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A B S T R A C T   

This article considers current capacity issues in health care and the development of quantitative techniques to 
facilitate a high-level strategic assessment of hospital activity within a region. In providing that assessment, a 
variety of decision problems are foreseen, and we test the notion that it is useful to provide decision support for 
those. To achieve that support, several optimization models are developed and tested. In theory the presented 
models may help health care planners organise hospital resources and activity better, to treat more patients. The 
first model that we propose identifies a maximal caseload that meets the patient type proportions specified in a 
regional case mix imposed by a planner, executive or manager. The second model identifies how spatially 
distributed demand can best be met amongst the different hospitals, such that travel distance and unmet demand 
are minimised. The third model identifies how individual hospitals can jointly achieve their goals with the help 
of outsourcing. Each of the models has been implemented and tested on some demonstrative examples of a 
smaller nature, before a larger study is presented. Our case study demonstrates that appropriate data can be 
collected, and the proposed decision models can provide a rational appraisal of regional capacity and utilization.   

1. Introduction 

Increasing demand is an endemic issue in healthcare, exacerbated by 
the covid pandemic, and other social factors. With limited staff, equip
ment, facilities, and budget, hospitals are required to provide treatments 
and care for an increasing number of many patients with diverse ill
nesses and or disabilities. Without intervention and planning, however, 
a hospital’s case mix (i.e., the composition of patient types treated in a 
cohort) is dictated by the training, skills and interests of staff, the 
referral patterns of patients, the productivity of the hospital, and prev
alence of disease within catchment areas [1]. The problem of identifying 
a patient cohort (a.k.a., case mix) with a specific set of features deemed 
desirable or ideal is called case mix planning. Identifying the ideal 
composition and number of patients to be treated, however, is not 
straight-forward and is quite nuanced. A variety of challenges make this 
task challenging (Hof et. al. [2]). First, there are many different 

alternative case mixes that can be selected. Some case mixes are 
favourable for some patient type and unfavourable for others. Second, 
the term “ideal” is subjective and can mean different things in a practical 
setting. A case mix may be sought that is most equitable, for instance in 
the allocation and usage of hospital resources. A case mix may also be 
sought that is most economical or financially viable to treat. From a 
utilization and output-oriented perspective, a maximal cohort may also 
be sought. That cohort results in the greatest number of patients treated 
over time. 

In most urban areas around the world, an assortment of public and 
privately owned hospitals is available to provide healthcare services. 
Each of these has a different focus and capabilities and is either moti
vated by professional interests or economic returns [3]. Otherwise, the 
overriding goal is to provide the public with equitable, accessible, high 
quality health care. Hospitals come in all shapes and sizes. Some are 
classified as specialist hospitals, local hospitals, major acute hospitals, 
elective centres, or clinics [4]. 
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For better or worse, most hospitals operate independently in most of 
their activities, without any global managerial oversight, even if they are 
part of a multi-hospital system [5]. There are a variety of units that 
contribute to planning-related activities within each hospital, and these 
are tasked with organising patient admissions, surgeries, and other lo
gistics [6]. These units are not typically equipped to perform strategic 
planning, or required to do so, and concentrate only on operational 
planning. 

It is important for individual hospitals to treat patients quickly and 
efficiently and to use their resources wisely. By more efficiently utilising 
the existing hospital resources, which are contained therein, it may be 
possible to increase the number of patients that would otherwise be 
treated and reduce waiting lists and associated access delays [7]. It is 
also possible to reduce the number of resources that are required to meet 
future demands. However, using resources efficiently can only go so far. 
At some point in the future, expansions and other modernisations 
become warranted. Making ad-hoc decisions about health care facilities 
and their expansion, without proper consideration, analysis, and scien
tific support may result in oversights, excessive costs, inefficiencies, and 
unrealised performance potential. 

Most hospitals are part of a larger health care system and working in 
a coordinated way with other hospitals may be advantageous. Further
more, closer ties and collaboration would seem beneficial to keep up 
with future demands and the increasing health care needs of an aging 
population. However, that has yet to happen at scale. Decisions 
regarding the spatial organization of healthcare services, and resources, 
pose significant challenges to decision and policy makers [8]. 

As we will show in Section 2, there are various techniques in the 
literature to plan and assess individual hospitals. However, very few 
exist for multi-hospital scenarios [5]. Additional techniques, ap
proaches, and strategies seem warranted. To test that assertion, this 
article considers whether a regional perspective is worthwhile and 
whether hospital case mix planning can be applied holistically across a 
region. Our investigations have resulted in the development of three 

mathematical models to help support strategic decision making. The 
attraction of these models is that they are transparent and conceptually 
easy to grasp. Once data has been extracted from data archives and data 
warehouses, solution time is instantaneous. Each model has a different 
focus, different data requirements, and provides a particular type of 
appraisal. The first model identifies the maximum output achievable in a 
region and which patient cohorts, individual hospitals should treat. The 
second model identifies if specified patient demands can be met and if 
so, how is it best distributed between different hospitals, given spatial 
demographic information. The third model considers the benefits of 
outsourcing patients between hospitals. The models that we have pro
posed may also be used to evaluate different hospital configurations and 
pinpoint (i.e., via an iterative approach or other model extensions), how 
the region’s hospitals can be re-calibrated and reconfigured to achieve 
higher outputs. Our approach can in theory be used to judge whether a 
region’s health care needs can be met. 

It is worth noting that this article has a utilization and output- 
oriented perspective. As such, the concept of a “maximal” cohort is 
important. A maximal cohort is a measure of the region’s capacity and is 
the greatest number of patients of each type that can be treated over 
time. To treat that cohort, many of the resources of the different hos
pitals must be continuously used (i.e., saturated). Hospital capacity is 
viewed as the maximum number of patients that can be treated in a 
specified period, rather than the actual number of hospital resources 
present, although this is a fair measure for making simplistic compari
sons and assessments. Consequently, the capacity of a region is not the 
total number of operating theatres (a.k.a., rooms) and beds existing in 
current hospitals. Besides, theatres and beds are not equivalent, and they 
are not used to treat the same types of patients. Beds are positioned and 
staffed in different wards, and those wards are established for specific 
medical and surgical specialties. Similarly, operating theatres are often 
equipped with different equipment. 

Questions pertaining to the capacity of multiple hospitals, is an 
emerging topic. Given recent developments in the literature analysing 

Notation 

Indices 
g Index for patient type 
p Index for patient subtype 
w Index for treatment area (i.e., wards and theatres) 
h Index for hospital 
i Index for region (sub) 

Sets 
G Set of patient types 
Pg Set of subtypes of patient type g 
P Complete set of patient subtypes 
Ag,p A set of activities for patients of type g, subtype p 
A Complete set of all activities. A =

⋃
(g,p)∈GPAg,p 

Parameters 
ϕHG

h,g Binary parameter – if patients of type g are treated at 
hospital h 

ϕHGP
h,g,p Binary parameter – if patients of type g, subtype p are 

treated at hospital h 
T The period for the analysis. The unit is #weeks 
Th,w Time availability of area w ∈ Wh at hospital h during the 

analysis 
ta, ta,h Treatment time for activity a and specific to hospital h 
la, lh,a Set of candidate locations for activity a generally and in 

hospital h 
Aw Activities that can be performed in area w. Aw⊂A 

Wh Set of treatment areas at hospital h 
W Total number of treatment areas 
rIG
i,g , rIGP

i,g,p Demographic information. The patients of each type 
requiring treatment in area i 

N̂
G
g , N̂

GP
g,p , N̂

I
i Demands (a.k.a., targets) 

NG
g ,N

GP
g,p Upper bounds 

B,bh,w Total number of treatment spaces (i.e., beds) and those in 
area w ∈ Wh 

μG
g ,μGP

g,p Regional case mix and sub mix 

Decision Variables 
N Number of patients treated in the region. 
NH

h Total number of patients treated in hospital h 
NI

i Total number of patients treated in region i 
NG

g ,NGP
g,p Total number of patients of type g treated, and of subtype p 

N
⌣G

g , N
⌣GP

g,p , N
⌣I

i Unmet demands 
nHG

h,g ,n
HGP
h,g,p Specific number of patients of type g treated in hospital h 

and of subtype p 
xIHG

i,h,g,x
IHGP
i,h,g,p Patients of type g and subtype p originating in region i 

and treated in hospital h 
inHGP

h,g,p, inHG
h,g Number of patients insourced to hospital h 

outHGP
h,g,p , outHG

h,g Number of patients outsourced to hospital h 
μHG

h,g ,μHGP
h,g,p Case mix and sub mix for individual hospitals 

UHW
h,w Usage of area w in hospital h  
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single hospitals [9, 10, 11], this topic is anticipated to be a frontier for 
new research in the coming years. To the best of our knowledge this 
topic has yet to be considered in detail. As such, there are many un
knowns, and many questions. Determining how best to approach this 
topic is a significant research goal. In this article we propose a starting 
point, pose various questions, and seek answers for those, should they 
arise. For instance, how would hospitals best work together? How do 
multiple hospitals maximize the number of patients treated without 
exceeding the capacity of individual hospitals? Which types of patients 
should be treated in each hospital and what is the effect of the current 
status quo? Which hospitals should patients in different sub regions 
attend? Would a multi-hospital decision making framework be useful 
and to whom? How many hospitals are required and how should each be 
sized and configured? What is the impact of specific hospitals and how 
would the addition of a new hospital affect the capacity of a region? 
What is the effect of insourcing and outsourcing patients between hos
pitals? With answers to the above, one might then ask more 
wide-ranging questions like the following. For instance, should hospital 
services be centralized or decentralized? Should hospitals treat many 
patient types or specialise in treating a few? Which hospitals should treat 
which patient types? Is the capacity of a region better quantified by the 
number of specialists operating and their time availability for medical 
and surgical activities? Should more specialists be trained and in which 
hospitals(s) should they operate? Which hospitals should be expanded 
and how should they be expanded? Where and when should new hos
pitals be built and how should they be configured? 

The format of this article is as follows. In Section 2 the current state 
of the art is examined, and an analysis is provided. In Section 3 the 
details of the quantitative framework are provided commencing with an 
outline of key technical details. In Section 4, a realistic case study is 
presented. Last, the conclusions, managerial insights and future research 
directions are detailed. 

2. Literature review 

The capacity of a single hospital system has been investigated quite 
frequently in past research. Specific questions like, i) how much capacity 
a hospital has, ii) how many patients can be treated in a specified period, 
and iii) how many beds are required, have been posed. The answer to 
these questions has been identified as “conditional” in nature, and 
reliant to a great extent upon the patient case mix chosen or imposed. 
There are different notions of case mix that may be adopted. A popular 
case mix description is the proportion of patients of each type within a 
cohort, relative to the total number treated. The case mix may also be 
viewed as the time apportioned to each patient type relative to the total 
time available. That definition, however, relates more to surgical pa
tients and to the time allocated in the master surgical schedule. 

A variety of quantitative assessments of hospital capacity (QAHC) 
and output have been performed. Many have occurred without obser
vation of actual hospital operations. Assessments are performed para
metrically (i.e., relative to key parameters) and geographic details (i.e., 
hospital layout and configuration). The papers of Burdett and colleagues 
take that approach. Their articles are noteworthy for the application of 
mathematical programming techniques. To determine the maximum 
number of patients that can be treated, Burdett et al. [11] found that it is 
sufficient to choose a patient case mix that saturates (i.e., fully utilizes) 
hospital resources. Their mathematical programming (optimization) 
model was developed to make that selection. In Burdett and Kozan [10] 
a multi-criteria approach that provides a sensitivity analysis of patient 
case mix was proposed. The approach generates a Pareto frontier of 
alternative case mix solutions and highlights patient cohorts with the 
highest outputs. Later a stochastic approach was developed in Burdett 
et al. (2022a) and a personal decision support system for QAHC was 
developed in Burdett et al. (2022b). McRae, Brunner, Bard [12] devel
oped a non-linear mixed-integer programming model for case mix 
planning. Their model incorporates economies of scale and investigates 

the effect of changes in the efficiency of resource use on the optimal case 
mix. McRae and Brunner [9] also presented a framework for evaluating 
the effect of stochastic parameters on the case mix of a hospital. Haw
kinson et al. [13] proposed a capacity allocation optimization method
ology that reserves appointment slots for out-patients based on urgency 
in a complicated, integrated care environment where multiple spe
cialties serve multiple types of patients. Their optimization reallocates 
and reserves network capacity to limit access delays. 

