model of  the radial ejector as shown in Figure 6-1. The 

computational domain was specified as 2D axisymetric.  The computational domain was meshed 

using Ansys Mesh software.  The standard k-epsilon turbulence model was employed for the 

majority of the simulations, and for comparison, results from the k-omega SST model presented 

in [76] and [82] were used along with additional k-omega SST simulations performed where 

needed. The density-based implicit solver was used and this solver has been proven to be a 

suitable solver for supersonic flow fields, [74] and [75].  

Air was specified as the flow medium and the primary and seconday in-flow boundaries were set 

as pressure-inlets. The ejector exit was specified as a pressure-outlet. Primary pressures of 160, 

200 and 250 kPa were simulated in combination with secondary pressures of 1.8, 2.5 and 3.2 kPa 

giving a total of 9 simulated primary-secondary stream operating conditions corresponding to the 

physical conditions in the experiments.  The stagnation temperature of the air entering the ejector 

through the primary and secondary inlets was specified as 27 °C corresponding to the conditions 

in the experiments.  For each of the primary and secondary stream operating conditions, different 

outlet pressures ranging from approximately 2 kPa to 7 kPa were applied to emulate the 

conditions encountered in the physical experiments. The simulations were run as steady analyses 

even though the experiment for each combination of primary and secondary pressure had a 

gradually increasing outlet pressure. The relatively slow rate of change of the outlet pressure 

encountered in the experiments is assumed to allow the information obtained at any specifc outlet 

pressure to be the equivalent of that which would be obtained at a steady state condition. The 
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solver was set to the second order upwind scheme. For the final solution to be considered 

converged, two criteria needed to be satisfied: 

1- the difference of the mass flow rate at the inlets and outlet were less than 10-6 kg/s, amounting 

to a maximum error of 0.0244% in the mass flow rate across the simulated range of operating 

conditions.  

2- All residuals for caclculations must fall to less than 10-5. 

 

A mesh independence analysis was performed. Different mesh sizes consisting of between 15000 

and 80000 elements were produced. A uniform fine mesh with maximum face size of 0.08 mm 

was initially applied to the flow domain shown in Figure 7-2a and then, to accurately simulate 

boundary layers, 10 inflation layers were adopted close to the walls. The sizes of the cells nearest 

to the ejector walls are characterised in terms of the dimensionless parameter, 𝑦+ and for the 

mesh with 51451 elements and the ejector operating condition of primary, secondary and exit 

pressures of 200, 1.8 and 3.5 kPa respectively, the values of 𝑦+  are shown in Figure 7-2b.  The 

sublayer should be resolved with reasonable accuracy in this case because the 𝑦+ values do not 

exceed 1.  
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Figure 7-2: Mesh arrangement for the radial ejector: (a) uniform mesh arrangement with no 

inflation layers illustrating the level of refinement in the majority of the flow domain for the case 

of 44701 elements;  (b) wall y+ values for 51451 mesh elements and for primary, seconday and 

exit pressures of 200, 1.8 and 3.5 kPa.   
 

Figure 7-3 shows the variation of entrianment ratio with the number of mesh elements for: (a)  a 

choked ejector operating condition (diffuser exit pressure was less than 𝑝𝑐𝑟𝑖𝑡) with primary 

pressure 200 kPa, secondary pressure 3.1 kPa and exit pressure of 3.0 kPa; and (b) an unchoked 

ejector operating condition (diffuser exit pressure was greater than 𝑝𝑐𝑟𝑖𝑡) with primary pressure 

200 kPa, secondary 1.8 kPa and exit pressure 3.5 kPa.  Results in Figure 7-3 demonstrate 

monotonic convergence in the entrainment ratios for meshes with element numbers greater than 

33888 for both choked and unchoked ejector operation, apart from the point identified in part (a) 

of the figure. Entrainment ratio results obtained from simulations with the  51451 mesh elements 

were compared to the equivalent results with the finer mesh, and based on these comparisons, 

the choked ejector (maximum) entrainment ratio determined from the 51451 mesh is estimated 

to be within ±0.5% of the fully grid-independent solution.  Therefore the domain with 51451 

mesh elements was primarily used for the subsequent simulations described herein because of 

the reduced time to convergence it provided relative to the 79979 mesh element simulations.   

 

a b 
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Figure 7-3: Variation of entrainment ratio with number of mesh elements for: (a) typical choked 

conditions; and (b) typical unchoked conditions.  
 