There have been a variety of multi-objective mathematical pro
gramming models in healthcare pertaining to hospital case mix planning 
and capacity allocation. Abdelaziz and Masmoudi [14] proposed a 
multi-objective stochastic programming model for hospital bed plan
ning. Their model identifies the optimal number of beds, physicians, and 
nurses in a region with numerous hospitals. The cost of creating new 
beds and the total number of employed nurses and physicians is mini
mised. A 157-hospital problem originating in Tunisia was solved. Sha
faei and Mozdgir [15] considered the optimal allocation of theatre time 
amongst surgical groups. In their surrogate case mix planning problem, 
they considered three criterions as a means of calculating the value of 
patients. They formulated a linear programming model and applied the 
technique for order preference by similarity (TOPSIS) to rank solutions. 
Zhou et al. (2018) found that the joint optimization of revenue and 
equity is rare, with limited coverage in the literature. They proposed a 
multi-objective stochastic programming model to support capacity 
allocation of hospital wards, with revenue and equity as objectives. 
Revenue however is reported as challenging to model because payment 
mechanisms in healthcare are quite complex, and vary by disease, type 
of insurance cover and length of stay. Equity of access is modelled in 
terms of responsiveness and waiting time. Oliveira et al. [16] developed 
a distributed simulation-optimisation approach to identify the required 
number of hospital beds in each city. In the considered multicriteria 
location-allocation decision problem, they considered two objectives. 

To perform planning within a multi-hospital system, the article by 
Mahar et al. [5] is noteworthy. In their article they developed a 
non-linear mixed integer optimization model to locate hospitals and 
specialized services within a region, subject to financial considerations, 
patient service levels, and diversions. They recognised that pooling 
specialized hospital procedures may leverage economies of scale to 
reduce cost and may also lead to an increase in actual or perceived 
quality of care. In their case study they considered five hospital locations 
in four cities. Bruno et al. [8] is also significant. They proposed a 
bi-objective mathematical programming model to redistribute beds 
among the existing hospitals of the network to maximize user’s acces
sibility. The two objectives are social cost and economic cost. The former 
is paid by users and is expressed by their spatial separation from the 
hospitals. The later cost is incurred by the hospitals when reconfiguring 
their capacities. For the selected case study, a spatial analysis was first 
performed to assess the user’s accessibility to the current network and to 
motivate the need for such a reorganization. 

2.1. Final remarks 

The article of Mahar et al. [5] and Bruno et al. [8], provides signif
icant motivation for this article, for instance in suggesting and demon
strating the value of a regional assessment involving multiple hospitals. 
Although we have a similar focus, there are key differences. In this 
article we consider CMP which involves the optimal allocation of 
existing resources to different patient types, in specific hospitals across a 
whole region of hospitals. In the afore-said articles, completely different 
decision problems are considered. They instead identify where to posi
tion hospitals, services, and resources, subject to financial consider
ations and aspired service levels. It is worth noting that in our decision 
problem financial implications could also be included, but that is outside 
the scope of this article. 

To reiterate, we consider utilization and output in a region with 
many hospitals. We do not consider the placement of hospitals, but what 
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to do with existing hospitals. We assume that hospitals are already setup 
with the capacity to treat specialized patient types and the removal of 
wards and their beds from existing hospitals is not permitted, although 
this can be explored by users through a parametric analysis. In some 
research articles the optimal number of beds and staff is determined, 
however, this aspect is not concentrated upon in this article. We identify 
what to do with the beds that are already in place. Ravaghi et al. [17] 
provides a comprehensive review of approaches to identify the optimal 
number of beds. They did not however find an approach superior to all 
others. 

3. Mathematical modelling 

In this section three regional hospital capacity allocation models are 
proposed. The formal details and notation relevant to later modelling 
are, however, first described. 

3.1. Formal specification and details 

3.1.1. Hospital resources 
There is a set of hospitals H. Each hospital h ∈ H has limited oper

ating theatres, wards, and beds. Operating theatres and wards consist of 
beds where treatments and care are provided. They are henceforth 
referred to as treatment areas. The set of treatment areas at hospital h is 
denoted by Wh and the number of treatment spaces in each area w ∈ Wh 
is denoted bh,w. 

3.1.2. Patient types 
It is assumed that there is a clearly defined set of patient types (a.k.a., 

groups) that are treatable across each hospital in the region. This is a 
necessary requirement. For each patient type g ∈ G, there is a set of 
patient subtypes denoted Pg. The full set of patient subtypes is hence 
denoted GP = {(g,p)|g ∈ G,p ∈ Pg}. For each patient sub type there is a 
set of activities to be performed of a medical or surgical nature, and we 
denote this as A(g,p). This set may be regarded as either a clinical 
pathway (CP) or as a resourcing profile (RP). The main distinction be
tween the two viewpoints is how information is aggregated or not 
aggregated. In a RP, each record, pertains to the usage of a distinct 
resource type. In contrast, there may be multiple records for the same 
hospital resource type in a CP. The viewpoint chosen, however, has no 
bearing on the nature of the developed mathematical models. 

For activity a ∈ A(g,p), the duration is denoted ta and is measured in 
either hours or minutes. The set of treatment areas where the activity 
can be performed in each hospital is denoted lh,a. The full set of treat
ment areas (i.e., candidate locations) is therefore, La =

⋃
h∈Hlh,a. Some 

hospitals can only treat some patient types and subtypes and not others 
and this information is discernible via the definition of lh,a. It is helpful to 
define the capabilities of hospitals upfront, more explicitly. For instance, 
let us define ϕHG

h,g as a binary parameter indicating whether patients of 
type g are treated at hospital h. Similarly, let us define ϕHGP

h,g,p as a binary 
parameter indicating whether patients of subtype (g, p) are treated at 
hospital h. Generally, ϕHGP

h,g,p ≤ ϕHG
h,g ∀p ∈ Pg. If for instance, ϕHG

h,g = 0 then 
ϕHGP

h,g,p = 0 ∀p ∈ Pg. However, if ϕHGP
h,g,p = 0 then ϕHG

h,g may be either zero or 
one. 

3.1.3. Hospital caseload 
The regional caseload is to be determined. This is the number of 

patients of each type and subtype to be treated in each hospital. These 
are respectively denoted nHG

h,g and nHGP
h,g,p (a.k.a., nHGP

h,gp ). Several ancillary 
decision variables are also defined, namely, N the number of patients to 
be treated in the region, NH

h the total number of patients treated in 
hospital h, and NG

g the number of each type treated. It is worth noting the 
following inherent dependencies: 

N =
∑

h∈H
NH

h (1)  

NG
g =

∑

h∈H
nHG

h,g ∀g ∈ G (2)  

NH
h =

∑

g∈G
nHG

h,g ∀h ∈ H (3)  

NGP
g,p =

∑

h∈H
nHGP

h,g,p ∀g ∈ G, p ∈ Pg (4)  

nHG
h,g =

∑

p∈Pg

(
nHGP

h,g,p

)
∀g ∈ G, h ∈ H (5) 

It is also worth noting that, nHG
h,g ≤ ϕHG

h,g M and nHGP
h,g,p ≤ ϕHGP

h,g,pM where M 
is a placeholder for either a large value or an upper bound. Within each 
hospital treatment area, the treatment spaces are available for a speci
fied number of hours per period. The time availability of spaces within 
treatment area w ∈ Wh at hospital h is denoted Th,w. The number of ac
tivities of type a to be performed in area w of hospital h is a major de
cision and is called the allocation. This is denoted αa,h,w. It is worth 
noting that αa,h,w = 0, if ϕHG

h,g = 0 or ϕHGP
h,g,p = 0. Similarly, αa,h,w =

0 ∀w ∈ Wh lh,a. 

3.1.4. Case mix 
The mix of patients to be treated in a hospital is selectable, and 

changes throughout the year. There are various financial and social 
implications associated with each case mix. The notion of a case mix is a 
well-established [10, 11], to regulate the competition for shared re
sources. If a case mix is not imposed when performing CMP, a multi
criteria optimization problem eventuates. In a single hospital scenario, 
the case mix and sub mix are specific to that hospital. In a regional based 
approach, however, it is hypothesised that the case mix should be 
defined for the region instead, and the case mix and sub mix at each 
hospital to become a decision. This is because the case mix for a region is 
obtainable from historical events and is routinely published in govern
ment documents. Consequently, we define a general region-based case 
mix as μG

g and sub mix as μGP
g,p where 

∑

g∈G
μG

g = 1 and 
∑

p
μGP

g,p = 1. A local 

hospital case mix is denoted by the same variables, albeit with an 
additional subscript for the hospital, i.e., μHG

h,g ,μHGP
h,g,p. 

3.2. Capacity allocation within a region: determining a maximal caseload 

The first capacity allocation model has been created to appraise the 
output of a region of hospitals. It determines the greatest caseload that 
can be treated amongst the different hospitals present over a designated 
period (a.k.a., planning horizon) of T weeks. The caseload should match 
the proportions defined for the region, namely the regional case mix. 
The variables defined in (1)-(5) have a dual meaning in this model. They 
describe rates of output over the planning horizon. As such, N may also 
be viewed as a rate of output. A key feature of this model is that it 
identifies how best to distribute the patient types amongst the hospitals 
present. This model may also highlight situations where some hospitals 
are not required to treat as many patient types as they are capable of 
treating. The exact details of the model are as follows: 

Maximize N 

Subject To: 

0 ≤ nHG
h,g ≤ ϕHG

h,g M ∀h ∈ H, g ∈ G (6)  

0 ≤ nHGP
h,g,p ≤ ϕHGP

h,g,pM ∀h ∈ H, g ∈ G, p ∈ Pg (7)  

0 ≤ αa,h,w ≤ ϕHGP
h,g,pM ∀h ∈ H, g ∈ G, p ∈ Pg, a ∈ Ag,p,w ∈ Wh (8) 
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nHGP
h,g,p =

∑

w∈la,h

αa,h,w ∀h ∈ H, g ∈ G, p ∈ Pg, a ∈ Ag,p (9)  

UHW
h,w =

∑

a∈A
αa,h,wta,h ∀h ∈ H,w ∈ Wh (10)  

UHW
h,w ≤ bh,wTh,w ∀h ∈ H,w ∈ Wh where Th,w = T ×#hrs

/
week (11)  

NG
g ≥ μG

g N ∀g ∈ G (12)  

NGP
g,p ≥ μGP

g,pNG
g ∀g ∈ G, p ∈ Pg (13) 

In this model we utilize the relationships summarised previously in 
equation (1) – (5). These are substituted into relevant places. The main 
decision variables have restricted ranges as shown in (6) – (8). Resource 
allocations and patient treatments are aligned in constraint (9). 
Resource usage is defined by constraint (10) and restricted by constraint 
(11). Both constraints, however, can be merged. Case mix and sub mix 
are enforced by (12) and (13). After the model is solved, case mix and 
sub mix for individual hospitals can be evaluated by equation (14). 

μHG
h,g = nHG

h,g

/
NH

h and μHGP
h,g,p = nHGP

h,g,p

/
nHG

h,g ∀h ∈ H, g ∈ G, p ∈ Pg (14)  

3.2.1. Additional remarks 
This model can be further extended and modified in many useful 

ways. Those details are provided in Appendix B. A critical element of the 
model that should be discussed, concerns the parameter A(g,p), and the 
identification of locations where activities are performed. To initialize 
these parameters, it is necessary to define where each medical and 
surgical activity can be performed. In a multi-hospital scenario, this 
requires considerable effort. However, in many circumstances, auto
mating that task is possible. 

3.2.2. Demonstrative example 
Let us consider a fictional regional area with two hospitals to 

demonstrate the solution of the proposed mathematical model and the 
nuances of this type of assessment. In this region, each hospital has 
different resources and layout. The details of the two hospitals are 
shown in Table 1, where OT and ICU are abbreviations for operating 
theatre and intensive care unit, respectively. It is assumed that each 
ward (i.e., W1 – W5) and intensive care bed is available 24 hrs per day 
per week (i.e., 168 hours). Theatres are deemed available eight hours 
per day, five days a week (i.e., for 40 hours). The capacity of this 
regional area is appraised over a period of four weeks. 

There are many different patient types, but for clarity we restrict that 
number to five in this example. As shown in Table 2, each patient type 
has a unique resourcing profile. Table 3 summarises the focus of each 
ward. 