 

Figure 7-4 shows the variation of the centre-plane static pressure with distance from the axis of 

the radial ejector  for secondary and exit pressures of 200, 1.8 and 3.5 kPa respectively, which 

a 

b 
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corresponds to an unchoked operating condition. The lower resolution simulations (33888 mesh 

elements and lower) indicate that the increase in the centre-plane static pressures occurs 

somewhat upstream of the static pressure increase in the case of the higher resolution simulations 

(41701 mesh elements and higher).  The initial region of the centre-plane static pressure variation 

shown in this figure is dominated by primary nozzle flow, but at regions away from the ejector 

centre-plane, mixing between the primary and seconday streams occurs and the region is 

therefore labelled as the “mixing section”, the zone corresponding to  the converging inlet of the 

ejector. On this converging inlet, regions of separated flow are established on either side of the 

primary flow, and this flow separation effect dictates the position of the centre-plane static 

pressure rise observed in Figure 7-4 upstream of the “diffuser section” of the ejector. A larger 

zone of separated flow was simulated when the number of mesh elements used was 33888 and 

lower.  Simulations reported in the remainder of this paper were performed using 51451 elements 

which is demonstrated to be a large enough number for convergence of the entrainment ratio in 

both choked, and unchoked operating conditions, as illustrated in Figure 7-3, and for convergence 

in the simulation of critical flow features such as flow separation in the case of unchoked ejector 

opereation as illustrated in Figure 7-4.      
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Figure 7-4: Variation of centerline static pressure along the ejector for different mesh elements 

for the unchoked ejector operating condtions of primary 200 kPa, secondary 1.8 kPa and exit 3.5 

kPa pressures.   
 

 

Simulated mass flow rates through the primary nozzle for the 3 primary nozzle working pressures 

are reported in Table 7-1, and in order to establish a simulated value for the nozzle discharge 

coefficient, the ideal value for the mass flow rate was calculated using 

�̇�𝑝,𝑖𝑑𝑒𝑎𝑙 = √𝛾

𝑅
 (

2

𝛾+1
)

(𝛾+1)/(𝛾−1) 𝑝𝑝

√𝑇𝑝
𝐴∗    

For the calculation of the ideal mass flow rate, air is considered as an ideal gas with 𝛾 = 1.4 and 

𝑅 = 287 J/kgK, and the nozzle throat 𝐴∗ = 8.8 mm2, corresponding to a cylindrical throat area 

with a radius of 3.5 mm and a height of 0.4 mm, as illustrated in Figure 6-1.  In each case, the 

primary pressures 𝑝𝑝 were taken as the stagnation values used in the simulations and the 

temperature 𝑇𝑝 was taken as 27 °C, also corresponding to the stagnation condition used in the 

simulations.  Values for the ideal mass flow rate through the primary nozzle are also reported in 

Table 7-1. The discharge coefficient for the nozzle 𝐶𝑑  from simulations was then determined by 

dividing the simulated primary nozzle mass flow rate by the calculated ideal mass flow rate, and 
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for each operating condition, the discharge coefficient was determined to be approximately 𝐶𝑑 =

0.88, as illustrated in Table 7-1.  

Simulated entrainment ratio results vary with the ejector exit pressure in a similar manner to the 

experiments as illustrated in Figure 7-1.  Therefore a similar analysis as that used for the 

experimental data was applied to the simulated results: (1) straight lines were fitted to the 

simulated entrainment ratio results for ejector exit pressures somewhat higher than the critical 

value; (2) horizontal straight lines were fitted to the simulated entrainment ratio results for ejector 

exit pressures somewhat lower than the critical value; and (3) the intersection of the two lines 

defined the critical point for the simulated ejector performance.  

 

Table 7-1: Primary nozzle mass flow characteristics 

 Experiment Simulation 

𝑝𝑝 (kPa) �̇�𝑝  (g/s) 

 

�̇�𝑝  (g/s) 

 

�̇�𝑝,𝑖𝑑𝑒𝑎𝑙  (g/s) 

 

𝐶𝑑 

 

160 3.84 2.901 3.286 0.883 

200 4.78 3.623 4.107 0.882 

250 5.97 4.531 5.134 0.883 
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7.3 Results and Discussion  

7.3.1 Entrainment Ratio and Critical Pressure 

Table 7-2 presents entrainment ratio and critical pressure results obtained from the experiments 

and computational simulations using the methods described in Section 7.2.  Results showing the 

comparison of experimental data and simulated values of entrainment ratio and critical pressure 

are also presented in a graphical form in Figure 7-5. 

 

Table 7-2: Experimental and simulated values of entrainment ratio and critical back pressure 
Primary 

pressure (kPa) 

Secondary 

pressure (kPa) 

Expansion 

ratio  

Entrainment ratio Critical back pressure (kPa) 

Experiment Simulation Experiment Simulation 

160 1.8 88.9 0.37±0.015 0.41±0.002 2.72±0.041 2.25±0.056 

160 2.5 64.0 0.61±0.024 0.55±0.003 3.75±0.056 3.15±0.079 

160 3.2 50.0 0.95±0.038 0.67±0.003 4.55±0.068 3.75±0.094 

200 1.8 111.1 0.29±0.012 0.38±0.002 2.84±0.043 2.85±0.071 

200 2.5 80.0 0.45±0.018 0.51±0.003 4.11±0.062 3.21±0.080 

200 3.2 62.5 0.70±0.028 0.64±0.003 4.88±0.073 3.65±0.091 

250 1.8 138.9 0.24±0.010 0.36±0.002 2.87±0.043 3.05±0.076 

250 2.5 100.0 0.33±0.013 0.45±0.002 3.90±0.059 3.44±0.086 

250 3.2 78.1 0.55±0.022 0.57±0.003 5.49±0.082 4.45±0.111 

 

 

 

 

From Figure 7-5 it can be seen  that simulated entrainment ratio results are mostly within ±16% 

of the experimental measurements except for the low (𝜔 < 0.35) and  high (𝜔 > 0.9) entrainment 

ratio cases. The simulations of the critical back pressures are, on average, also within 16% of the 

experimental results, but the simulations tend to underestimate the critical back pressure achieved 

in the experiments by about this amount.  A superficial assessment based on such quantification 

suggests that the simulations using the k-epsilon standard turbulence model offers an adequate 

model for the ejector performace because, in the literature, discrepencies between ejector 

experimental results and computational simulations of up to 20% [8], 25% [86], 30% [25] and 
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even more than 50% in some working conditions [17] have been reported by for different axial 

flow ejector arrangements. However, the results in Figure 7-5 illustrate systematic departutres of 

the simulated entrainment ratio from the experimental results, so the computational model is not 

entirely satisfactory.  In the work of Hemidi et al. [26], CFD results very close to experimental 

data were obtained, the results matching to within 10%, and Hemidi et. al. suggested the success 

in their case might be partially associated with the very high precision in the test bench setup. 

Departures in the experimental appartus from nominal dimensions can certainly lead to 

disagreement between the simulations and experimental results. In the case of the radial ejector, 

the nozzle and ejector throat dimensions are relatively small and the complex assembly process 

exposes the prototype used in the experiments to potential variation from the design dimensions.  
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Figure 7-5: Graphical comparison of experimental and computational results for: (a) entrainment 

ratio; and (b) critical back pressure.  
 

A significant contribution to the uncertainty in the CFD simulations arises from the precision 

with which the primary nozzle and ejector duct could be assembled.  Possible departure of the 

primary nozzle throat separation from the nominal design value is gauged by referring to the 

a 

b 
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mass flow rates in Table 7-1 where it is observed that on average, the experimental data are 

approximately 16.5% larger than the simulated values.  The nozzle throat separation ℎ∗ is 

therefore likely to be larger than the nominal value of 0.4 mm which was used in the simulations 

by +16.5% or about +0.066 mm (details in Chapter 5).  No such gauge for assessing the actual 

assembled separation of the ejector throat exists, but based on estimates of assembly precision, 

flexibility of the 3D printed duct, and potential loading on the duct during assembly and when in 

operation, the uncertainty in the ejector throat height  ℎ𝑡 is estimated to be ±0.6 mm, which 

amounts to a relative uncertainty of ±26%.   

Based on the quasi one-dimensional gas-dynamic analysis reported in chapter 5 and for 

expansion ratios between 50 and 150, when a 16.5% increase in the nominal nozzle throat area 

occurs: (1) a decrease in the entrainment ratio by about 18% is anticipated; and (2)  an increase 

in the critical back pressure by about 14% is expected.  If a decrease in the CFD-simulated 

entrainment ratio of about 18% also occurs when the larger nozzle throat size is used, then the 

simulation results presented in Figure 7-5a will be in better overall agreement with the 

experiments, but there will still be a systematic difference between the simulations and the 

experimental results.  In a similar manner, if an increase in the CFD-simulated entrainment ratio 

of about 14% also occurs when the larger nozzle throat size is used, then the simulation results 

presented in Figure 7-5b will be in better overall agreement with the experiments, but there will 

still be a systematic difference between the simulations and the experimental results.      

In the work of [82], by increasing the ejector duct separation from 2.2 mm to 3 mm which 

represents an area increase of about 36%, the entrainment ratio increased by 34%, and the the 

critical back pressure decreased by about 15%. Assuming a linear relationship between the 

ejector duct separation and both the entrainment ratio and critical back pressure, a 26% increase 

in the ejector duct separation from the nominal dimension would cause an increase in the 

entrainment ratio of around 25%,  and about 10% decrease in the critical back pressure.  
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One source of uncertainty in the CFD arises because of the possible deviation of the radial ejector 

components location from their designed location. For example, the nozzle could have been 

installed in a position that differs from the designed location.  The radial nozzle might deviate 

from the specified location in different ways including any combination of the following:  

• Offset of the nozzle centre plane from the ejector duct centre plane.  

• Offset of the nozzle vertical centre line from the ejector vertical centre line.  

• Angular deviation of the nozzle centre plane from the ejector duct centre plane. 

• Angular deviation of the nozzle vertical centre line from the ejector vertical centre line.  

 

These possible deviations in the assembly of the radial ejector could lead to blockage of the 

supersonic flow passing the nozzle or non-parallel flow of the primary and secondary streams. 