In each profile the patient needs to spend a specific amount of time in 
an operating theatre, intensive care bed or ward bed. We generated this 
information to be indicative of those occurring in local hospitals using a 
pseudo-random process. Hospital H2 has fewer beds overall but is staf
fed/nursed differently. Their wards are more generic and can look after 
more patient types. Hospital H1 is less generic, and their wards are only 
for specific types. From a practical perspective, we could expect the 
quality of care to be better in H1. 

For the purposes of this investigation, let us assume the case mix is 
[0.328, 0.295, 0.164, 0.082, 0.131]. The model provides the solutions 

shown in Tables 4 and 5. In Table 4, each hospital is considered as a 
separate entity, and must treat a cohort with the proportions specified in 
the regional case mix. In Table 5, the region is considered as a whole, 
and each hospital can treat a different cohort, if jointly that cohort meets 
the proportions specified for the whole region. Clearly, more patients 
can be treated if an integrated approach is applied. Here, the increase 
was 20%. Different ward utilisations occur, and some wards are very 
lightly used depending on how patient types are distributed between the 
two hospitals. In Table 5 we can see that some specialization is implied. 
In H1, type two is not treated at all, and in H2, type one and four are not 
treated. Consequently, it may be worth considering whether some wards 
should be reassigned to other patient types. For instance, ward H1-W2 in 
H1, and H2-W1 and H2-W3 in H2. If both hospitals are generic, it may 
not make sense to treat none of some types. Adding some minimum 
treatment numbers, however, is an easy thing to do. 

In both tables, ward utilization levels are low, and the operating 
theatres are clearly bottlenecks restricting further outputs. This is a 
quirk of this toy scenario. This is unlikely to be the case in real-life 
hospitals and one would expect bed numbers to be more closely 
aligned with operating theatre outputs. Also, there are many medical in- 
patients, who would use the wards for minor treatments and care, and 
not the theatres and ICU. Those have not been included, however, in this 
example. 

Table 1 
Hospital resources and beds in the region.  

Hosp. #OT #ICU #BEDS #W1 #W2 #W3 #W4 #W5 

H1 10 15 78 25 15 10 15 13 
H2 6 5 45 15 20 10 - -  

Table 2 
Resourcing details and case mix.  

Type Sub 
Type 

Mix 
(%) 

OT 
(hrs) 

ICU 
(hrs) 

Ward 
(hrs) 

Ward Options 

T1 T1-1 70 0.25 0 2.16 H1-W1, H2- 
W1 

T1-2 25 1.25 0 3.65 H1-W1, H2- 
W1  

T1-3 5 0 0 0.25 H1-W1, H2- 
W1 

T2 T2-1 90 2.4 0 5.22 H1-W2, H2- 
W1  

T2-2 10 0 0 0.5 H1-W2, H2- 
W1 

T3 T3-1 25 6.5 2.6 22.94 H1-W3, H2- 
W2 

T3-2 40 4.56 1.5 18.39 H1-W3, H2- 
W2 

T3-3 28 7.6 14.8 55.54 H1-W3, H2- 
W2  

T3-4 7 0 0 1 H1-W3, H2- 
W2 

T4 T4-1 50 3.4 0 10.43 H1-W4, H2- 
W3 

T4-2 30 5.7 12 48.12 H1-W4, H2- 
W3  

T4-3 20 0 0 0.33 H1-W4, H2- 
W3 

T5 T5-1 85 4.1 8.67 32.81 H1-W5, H2- 
W3  

T5-2 15 0 0 2 H1-W5, H2- 
W3         

Table 3 
Patient types treatable in each ward.  

Ward Treats 

H1-W1 T1-1, T1-2, T1-3 
H1-W2 T2-1, T2-2 
H1-W3 T3-1, T3-2, T3-3, T3-4 
H1-W4 T4-1, T4-2, T4-3 
H1-W5 T5-1, T5-2 
H2-W1 T1-1, T1-2, T1-3, T2-1, T2-2 
H2-W2 T3-1, T3-2, T3-3, T3-4 
H2-W3 T4-1, T4-2, T4-3, T5-1, T5-2  
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3.3. Capacity allocation incorporating spatially distributed patients 

In the previous section a strategic hospital capacity allocation model 
was proposed to appraise regional capacity. It was assumed that hos
pitals present in the region were close, and distance travelled was not 
significantly different, or else was not important to be modelled. How
ever, when assigning specific numbers of patients of each type to be 
treated it is worth considering where patients originate. In most sce
narios, the location of patients is unlikely to be uniformly distributed 
across a region, and this motivates the development of a second capacity 
allocation model. 

The novel model presented in this section includes spatial de
mographics and proximity information. The intention of this model is to 
assign specified demands originating in different sub regions to the 
hospitals within the region. The objective is to cover as much demand as 
possible, but also to minimize the total incurred travel distance. This 
decision problem is inherently multi-objective and suggests different 
trade-offs may be made. It is unlikely that both criterions can be opti
mised simultaneously. 

This model requires population demographics of sub regions to be 
collected. A typical example is shown in Fig. 1. 

There are six sub regions, and two hospitals are positioned in two of 
the sub regions. Patients who live in sub regions i = 2, 3, 5, 6 may need 
to travel further than those positioned in region one and four. The 
proximity between sub regions is vital information. We denote di,i′ as the 
average distance between region i and region i′, ∀i ∕= i′. The hospitals 
present in sub region i ∈ I is denoted by set Hi⊂H. The specific region 
that hospital h resides in is designated L h ∈ I. If h ∈ Hi then L h = i. 

As indicated, the demand varies spatially but is assumed fixed within 
the region. For instance, in each sub region, the number of patients of 
each type are known. Let us define rIG

i,g and rIGP
i,g,p as demographic infor

mation describing the number of patients of each type requiring treat
ment in area i where rIG

i,g =
∑

p∈Pg

rIGP
i,g,p. Let us then define aggregated 

demand (a.k.a., goals) for the region by N̂
GP
g,pand N̂

I
i where N̂

G
g =

∑
irIG

i,g ,

N̂
GP
g,p =

∑
irIGP

i,g,p and N̂
I
i =

∑
g∈GrIG

i,g . Let also us define N
⌣G

g , N
⌣GP

g,p and N
⌣I

i as 
the unmet demands. We can now quantify the following relationships: 

N
..⋅G

g = max
(

N̂
G
g − NG

g , 0
)

∀h ∈ H, g ∈ G (15)  

N
..⋅GP

g,p = max
(

N̂
GP
g,p − NGP

g,p , 0
)

∀h ∈ H, g ∈ G, p ∈ Pg (16)  

N
..⋅ I

i = max
(

N̂
I
i − NI

i , 0
)

∀i ∈ I (17) 

The main decision is how many patients should be treated and 
where. Let us define xIHGP

i,h,g,p as the number of patients of type (g,p) orig
inating in sub region i treated in hospital h. Let us also define xIHG

i,h,g as the 
total number of patients of type g treated and impose that xIHG

i,h,g =
∑

p∈Pg

xIHGP
i,h,g,p. Consequently, we can write that: 

nHGP
h,g,p =

∑

i∈I
xIHGP

i,h,g,p ∀h ∈ H, g ∈ G, p ∈ Pg (18)  

nHG
h,g =

∑

i∈I
xIHG

i,h,g ∀h ∈ H, g ∈ G (19)  

NI
i =

∑

h∈H

∑

g∈G
xIHG

i,h,g ∀i ∈ I (20)  

∑

h∈H
xIHGP

i,h,g,p ≤ rIGP
i,g,p ∀i ∈ I, g ∈ G, p ∈ Pg (21)  

∑

h∈H
xIHG

i,h,g ≤ rIG
i,g ∀i ∈ I, g ∈ G (22)  

nIH
i,h =

∑

g∈G
xIHG

i,h,g, nIG
i,g =

∑

h∈H
xIHG

i,h,g ∀h ∈ H, i ∈ I, g ∈ G (23) 

Constraints (18) and (19) aggregate the allocations over the different 
sub regions. Constraints (21) and (22) ensures that the number of pa
tients assigned to hospitals from a sub region does not exceed the 
number available in the sub region. Equation (23) provides additional 
auxiliary variables to describe more information about the allocations 
that have been made. A bi-objective capacity allocation can now be 
posed. The full model is as follows: 

Minimize Z1 =
∑

i∈I

∑

∀h∈H
di,L h xIH

i,h (24) 

Table 4 
Caseload and utilization for separate hospitals each operating with the same case mix.  

Hosp. Type 1 2 3 4 5 Tot  

H1 214.39 192.82 107.195 53.6 85.63 653.63  
H2 415.14 373.37 207.57 103.78 165.8 1265  
Region 629.53 566.19 314.765 157.38 251.43 1918.63  
Hosp. ICU OT W1 W2 W3 W4 W5 
H1 13.91 100 3.11 9.16 45.69 10.48 27.63 
H2 80.81 76.84 27.62 44.34 100 - -  

Table 5 
Caseload and utilization for integrated regional approach.  

Hosp. Type 1 2 3 4 5 Tot  

H1 754.65 0 74.68 188.66 54.13 1072.12  
H2 0 678.73 302.64 0 247.27 1228.64  
Region 754.65 678.73 377.32 188.66 301.4 2300.76  
Hosp. ICU OT W1 W2 W3 W4 W5 
H1 18.48 100 10.95 0.26 39.89 36.9 20.33 
H2 91.45 100 31.97 60.47 100 - -  

Fig. 1. Position of two hospitals in a region and demarcation of sub regions.  
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Minimize Z2 =
∑

g∈G
N
⌣G

g ,
∑

g∈G

∑

p∈Pg
N
⌣GP

g,p or
∑

i∈I
N
⌣I

i (25) 

Subject to: 

xIHG
i,h,g =

∑

p∈Pg
xIHGP

i,h,g,p ∀i ∈ I, h ∈ H, g ∈ G (26)  

N
..⋅G

g ≥ N̂
G
g − NG

g ; N
..⋅G

g ≥ 0 ∀g ∈ G (27)  

N
..⋅G

g ≤
(

N̂
G
g − NG

g

)
+
(

1 − βG
g

)
M and N

..⋅G

g ≤ βG
g M ∀g ∈ G (28)  

N
..⋅GP

g,p ≥ N̂
GP
g,p − NGP

g,p ; N
..⋅GP

g,p ≥ 0 ∀g ∈ G, p ∈ Pg (29)  

N
..⋅GP

g,p ≤
(

N̂
GP
g,p − NGP

g,p

)
+
(

1 − βGP
g,p

)
M and N

..⋅GP

g,p ≤ βGP
g,pM ∀g ∈ G, p ∈ Pg

(30)  

N
..⋅ I

i − NI
i ≤ N

..⋅ I

i ≤

(

N
..⋅ I

i − NI
i

)

+
(
1 − βI

i

)
M ∀i ∈ I (31)  

0 ≤ N
..⋅ I

i ≤ βI
iM; NI

i =
∑

h∈H

∑

g∈G
xIHG

i,h,g ∀i ∈ I (32)  

βG
g , βGP

g,p, βI
i ∈ {0, 1} ∀g ∈ G, p ∈ Pg, i ∈ I (33)  

NG
g =

∑

p∈Pg
NGP

g,p ; NGP
g,p =

∑

h∈H

∑

i∈I
xIHGP

i,h,g,p ∀g ∈ G, p ∈ Pg (34)  

+ Constraints (1) – (6), (10), (11), (18), (19), (21), (22) 
Constraints (27)-(32) facilitate a linearisation of (15)-(17). Con

straints (27) and (28) are a required substitute for (15). Similarly, 
constraint (29) and (30) are a required substitute for (16), and con
straints (31) and (32) are a required substitute for (17). Constraints (28), 

(30) and (32) are needed because N
⌣G

g , N
⌣GP

g,p , N
⌣I

i may not always be in the 
objective. As such, the model can select invalid values. To force exact 
equality, the binary decision variables βG

g , βGP
g,p , β

I
i are necessary. 

3.3.1. Additional remarks 
If the designated demands are too high, then the model may not 

solve. This is an indication to the decision maker that the infrastructure 
and constraints of the system are not well aligned with the case mix and 
demand volume. 