To minimize the impact of these possible deviations, the nozzle was supported from both sides 

of the ejector. The effect of these possible deviations has not been simulated. Further studies are 

needed to assess the effect of these deviations in the radial ejector performance and flow 

behaviour.  

 

 

7.3.2 Comparison of k-epsilon and k-omega SST Models 

Figure 7-6 presents the variations of entrainment ratio and critical pressure for the k-epsilon 

standard and  k-omega SST models compared to experimental results (not considering possible 

departures of nozzle or ejector throat separations) at the different expansion ratios 𝑝𝑝 𝑝𝑠⁄ . The 

results show that the k-omega SST model overestimates both the entrainment ratios and critical 

back pressures. The k-epsilon standard model also overestimates the entrainment ratio at 

expansion ratios of more than 78, but underestimates the entrainment ratio at lower values. The 

discrepancy between the simulations of the entrainment ratio from the k-omega SST model and 
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the entrainment ratio from the experiments increases with increasing expansion ratio. The k-

epsilon standard model underestimates the critical back pressure at low expansion ratios, but with 

increasing expansion ratio, the discrepancy between the k-epsilon standard model and the 

experimental data approaches zero while the discrepancy increases for the k-omega standard 

model with increasing expansion ratio.  
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Figure 7-6: Comparison of k-epsilon with k-omega SST ejector simulations: (a) entrainment 

ratio; and (b) critical back pressure. 
 

a 

b 
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7.3.3 Simulations of Mach Number and Static Pressure  

Figure 7-7 shows the simulated Mach number contours from the radial ejector for primary 

pressure of 200 kPa, secondary pressure of 1.8 kPa and two different values for the exit pressure: 

2 kPa and 4 kPa. These cases have been selected for consideration because at these values of 

primary and secondary pressure, the simulated critical back pressure closely matches the 

experimental value, as illustrated in Figure 7-7a, although the simulated maximum entrainment 

ratio exceeds the experimental value by approximately 30%, as indicated by the values presented 

in Table 7-2. The critical back pressure in this condition is 2.84 kPa, so the case where the back 

pressure is 2 kPa corresponds to a situation where the ejector is operating in the choked mode, 

and for the back pressure of 4 kPa, the ejector is operating in an unchoked mode.  In fact, the 

back pressure of 4 kPa corresponds to the malfunction pressure, where simulated entrainment of 

the secondary stream has fallen to zero, as illustrated in Figure 7-7a.   

High pressure primary flow enters the radial nozzle relatively close to the axis and the air is 

accelerated,   reaching Mach 1 at the nozzle throat. Supersonic flow is achieved in the diverging 

part of the nozzle and a sequence of oblique wave structures form at the nozzle lip and these 

wave structures process the primary flow, adjusting its pressure and flow direction to achieve 

compatibility with the entrained secondary flow. The maximum Mach number of the flow 

leaving the nozzle reaches about 4.25 and this maximum Mach number is not significantly 

affected by different back pressures. By increasing the back pressure from 2 kPa to 4 kPa, the 

maximum Mach number deceased from 4.2679 to 4.2540. Similar Mach number results have 

previously been obtained by [76], [75], [3] for axial ejectors.  

In typical axial flow ejectors, by increasing the back pressure, the location of the compression 

process inside ejectors moves upstream, but by increasing the secondary pressure, the position 

of the compression process moves downstream [74], [75]. Simulations of the prototype radial 

ejector display a slightly different behavior. As it can be seen from Figure 7-7a, at the low exit 
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pressure of 2 kPa, a zone with a Mach number more than 1 exist at the start of the diffuser section, 

but at the higher exit pressure of 4 kPa (as illustrated in Figure 7-7b), this zone no longer exists, 

suggesting an upstream movement in the compression effect.  However, on inspection of the 

static pressure on the centre-plane of the radial ejector shown in Figure 7-8, it is observed that 

the position of the compression process has moved upstream very little in changing from the back 

pressure of 2 kPa to the back pressure of 4 kPa. 

Figure 7-8 illustrates that  the centre-plane static pressure fluctuates with a decaying magnitude 

within the core flow of the primary nozzle within the mixing chamber section, a feature that is 

shared with typical axial flow ejectors. For relatively low ejector exit pressures, the fluctuating 

centre line static pressure in axial ejectors typically approaches an almost constant value near the 

start of  the constant area section, or just prior to the appearance of  a second series of shocks 

which compress the supersonic portion of the mixing ejector flow towards the required diffuser 

exit pressure. Such behavior has been reported by [87] for an axial ejector that is equivalent to 

the radial ejector reported in this paper in terms of throat sizes.  With increases in the back 

pressure of typical axial flow ejectors, the point at which the pressure starts to rise shifts upstream 

[74].  Furthermore, in typical axial flow ejectors operating at low back pressures, almost the 

entire secondary flow will accelerate to sonic conditions by the start of the diffuser. The present 

radial ejector has no constant area section similar to the axial ejectors, and by increasing the back 

pressure, the static pressure rises in the mixing section. There is no significant zone within the 

simulated radial ejector with an almost constant static pressure prior to the compression process 

either in the choked or in the unchoked operating conditions. Although the radial ejector clearly 

displays a constant entrainment ratio effect for back pressures less than the critical value, it seems 

that complete acceleration of the secondary flow to sonic conditions is not acheivable with the 

current radial ejector arrangement. 