This model can be adjusted to identify the time horizon required to 
meet all demand if demands cannot be met within one period. As such 
the objective is to minimize T subject to Z2 = 0. Further adjustments can 
be made to restrict the distance travelled. This however may inflate T. 
Assessments of this nature are particularly useful for strategic consid
erations like estimating the minimum time to work through a large 
waiting list or backlog of patients. Operational or tactical consider
ations, concerning the time to treat a selected caseload, is also a po
tential use-case. Explicit scheduling of a caseload is a competing 
approach, but that decision problem is NP-hard [7]. 

3.3.2. Demonstrative example 
Let us consider a slight variation of example from the preceding 

section. The demographic shown in Table 6 is now specified; it provides 
r2
i,g,p values. The theatres, wards, and intensive care beds of the two 

hospitals are given in Table 7. 
For the purposes of this example, the distance between region cen

troids is used as an acceptable proxy for the average distance travelled. 
This is an acceptable and pragmatic option when there is no information 
about individual patients or when regions are sized appropriately. This 
approach has been applied in many fields where objects and materials 
are transported. Earthworks is one example [18]. The centroid of the 
region’s six sub regions is respectively (265,150), (290,192), (326, 173), 
(355,93), (296,92), and (260, 93). Given that meeting unmet demand is 
the objective, a solution like the one shown in Fig. 2 can be obtained. 

In the presented solution all demands are met. Both hospitals have 
high OT and ICU utilisations, however, there is still some capacity left in 
several wards. Significant travel is required in the displayed solution. 
The total distance required is 143,360 patient-km, which, is 77km per 
person on average. There are many alternative optimal solutions, and 
each has different travel distances. If the distance travelled is the 
objective, then no patients are chosen, and no distance is travelled. If we 
force unmet demand to be zero, however, then a solution with 116,521 
km can be obtained, which is significantly better than the first solution 
obtained. The following decision matrix best summarises that solution: 

A multi-objective assessment can be performed. The well-known 
epsilon-constraint method (ECM) is sufficient for this task and easily 
implemented, for instance in IBM’s ILOG CPLEX software using scripting 
or using the C++ Concert Technology. The ECM method involves the 
repeated application of the CMP model with an additional constraint 
restricting the value of one of the objectives. The trade-off between 
distance travelled and number of patients can be built up as shown in 
Fig. 3. In this chart all solutions above the lower line and below the top 
line are achievable. The lower line represents the Pareto frontier. All 
solutions below this are not achievable. Fig. 3 hence shows how much 
flexibility there is in the system to assign patients to other locations. In 
each chart, the star denotes the fictional ideal solution. This figure 
demonstrates that when the number of patients treated is low, then 
patients can be sent to their nearest hospital and thus incur the least 
travel distance. However, as more patients are treated, less capacity is 
free, and patients are more often needed to travel further afield, or risk 
not being treated at all. Within the range N ∈ [500,1300] the distance 
increases linearly. As utilisation approaches the regions capacity, how
ever, the distance required to be travelled increases most steeply. 

From a pragmatic perspective it is worth considering what this 
Pareto frontier highlights and whether it suggests regional hospital ex
ecutives, managers, or planners to do anything. Ideally, any regional 

Table 6 
The spatial demographic information for the example.  

Region g=1, p = 1 g=1, p = 2 g=2, p = 1 g=3, p = 1 g=3, p = 2 g=3, p = 3 g=4, p = 1 g=4, p = 2 g=5, p = 1  

R1 34 22 72 1 29 14 19 21 17 229 
R2 92 36 146 35 4 21 28 13 56 431 
R3 162 45 95 17 53 25 4 0 33 434 
R4 43 13 10 4 10 11 8 21 92 212 
R5 7 39 147 19 21 14 8 4 27 286 
R6 90 28 80 0 5 22 9 17 19 270  

428 183 550 76 122 107 76 76 244 1862  
611 550 305 152 244  

Table 7 
Hospital configuration.  

Hosp. #OT #ICU #WARD W1 W2 W3 W4 W5 

H1 10 5 74 22 15 10 14 13 
H2 6 2 42 15 20 7 - -  
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plan should sit somewhere on the Pareto front. If it did not, then perhaps 
some replanning should be initiated. In the public sector, it is preferable 
to meet as much demand, as possible. Yet, this is not necessarily true of 
the private. If all demand is to be met, then the minimum total distance 
to be incurred by patients within the region should be identified and an 
appropriate distribution of patients to hospitals should be chosen. The 
required distance to be travelled could be quite excessive though and it 
may not be desirable to enforce a regional plan like that. As shown, this 
requirement could be reduced in some circumstance, for instance by 
treating fewer overall patients. So, that is a course of action worth 
considering under certain circumstances. 

If meeting demand is high in priority, but distance travelled is also a 
high priority, then it is possible to reduce the total distance travelled by 
treating fewer patients. The exact trade-off for that consideration is 
shown in Fig. 4. In that chart, the proximity to the ideal solution has 
been computed. The function shown is skewed to the right and suggests 
that it is better to treat more patients, rather than less, but not to saturate 
the two hospitals. The average distance to be travelled was also 
computed. In this situation it increases as more patients are treated and 
does not decrease. 

The best solution is to treat 1300 patients with a total distance of 
Z1 = 49601 patient-km to be travelled (i.e., 38.16 km on average). That 

Fig. 2. Caseload distribution that minimises unmet demand.  

Fig. 3. Pareto frontier of distance travelled versus a) unmet demand and b) number treated.  
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is a reduction of over 50% in the distance travelled for a reduction of 
30% of the cohort. This also means that 562 patients will not be treated 
during the four-week period over which this analysis has been per
formed. This leads us to our next consideration, which is, which 562 
patients are not treated? Looking at the solution provided by the model 
for N = 1300 we find the following:  

• Treated (by hospital): NH = (835.94,464.06)
• Treated (by type): NG = (611,390.65,112.35,77,109)

Unmet demand: ŇG
= (0,159.35,192.65,75,135)

• Treated (by sub region): NI = (218.35,274,207,212,255,133.65)

Unmet demand: ŇI
= (10.65,157,227,0,31,136.35)

• Treated (by subtype): NGP = ((428,183),(390.65),(24,60,28.35),(35,
42), (109))

Unmet demand: ŇGP
= ((0,0),(159.35),(52,62,78.65),(41,34),(135)

)

The demand has not been met equitably. The demands present in 
regions R2, R3 and R6 for instance have been met least of all, while R1, 
R4 and R5 have been prioritised. Amongst the different patient types, 
the inequity varies. Only patient type one is entirely treated. To make 
the solution more equitable, we need to adjust the number of patients of 
each type treated, so that the relative number of unmet patients should 
be the same. The following model alterations are required: 

Minimize λ
N = 1300 and Z1 = 49601

NG
g ≥ N̂

G
g − λN̂

G
g ∀g ∈ G or NI

i ≥ N̂
I
i − λN̂

I
i ∀ i ∈ I

(35) 

To obtain constraint (35) we define N̂
G

g − NG
g

N̂
G

g

≤ λ ∀g ∈ G or 

N̂
I

i − NI
i

N̂
I

i

≤ λ ∀i ∈ I. Numerical investigations demonstrate that if the dis

tance is fixed, there is no way to equitably treat the patients in each 
region, or the patients of each type. However, removal of the condition 
Z1 = 49601, does permit a more equitable caseload to be treated. We 
can obtain the following solutions: 

Solution 1: Z1 = 85022 & NH = (712.78,587.22). NG = (426.58,384,
212.94,106.12,170.35)

N
⌣G

= (184.42,166,92.06,45.88,73.65)
Solution 2: Z1 = 97305 & NH = (647.28, 652.72). NI = (159.88,

300.91,303,148,199.68,188.51)

N
⌣I

= (69.12,130.09,130.99,63.99,86.32,81.49)
The first provides more equity by patient type, and the second more 

equity by region. It is a harder proposition by region, as some regions are 
located further away from the hospitals present. 

3.4. Case mix planning with outsourcing 

In this section we consider a regional scenario where each hospital is 
independently operated and has their own agenda. Additionally, let us 
also assume that each hospital has a target caseload that they would like 
to treat. The primary goal of case mix planning is to identify a caseload 
for each hospital, which satisfies as many targets as possible. Each 
hospital may, however, outsource their patients to other hospitals. 
Hospitals that treat patients from other hospitals are said to insource 
those patients. Based on the specifics of the situation and the price, a 
hospital may prefer to treat a patient type they had not originally 
planned to treat as opposed to one they had planned. 

Let us define the caseload of each hospital by decision variables nHG
h,g 

and nHGP
h,g,p. Both hospitals have patient type treatment targets denoted 

n̂HG
h,g and n̂HGP

h,g,p, where n̂HG
h,g =

∑

p∈Pg

n̂HGP
h,g,p. These may also be used to 

designate general bounds. We assume that exceeding targets is not 
permitted, and it makes no sense to permit greater output. If a larger 
value is permitted, then the target should just be increased. If there is no 
target, then a large value should be chosen upfront for these parameters. 
If zero is chosen, then no patients of that type will be treated, and no 
insourcing will be permitted. 

For patient type g let us define ⋔1
h,h′ ,g as the amount of demand out

sourced from hospital h to hospital h′. For patient subtype gp = (g, p), let 
us also define ⋔2

h,h′ ,gp as the demand outsourced from h to h′. Let us also 

denote unmet demand by variables n
⌣HG

h,g and n
⌣HGP

h,gp . The cost to outsource 
demand is designated Ch,h′ ,g,p. This cost may, however, may be specific to 
the location where demand is transferred from, and in that circum
stance, we can define the cost parameter Ćh,g,p and set Ch,h′ ,g,p = Ćh,g,p. 
The hospital where demand is transferred to may also earn income from 

Fig. 4. Proximity to the ideal solution.  
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insourcing, and we designate this by ́lh,g,p. Hence, we may define Ch,h′ ,g,p 

= Ćh,g,p − ĺh′ ,g,p.The model for outsourcing and capacity allocation is as 
follows: 

MaximizeZ1 =
∑

h∈H

∑

g∈G
ωHG

h,g nHG
h,g (36)  

Minimize Z2 = OS =
∑

∀h,h′∈H/h∕=h′

∑

∀gp∈GP

(
⋔2

h,h′ ,gp

)
OR

Minimize Z2 = OSC =
∑

∀h,h′∈H/h∕=h′

∑

g

∑

p

(
Ch,h′ ,g,p ⋔2

h,h′ ,gp

) (37)  

Minimize Z3 = UHG =
∑

h∈H

∑

g∈G

(

ωHG
h,g n⌣

HG
h,g

)

or Z3 = UHGP

=
∑

h∈H

∑

gp∈GP
ωHGP

h,gp n⌣
HGP
h,gp (38) 

Subject to: 
Constraint (1) – (6), (10), (11), (18), (19) 

⋔1
h,h’ ,g =

∑

p∈Pg

⋔2
h,h’ ,g,p ∀h, h’∈ H|h ∕=h’, g ∈ G (39)  

⋔2
h,h’ ,gp ≤ κh,h’ ,gpM ∀(h, h’) ∈ H2, g ∈ G, p ∈ Pg (40)  

⋔2
h’ ,h,gp ≤

(
1 − κh,h’ ,gp

)
M ∀(h, h’) ∈ H2, g ∈ G, p ∈ Pg (41)  

⋔1
h,h’ ,g ≥ 0 ∀h, h’∈ H|h ∕=h’, g ∈ G (42)  

⋔2
h,h’ ,gp ≥ 0 ∀h, h’∈ H|h ∕=h’, g ∈ G, p ∈ Pg (43)  