 

 



 

125 
 

 

Figure 7-7: Mach number contours for primary pressure of 200 kPa, secondary pressures of 1.8 

kPa and back pressures of: (a) 2 kPa and (b) 4 kPa.   

 

  

 

a 

b 
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Figure 7-8: Centre-plane  static pressure for primary pressure of 200 kPa, secondary pressure of 

1.8 kPa and for two cases with different diffuser exit pressures of 2 and 4 kPa. 

 

7.3.4 Wall Pressures: Experiments and Simulations 

A comparison of the radial ejector wall pressure for the k-epsilon standard, k-omega SST and 

experiments is shown in Figure 7-9. The simulated wall pressure of the radial ejector using the 

k-omega SST model has been reported by [76]. Experimental data demonstrates different 

characteristics for the different modes of ejector operation: (1) for exit pressures lower than the 

critical pressure, the ejector is working in the critical mode and the wall pressure reaches a 

minimum value downstream of the ejector throat; (2) for exit pressures in the vicinity of the 

critical pressure, the ejector is working in the transition from the critical to subcritical modes and 

the minimum wall pressure occurs in the vicinty of the throat; and (3) for exit pressures in excess 

of the critical pressure, a peak in the static pressure occurs at the throat or upstream of the throat 

but the final rise towards the exit pressure value occurs further downstream, in the diffuser 

(Chapter 6).  As can be seen in Figure 7-9, neither of the turbulence models adequately simulate 

the wall pressure within the radial ejector. Both models simulate a high pressure zone around the 

physical throat, even when the ejector is operating in the critical mode which is an effect that is 

not apparent in the physical data. In fact, the k-epsilon model simulates a peak in the static 
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pressure around the physical throat or in the mixing chamber at all working conditions and this 

peak value is significantly higher than the exit pressure. Although the k-omega SST model also 

simulates  a throat pressure rise in the critical mode which is not observed in the experiments 

(Figure 7-9a), the magnitude of the simulated peak in the case of the subcritical mode is slightly 

lower than the magnitude observed in the experiments (Figure 7-9b). On balance, the k-omega 

SST model provides simulated wall pressures that are in better agreement with the experimental 

data.  

 
Figure 7-9: Static wall pressure along the radial ejector for primary and secondary pressures of 

200 and 1.8 kPa respectively: (a) exit pressure of 2 kPa; (b) exit pressure of 3.5 kPa. 
 

a 

b 
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7.3.5 Recirculation in the Mixing Zone 

The centre-plane static pressure simulations in Figure 7-8 indicate that lower static pressures are 

registerd at the exit of the diffuser than are achieved at locations slightly upstream of the physical 

throat of the ejector, which occurs at a radius of 36 mm (Figure 6-1).  Thus, the flow in the ejector 

is re-accelerating in the diffuser after the throat station has been reached.  Such an effect is not 

observed in typical axial flow ejectors, and arises in the present simulations of this particular 

radial flow ejector due to flow separation in the mixing region. Figure 7-10 presents the simulated 

stream functions of the flow inside the radial ejector for primary, secondary and exit pressures of 

200, 1.8 and 2 kPa respectively for the radial ejector (in part a of this figure) and a slightly 

modified profile of the radial ejector (in part b of this figure). For the modified profile, the sharp 

transition from the contraction half-angle  of 9º to the parallel portion of the duct was replaced 

by a smooth profile in the vicinity of the throat in an effort to reduce the magnitude of the region 

of separated flow.  Simulations of the revised profile ejector indicated that the maximum 

entrainment ratio increases by 4.2 % for the primary and secondary pressures of 200 and 1.8 kPa 

respectively, but this configuration also had an ejector throat area that was larger than the usual 

configuration by 50 %.  In the work of [82], by increasing the ejector thoat size by 36%,  the 

entrainment ratio inceased 29% at this operating condition. It seems that increasing the duct 

separaton is more effective than just increasing the ejector throat area for achieving higher 

entrainment ratios. However, no increase was registered in the critical back pressure in the 

modified version at primary and secondary pressures of 200 and 1.8 kPa respectively.  According 

to the simulations, the modification changes the position of the recirculation zone, and reduces 

the asymmetric flow behaviour. 
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Figure 7-10: Stream functions inside the radial ejector for primary, secondary and exit pressures 

of 200, 1.8 and 2 kPa respectively for (a) the prototype radial ejector; (b) a modified radial ejector 

with a smooth shape transition in the throat region. 
 

 

CFD results shows that there is a flow separation in the mixing chamber.  One reason for this 

separation may be that the radial ejector duct is not contracting sufficiently fast to keep the flow 

cross sectional area decreasing. In the prototype radial ejector, there is actually a slight maximum 

in the apparent flow cross sectional area at around 1500 mm2 at the start of mixing chamber (refer 

to Chapter 5).  To create a more rapid reduction in the cross sectional area of the ejector duct 

near the start to avoid an apparent  area increase, a new flow cross sectional area profile is 

suggested in Figure 7-11. Additional features intended to improve the radial ejector performance 

include: (1) a variation in duct separation  and associated area variation that should generate 

lower adverse pressure gradients in the diffuser; and (2)  a constant area zone in the throat region.  
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Figure 7-11: Proposed variation of flow cross sectional area and corresponding plate separation for 

improved radial ejector performance.  
 

 

Figure 7-12 shows the modified radial ejector flow path based on the suggested area variation 

shown in Figure 7-11. CFD simulation for this area variation has been conducted using the k-

epsilon standard turbulence model.   CFD results at primary, secondary and exit pressures of 200, 

1.8 and 2 kPa respectively that correspond to a double choked condition in the original prototype 

configuration with an entrainment ratio of 0.38, show that for the modified configuration, the 

entrianment ratio decreases to 0.13. The critical pressure is not also improved with this modified 

configuration; the prototype radial ejector worked in a single choked mode for an exit pressure 

of 3.5 kPa, but reverse flow existed for this modified configuration at 3.5 kPa exit pressure. This 

modified version has the same throat area as the prototype radial ejector, but the separation of 

the ejector duct at the exit of the diffuser decreased from 2.2 mm to about 1.8 mm. As can be 

seen from Figure 7-12, the separation zone still exist in the mixing chamber.  This initial attempt 

at improving the variation of the flow cross sectional area has not been successful.   Further 

computational simulation work is required to optimise the variation of flow cross sectional area 

in the radial flow diffuser. 



 

131 
 

 

 

 

 

Figure 7-12: The modified radial ejector flow path and stream functions inside the radial ejector 

for primary, secondary and exit pressures of 200, 1.8 and 2 kPa respectively. 
 

 

7.4 Conclusion  

CFD simulations using Ansys Fluent have been performed for a radial ejector configuration 

working with air, and the results assessed against experimental data. The CFD simulations using 

the k-epsilon standard model predicts the ejector performance reasonably well. In terms of the 

entrainment ratio, the CFD simulations based on k-epsilon standard turbulence model agree with 

the data from the experiments to withinabout 16% except for entrainment ratios lower than 0.35 

and higher than 0.9, where differences are larger. The k-epsilon standard CFD simulations also 

give critical pressures that agree with data from the experiments with an average discrepancy of 

less than 16%. However, the comparisions with the experimental data demonstrate that the 

discrepancies in the simulations are systematic in both the entrainment ratio and critical back 

pressure.  Significant differences also exist between the k-epsilon standard and k-omega SST 

turbulence model in simulating the entrainment ratio and critical back pressure: the k-omega SST 

turbulence model over estimates entrainment ratio and critical back pressure at all working 

conditions. The k-epsilon standard model also overestimates the entrainment ratio at expansion 

ratios more than 78, but underestimates the entrainment ratio at lower values. The k-epsilon 
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standard turbulence model under estimates critical back pressure at low expansion ratios and by 

increasing the expansion ratio, the discrepancy approaches zero.  

Both k-epsilon and k-omega turbulence models simulate a peak in static pressure around the 

physical throat of the ejector when operating in both critical and subcritical modes. However, in 

the experiments, such a peak in pressure only occurs in when the ejector is operating in the 

subcritical mode.  Neither model accurately simulates the distribution of wall pressure in the 

radial ejector, though on balance, the k-omega model offers better overall agreement with 

experimental data.     

The simulated flow in the radial ejector reaccelerated in the diffuser after the throat position has 

been reached. Such an effect is not observed in typical axial flow ejectors and arises in the present 

simulations of this particular radial flow ejector due flow separation in the mixing region. 

Although the reacceleration effect is not observed in the static pressure measurements for the 

ejector operating in the critical mode, it is apparent in the static pressure measurements for the 

subcritical mode. Reducing the size of the recirculation zone in the mixing region was targeted 

for performance improvement from the radial ejector. Replacing the sharp transition from the 

mixing region into the ejector throat with a smooth profile in the vicinity of the throat was first 

simulated, and this modification reduced the size of the region of separated flow and slightly 

increased the entrainment ratio, but had no positive effect on the critical pressure. Designing the 

plate separation to more accurately reflect the flow area available in an axial flow ejector through 

the addition of a constant area throat and a reduced rate of area increase in the diffuser was then 

tested with the CFD simulation. A significant reduction in both the entrainment ratio and critical 

pressure was simulated with these modifications. Clearly the shape of the radial ejector plays a 

strong role in its performance, and it is conceivable that the tuning the nozzle shape to the ejector 

duct shape could also be important. Further CFD simulation work to optimise the radial ejector 

configuration is warranted.  
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8 Chapter 8                                                                                                 

Conclusion  

   

8.1 Summary 

For optimum performance of fixed geometry ejectors, a narrow range of operating conditions 

need to exist. To extend this range by any appreciable amount, adjustability in the nozzle throat 

area, together with ejector throat area is necessary. Mechanically achievable approaches to 

employing adjustability in conventional axial ejectors have drawbacks including significant 

increases in total pressure losses for devices positioned in the high speed flow and physical 

limitations to the magnitude of dimension change in throat areas. 