κh,h’ ,gp ∈ {0, 1} ∀(h, h’) ∈ H2, g ∈ G, p ∈ Pg (44)  

inHGP
h,gp =

∑

h’∈H/h’∕=h

⋔2
h’ ,h,gp; inHG

h,g =
∑

p∈Pg

inHGP
h,g,p ∀h ∈ H, g ∈ G, p ∈ Pg (45)  

outHGP
h,gp =

∑

h’∈H|h’∕=h

⋔2
h,h’ ,gp; outHG

h,g =
∑

p∈Pg
outHGP

h,g,p ∀h ∈ H, g ∈ G, p ∈ Pg

(46)  

nHG
h,g ≥ inHG

h,g , nHGP
h,g,p ≥ inHGP

h,g,p ∀h ∈ H, g ∈ G, p ∈ Pg (47)  

outHG
h,g ≤ n̂HG

h,g ; outHGP
h,g,p ≤ n̂HGP

h,g,p ∀h ∈ H, g ∈ G, p ∈ Pg (48)  

n..⋅
HG
h,g = n̂HG

h,g − metHG
h,g ; metHG

h,g = nHG
h,g − inHG

h,g + outHG
h,g ∀h ∈ H,∀g ∈ G

(49)  

n..⋅
HGP
h,gp = n̂HGP

h,gp − metHGP
h,gp ; metHGP

h,gp = nHGP
h,gp − inHGP

h,gp + outHGP
h,gp ∀h ∈ H, g

∈ G, p ∈ Pg

(50)  

n..⋅
HG
h,g ≥ 0, nHG

h,g ≥ 0 ∀h ∈ H,∀g ∈ G (51)  

n..⋅
HGP
h,gp ≥ 0, nHGP

h,gp ≥ 0 ∀h ∈ H, g ∈ G, p ∈ Pg (52)  

inHG
h,g ≤

∑

∀h’∈H|h’∕=h

n̂HG
h’ ,g; in

HGP
h,g,p ≤

∑

∀h’∈H|h’∕=h

n̂HGP
h’ ,gp ∀h ∈ H, g ∈ G, p ∈ Pg (53) 

In this model, equation (39) aggregates the outsourcing across all 
patient subtypes. Constraints (40) and (41) are required to restrict 
redundant outsourcing. It is not permitted to outsource and simulta
neously insource the same patient type. As such we must enforce that 
⋔2

h′ ,h,g,p⋔2
h,h′ ,g,p = 0 ∀(h, h′) ∈ H2, g ∈ G, p ∈ Pg where H2 = {(h,h′)|h,h′ ∈ H,

h< h′}. To linearise that condition it is necessary to define a binary 

decision variable κh,h′ ,g,p. If κh,h′ ,g,p = 1 then outsourcing is permitted from 
h to h′. Otherwise, if κh,h′ ,g,p = 0 then insourcing is permitted from h′ to h, 
i.e., outsourcing is permitted from h′ to h. Constraints (42) and (43) 
ensure positive outsourcing, while (44) defines the bounds for the binary 
variable κh,h′ ,gp. Equation (45) computes the number of insourced pa
tients added to the hospital’s caseload while equation (46) computes the 
number of outsourced patients that are treated elsewhere. Constraint 
(47) forces the number of patients treated in a hospital to exceed the 
obligation to treat patients from other hospitals. Constraint (48) ensures 
that outsourcing is performed for a reason and the level cannot exceed 
the original target that has been designated. Constraints (49) and (50) 
compute the met and unmet demand. Constraints (51) and (52) force 
unmet demand to be positive. Constraint (53) provides a general bound 
on the total amount of insourcing that could be achieved. 

There are three objectives of interest. Naturally, the first, denoted Z1, 
is to maximize the number of weighted patients treated across the re
gion. If ωHG

h,g = 1 ∀h ∈ H, g ∈ G then Z1 = N. The second objective, 
denoted Z2, is to minimize the outsourcing required and/or the 
outsourcing costs. The third objective, denoted Z3, is to meet the treat
ment targets as best possible, by minimizing either of the unmet de
mands, namely ňHG

h,g and ňHGP
h,gp . Minimizing Z2, however, does not make 

sense on its own. The model may just zero the patients treated, and no 
outsourcing will be performed. Or else, the model will just choose the 
maximum number of patients each hospital has capacity to treat. The 
targets specified will be ignored completely. If Z3 is minimised, then 
inefficient outsourcing may be chosen. If it is known that a solution with 
Z3 = 0 can be obtained (i.e., all target demands can be met) then we can 
minimize the outsourcing in a second step. The model will identify if 
outsourcing is required. In some circumstances it may not be necessary 
but in others it may be vital. If there are no specific outsourcing costs, 
then minimising unmet demand has a higher importance. We may set 
ch,h′ ,g,p = 1 and minimize Z3 + 1E− 5Z2. That strategy minimizes both Z2 

and Z3 quite well in limited numerical testing. 

3.4.1. Final remarks 
The described outsourcing model does not equitably meet the targets 

that are defined, and some patient types will inevitably be favoured. The 
use of priority weightings ωHG

h,g and ωHGP
h,g,p may however overcome the 

inequity. How those values should be defined, however, is a practical 
consideration. Additional restrictions may be imposed to restrict the 
outsourcing of certain patient types and subtypes. It is unlikely that 
there would be flexibility to consider unrestricted outsourcing and it is 
anticipated that most real-world scenarios would consider only a few. It 
is a simple matter to add the necessary restrictions to the model. The 
model could be used to make “high-level” strategic decisions around 
outsourcing. For that analysis we need only assume one patient type per 
hospital, with a length of stay and treatment time defined as the average 
across all patient types treated. 

3.4.2. Demonstrative example 
A two-hospital case mix planning scenario is considered to demon

strate the model. The patient types and subtypes from Table 2 have 
again been adopted. Table 8 summarises the resources present in each 
hospital and Table 10 introduces a set of target demands for each patient 
type, subtype, and hospital. The demands are noticeably greater in the 
first hospital than the second. We take into consideration outsourcing 
possibilities but introduce no outsourcing costs (Table 9). 

The solution of the model was first investigated without any re

Table 8 
Solution with minimal distance.  

Hospital Region 1 2 3 4 5 6 

H1 143.09 197 207.11 2.15 41.66 154 
H2 85.91 234 226.89 209.85 244.34 116  
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striction on outsourcing. This means that our objective was Z3 = UHG (i. 
e., total unmet demand). Targets were designated for individual patient 
types, and those values are the aggregate of the different subtype targets. 
The results are shown in Table 11. Associated with this solution we have, 
N = 4749.9, UHG = 3068.1,OS = 779. Table 11 shows that many tar
gets cannot be met and there is also a lot of outsourcing to H2. 

The solution of the model with objective Z3 = UHGP was also inves
tigated. The results are summarised in Table 12, and match those shown 
in Table 11. To check whether a superior solution with less outsourcing 
is achievable, the model was resolved with OS minimization as the 
objective. The condition UHGP = 3068.1 was however enforced. An OS 
of 750.37 is possible and is achieved by some subtle changes to the so
lution shown in Table 12. It is worth noting that with no insourcing and 
outsourcing permitted, we have N = 4278.8, UHGP = 3539.2. In 
contrast, fewer patients (i.e., 471.1) are treated overall), and the unmet 
demand is higher. The benefits of collaboration between the hospitals 
are clearly demonstrated here. 

3.4.3. Pareto analysis – without outsourcing 
Solution of the model demonstrates that N ∈ [0,4278.84] and UHGP ∈

[3539.16, 7818] and the ideal solution is N = 7818 with UHGP = 0. 
Hence, at best, 54.73% of the targets can be met. There is a linear 
relationship between the total number of patients treated and the total 
unmet targets, such that UHGP(N) = 7818 − N. As more patients are 
treated, more of the targets are met. 

3.4.4. Pareto analysis – with outsourcing 
When outsourcing is included, a third dimension is added to the 

objective space. For each feasible (N,UHGP) pairing there may be as we 
have shown, alternative solutions involving outsourcing. Solution of the 
model demonstrates that N ∈ [0,4749.932], UHGP ∈ [3068.07,7818] and 
OS ∈ [0, 1156.51]. To fully understand the objective space, a multi
criteria analysis can be performed. For the current example, the set of 
Pareto optimal solutions are shown in Fig. 5. 

To get those solutions, we discretised the UHGP and OS domain into ℧ 
= 50 points and created a 2D grid. We then solved the model with 
epsilon-constraints UHGP ≤ ϵU

i and OS ≤ ϵOS
j where ϵU

i = 3068.068 +
iΔU, ϵOS

j = jΔOS, ΔU = 7818− 3068.068
℧− 1 and ΔOS = 1156.511

℧− 1 . 
Fig. 5 shows that as the outsourcing is increased, more targets are 

met, and a higher number of patients are treatable. The frontier tapers 
off once a certain level of outsourcing is reached, and the extra benefit 
that occurs is marginal. This might occur if outsourcing encroaches upon 
a hospitals capacity to service their own catchment. The ideal solution is 
(N = 4749.932, UHGP = 3068.07, OS = 0) and the closest solutions are 
(4663.57, 3154.43, 424.84), (4646.29, 3171.71, 401.24), (4680.84, 
3137.16, 448.44). The closest solutions to the ideal are in dark blue, and 
the ones furthest away are red. The Pareto frontier is not a surface but a 
line. The rest of the objective space is shown in Fig. 6. Those solutions 

are coloured by their proximity to the ideal. 

4. Regional case study 

To demonstrate the mathematical models and the associated meth
odologies, we considered the Brisbane (BN) and Gold Coast (GC) regions 
in Queensland, Australia. To solve the mathematical models, we have 
applied the IBM ILOG CPLEX software. It is worth noting upfront that no 
runtimes are shown as the models solved instantly. The BN and GC re
gions are adjacent and have populations of approximately 2.4 and 0.7 
million people, respectively. The Gold Coast is directly south of Bris
bane. In these regions, there are 20-30 hospitals. A summary of the 
largest hospitals and their facilities (a.k.a., assets) is shown in Table 13. 
Fourteen are in BN and five are in the GC. In addition, ten are public and 
nine are private. 

4.1. Caveats 

An attempt was made to identify the main facilities of each of the 
hospitals in Table 13, and their function. Due to a lack of information, 
the GRN, MA, and MP hospitals were fully omitted from further 
consideration. As the QCH is a children’s hospital, and does not treat 
adults, it was also omitted. As the only children’s hospital in the region 
providing paediatric care, it may be analysed independently. The WES 
hospital has been included, but only partial information has been 
collected. 

The main facilities of each of those hospitals was modelled. Some 
other specialist facilities/clinics, units, and services, however, are not 
included. For instance, we do not include emergency departments, 

Table 9 
Hospital configuration.  

Hosp. #OT #ICU #WARD W1 W2 W3 W4 W5 

H1 10 5 74 22 15 10 14 13 
H2 6 2 42 15 20 7 - - 
Total 16 7 116 37 35 17 14 13  

Table 10 
Hospital targets.  

Hosp. Type 1 Type 2 Type 3 Type 4 Type 5 Total 

Subtype 1 2 3 1 2 1 2 3 4 1 2 3 1 2  

H1 1000 1000 0 1000 500 250 650 100 0 200 300 0 400 400 5800 
H2 200 30 41 200 122 40 40 40 40 258 678 240 60 29 2018 
Total 1200 1030 41 1200 622 290 690 140 40 458 978 240 460 429 7818  

Table 11 
Allocation solution for objective Z3 = UHG.  

Variable h g=1 2 3 4 5 TOT 

Target (n̂HG
h,g ) H1 2000 1500 1000 500 800 5800 

# Treated 
(nHG

h,g ) 
H1 1770 578.13 0 0 429 2777.1 

# Insourced 
(inHG

h,g ) 
H1 0 0 0 0 29 29 

# Outsourced 
(outHG

h,g ) 
H1 230 200 120 200 0 750 

Unmet Targets 
(ňHG

h,g ) 
H1 0 721.88 880 300 400 2301.9 

Met Targets 
(metHG

h,g ) 
H1 2000 778.13 120 200 400 3498.1         

Target (n̂HG
h,g ) H2 271 322 160 1176 89 2018 

# Treated 
(nHG

h,g ) 
H2 501 522 266.39 683.41 0 1972.81 

# Insourced 
(inHG

h,g ) 
H2 230 200 120 200 0 750 

# Outsourced 
(outHG

h,g ) 
H2 0 0 0 0 29 29 

Unmet Targets 

(n
⌣HG

h,g )

H2 0 0 13.61 692.59 60 766.2 

Met Targets 
(metHG

h,g ) 
H2 271 322 146.39 483.41 29 1251.81  
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Table 12 
Allocation solution when Z3 = UHGP.  