The inherent form of axial ejectors with circular cross sections impedes the effective, efficient 

and practical application of variable geometry. A new configuration with a predominantly radial 

flow was identified to provide the capacity to readily adjust both the primary nozzle and the 

ejector throat areas without increasing losses due to blockage in the flow. The primary supply 

expands in the supersonic radial flow nozzle; this expanding disk of primary flow entrains the 

secondary flow from the inlets positioned on either side of the expanding primary flow.  

In this study, the radial flow ejector concept was investigated through experiments and 

computational simulations using Ansys-Fluent software based on k-epsilon and k-omega 

turbulence models. Comparisons with a theoretical quasi-one-dimensional gas dynamic model 

and conventional ejector performance were evaluated.  Based on a design optimisation process, 

a prototype radial ejector was fabricated and evaluated against the performance predicted in the 

design phase. To simplify fabrication by accommodating materials with restricted operating 
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temperatures, the design has been based on using air as the working fluid and operates as an open 

system.  

 

8.2 Radial Ejector Design  

The pattern of fluid flow is the main difference between the radial ejector and traditional ejector 

designs. In the traditional axial ejector arrangement, the direction of flow entering the nozzle and 

passing through the ejector is predominantly axial. The radial ejector operates with a 

predominantly radial flow pattern. The radial ejector nozzle and ejector duct are both formed 

from two disk-like surfaces sandwiching the ejector flows. The primary, secondary and exit flows 

are accelerated or decelerated primarily in the radial direction.  

The design of the radial ejector followed traditional axial-flow ejector ‘design rules’ interpreted 

in the context of the new radial ejector geometry, in combination with information from CFD 

simulation. An axial flow ejector with its experimental and simulation data was used as a 

benchmark; the design targets for the radial flow ejector were chosen to match this axial ejector 

performance. The radial ejector had a nominal throat separation of 0.4 mm giving a nozzle throat 

area of 8.8 mm2 and a nozzle exit area of 180 mm2, giving a nozzle area ratio of 20.4. The ejector 

itself has a nominal throat separation of 2.3 mm giving a physical throat area of 520 mm2, and 

an ejector area ratio of 59.  

 

8.3 Radial Ejector Performance Evaluation   

Experiments and simulation were undertaken to evaluate the radial ejector performance in terms 

of entrainment ratio and critical exit pressure. Based on a preliminary CFD analysis using the k-

omega SST turbulence model, the radial ejector produced similar performance to an equivalent 

axial configuration. The radial ejector prototype was evaluated experimentally at primary 

pressures of 160, 200, and 250 kPa and secondary pressures of 1.8, 2.5 and 3.2 kPa.  A quasi 
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one-dimensional model was also configured to predict the values of entrainment ratio and critical 

pressure lift ratio of the radial ejector prototype. The radial ejector entrainment ratio values were 

in good agreement with the models. However, the radial ejector critical pressure lift ratios were 

lower than would be expected for an axial flow ejector having the same area ratios as the radial 

ejector.  

 

8.4 Effect of Primary and Secondary Pressures   

Radial ejector performance at three different primary pressures of 160, 200 and 250 kPa was 

experimentally and numerically investigated. The effects of different primary pressures on the 

radial ejector performance is consistent with expectations for conventional, axial flow ejector 

performance. While the entrainment ratio decreased with increases in the primary flow pressure, 

the pressure lift ratio increased.   

Radial ejector performance at three different secondary pressures of 1.8, 2.5 and 3.5 kPa was 

experimentally and numerically investigated. Both the entrainment ratio and the critical exit 

pressure increased with increases in the secondary flow pressure, again consistent with 

expectations based on existing knowledge of conventional, axial flow ejectors. The overall 

minimum and maximum entrainment ratios achieved were 0.24 and 0.98 for corresponding 

expansion ratios of 139 and 50 respectively.  The overall minimum and maximum lift ratios 

achieved were 1.42 and 1.72 for corresponding expansion ratios of 50 and 100.  Higher pressure 

lift ratio is achieved with higher expansion ratios.  