Variable  g=1 g=2 g=3 g=4 g=5 TOT  

p = 1 2 3 1 2 1 2 3 4 1 2 3 1 2   

n̂HG
h,g 

H1 1000 1000 0 1000 500 250 650 100 0 200 300 0 400 400 5800 

nHG
h,g H1 800 970 0 78.13 500 0 0 0 0 0 0 0 0 429 2777.13 

inHG
h,g H1 0 0 0 0 0 0 0 0 0 0 0 0 0 29 29 

outHG
h,g H1 200 30 0 200 0 40 40 40 0 200 0 0 0 0 750 

n
⌣HG

h,g 
H1 0 0 0 721.88 0 210 610 60 0 0 300 0 400 0 2301.88 

metHG
h,g H1 1000 1000 0 278.13 500 40 40 40 0 200 0 0 0 400 3498.13                  

n̂HG
h,g 

H2 200 30 41 200 122 40 40 40 40 258 678 240 60 29 2018 

nHG
h,g H2 400 60 41 400 122 80 80 66.39 40 443.4 0 240 0 0 1972.81 

inHG
h,g H2 200 30 0 200 0 40 40 40 0 200 0 0 0 0 750 

outHG
h,g H2 0 0 0 0 0 0 0 0 0 0 0 0 0 29 29 

ňHG
h,g H2 0 0 0 0 0 0 0 13.61 0 14.59 678 0 60 0 766.19 

metHG
h,g H2 200 30 41 200 122 40 40 26.39 40 243.4 0 240 0 29 1251.81  

Fig. 5. Pareto optimal solutions coloured by proximity to the ideal.  

Fig. 6. Objective space coloured by proximity to the ideal.  
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medical assessment and planning units, rehabilitation units, and palli
ative care. It is worth noting, that many of these hospitals are currently 
being expanded and will have additional beds added in the months and 
years ahead. Our data is representative of reality now and is sufficiently 
accurate for the purposes of demonstrating the proposed methods. The 
details of the considered hospitals are freely accessible online, for 
instance in hospital websites, online reports, media releases, Facebook, 
and LinkedIn. Some of this information, however, is unsubstantiated and 
ambiguous, and some of it is inexact or just erroneousness. The biggest 
uncertainty in our data is the exact number of beds in each specialty 

ward. Typically, these range from 20 - 40 beds. This information is rarely 
provided. As a compromise we assume 30 beds are present in any ward 
that we have no exact information. The second biggest uncertainty is the 
specialty of the ward, and the type of patients that can be placed therein. 
Some wards are described as general medical or general surgical, and 
this is open to interpretation, varying across hospitals. 

4.2. Determining a maximal caseload 

The hospitals in the BN and GC region were first assessed using 
Model 1. To apply that model, it was necessary to assemble a list of 
patient types and associated medical and surgical activities needed in 
their care. That information was provided by one of the largest public 
hospitals in the region. This hospital has many specialists, and so cap
tures a degree of variation between different specialists performing 
similar tasks. It was not possible or practical to collect confidential data 
from each hospital in the region. Also, there is insufficient evidence to 
suggest that expected surgery times and lengths of stay will vary across 
different hospitals. 

Of the many available alternatives, it was decided that a patient 
characterisation based upon specialty was most reasonable. The spe
cialty treating the patient is often the most dominant describer of the 
patient’s condition and care pathway. Within each group there are 
various patient sub types. We looked at two patient sub type charac
terisations. The first being surgical or medical. The second was by 
Diagnostic Resource Group (DRG). In Table 14 the number of DRG 
within each specialty and the associated sub mix is provided. 

For our assessment, the regional case mix and surgical to medical sub 
mix shown in Table 15 was defined. These percentages were selected 
according to information found reported on a government web site. The 
“UB” column describes the maximum number of patients that can be 
treated across all hospitals, if specialties do not compete for resources. 

For the first patient sub type characterisation, we computed an 
average surgical and medical inpatient. Each DRG code has a “sur” or 
“med” descriptor, and this made it easy to partition the data into the two 
subtypes. We then proceeded to average the length of stay and treatment 
time data to complete our resource consumption profiles. All patient 
subtypes spend time in operating theatres, intensive care units, and 
medical/surgical wards, and treatment numbers are restricted by the 
number of assets present. Outpatients of both medical and surgical 
persuasions were not defined as insufficient data was available. Those 
patients are rarely restricted by the facilities, but the specialist. They are 
most often seen/treated in consultation rooms, and do not use the main 
facilities of the hospital. 

Model 1 was then solved for a 12-week period (i.e., a single quarter) 
and the results are summarised in Tables 16 and 18. The maximum 
number of patients that are treatable is 53762 and Table 16 shows the 
optimal way to assign those patient types to individual hospitals. It is 
worth noting that there are no hospitals that treat every patient type. 

Following the afore-said assessment, the full set of DRG sub types 
were instated and the DRG sub mix shown in Table 14 was instated. The 
model was then reapplied. The main results are shown in Table 17-20. 
The caseload partitioned by DRG is shown specifically in Table 20. In 
summary, the model was able to find a caseload obeying the case mix 
and sub mix constraints totalling 72053 patients, an increase of 18291 
patients. More patient types are also treated in each hospital. Evidently, 
the averaging of activity durations to create fewer patient sub types is an 
inferior approach, but in practice warranted if insufficient fine-grained 
information is available. There is clear evidence of how different the 
resource consumption profiles are to the profile of an average sub pa
tient type. Many profiles have no surgery, or no icu stay, and minimal 
ward time. By creating an average patient type, time in all three areas is 
forced. That means, the model can not make use of the hospital resources 
as well, and that is why less output was originally obtained for the sur- 
med sub type characterisation. 

Table 13 
Hospital information.  

Hospital Abbrev. Region #Beds 
(Quoted 
Online) 

Identified 

#OT # ICU 
Beds 

# 
Ward 
Beds 

#Wards     

Brisbane 
(Private) 

BPH BN 181 4 5 181 7 

Gold Coast 
University 
(Public| 
Tertiary) 

GCUH GC 750 20 21 630 21 

Gold Coast 
(Private) 

GCPR GC 314 21 6 287 9 

Greenslopes 
(Private| 
Tertiary) 

GRN BN 631 23 18 462 16 

John Flynn 
(Private) 

JFN GC 354 12 5 330 11 

Logan (Public| 
Major 
Centre) 

LOG BN 485 10 8 461 15 

Mater Adult 
(Public| 
Tertiary) 

MA BN 343 20 30 343 - 

Mater 
(Private) 

MP BN 323 10 16 323 - 

North-West 
(Private) 

NW BN 150 7 6 150 5 

Princess 
Alexandra 
(Public| 
Tertiary) 

PA BN 1058 19 25 786 29 

Pindarra 
(Private) 

PIN GC 348 19 9 320 11 

Prince Charles 
(Public| 
Tertiary) 

PRCH BN 657 20 27 546 17 

Qld Childrens 
(Public) 

QCH BN 359 14 36 361 21 

Queen 
Elizabeth 2 
Jubilee 
(Public| 
Medium) 

QE2 BN 239 10 5 244 10 

Royal 
Brisbane 
Womens 
(Public| 
Tertiary) 

RBWH BN 966 22 36 660 22 

Redland 
(Public| 
Major 
Centre) 

RED BN 183 5 0 180 6 

Robina 
(Public) 

ROB GC 403 10 10 272 9 

St Andrews 
(Private) 

STAN BN 250 15 15 234 9 

Wesley 
(Private| 
Tertiary) 

WES BN 535 19 28 532 19    

8676 280 306 6374 227  
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4.3. Incorporating spatially distributed patients 

In this section, spatial demographics and proximity information are 
incorporated. A fictional “demand” scenario was created for demon
strative purposes as information about individual patients and their 
location is not identifiable without significant help from government 
bodies. We have however used real region information and real patient 
treatment data. As such our case study can be viewed as pseudo-real. 
Model 2 was then applied to see if specified demands can be met, and 
if so, how. The model assigns demand originating in different sub re
gions to the hospitals within the region. The trade-offs between patients 
treated and distance travelled is also explored. 

The sub regions in our case study were extracted from the Australian 
Bureau of Statistics (ABS) at https://dbr.abs.gov.au/. We chose to use 
Statistical Area Level 3 (SA3) regions. These geographical areas have 
between 30 and 130 thousand people and have a distinct identity and 
similar social and economic characteristics. They often represent the 
area serviced by a major transport and commercial hub, and closely 
align with large urban local government areas. In total there are 48 SA3 
sub regions within the BN and GC region. The longitude and latitude of 
the centroid of each SA3 sub region was also identified and the distances 
between all pairs of centroids was computed (i.e., using the Haversine 
formula). 

The patient subtype demand in each sub region was chosen randomly 
using the solution from Section 4.1 as a starting point. Hence all de
mands sum to 53762.1 patients. As there are 48 SA3 regions and 38 
patient subtypes, a total of 1824 demand values were selected. As the 

demands are the outputs from the first model, we can be assured that the 
second model is feasible and will produce a solution. The demands in 
each region are summarised in Fig. 7. 

For our analysis, the second model was repeatedly solved as in Sec
tion 3.3 and the trade-off between distance and number of patients 
treated was obtained. The results are shown in Fig. 8. 

That chart shows significant difference between the best and worst 
cases. For any patient cohort, there are many alternative ways to allo
cate patients to hospitals. As more regional capacity is utilized, the 
distance required to be travelled increases moderately to start with, and 
more steeply later. The average distance required per patient also in
creases. At full capacity utilization, the average is at best, about 15km 
per patient. At worst, however, it is about 60km. The exact difference 
between the best and worst solution, is quite transparent. The wort so
lution is obtained by treating BN based patients in the GC and vice versa. 

Table 21 reports for each region, the hospitals assigned to treat the 
patients originating in that region. A similar table could also be shown, 
that describes the list of regions that each hospital treats. In Table 21, a 
single star (*) highlights a required travel distance of 30km and more, 
whereas a double star (**) distances of 50km or more. Nine of the 48 
regions could be serviced (i.e., fully) by local hospitals. These are shown 
in bold text. All other regions needed to send some of their patients 
further afield. Table 22 and Table 23 describes the full extent of the 
travel needed. Table 22 describes the specific number of patients that are 
treated in each hospital, and Table 23 the total distance to be travelled. 
Upon closer scrutiny, these tables show patients are predominantly 
treated locally. A much smaller number are sent further afield. The 

Table 14 
DRG sub types and sub mix within each specialty group, partitioned by surgical and medical.  

GROUP #DRG DRG MIX (%) 

CARD 21 [0.19,0.06,0.51,0.39,0.74,0.72,0.52,0.37,0.6,0.09,0.17,0.01,0.63, 4.54,15.02,5.21,15.59,8.62,23.33,19.23,3.46] 
ENDO 16 [8.91,9,4.22,11.09,3.2,3.66,3.67,11.69,6.54,5.78, 7.9,7.11,7.56,3.93,1.82,3.92] 
ENT 15 [18.3,3.02,21.24,13.07,15.41,6.15,5.25,12.56, 0.31,0.04,0.96,0.87,1.7,0.81,0.31] 
FMAX 2 [95, 5] 
GAST 19 [2.26,1.58,0.62,1.87,0.96,2.03,1.88,1.55,2.26, 3.64,1.94,6.68,13.46,14.48,3.3,11.78,8.59,5.55,15.57] 
GYN 10 [0.34,0.84,0.25,0.37,0.8,1.12,1.28, 51.37,10.36,33.27] 
HEPA 11 [5.82,5.03,14.61,15.58,7.27,1.69,0.47,0.01,18.4,10.28,20.84, 
IMMU 7 [5, 21.1,4.81,18.99,10.23,15.76,24.11] 
NEPH 20 [1.7,0.99,0.18,0.85,0.25,0.26,0.73,0.04, 12.2,11.04,11.05,0.36,14.22,2.4,6.28,4.13,2.28,12.27,15.65,3.12] 
NEUR 26 [6.12,4.06,5.85,3.73,5.39,1.39,0.46,3.8, 3.59,2.99,1.2,4.18,6.24,3.72,5.64,4.18,6.57,0.6,6.04,6.11,3.52,1.33,0.4,6.31,2.86,3.72] 
OBS 2 [20, 80], 
ONC 8 [1.44,1.8,1.42,0.34, 4.87,51.39,30.38,8.36] 
OPHT 16 [9.34,11.65,8.71,6.68,12.96,1.35,6.28,9.62,8.58,7.1,7.6,5.13, 1.41,1.25,0.7,1.64] 
ORTH 49 [4.75,0,0.73,0.59,2.15,3.9,4.36,2.82,4.9,0.21,0.7,4.71,4.59,2,3.86,4.13,2.3,4.99,3.81,2.97,4.5,4.33,3.55,3.71,2.14,   

4.94,3.59,5.2,4.57, 0.04,0.19,0.34,0.4,0.16,0.36,0.49,0.22,0.26,0.36,0.19,0.22,0.01,0.06,0.31,0.25,0.28,0.25,0.32,0.29] 
PLAS 18 [7.09,3.92,13.59,11.54,4.47,10.08,12,13.59,14.32,4.4, 0.46,1.2,0.12,1.31,0.19,1.29,0.02,0.41] 
PSY 10 [0, 4.55,3.58,8.7,15.42,15.21,14.58,5.24,0.93,20.18,11.61] 
RESP 20 [4.31,0.69, 4.24,6.74,8.06,0.39,8.21,1.93,3.58,8.44,2.98,7.2,1.98,6.24,6.1,8.31,6.17,4.03,5.41,4.98] 
TRANS 1 [100, 0] 
UROL 11 [9.58,30.57,17.47,5.06,4.82,27.5, 1.36,0.59,1.1,0.97,0.98] 
VASC 17 [25.4,15.72,11.1,4.98,7.43,30.36, 0.3,0.77,0.85,0.19,0.86,0.48,0.31,0.08,0.26,0.62,0.29]  

301   

Table 15 
Regional case mix, sub mix and upper bounds.  

TYPE CASE MIX (%) SUB MIX (%) UB TYPE CASE MIX (%) SUB MIX (%) UB 

SUR MED SUR MED       

Cardiology (CARD) 6.95 5 95 8984 Obstetrics (OBS) 5.17 20 80 186270 
Endocrinology (END) 1.2 62 38 16134 Oncology (ONC) 6.38 5 95 13131 
Ear, Nose, Throat (ENT) 2.65 95 5 31151 Ophthalmology (OPHT) 4.94 95 5 29841 
Facio-Maxillary (FMAX) 0.01 95 5 10283 Orthopaedics (ORTH) 8.5 95 5 10291 
Gastroenterology (GAST) 16.73 15 85 17173 Plastic (PLAS) 3.1 95 5 9543 
Gynaecology (GYN) 4.3 5 95 40707 Mental Health (PSY) 5.25 0 100 7858 
Hepatology (HEP) 0.01 50 50 16157 Respiratory (RESP) 5.28 5 95 14107 
Immunology (IMMU) 0.77 5 95 5338 Transplants (TRANS) 0.02 100 0 159.386 
Nephrology 17.68 5 95 35780 Urology (UROL) 4.96 95 5 20399 
Neurology 5.07 27 73 14036 Vascular (VASC) 1.03 95 5 4824  
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patients originating in areas, BEAU, CAB, BRIB, JIM, IPS and NAR must 
travel the most to obtain care. This makes sense as these areas are all on 
the boundary of the Brisbane region. 

4.3.1. Last remarks 
It is likely that patients have a preference and/or requirement for 

care in a particular type of hospital. For instance, in a public or private 

Table 16 
The number of patients treated by hospital, specialty, and subtype [SUR-MED SUB TYPES].  

Table 17 
The number of patients treated by hospital, specialty, and subtype [DRG SUB TYPES].  
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hospital. Patients also see differences between hospitals of the same 
type, even if both hospitals provide the same services and treat the same 
types of conditions. The current model ignores those requirements and 
sees no differences. For the purposes of a strategic capacity planning 
approach that seems reasonable. 

4.4. Discussion, insights and regional framework 

In this section important considerations and insights are discussed in 
further detail constituting a complete framework for enabling regional 
assessments. The main insights are italicized. 

4.4.1. Case study 
The case study gives an indication of the type of assessment that can 

be performed. It demonstrates the complexity of real life, and the 
necessary compromises needed when modelling. Because of data un
availability, the case study only provides an indication of the capacity 
achievable in the BN and GC region, and any further generalisations 
should be avoided. To gain the most insights, it would be necessary to 
collect data from each hospital. That is a mammoth undertaking. 

The case study shows various things that seem self-evident to those 
living in the BN and GC region, and common sense. Depending upon the 
demands present in local areas, and the capacity of local hospitals, pa
tients may have to travel further to receive prompt treatment. Otherwise, 
they may need to stay on waiting lists longer, and be treated in later time 

Table 18 
The number of patients treated in each hospital of each type [SUR-MED SUB TYPES].  

Table 19 
The number of patients treated in each hospital of each type [DRG SUB TYPES].  
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periods. It also shows which regions do not have sufficient facilities 
nearby, and hence where new facilities could be built, or existing fa
cilities expanded. It also highlights the importance of reconfiguring hospitals 
to meet the demands within their local area, and the need to forecast accu
rately, those demands. 

4.4.2. Solution visualizations, reporting and display 
Problem instances are generally inconsequential to solve. However, 

the information and outputs provided by the models, is extensive; 
certainly, too lengthy to be viewed in one glance. It is possible to delve 
down and look at each facility, ward, patient type and subtype. A 
dashboard for summarising and navigating the results would be beneficial for 
health care managers and executives when implemented in real-world 
healthcare settings. 

4.4.3. Practical relevance 
Mathematics aside, there are various repercussions to be considered 

regarding the proposed models. It is intended that the models will be 
useful and motivate further discussion and research on this important 
topic. It remains to be seen how applicable mathematical approaches 
are, and how easy it is for health care professionals, managers, and ex
ecutives to adopt them. More generally, whom these techniques are 
exactly targeted, and who has the power to act upon the provided 

solutions. The context upon which they would be applied, and how often 
they should be applied is also important and in need of discussion. We 
pose some thoughts and responses to these inquiries below. 

Who should use the mathematical models proposed in this article? 
Our mathematical approaches are developed for application by those 
with expertise in data analysis, mathematical modelling, and opera
tional research. A regional health-care master planning study, a process 
which typically involves government and a range of consultants, is also an 
opportunity to apply this article’s models. 

Would a multi-hospital master planning framework be useful to 
hospital executives and managers? Conceptually, the idea of strategic 
regional planning is sound, but the mathematical models are nuanced, 
requiring access to appropriate information, and other software support. 
Much of the administrative aspects, however, can be automated with 
forethought. 

4.4.4. Regional appraisals and optimization 
In this article the necessity to perform a regional analysis of hospital 

capacity was demonstrated and several planning tasks that could be 
performed were motivated. We pose some thoughts regarding how a 
region with a multitude of hospitals can be appraised and optimized. 

How do multiple hospitals maximize the number of patients treated 
over time? Section 3.2. demonstrated that more patients can be treated if 

Table 20 
Caseload broken up by patient type and DRG sub type.  

Fig. 7. Summary of regional demand.  
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the case mix of each hospital is selected, and an integrated approach is taken. 
The first model can identify how to treat the largest number of patients, 
given resource availability information. The exact number of patients 
depends on the setup of each hospital, for instance, in the wards and 
beds present, and their associated functions. Worth mentioning, is the 
need to follow through with treating planned numbers of patients. This 
can be enforced most easily by changing the master surgical schedule of each 
hospital. Otherwise, patient admissions across a region would have to be 
monitored, on an ongoing basis. 

How would hospitals best work together and who are the decision 
makers? Coordinating function and caseload across multiple hospitals 
would be challenging under a distributed horizontally integrated man
agement structure. A centralised planning and decision-making body (e. 
g., a regional strategic planning unit (RSPU)) would be best placed to 
apply modelling and issue directives to optimise the allocation of 
regional health services. The role of this body could be to perform 
strategic regional planning, optimisation, and analysis, and to report 
plans, actions, and requirements, to individual hospitals. Monitoring 
outcomes and collecting data is expected to be an ongoing task. Liaisons 
with individual hospitals are not expected to be necessary daily unless 
their authority extends to operational matters. It may be necessary for 
each hospital to have a “point of call” to relay information to other staff 
and to coordinate any activities that may be necessary. That staff 
member would be part of an existing planning unit and would not 
require the creation of a new one. 

If the regions hospitals are from the same organisation, then the 
RSPU could be given access to electronic platforms, and to real-time 
information. This would reduce the need for excessive liaisons and 
permit faster access to data. This is also possible even if hospitals are 
from different organisations. 

The analysis performed by the regional planning body is of a stra
tegic nature and it is envisaged that changes to the operations and 
configuration of existing hospitals may sometimes be desirable to 
improve overall throughput or efficiency across the region. Changing 
how hospitals operate, however, has financial and logistical implica
tions, and there are costs involved in making changes. Those costs may 

need to be incorporated into strategic models, in the future. 
How often should regional strategic planning be performed? The 

application of strategic regional models is expected to be a regular task. 
In Australia, there are many regions. In the state of Queensland 
(Australia) for instance, there are fourteen, with about 123 public hos
pitals [19]. 

The selected regional case mix has a great impact on outputs. Any 
change or introspection in that would require a model resolve. The 
treatment times and lengths of stay are critical pieces of information too. 
These uncertain values affect all the models and reflect current trends in 
quality of care, technological innovation, staff fatigue and staff com
petency. It would be reasonable to expect that data could be updated and 
model scenario analysis conducted every six months (or annually) to 
check regional capacity and consider any changes that may be needed to 
meet future demand. Changes in the demographic of a region and the 
demand for healthcare, along with changes in patterns of patient flow, 
would trigger the need for both the first and second model to be reap
plied. The construction of new hospital(s), the closure of existing one(s), 
or the introduction of a new region would also be the trigger point for 
model resolves. 

Which hospitals should treat which patient types? Our mathematical 
models determine the number of patients of each type that can be 
feasibly treated in each hospital subject to deterministic treatment du
rations and length of stay. Those decisions, however, are dictated by the 
configuration of each hospital and the specific objective defined for 
decision making. As shown, our models provide a single solution, but 
there are many alternatively optimal ways to distribute a regional caseload 
across individual hospitals. The ramifications of this are that in each of 
those alternatives, each hospital could be treating a different mix of 
patients. As there is no overriding pattern or policy, this may be hard for 
hospital executives and managers to tolerate. We would expect that they 
would rather the same case mix be treated year in year out. Further 
research on this quirk is evidently important. It has not been considered 
before in the literature to the best of our knowledge. It is also worth 
noting that each hospital caseload has different staffing requirements 
and needs different medical supplies. However, across the region, the 

Fig. 8. Trade-off between patients treated and necessary travel distance.  
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same resources are potentially needed. 
Should hospitals treat many patient types or specialise in treating a 

few? This question pertains to the provision of different forms of care 
within hospitals. We cannot say at this point, whether hospitals should 
be permanently reconfigured as we do not know what future demands 
will be, and what expectations will be required of the health care system. 
We do not know how technological progress and innovations, will affect 
the nature of healthcare in the future. 

As mentioned in Flegel [20], what aspects of medical care are or are 
not included in a hospital depends upon those providing the care. There 
are however funding implications for the academic institutions that 
have the label “tertiary care,” and prestige and billing benefits for the 
practitioners. Large hospitals that treat every type of patient seem ad
vantageous because they have a full complement of health care re
sources on-site. As such they can treat complex cases. Breen et al. [21] 
commented that many hospitals often struggle to meet complex needs 
because they are designed for episodic care, provided by health care 

professionals who are highly specialised to single organ systems and are 
accustomed to working in silos defined by their medical specialties, 
institutions, and geographical areas. But in larger hospitals, quality of 
care is reduced as wards become full, and the placement of patients in 
wards of other specialties occurs. 

How many hospitals are required in a region and how should each be 
sized and configured? This question is open-ended, and the answer de
pends on many things. There are pros and cons to different hospital types 
and to different configurations, and further investigation is warranted. 
The hospitals that are built should be sufficient to meet demand but 
should also be economically viable. Hospitals should be staffed appro
priately, and their revenue should be sufficient to meet salaries. Re
sources should be well maintained, and funds should be available to 
repair or replace them in the event of breakdown or update them as 
more modern versions arise. 

As posed, this article’s mathematical models are not designed to 
provide direct recommendations in relation to how many hospitals are 
needed or how each should be configured. The models can, however, 
provide useful quantitative insights informing the merit of any proposed 
scenario that is being investigated. The models can inform the staging of 
future expansion of hospitals (i.e., adding additional beds, wards, and the
atres), and identify the triggers for expansion based on forecast growth in 
demand. 