 

8.5 Static Pressure in the Radial Ejector 

Experimental results show that the location of the compression process inside the radial ejector 

varies with the secondary and exit pressures. The location of the compression process is moved 

upstream by increasing the exit pressure. By inceasing the secondary pressure, the compression 
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process location is moved downstream. When the radial ejector is working in the critical mode 

but with an exit pressure substantially below the critical value, the wall pressure reaches a value 

close to the secondary stream isentropic choking static pressure at a location that is well 

downsteam of the physical throat of the ejctor duct. For all exit pressures, the measured static 

pressure at the physical throat of the radial ejector is always higher than the value corresponding 

to isentropic choking of the secondary stream. Based on the measured static pressures, the 

calculated Mach number of the secondary stream at the ejector throat was approximately 0.7 over 

the range of conditions tested.  

For exit pressures close to the critical pressure, the static pressure at the physical throat gradually 

increased with increasing exit pressure. With further increases in exit pressure, the throat pressure 

increased more rapidly, and a point was reached where the measured throat pressure exceeded 

the secondary inlet pressure.  This point might be a sign of  flow separation. In the subcritical 

operating mode, the rate of entrainment ratio decrease and the rate of change on the wall pressure 

at the physical throat with increasing exit pressure is not particularly constant compared to typical 

axial ejector performance curves. Some form of oscillatory flow might be responsible for these 

features as an audible noise was detected within the radial ejector at conditions where the changes 

in the slope of the entrainment ratio curve and the throat static pressure were observed.  

 

8.6 Geometric Adjustability in the Radial Ejector    

To investigate the adjustability in the radial ejector, CFD simulations using Ansys-Fluent were 

performed. By changing the separation of the radial ejector ducts from 2.2 mm to 2.4 mm and 3 

mm, three ejector throat areas simulated. The CFD results reveal that adjusting the separation of 

the radial ejector ducts was effective in achieving different ejector performance in terms of 

entrainment ratio and critical exit pressure. The following results were achieved from adjustment 

in the radial ejector geometry in the simulation:  
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• Increasing the radial ejector duct separation achieved higher entrainment ratios. An 

entrainment ratio increase of 34% was achieved by increasing the ejector duct separation 

from 2.2 mm to 3 mm.  

• Increasing the separation typically reduces the critical exit pressure that can be achieved.  

• Decreasing the ejector duct separation from 3 mm to 2.2 mm increases in the critical exit 

pressure by more than 40% at the highest primary pressure condition. 

 

8.7 Radial Ejector Simulations  

The CFD simulations were performed using the k-epsilon standard and k-omega SST models 

using Ansys Fluent working with air. Based on the experimental data and CFD simulation, the 

following conclusions were made:  

• The k-epsilon standard CFD simulations predict entrainment ratio and critical pressures 

with an average discrepancy of less than 16% in most of the operating conditions.  

• The comparisons of the experimental data and the k-epsilon standard model demonstrate 

that the discrepancies are systematic in both the entrainment ratio and critical exit 

pressure.  

• Systematic discrepancies are also observed with the k-omega SST turbulence model 

which over estimates entrainment ratio and critical exit pressure at all working conditions.  

• Significant differences also exist between the k-epsilon standard and k-omega SST 

turbulence models in simulating the entrainment ratio and critical exit pressure.  

• Both k-epsilon and k-omega turbulence models simulate a peak in static pressure around 

the physical throat of the ejector when operating in both critical and subcritical modes. 

However, in the experiments, such a peak in pressure only occurs when the ejector is 

operating in the subcritical mode.   
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• Neither k-epsilon standard nor k-omega SST model accurately simulates the distribution 

of wall pressure in the radial ejector, as measured in the prototype experiments.  

• The k-omega model offers better overall agreement with experimental data compared to 

k-epsilon model results.   

 

8.8 Areas for Future Research 

The radial ejector developments in this work demonstrate that entrainment ratios matching those 

of conventional ejectors can be achieved in a radial configuration with adjustable geometry that 

does not induce additional blockage losses. However, further radial ejector optimization effort is 

required to increase the critical exit pressures to those that can be achieved in conventional 

ejectors.  

As the radial ejector configuration is in the preliminary stage of development, more experiments 

and simulation is required to improve its performance. Work to date warrants considerable effort 

to identify the flow features contributing to the various characteristics of performance, both 

holistically and specially to the characteristics of various unique feature of the configuration. The 

following recommendations for future investigations are made: 

• Improvement of the nozzle and the radial ejector flow area profiles to reduce the pressure 

losses in the ejector.  

• Investigation into the adjustability in the radial nozzle and its effects on the radial ejector 

performance.  

• Experimental investigation on the adjustability options in the radial ejector.  

• Investigation into the radial ejector lift ratio underperformance, the reasons for this and 

how to improve it.  

• Study of new design methods for radial ejector as the conventional approaches employed 

traditionally for axial ejectors are not fully applicable.  
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• Optimisation of the CFD models to improve the reliability of simulation used in analysing 

the radial ejector flow features. Regarding the effects of the walls in the radial ejector, it 

is recommended to study the radial ejector using other turbulence models. 

• The radial ejector configuration may be capable of more readily achieving and controlling 

oscillatory primary flow than has been shown in axial ejectors. Investigation into 

employing oscillatory behaviour in the radial ejector flow is recommended.  
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