Is the capacity of a region better quantified by the number of spe
cialists operating and their time availability for medical and surgical 
activities? This requires further investigation, but we believe, this 
viewpoint is not sufficient, for the simple reason that operating theatres, 
ward beds, surgical care areas, and medical equipment, which are 
limiting factors, are not inherently included. Otherwise, the idea is 
sound. Regarding medical and surgical procedures, a specialist allocates 
their time, and if they are not operating, then patients are not being 
treated. Alteration of this time is key to achieving higher or lower outputs. 

5. Conclusions 

This article contributes to healthcare planning by developing and 
testing mathematical models to support various hospital capacity ap
praisals and capacity allocation tasks necessary in case mix planning in a 
regional healthcare setting. This contrasts with previous research in 
which only a single hospital is considered. The academic literature 
seems sparse and to the best of our knowledge there are no comparable 
approaches. From a practical perspective, there is a strong need for the 
proposed methods. Determining how hospitals can be used collectively, 
in a collaborative manner (i.e., as we have done), is not straightforward 
nor is it a task that falls within the usual expertise of politicians, health 
care managers, planners, and consultants. This task can benefit greatly 
from an optimisation approach. 

The mathematical models that we have developed have many ben
efits. They provide a robust and agile approach to appraise a region’s 
hospitals. They instantaneously determine how hospitals can best be 
used as they are currently configured and a means to quickly evaluate 
alternative configurations. The results are reproducible and defendable. 
The data requirements needed to facilitate such an endeavour, however, 
become more prohibitive as the number of considered hospitals 
increases. 

Regarding the developed models, our first mathematical model 
provides an original approach to appraise the capacity of a region of 
hospitals. It identifies the global maximum output of the hospitals 
within a region, subject to relevant technical constraints, like a regional 
case mix. Our second model considers how to treat a spatially distrib
uted cohort of patients. Specifically, it identifies how to assign that 
caseload to individual hospitals within a region. This is a multicriteria 
decision problem as it considers the trade-offs between meeting demand 
and the collective distance to be travelled by patients. The third model is 
constructed on the premise that each hospital may have its own target 
caseload, and that caseload can be met by other hospitals via 

Table 21 
The hospitals servicing each region in the solution.  

REG HOSPITALS SERVICING 
REGION 

REG HOSPITALS SERVICING 
REGION 

CAP BPH,GCUH*,GCPR*,LOG, 
PA,QE2,RBWH,RED,STAN, 

SPFD BPH,GCUH**,JFN**,LOG*, 
PA,QE2,RBWH,ROB**, 
STAN, 

CLEV GCUH*,GCPR*,LOG,PA, 
QE2,RBWH,RED,STAN, 

BEAU GCUH*,GCPR*,JFN*,PA**, 
RBWH**,RED**, 

WYN BPH,GCPR**,LOG,PA, 
PRCH,RBWH,STAN, 

BEEN GCUH,GCPR,LOG,PA,PIN*, 
QE2,RBWH*,RED, 

BALD BPH,NW,PA,PRCH, 
RBWH, 

BRN GCUH*,JFN**,LOG,PA,QE2, 
RBWH,RED,ROB**, 

CHERM PA,PRCH,RBWH, JIMB GCUH*,GCPR*,JFN**,LOG, 
PA*,QE2*,RBWH*,RED*, 
ROB*, 

NUN BPH,GCUH**,LOG*,PA, 
PRCH,RBWH,STAN, 

LOG GCUH*,LOG,PA,PIN*,QE2, 
RBWH,RED, 

SAND BPH,GCUH**,LOG*,NW, 
PA,PRCH,RBWH, 

SWOOD GCUH*,LOG,PA,PIN**,QE2, 
RBWH,RED, 

CAR BPH,GCPR**,LOG,PA, 
PRCH,RBWH,STAN, 

BRIB BPH*,GCPR**,NW*,PA*, 
PRCH*,RBWH*,STAN*, 

HOLL BPH,PA,RBWH, CAB NW*,PA**,PRCH*,RBWH*, 
WES*, 

MGR GCUH*,LOG,PA,PIN**, 
QE2,RBWH,STAN, 

NAR NW,PA*,PRCH,RBWH*, 
WES*, 

NATH LOG,PA,PIN**,QE2, 
RBWH, 

RCLIFF BPH,GCUH**,GCPR**,NW, 
PA*,PRCH,RBWH,STAN, 

ROCK GCUH*,LOG,PA,PIN**, 
QE2,RBWH, 

HILL NW,PA*,PRCH,RBWH,STAN, 
WES, 

SUNY GCUH*,LOG,PA,PIN**, 
QE2,RBWH, 

NLAKE LOG**,NW,PA,PRCH,RBWH, 
STAN, 

CENT BPH,GCUH**,PA,PIN**, 
PRCH,QE2,RBWH,STAN, 

SPINE BPH,NW,PA,PRCH,RBWH, 

KEN BPH,JFN**,LOG*,PA, 
PIN**,PRCH,RBWH,STAN, 
WES, 

BROAD GCUH,JFN,PA**,PIN, 
RBWH**,RED**,ROB, 

SHER BPH,PA,PRCH,RBWH, 
STAN, 

COOL GCUH,JFN,PA**,PIN, 
RBWH**,RED**, 

GAP BPH,PA,PRCH,RBWH, 
STAN,WES, 

GCN GCUH,GCPR,JFN,PA**, 
RBWH**,RED*, 

BRIN BPH,PA,PRCH,RBWH, 
STAN, 

GCHIN GCUH,JFN,PA**,PIN, 
RBWH**,RED**,ROB, 

BRINE BPH,GCPR**,LOG,PA, 
PRCH,RBWH,STAN, 

MUD GCUH,JFN,PA**,PIN, 
RBWH**,RED**, 

BRINN BPH,PA,PRCH,RBWH, 
STAN, 

NER GCUH,JFN,PA**,PIN, 
RBWH**,RED*,ROB, 

BRINW BPH,PA,PRCH,RBWH, 
STAN,WES, 

ORM GCUH,GCPR,JFN*,PA*,PIN, 
RBWH*,RED, 

FOR JFN**,PA,QE2,RBWH, 
ROB**,STAN, 

ROB GCUH,JFN,PA**,PIN, 
RBWH**,RED**,ROB, 

IPSW BPH*,GCUH**,JFN**,PA*, 
PRCH**,QE2*,RBWH*, 
ROB**,STAN*,WES*, 

SPORT GCUH,JFN,PA**,PIN, 
RBWH**,RED*, 

IPSWI JFN**,PA,PRCH*,QE2, 
RBWH,ROB**,STAN, 

SURF GCUH,JFN,PA**,PIN, 
RBWH**,RED*,  
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outsourcing agreements. Outsourcing is a significant innovation of this 
article’s modelling. This model has similarities to the second model, but 
spatial demographic information is not incorporated. It also requires the 
definition of multiple target caseloads, one for each hospital, in contrast 

to one. That problem also has multiple criterions and is a multicriteria 
decision problem. In summary, it is worth noting that the models pro
vide an appraisal. They do not recommend direct actions. The data 
handling and manipulation is extensive to facilitate the models. 

Table 22 
Patients treated in each hospital from each region.  
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In Section 4.1, an optimal solution was shown. There are others, 
however. It would be an interesting exercise to identify alternatively 
optimal solutions to gain further insights. The development of an inter- 
regional or national approach was outside the scope of this article but 
may be considered at a future time. The current models are suitable, and 
all that is required is further testing, via the creation of additional real- 
life case studies. Stochastic versions of the proposed models should also 
be developed and tested and would be hugely beneficial. 

Economy of scale is an important concept. In a health care setting, 

which specialises its services, there is a high chance to reduce costs when 
many patients of the same type are treated daily or weekly. It may even 
be possible to reduce treatment times and improve quality of care. 
Modelling economy of scale (EOS) and integrating that aspect into this 
article’s models may be worth considering, in a financial focused 
appraisal of hospital capacity. 

Table 23 
Distances to be travelled.  
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Appendix A 

． 

Appendix B. Model Extensions 

Extension 1. Let us assume that there is an enforceable case mix and sub mix within each hospital, respectively denoted μHG
h,g and μHGP

h,g,p, where 
∑

g∈G
μHG

h,g = 1 and 
∑

p∈Pg

μHGP
h,g,p = 1. The following constraints are therefore necessary: 

nHG
h,g ≥ μHG

h,g NH
h ∀g ∈ G, h ∈ H (Case mix adherence)

nHGP
h,g,p ≥ μHGP

h,g,pnHG
h,g ∀g ∈ G, p ∈ Pg, h ∈ H (Subtype mix adherence)

Another possibility worth considering is to remove designated case mix and sub mix constraints in each hospital, and to minimize deviations and 
disparities. To do that it is necessary to explicitly quantify the differences as follows: 

vHG
h,g =

⃒
⃒
⃒μHG

h,g NH
h − nHG

h,g

⃒
⃒
⃒⇒vHG

h,g ≥ μHG
h,g NH

h − nHG
h,g and vHG

h,g ≥ nHG
h,g − μHG

h,g NH
h  

vHGP
h,g,p =

⃒
⃒
⃒μHGP

h,g,pnHG
h,g − nHGP

h,g,p

⃒
⃒
⃒⇒vHGP

h,g,p ≥ μHGP
h,g,pnHG

h,g − nHGP
h,g,p and vHGP

h,g,p ≥ nHGP
h,g,p − μHGP

h,g,pnHG
h,g  

where nHG
h,g =

∑

p∈Pg

nHGP
h,g,p 

Extension 2. Let us assume there is no case mix and sub mix, but there are specific requirements for each patient type and subtype, denoted 

respectively N̂
G
g and N̂

GP
g,p . To force these demands are met, the following constraints are required: 

NG
g ≥ N̂

G
g ∀ g ∈ G (Demands − patient type)

NGP
g,p ≥ N̂

GP
g,p∀ g ∈ G, p ∈ Pg (Demands − Patient subtype)

There is however no guarantee that specified demands can be met, and the model will not solve if they cannot. In that event, unmet demand may be 

minimized to determine a best fit caseload. To find the best fit caseload given the targets N̂
G
g and N̂

GP
g,p , the following approaches could be taken:  

i) Set NG
g ≤ N̂

G
g and/or NGP

g,p ≤ N̂
GP
g,p and Minimize 

∑

g
(N̂

G
g − NG

g ) +
∑

g

∑

p∈Pg

(N̂
GP
g,p − NGP

g,p) or Minimize 
∑

g
(N̂

G
g − NG

g )
2
+

∑

g

∑

p∈Pg

(N̂
GP
g,p − NGP

g,p)
2  

ii) Set NG
g ≥ N̂

G
g − ΩNG

g (i.e., N̂
G

g − NG
g

N
G
g

≤ Ω) and Minimize Ω where NG
g is the upper bound  

iii) Set NGP
g,p ≥ N̂

GP
g,p − ΩNGP

g,p (i.e., N̂
GP

g,p − NGP
g,p

N
GP
g,p

≤ Ω) and Minimize Ω where NGP
g,p is the upper bound 

In the second and third options, the smallest value of Ω is chosen such that the relative difference between the actual value and the target is as small 
as possible across all patient types. This produces an equitable best fit case mix. 

Extension 3. When targets cannot be met, a reconfiguration of the hospital’s wards may be required. The parameter bh,w may instead be regarded 

as a decision variable. The model may then be solved as a satisfaction problem without any objective and additional constraints NG
g ≥ N̂

G
g and 

NGP
g,p ≥ N̂

GP
g,p . Additional technical constraints governing and restricting how each area is expanded can easily be added. 

Reconfiguring to maximize output may also be considered. Without bounds, however, the model will increase bh,w without limit to achieve 
increased outputs. One way is to have a budget C or restrictions on the number of extra spaces, denoted bh,w. If ch,w is the cost of a new treatment space 
in area w of hospital h, then the following constraints may be included: 
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Uh,w ≤
(
bh,w +Δbh,w

)
Th,w ∀h ∈ H,w ∈ Wh (Restricted time availability)

∑

h∈H

∑

w∈Wh

ch,wΔbh,w ≤ C (Restricted changes)

0 ≤ Δbh,w ≤ bh,w ∀h ∈ H,w ∈ Wh (Bounds)

Extension 4. To treat more patients of specific types, the beds in some wards could be repurposed or relocated. For a particular h ∈ H the following 
balance constraint could be included. 
∑

w∈Wh

(
Δbh,w

)
= 0 where − bh,w ≤ Δbh,w ≤ bh,w − bh,w 

This constraint keeps the total number of beds static but reassigns beds to other areas. 
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